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a b s t r a c t

Large neural network models have high predictive power but may suffer from overfitting
if the training set is not large enough. Therefore, it is desirable to select an appropriate
size for neural networks. The destructive approach, which starts with a large architecture
and then reduces the size using a Lasso-type penalty, has been used extensively for this
task. Despite its popularity, there is no theoretical guarantee for this technique. Based
on the notion of minimal neural networks, we posit a rigorous mathematical framework
for studying the asymptotic theory of the destructive technique. We prove that Adaptive
group Lasso is consistent and can reconstruct the correct number of hidden nodes of one-
hidden-layer feedforward networks with high probability. To the best of our knowledge,
this is the first theoretical result establishing for the destructive technique.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Artificial neural networks are highly expressive models that achieve excellent performance on many tasks. However,
the performance of a neural network model depends heavily on its structure. In particular, training with oversized neural
networks on small or moderate datasets can lead to overfitting. Moreover, training large neural networks requires a high
memory and computation cost. Therefore, choosing the right size for neural networks is an important problem and has
been studied intensively.

Two common approaches for this task are the constructive method (Bello, 1992) and the destructive technique (LeCun
et al., 1990). The constructive method starts with a small neural network and gradually incorporates additional compo-
nents until finding the best architecture. The destructive technique, on the other hand, starts with a large neural network
and remove unimportant components. One drawback of the constructive method is that we have to train a new model
each time we add a new component. On the contrary, we can utilize a Lasso-type penalty for the destructive technique to
avoid this pitfall. Although this method has been used extensively, to the best of our knowledge, no theoretical result has
been established, even for one-hidden-layer feedforward networks. The main challenge is that neural network models are
non-linear and unidentifiable.

Choosing the architecture of neural networks can be considered as a model selection procedure. To study asymptotic
properties of such procedures, we posit a rigorous mathematical framework using the notion of minimal neural networks.
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For simplicity, we focus on one-hidden-layer feedforward networks with hyperbolic tangent activation function, which
will be called ‘‘networks" from now on. In particular, a function f : Rd ! R is a network if f (x) = v> · tanh(u ·x+b1)+b2,
where u is a H ⇥ d matrix; b1, v are H-dimensional vectors; and b2 is a real number. Here, v> is the transpose of v; H is
the number of nodes in the hidden layer, u, v are the weights; and b1, b2 are the biases. A network is called minimal if it
does not have the same input–output map with a network with fewer hidden nodes. The best structure for the training
network is the structure of an optimal network that is also minimal. It is obvious that there exists such a network if there
exists an optimal network. Recall that a network is optimal if it minimizes the expected risk. Therefore, we need to search
for a minimal network among optimal networks. We call it a minimal optimal network.

A popular penalty for automatically reducing the number of hidden nodes of neural networks is the Group Lasso (Mur-
ray and Chiang, 2015; Alvarez and Salzmann, 2016; Scardapane et al., 2017; Huang et al., 2018; Murray et al., 2019).
The penalty groups the weights and the bias parameters of each hidden node together and shrinks them to zero
simultaneously. Recent empirical studies in Dinh and Ho (2020a,b) suggest that the group Lasso penalty may not be as
efficient as the Adaptive group Lasso for selecting between neural network models. In this paper, we propose an Adaptive
group Lasso method for the destructive technique and prove that the proposed method is guaranteed to recover the
architecture of minimal optimal networks with high probability. We use a simple simulation to illustrate that Adaptive
group Lasso may be more advantageous than group Lasso in selecting the number of hidden nodes of networks.

Related work:. Rynkiewicz (2006) proposed an information criterion that can consistently select the number of hidden
nodes of a network. Nevertheless, information criterion has little application in practice because it requires to be computed
for all possible models. The performance of the destructive technique has been investigated extensively using both
synthetic and real data (LeCun et al., 1990; Murray and Chiang, 2015; Alvarez and Salzmann, 2016; Scardapane et al.,
2017; Huang et al., 2018). However, little work has been done to investigate theoretically the performance of these
methods for neural network models although asymptotic properties of Lasso-type regularization methods have been
studied extensively for linear model (Zou, 2006; Zhao and Yu, 2006; Wang and Leng, 2008; Meinshausen et al., 2009; Liu
and Zhang, 2009). Notably, there are some recent theoretical works on asymptotic properties of Lasso-type regularization
methods for feature selection under neural networks models (Dinh and Ho, 2020b; Feng and Simon, 2017; Farrell et al.,
2018; Fallahgoul et al., 2019; Shen et al., 2019).

