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We study pool-based active learning with abstention feedbacks where a labeler can abstain from labeling
a queried example with some unknown abstention rate. This is an important problem with many useful
applications. We take a Bayesian approach to the problem and develop two new greedy algorithms that
learn both the classification problem and the unknown abstention rate at the same time. These are
achieved by simply incorporating the estimated average abstention rate into the greedy criteria. We
prove that both algorithms have near-optimality guarantees: they respectively achieve a (1 — 1) constant
factor approximation of the optimal expected or worst-case value of a useful utility function. Our exper-
iments show the algorithms perform well in various practical scenarios.
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1. Introduction

We consider the problem of active learning with abstention
feedbacks where a labeler can abstain from labeling queried exam-
ples with some unknown abstention rate. This problem is one of
the several attempts to deal with imperfect labelers in active learn-
ing who may give incorrect or noisy labels to queried examples
[1,2] or in our case, give abstention feedbacks to queries [2-4].

Learning with abstention feedbacks is important in many real-
life scenarios. Below we discuss some examples where this prob-
lem is useful. In these examples, although the reasons for the
abstention vary, from the learner’s view, they are the same: the
learner will receive no labels for some queries and the true labels
for others.

Crowdsourcing: In crowdsourcing, we have many labelers, each
of whom only has expertise in some certain area and therefore
can only provide labels for a subset of the input domain. These
labelers were also called labelers with a knowledge blind spot
[3]. In this case, active learning is a good approach to quickly nar-
row down the expertise domain of a labeler and focus on querying
examples in this region to learn a good model. By adapting active
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learning algorithms to each labeler, we can also gather representa-
tive subsets of labeled data from the labelers and combine them
into a final training set.

Learning with Corrupted Labels: In this problem, the abstention
feedbacks do not come from the labeler but occur due to corrup-
tions in the labels received by the learner. The corruptions could
be caused by bad communication channels that distort the labels
or could even be caused by attackers attempting to corrupt the
labels [5]. The setting in our paper can deal with the case when
the corrupted labels are completely lost, i.e., they cannot be recov-
ered and are not converted to incorrect ones.

In this paper, we consider the pool-based active learning with a
fixed budget setting, where a finite pool of unlabeled examples is
given in advance, and we need to sequentially select N examples
from the pool to query their labels. Our setting assumes that
abstention feedbacks count towards the budget N, so we need to
be careful when selecting the queried examples. Our work takes
a Bayesian approach to the problem and learns both the classifica-
tion model and the unknown abstention rate at the same time. We
call this approach the Bayesian Active Learning with Abstention Feed-
backs (BALAF) framework. Our framework can be used to instanti-
ate different algorithms for active learning with abstention
feedbacks problems.

Unlike previous work, which took a frequentist approach to the
problem and did not provide any theoretical insights, our work
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takes the Bayesian approach and also contributes to the under-
standings of this problem both algorithmically and theoretically.
Algorithmically, we develop two novel greedy algorithms for active
learning with abstention feedbacks based on our BALAF frame-
work. Each algorithm uses a different greedy criterion to select
queried examples that can give information for both the classifica-
tion model and the abstention rate. Theoretically, we prove that
our proposed algorithms have theoretical guarantees for version
space reduction, a useful property of the selected examples in
active learning. Version space reduction is a popular concept for
analyzing properties of active learning algorithms [6-8] and is
defined as the volume of all functions in the hypothesis space that
disagree with the selected labeled examples. To the best of our
knowledge, ours are the first theoretical results for active learning
with abstention feedbacks in the Bayesian pool-based setting.

The first greedy algorithm that we propose in this paper aims to
maximize the expected version space reduction [6] of the joint
deterministic space deduced from the spaces of possible classifica-
tion models and abstention rates. In essence, the proposed algo-
rithm is a generalization of the maximum Gibbs error algorithm
[7] where we incorporate the terms controlling the estimated
abstention rate into the greedy criterion. When there is no absten-
tion, our algorithm recovers the maximum Gibbs error algorithm.
By using previous theoretical results for adaptive submodularity
[6], we are able to prove that our algorithm has an average-case
near-optimality guarantee: the average utility value of its selected
examples is always within a (1 — 1) constant factor of the optimal
average utility value.