2. Mathematical framework

Let ↵ = (u, v, b1, b2), we denote a network with weights u, v and biases b1, b2 by f↵ , and the u, v, b1, b2 components
of ↵ by u↵, v↵, b1↵ , b2↵ respectively. Recall that a network is minimal if it does not have the same input–output map with
a network with fewer hidden nodes. Sussmann (1992) provided the following necessary and sufficient conditions for a
network f↵ to be minimal:

Lemma 2.1. A network f↵ is minimal if and only if

(i) u
[:,i]
↵ 6= 0 for all i

(ii) v[i]
↵ 6= 0 for all i

(iii) (u[:,i]
↵ , b[i]

1↵
) 6= ±(u[:,j]

↵ , b
[j]

1↵
) for all i 6= j,

where u
[:,i]
↵ is the ith column of the matrix u↵ and v[i]

↵ is the ith component of the vector v↵ .

Moreover, Sussmann (1992) showed that two minimal networks that have same input–output map can be transformed
from one to another by a series of sign-flip and node-interchange transformations. A sign-flip transformation changes
(u[:,i]

↵ , b[i]

1↵
) ! (�u

[:,i]
↵ , �b

[i]

1↵
) for a node i while a node-interchange transformation switches the labels of two nodes:

(i, j) ! (j, i). Therefore, a set of minimal networks that have the same input–output map is always finite.
We assume that the training data (Yk, Xk)nk=1 are generated from the following model

Yk = f↵⇤ (Xk) + ✏k (1)

where {✏i}
n

k=1 are i.i.d. random variables that follow the normal distribution N (0, � 2). Without loss of generality, we
assume that the data-generating network f↵⇤ is a minimal network. Let H⇤ be the unknown number of hidden nodes of
f↵⇤ . We consider the destructive techniques proposed by Alvarez and Salzmann (2016) for reconstructing f↵⇤ . Specifically,
we fit a large network with H hidden nodes and remove redundant nodes using Adaptive group Lasso. Throughout this
paper, we make the following assumption:

Assumption 2.2. We assume that H⇤  H and kvec(↵⇤)k1 is bounded by a constant W . Here, k · k1 is the `1 norm and
vec(·) is the vectorization operator.

Let H be the parameter space of all networks that have H hidden nodes such that kvec(↵)k1  W for all ↵ 2 H,
and H

⇤ be the parameter space of all minimal networks that have the same input–output map with f↵⇤ . From now on,
‘‘a network in H" means its parameter is in H. A hidden node i is called a zero node of f↵ if (u[:,i]

↵ , v[i]
↵ , b[i]

1↵
) = 0, and it is
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called a non-significant node of f↵ if u[:,i] = 0 or v[i] = 0. Let H⇤ be the parameter space of networks in H such that if we
remove all zero nodes of a network in H

⇤, we obtain a network in H
⇤. Similarly, let K be the parameter space of networks

in H such that if we remove all non-significant nodes of a network K, we obtain a network in H
⇤. Finally, let Q be the

parameter space of networks in H that have the same input–output map with f↵⇤ . It is obvious that H
⇤

⇢ K ⇢ Q ⇢ H.
We can think of H⇤ as an embedding of H⇤ into H. Since H

⇤ is finite, H⇤ is also finite.
For ↵, � 2 H, we define a distance between ↵ and � by d(↵, �) = kvec(↵)� vec(�)k, where k · k is the `2 norm. With

this notation, we can rigorously define consistency and model selection consistency.

Definition 2.3. An estimator ↵̂ is consistent if d(↵̂,H
⇤) ! 0 in probability.

Definition 2.4. An estimator ↵̂ is model selection consistent if

• ↵̂ is consistent
• for any � > 0, there exists N� such that if n � N� , the probability that f↵̂ is a minimal network with H

⇤ non-zero
nodes is at least 1 � �.

Next, we introduce the Adaptive group Lasso method for estimating the unknown parameter ↵. It is a two-step process:

• Step 1: obtain an initial estimator using Group Lasso

↵̂GL

n
= argmin

↵2H

1
n

nX

k=1

[Yk � f↵(Xk)]2 + ⇣n

HX

i=1

kwik

where wi = (u[:,i], v[i], b[i]

1 ) is the vector of all parameters that associated with the ith hidden node; ⇣n > 0 is the
regularizing parameter.

• Step 2: compute the Adaptive group Lasso estimator

↵̂n = argmin
↵2H

1
n

nX

k=1

[Yk � f↵(Xk)]2 + �n

HX

i=1

kwik

kwi
↵̂GLn

k�

where � is a positive number; �n > 0 is the regularizing parameter; and wi
↵̂GLn

is the wi-component of ↵̂GL

n
. Here, we

use the convention that 0/0 = 0.

For convenience, we define

L(↵) =

HX

i=1

kwik, Mn(↵) =

HX

i=1

kwik

kwi
↵̂GLn

k�
.

Next, we provide some basic lemmas that we need for our proofs. To ease the notations, we will use Ck, k = 1, 2, . . .,
for denoting generic constants.

Lemma 2.5. We have |L(↵) � L(�)| 
p
Hd(↵, �), 8↵ 2 H.

Lemma 2.6. There exists C2 > 0 such that for any � 2 Q, there exists �⇤ 2 H
⇤
such that L(�)� L(�⇤) � min

�
C2, d(�,H

⇤)
 
.

Lemma 2.7. There exists a constant C1 > 0 such that for any � 2 Q, if the set U = {i : kwi�
k < C1} has H � H

⇤
nodes, then

the network � 0
, obtained by setting the weights and the biases of � at nodes in U to zero, belongs to H

⇤
.

The proofs of these lemmas can be found in the Supplementary.

3. Asymptotic properties of Adaptive group Lasso

Let Rn(↵) and R(↵) be the empirical risk and expected risk of f↵ respectively. That is, Rn(↵) =
1
n

P
n

i=1 [Yi � f↵(Xi)]2 and
R(↵) = E([Y � f↵(X)]2). Note that R(↵) = � 2 = min�2H R(�) if and only if ↵ 2 Q.

3.1. Properties of risks

First, we state some properties of Rn(↵) and R(↵), which are proved in the Supplementary.

Lemma 3.1 (Generalization Bound). For any � > 0, there exist C3(�) > 0

|Rn(↵) � R(↵)|  C3
log n
p
n

, 8↵ 2 H

with probability at least 1 � �.
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Lemma 3.2. There exist C4, ⌫ > 0 such that

R(↵) � � 2
� C4d(↵,Q)⌫, 8↵ 2 H.

Lemma 3.3 (Lipschitzness). There exists C5 > 0 such that

|R(↵) � R(�)|  C5d(↵, �), 8↵, � 2 H.

For any � > 0, there exists C6(�) such that

|Rn(↵) � Rn(�)|  C6d(↵, �), 8↵, � 2 H

with probability at least 1 � �.

3.2. Model selection consistency of Adaptive group Lasso

Now, we are ready to prove that Adaptive group Lasso is structural consistent. The first step is deriving the convergence
rate of group Lasso.

Theorem 3.4. Assume that ⇣n ! 0 and ⇣n
p
n/ log(n) ! 1. For any � > 0, when n is sufficiently large, we have

d(↵̂GL

n
,H

⇤)  2C3
log n
⇣n

p
n

+ (1 +
p
H)

✓
4C3

C4

log n
p
n

+
2C7

C4
⇣ ⌫/(⌫�1)
n

◆1/⌫

with probability at least 1 � �.

Proof. Please see the detailed proof in the Supplementary. ⇤
A direct consequence of Theorem 3.4 is that the group Lasso estimator is consistent. In the second step, we prove that

the Adaptive group Lasso estimate has at most H⇤ non-zero nodes.