In contrast to the first algorithm, the second algorithm that we
propose aims to maximize the worst-case version space reduction
utility. This algorithm is a generalization of the least confidence
active learning algorithm [9] with the main difference that we also
incorporate the estimated abstention rate into the greedy criterion.
When there is no abstention, our algorithm can recover the least
confidence algorithm. From previous theoretical results for point-
wise submodularity [8], we can prove that the proposed algorithm
has a worst-case near-optimality guarantee: the worst-case utility
value of its selected examples is always within a (1 —1) constant
factor of the optimal worst-case utility value.

We conduct experiments to evaluate our proposed algorithms
on various binary classification tasks under three different realistic
abstention scenarios. The experiments show that our algorithms
are useful compared to the passive learning and normal active
learning baselines with various abstention rates under these
scenarios.

2. Related work
2.1. Theory

The theoretical guarantees considered in this paper have been
studied for normal Bayesian pool-based active learning where
the labeler always gives labels to queried examples [6,10,7,8,11-
13]. The theory for the average case was originally developed by
[6] with adaptive submodular utilities, while that of the worst case
was developed by [8] for pointwise submodular utilities. In both
cases, (1 —1)-factor approximation guarantees were proven for
the corresponding greedy algorithms.

The problem of active learning with abstention feedbacks was
previously investigated in [3,4,2]. [3]| considered a setting similar
to ours where the labeler may have knowledge blind spots and
would be incapable of labeling examples in such blind spots. On
the other hand, [4] studied a situation where the learner may inter-
rupt the labeler rather than waiting for his response, thus allowing
the possibility of receiving “I don’t know” labels. In both papers,
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greedy algorithms were used to create a balance between maxi-
mizing the received information and minimizing the abstention
probability; however, no theoretical guarantees about their perfor-
mance were obtained. Our work in this paper, although similar to
theirs in spirit, provides theoretical guarantees for the proposed
algorithms. In [14], the authors consider a different framework
for active learning with abstention where the learner has an option
to withhold making a decision for a fixed cost. Our framework, on
the other hand, allows the labeler to abstain from labeling while
the learner does not have this option.

A theoretical work on active learning with abstention feedbacks
is [2], where both noisy labels and abstention feedbacks are con-
sidered. However, they only examined a simple one-dimensional
classification problem and made a low-noise assumption on both
the labeling noise and the abstention rate. Furthermore, the labe-
ler’s abstention in their model is non-persistent and that allows
the learner to repeatedly query an example until a label is received.
Under this framework, the paper derived an algorithm with a near-
optimal asymptotic convergence rate for estimating model param-
eters. In contrast, our work in this paper investigates the persistent
label scenario, which is much less understood and more difficult to
resolve [11,15], and we focus on near-optimal query strategies
with a finite budget. Thus, our results are not directly comparable
to those in [2]. Theory for learning with abstention has also been
considered in other settings, such as boosting [16] and online
learning [17].

2.2. Methods

Besides abstention feedbacks, there were other works on active
learning with unreliable labelers. For examples, many authors con-
sidered labelers that give incorrect or corrupted labels from vari-
ous types of noise models [18-20,13,15]. [21] considered a
setting where the labeler can return both labels and confidences,
while in [22,1], multiple labelers with different fidelity are avail-
able and the learner is given the option of obtaining labels from
either weak or strong labelers. Our work also relates to other works
on active learning and adaptive sampling in crowdsourcing such as
[23-27]. Similar to our work, [28,29] combine an additional objec-
tive function with a measurement of uncertainty into the active
learning process and also utilize greedy algorithms. However, they
focus on different learning settings where there is no abstention
from the labelers.

3. Pool-based active learning with abstention feedbacks

In pool-based active learning, we are given a finite set (called a
pool) X of unlabeled examples and a budget N, and we need to
sequentially query the labels of N examples from X to learn a good
classifier. Normal active learning assumes the human labeler
would always give labels for queried examples. By contrast, in this
paper, we consider active learning with abstention feedbacks
where the labeler is allowed to abstain from labeling a queried
example. In other words, the labeler may return “no label” to a
queried example. Our work considers the case where abstention
feedbacks count towards the budget N, so we need to select quer-
ied examples to obtain as many useful labels as possible.

To define the problem, let Y = {1,2,...,¢} be the set of all pos-
sible labels. Assume there is an unknown true labeling f . : X — Y
of the whole pool X that is used by the labeler to label queried
examples, and the labeler will return f . (x) for a queried example
x if he decides to label it. Also assume there is an unknown true
abstention pattern ke : X — {0,1} used by the labeler to decide
whether or not to label a queried example. That is, kyue(x) = 1 if
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Fig. 1. Policy trees for pool-based active learning without (upper) and with (bottom) abstention feedbacks. y; = 0 means the labeler abstains from labeling x; while y; = 1 or 2

means the labeler gives label 1 or 2 for x; respectively.

the labeler abstains from labeling x and k. (x) = O if he decides to
label it.

In this setting, an active learning algorithm is a policy for choos-
ing queried examples from X, and these chosen examples depend
on the labels as well as abstention feedbacks of previously selected
examples. By definition, a policy is a mapping from a set of exam-
ples and the labeler’s corresponding responses to the next unla-
beled example to be queried, and it can be represented by a
policy tree. During the active learning process, a learner (a policy
or algorithm) sequentially selects unlabeled training examples
one at a time from X and asks the labeler for their labels. The labe-
ler would use ke to decide whether or not to give the labels,
which in turn are determined by f .. [llustrations of policy trees
for normal active learning and active learning with abstention
feedbacks are given in Fig. 1. Pool-based active learning with
abstention feedbacks aims to design algorithms (policies) for
selecting queried examples that can give us as much information
about f,. (and in some cases, kie) as possible.

4. Bayesian active learning with abstention feedbacks (BALAF)

We shall take the Bayesian approach to pool-based active learn-
ing with abstention feedbacks, which we call the Bayesian active
learning with abstention feedbacks (BALAF) framework. In our
framework, we consider a (possibly infinite) set H of probabilistic
hypotheses, where each hypothesis h € H is a random function
from & to Y. Formally, for any x € X, h(x) is a categorical distribu-
tion with probability mass function P[h(x) =y] for ally € ).

Following the Bayesian approach, we assume a prior distribu-
tion py[h] on ‘H. If we observe a label y of an example x, we can
use the following Bayes’ rule to obtain a posterior distribution:

__ Dbo[hP[h(x) =y]

= oo PR = yjdh < PolIPIAG) =Y.

Polhly. x|

To deal with the abstention feedbacks, we also take the Bayesian
approach and consider a set of possible abstention hypotheses R
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from X to [0, 1], where each function r : X — [0, 1] gives us the ab-
stention rate of the examples in X. More specifically, r(x) is the prob-
ability that the labeler abstains from labeling x, according to the
abstention hypothesis r. We also assume a prior p,[r] on R. Note
that we have slightly abused the notation p, for both priors on H
and R. In this case, p, can be thought of as a joint distribution on
H xR where the two elements are independent, i.e.,
Polh AT] = polh]po[r] for he H and r € R.

During the active learning process, if we receive a label for an
example x, we can update the posterior distribution using the fol-
lowing Bayes’ rule:

Polr|xhasalabel] =

Po[r](1 — (%))
S po[r](1 = 1(x))
Otherwise, if the labeler abstains from labeling x, we can update the
posterior distribution using:

) ool - 1))

Polr]r(x)

Polr|xhasnolabel] = Tholrx)dr X Do

[r]r(x).

We summarize the general BALAF framework in Algorithm 1, where
N examples are chosen sequentially and the posteriors are updated
according to the above rules. The framework returns the final pos-
teriors py[h] and py[r] which can be used to make prediction on new
examples or to serve as priors in future active learning processes.
For example, the label distribution of a new example x can be pre-
dicted using the posterior py[h] by:

mMﬂ:/mmwwm:ﬂﬁ.

The posterior py[r], on the other hand, can be used as a prior on r in
future active learning processes if the same labeler is employed to give
labels. This would enable the learning algorithm to use the prior
knowledge about the labeler’s preferences to select the most suitable
queried examples while avoiding re-learning his abstention patterns
from scratch. The posterior py[r] can also be transferred and adapted
to other labelers who may have similar abstention patterns.
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Algorithm 1.