Theorem 3.5. Assume that ⇣n ! 0, ⇣n
p
n/ log(n) ! 1, �n ! 0, and

�
1/�
n

2C3
log n
⇣n

p
n

+
p
H

⇣
4C3
C4

log n
p
n

+
2C7
C4

⇣
⌫/(⌫�1)
n

⌘1/⌫ ! 1.

For any � > 0, when n is sufficiently large, f↵̂n
has at most H

⇤
non-zero nodes with probability at least 1 � �.

Proof. Let ↵⇤
n

2 H
⇤ such that d(↵̂GL

n
, ↵⇤

n
) = d(↵̂GL

n
,H

⇤). We denote the set of zero nodes of f↵⇤
n
by In. Let ⇡n : H ! H be a

function that set all the weights and biases associated with nodes in In to 0. That is,

wi⇡n(↵)
= (u[:,i]

⇡n(↵), v
[i]

⇡n(↵), b
[i]

1⇡n(↵)
) =

⇢
0 if i 2 In

(u[:,i]
↵ , v[i]

↵ , b[i]

1↵
) if i 62 In.

We have,
X

i2In

kwi
↵̂GLn

k 
Rn(↵⇤

n
) � Rn(↵̂GL

n
)

⇣n
+

X

i/2In

⇣
kwi↵⇤

n

k � kwi
↵̂GLn

k

⌘

 2C3
log n
⇣n

p
n

+
R(↵⇤

n
) � R(↵̂GL

n
)

⇣n
+

X

i/2In

���kwi↵⇤
n

k � kwi
↵̂GLn

k

���

 C3
log n
⇣n

p
n

+

X

i/2In

���kwi↵⇤
n

k � kwi
↵̂GLn

k

���

(2)

with probability at least 1 � �.
On the other hand, d(↵̂GL

n
, ⇡n(↵̂GL

n
)) � kwi

↵̂GLn
k for all i 2 In. So,

�n

X

i2In

kwi↵̂n
k

d(↵̂GL
n

, ⇡n(↵̂GL
n
))�

 �n

X

i2In

kwi↵̂n
k

kwi
↵̂GLn

k�
 Rn(⇡n(↵̂n)) � Rn(↵̂n). (3)

By Lemma 3.3, we obtain

Rn(⇡n(↵̂n)) � Rn(↵̂n)  C6d(↵̂n, ⇡n(↵̂n))  C6

X

i2In

kwi↵̂n
k (4)

with probability at least 1 � �.
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Assume that
P

i2In
kwi↵̂n

k > 0. From (2) and Theorem 3.4, we have

d(↵̂GL

n
, ⇡n(↵̂GL

n
)) 

X

i2In

kwi
↵̂GLn

k  2C3
log n
⇣n

p
n

+

X

i/2In

���kwi↵⇤
n

k � kwi
↵̂GLn

k

���

 2C3
log n
⇣n

p
n

+
p
Hd(↵̂GL

n
, ↵⇤

n
) = C3

log n
⇣n

p
n

+
p
Hd(↵̂GL

n
,H

⇤)

 2C3(1 +
p
H)

log n
⇣n

p
n

+
p
H(1 +

p
H)

✓
4C3

C4

log n
p
n

+
2C7

C4
⇣ ⌫/(⌫�1)
n

◆1/⌫

(5)

with probability at least 1 � �.
Combining (3), (4), and (5), we get

�
1/�
n

2C3
log n
⇣n

p
n

+
p
H

⇣
4C3
C4

log n
p
n

+
2C7
C4

⇣
⌫/(⌫�1)
n

⌘1/⌫  (1 +
p
H)C1/�

6

which is a contradiction when n is large enough. Therefore,
P

i2In
kwi↵̂n

k = 0 with probability at least 1��. Hence, every
node in In is a zero node of ↵̂n. Recall that In is the set of zero nodes of f↵⇤

n
where ↵⇤

n
2 H

⇤. So, |In| = H � H
⇤. That is,

f↵̂n
has at most H⇤ non-zero nodes ⇤

Finally, we derive the convergence rate of the Adaptive group Lasso.