General BALAF framework

input: Priors pylh] and p,[r], budget N.
output: Final posteriors py[h] and py[r] after N queries.
fori=1to N do
Select unlabeled data point x* to query based on some
active learning criterion.
y* « Query-label(x*).
if received label y* then
Update p;[h] o« p; [l P[h(x") = y'], and
pilr] o< pi 4[] (1 — r(x")).
else
Update py[r] o p; 4 [r]r(x").
end if
end for
return pylh], py[r]-

5. BALAF algorithms with theoretical guarantees

In this section, we propose two specific instances of the BALAF
framework above that can achieve near-optimality guarantees for
reducing the hypothesis spaces that contain f ;. and k.. Our first
algorithm provides an average-case near-optimality guarantee,
while the second algorithm provides a worst-case near-
optimality guarantee. The algorithms only differ in the ways we
choose the queried data point x* in Algorithm 1.In what follows,
for any S={x;,%,...,x,}CX and heH, we define h(S)=
{h(x1),h(x2),...,h(xs)}. We shall assume h(x;) and h(x;) are inde-
pendent for any fixed h and i # j. Thus, h(S) is also a categorical
distribution with probability mass function P[h(S) =y] =TI,
Plh(x) = y;] for all y = {y,,¥5,...,¥a} € Y°. We call y a labeling
of S as it contains the labels of the examples in S.For any SC X
and any distribution p[h] on H, let Y be the random variable for
the labeling of S with respect to the distribution p. We note that
Y takes values in J* with probability mass function:
PIY =y:S| = [ pIHEIh(S) = yidn M
for all y € V. This is also the marginal probability that the labeling
of Sisy. As a special case, if S is a singleton {x} and Y is the random
variable for the label of x, we write p[Y = y;x] for y € ) to denote the
probability mass function of Y.

5.1. The average-case BALAF algorithm

In this average-case BALAF algorithm, at each iteration i in Algo-
rithm 1, we select the queried data point x* as follows.First, we
estimate the average abstention function 7(x) based on the current
posterior p;_4[r]:

P9 2 Erp, [r0] = [ pialrr(0dr @
Then we select the example x* to query using the following greedy
criterion:

x = argmax{1 =700 — (1 F(Xx))">_pio[Y =y},
yey

3)

Intuitively, this criterion maximizes the expected one-step utility
increment, with the utility function being defined in Eq. (4) below.
Eq. (3) resembles the maximum Gibbs error criterion [7] which selects

X = argmax{1 - > pialY =y;x?},
¥
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except that we incorporate the terms #(x)* and (1 — #(x))® into the
criterion. In fact, our criterion (3) is a generalization of the maxi-
mum Gibbs error criterion above. When there is no abstention, i.e.
7(x) =0, our algorithm will recover the maximum Gibbs error
algorithm.

If we fix the distribution p;_;[Y = y;x], the criterion value in Eq.
(3) achieves its maximum when F(x)=> p; Y =y;x*/
(1+>,piqlY =y;x)*) and achieves its minimum when #(x) = 1.
Fig. 2 (top) illustrates this criterion value as a function of 7(x). Thus,
given 7(x) reasonably approximates the true abstention rate, this
algorithm would give more preference to the examples with
abstention rate near - p; {[Y =; x?/(1+ >ypialY =y; x]?) and
less preference to the examples with abstention rate near 1.

Near-optimality Guarantee. We now show the average-case
near-optimality guarantee for this algorithm. In the context of this
paper, near-optimality means the algorithm can achieve a constant
factor approximation to the optimal algorithm with respect to
some objective function.

To define an objective function that is useful for active learning
with abstention feedbacks, we first induce a deterministic hypoth-
esis space equivalent to the original probabilistic hypothesis space
‘H. In particular, consider the hypothesis space F 2 {f: X — )}
consisting of all deterministic functions from X to Y. We induce
a new prior g, on F from the original prior p, such that
qolf] £ polY = f(X); &], the marginal probability that the labeling
of the whole pool X is f(X). For any SC X and y € ), we can

o
o

o
o

©
N

criterion value

©
[N

o
=)

o
o

=
o

o
o0

o
o))

©
N

criterion value

©
[N

0.2 0.8

0.0 1.0

Fig. 2. Graphs showing the greedy criterion values in the average-case BALAF
(upper) and worst-case BALAF (bottom) algorithms as a function of 7(x) in a binary
classification problem. The graphs are plotted with the fixed distribution
pi_1lY =1;%] = p;_1[Y = 2;x] = 0.5. The red and yellow points indicate the maxi-
mum and minimum points in the graphs respectively.
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define q,[Y =y;S] similarly to Eq. (1) with the hypothesis space F
and distribution q,.