Theorem 3.6. Assume that ⇣n ! 0, ⇣n
p
n/ log(n) ! 1, �n ! 0, and

�
1/�
n

2C3
log n
⇣n

p
n

+
p
H

⇣
4C3
C4

log n
p
n

+
2C7
C4

⇣
⌫/(⌫�1)
n

⌘1/⌫ ! 1.

For any � > 0, when n is sufficiently large, we have

d(↵̂n,H
⇤) 

✓
2C3

C4

log n
p
n

+
C8

C4
�n

◆1/⌫

.

with probability at least 1 � �.

Proof. Let ↵⇤
n

2 H
⇤ such that d(↵̂GL

n
, ↵⇤

n
) = d(↵̂GL

n
,H

⇤). By Lemma 3.1, we have, for � > 0,

R(↵̂n) � R(↵⇤

n
)  Rn(↵̂n) � Rn(↵⇤

n
) + 2C3

log n
p
n

 2C3
log n
p
n

+ �n[Mn(↵⇤

n
) � Mn(↵̂n)]

 2C3
log n
p
n

+ �nMn(↵⇤

n
).

with probability at least 1 � �.
Since H

⇤ is finite, by Theorem 3.4, there exists C8 such that when n is sufficiently large, Mn(↵⇤
n
)  C8 with probability

at least 1 � �. By Lemma 3.2, when n is sufficiently large

C4d(↵̂n,Q)⌫  R(↵̂n) � R(↵⇤

n
)  2C3

log n
p
n

+ C8�n

with probability at least 1 � �.
Let ⇠n 2 Q such that d(↵̂n, ⇠n) = d(↵̂n,Q). We now prove that ⇠n 2 H

⇤ when n is sufficiently large. Let In be the set of
zero node of f↵⇤

n
. In the proof of Theorem 3.5, we prove that nodes in In are zero nodes of f↵̂n

when n is sufficiently large.
Therefore,

kwi⇠n
k  d(↵̂n, ⇠n) = d(↵̂n,Q) 

✓
2C3

C4

log n
p
n

+
C8

C4
�n

◆1/⌫

(6)

for all i 2 In.
Consider ⇠ 0

n
2 H such that

wi⇠ 0
n

=

⇢
wi⇠n

if i /2 In

0 if i 2 In.

5
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Fig. 1. Number of hidden nodes selected by our proposed Adaptive Group Lasso method and the Group Lasso method proposed in Murray and
Chiang (2015). The number of hidden nodes of the data-generating network is 10.

By Lemma 2.7 and (6), when n is large enough, we have ⇠ 0
n

2 H
⇤ with probability at least 1 � �. Note that wi↵̂n

= 0
for all i 2 In. So,

d(↵̂n,Q)  d(↵̂n, ⇠
0

n
)  d(↵̂n, ⇠n) = d(↵̂n,Q).

Thus, wi⇠n
= 0 for all i 2 In. That is, we have ⇠n 2 H

⇤. Therefore,

d(↵̂n,H
⇤) = d(↵̂n,Q) 

✓
2C3

C4

log n
p
n

+
C8

C4
�n

◆1/⌫

. ⇤

Combining Theorems 3.5 and 3.6 we can easily show that Adaptive group Lasso estimator is model selection consistent
with appropriate choice of regularizer parameters ⇣n and �n. Specifically,

Theorem 3.7. If ⇣n ! 0, ⇣n
p
n/ log(n) ! 1, �n ! 0, and

�
1/�
n

2C3
log n
⇣n

p
n

+
p
H

⇣
4C3
C4

log n
p
n

+
2C7
C4

⇣
⌫/(⌫�1)
n

⌘1/⌫ ! 1,

then the Adaptive group Lasso estimator is model selection consistent.

Proof. Consistency comes directly from Theorem 3.6. By Theorem 3.5, the Adaptive group Lasso has at most H⇤ non-zero
nodes. When n is sufficiently large, Lemma 2.1 guarantees that f↵̂n

is a minimal network. So, it has exactly H
⇤ non-zero

nodes. ⇤

4. Illustration

The goal of this section is not to provide an extensive study on the performance of the destructive technique. This
has been done thoroughly in LeCun et al. (1990), Murray and Chiang (2015), Alvarez and Salzmann (2016), Scardapane
et al. (2017), Huang et al. (2018) using both synthetic and real data. Instead, we aim to illustrate our theoretical findings
through simple experiments.