Also consider the space K £ {k: X — {0,1}} consisting of all
deterministic functions from & to {0, 1}. In essence, k(x) = 1 means
the labeler abstains from labeling x while k(x) = 0 means the labeler
gives a label for x. We will call each k € K an abstention pattern. The
prior p,[r] also induces a probability distribution g,[k] on K where:

qolk] [ polr|P:[K]dr,and
Prlk] & [uen(1—r(x) " @rx)®

AN

is the probability (with respect to the rate r) that the labeler gives or
abstains from giving labels to the whole pool X according to the
abstention pattern k. For any SC X and z € {0,1}", we can define
qolZ = z; S] similarly to Eq. (1) with the hypothesis space K and dis-
tribution q,, where Z is the random variable for the abstention pat-
tern of S. Note that the induced prior g, can also be thought of as a
joint prior on F x K where the two elements are independent, i.e.,

Qolf A K] = qolflqoK]-
For SC X,f € F, and k € K, we consider the utility function:

&S (f. k) =1 —qolY =f(S) NZ=k(S); 9], (4)

where qo[Y = f(S) AZ = k(S):S] £ qo[Y = F(S);S] x Go[Z = k(S);S] is
the joint marginal probability (with respect to q,) that the labeling
of S is f(S) and the abstention pattern of S is k(S). This is a useful
utility function for active learning because it is the version space
reduction utility with respect to the joint prior q,[f A k] on the joint
space F x K [6].

With this utility, our objective function is defined as:

GﬂVg (TE) 2 [Ef[rue~k[me ~qo [g (xj}[me Kerue ? (ftrue ’ ktrue ) )] ) (5)

where for all fand k, Xf, is the set of examples selected by the policy
7 given that the true labeling is f and the true abstention pattern is
k. This objective function is the average of the above utility with
respect to the joint prior qy[f A k]. Note that in this objective, f .
and k. are drawn from the prior since we operate in the Bayesian
setting. The following theorem proves the average-case near-
optimality guarantee for the average-case BALAF algorithm. The
proof of this theorem is given in the Appendix.

Theorem 5.1. For any budget N > 1, let 7 be the policy selecting N
examples using the average-case BALAF algorithm and let 7t;,, be
the optimal policy with respect to G,yg that selects N examples. We
have:

1
Gavg(T) > (1 _E)Gavg(n;vg)-

5.2. The worst-case BALAF algorithm

The worst-case BALAF algorithm is essentially similar to the
previous average-case BALAF algorithm, except that we replace
the greedy criterion in Eq. (3) by the following greedy criterion:

x* = argmin{max{f(x), (1 — ¥(x))maxp; ,[Y = y; x|} }. (6)
XEX yey

Intuitively, this criterion maximizes the worst-case one-step utility

increment, with the version space reduction utility in Eq. (4). The

criterion (6) resembles the least confidence criterion [9], which

selects

X' = arg mxin{manPi_l [Y =y;xl},

except that we also incorporate the terms r(x) and 1 — 7(x) into the
criterion. Our criterion (6) is a generalization of this least confidence
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criterion and will recover it when there is no abstention, i.e. when
F(x)=0.

If we fix the distribution p; ;[Y = y;x], the criterion value in Eq.
(6) achieves its maximum when 7(x) =1 and achieves its mini-
mum when F(x) = max,p; [Y = y;x]/(1 + max,p; 4[Y = y:x)).

Near-optimality Guarantee. We now show the worst-case
near-optimality guarantee for this algorithm. For this guarantee,
we still make use of the version space reduction utility function
g(S, (f, k)) defined in Eq. (4). Using this utility, we define the follow-
ing worst-case objective function:
Gworst(n) £ min [g(x}r.kv (f’ k))]

(f k)eFxK

(7)

This objective function is the worst possible utility achieved by the
policy m. The following theorem proves the worst-case near-
optimality guarantee for this algorithm. The proof of this theorem
is given in the Appendix.

Theorem 5.2. For any budget N > 1, let 7 be the policy selecting N
examples using the worst-case BALAF algorithm and let 7, be
the optimal policy with respect to Gworst that selects N examples.
We have:

1
Gwors'c (TC) > (] - E) Gworst (n:vorst ) .

5.3. Remarks

A worst-case guarantee can also be derived for the average-case
BALAF algorithm in Section 5.1 using Theorem 1 of [6] for adaptive
monotone and submodular functions. However, this guarantee is
for the min-cost coverage objective, as opposed to the maximum
coverage objectives considered in our paper.