4.1. Simulation

In this experiment, we simulate 100 datasets of size n = 5000 according to the model (1) with H
⇤ = 10, � 2 = 1.

The inputs (5 features) and parameters of the model are drawn independently from the standard normal distribution.
For each dataset, we train a network with H = 20 over 10 000 epochs using our proposed Adaptive Group Lasso method
and the Group Lasso method proposed in Murray and Chiang (2015), Murray et al. (2019). The regularizing constants of
both methods are chosen from the set {0.001, 0.005, 0.01, 0.025, 0.05, 0.075, 0.1} using the Akaike information criterion
(AIC). Our optimization method is Proximal gradient method (Parikh and Boyd, 2014) (the learning rate is 0.01), which
can identify the support of the estimates directly without the need of thresholding. For the Adaptive group Lasso, we
choose � = 2. The simulation is implemented in Python using Pytorch library.

We count the number of hidden nodes selected by each method. Fig. 1 summarizes the results of our simulation. The
Adaptive Group Lasso performs better than the group Lasso in choosing the size of a network. Note that the best number
of hidden nodes is 10.

6
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Fig. 2. Number of hidden nodes selected by our proposed Adaptive Group Lasso method and the group Lasso method proposed in Murray and
Chiang (2015) (Boston housing dataset).

Fig. 3. The training and testing errors of the Adaptive Group Lasso methods and the group Lasso method proposed in Murray and Chiang (2015)
(Boston housing dataset).

4.2. Boston housing dataset

We use our framework to study the Boston housing dataset.2 This dataset consists of 506 observations of house prices
and 13 predictors. We consider a network with 50 hidden nodes. The group Lasso and Adaptive group Lasso methods are
then performed on this dataset using average test errors from 50 random train-test splits (with the size of the test sets
being 25% of the original dataset) over 10 000 epochs. The regularizing constants of the algorithms are chosen from the set
{0.1, 0.3, 0.5, 0.7, 1} using the Akaike information criterion (AIC). As in the previous part, we use the proximal gradient
method (with learning rate 0.01) for optimization and choose � = 2 for the Adaptive group Lasso. We also consider the
simple Empirical risk minimizer (ERM) in this experiment.

The number of hidden nodes selected by group Lasso and Adaptive group Lasso are presented in Fig. 2. Although the
destructive methods choose much smaller networks (about one-fifth the size of the full networks), their prediction errors
are slightly better than the ERM which uses the full network (see Fig. 3). The gap between training error and testing error
of the destructive methods is also smaller compared to the ERM.

5. Discussion and conclusion

We prove that our proposed Adaptive group Lasso method is model selection consistent for the problem of selecting
the number of hidden nodes of one-hidden-layer feedforward networks. To the best of our knowledge, this is the first
theoretical result for the popular destructive technique. We also obtain the consistency of the group Lasso method as a
byproduct of our proof. However, the question about the model selection consistency of the group Lasso estimator remains
open. One interesting direction for future work is extending our results to deep neural networks. This requires further
investigation on the properties of minimal deep neural networks. Another avenue for future direction is developing theory
and methods for applying constructive and destructive approaches to select the number of layers of deep neural networks.

2 http://lib.stat.cmu.edu/datasets/boston.
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In this paper, we assume that the true underlying function is a neural network model (Eq. (1)). The extension from
model-based framework to the general cases with model mismatch is an intriguing question in learning with neural
networks. In general, the projections of the true underlying function to the hypothesis space (in `2 distance for regression)
might not be unique, and they might not be similar to each other in terms of the structure of interest. Understanding of
these projections for neural networks is limited, and analyses of the general cases need to involve imposing certain strong
conditions on them (Feng and Simon, 2017). For our problem of structure reconstruction, one possible set of conditions
are: (1) the set of optimal projections (in function space) is finite, and (2) all optimal projections have the same number
of hidden nodes. Our proofs can be adapted to this setting with minor adjustments.
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