Although our version space reduction objectives on the joint
abstention and labeling function space do not directly relate to
the classification accuracy, previous works [7,8] have empirically
shown that reducing the version space of the labeling functions
lead to better accuracy for active learning in the non-abstention
setting. In this work, we generalize these objective functions to
the abstention setting, trying to balance between reducing the ver-
sion space of the labeling functions and the version space of the
abstention functions simultaneously.

6. Experiments

In this section, we experimentally evaluate the proposed BALAF
algorithms. In particular, we compare four algorithms:

e PL: the passive learning baseline with randomly selected
examples,

e ALg: the active learning baseline using the maximum Gibbs
error criterion [7],

e Ala: the average-case BALAF algorithm, and

e ALw: the worst-case BALAF algorithm.

For binary classification, ALg is equivalent to other well-known
active learning algorithms such as the least confidence [9] and max-
imum entropy [30] algorithms. The PL and ALg baselines do not
learn the abstention probability of the examples, i.e., they ignore
whether an example would be labeled or not when making a deci-
sion. In contrast, the proposed algorithms ALa and ALw take into
account the estimated abstention probability 7(x) when making
decisions.

To show the potential of our algorithms further, we also con-
sider two variants of ALa and ALw that are assumed to know a good
estimate of the training examples’ abstention rates r*(x). In partic-
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Fig. 3. AUC scores (with standard errors) for a labeler abstaining on examples
unrelated to target task.

ular, for these versions of ALa and ALw (shown as dashed lines in
Figs. 3 and 5), we train a logistic regression model using the actual
abstention pattern on the whole training set to predict the absten-
tion probability for each example. We keep this classifier fixed
throughout the experiments and use it to estimate 7(x) in these
versions of ALa and ALw.

In the algorithms, we use Bayesian logistic regression models
for both # and R. That is, each hypothesis h € H and each absten-
tion hypothesis r € R is a logistic regression model. We put an
independent Gaussian prior A(0,52) on each parameter of the
logistic regression models (for both  and R). In this case, the pos-
teriors are proportional to the regularized likelihood of the
observed data with ¢, penalty. Since we experiment with data sets
containing very high dimensional data (more than 61,000 dimen-
sions), running MCMC or even variational inference is very slow.
Thus, for efficiency, we use the maximum a posteriori (MAP)
hypotheses to estimate the probabilities in our algorithms. Finding
the MAP hypotheses is equivalent to maximizing the regularized
log-likelihood of the observed data.

Following previous works in active learning [31,7,8], we evalu-
ate the algorithms using the area under the accuracy curve (AUC)
scores. For each task in our experiments, we compute the scores
on a separate test set during the first 300 queries and then normal-
ize these scores so that their values are between 0 and 100. The
final scores and their errors are obtained by averaging 10 runs of
the algorithms using different random seeds.

We shall consider three scenarios: (1) the labeler abstains from
labeling examples unrelated to the target classification task, (2) the
labeler abstains from labeling easy examples, and (3) the labeler
abstains from labeling hard examples.

6.1. Abstention on data unrelated to target task

We consider the binary text classification task between two
recreational topics: rec.motorcycles and rec.sport.baseball from the
20 Newsgroups data [32]. In the pool of unlabeled data, we allow
examples from other classes (e.g., in the computer category) that
are not related to the two target classes. The labeler always
abstains from labeling these redundant examples while always
giving labels for examples from the target classes. Thus, the
abstention is on examples unrelated to the target task, and this sat-
isfies the independence assumption between h and r (or between f
and k) in Sections 4 and 5. In the experiment, we fix the pool size to
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be 1322 and vary the abstention percentage (%) of the labeler by
changing the ratio of the redundant examples.

Fig. 3 shows the results for various abstention percentages.
From the figure, our algorithms ALa and ALw are consistently bet-
ter than the baselines for abstention percentages above 40%. When
a good estimate of r* is available, our algorithms perform better
than all the other algorithms for abstention percentages above
30%. This shows the advantage of modeling the labeler’s abstention
pattern in this setting, especially for medium to high abstention
percentages.

We also consider the setting where the abstention percentage is
fixed at 40% and the pool size varies between 400 and 1800. Fig. 4
shows the AUC curves obtained in this setting. From the figure, our
algorithms ALa and ALw are significantly better than the baselines
for all pool sizes. For relatively larger pool sizes (1200 and above),
ALa and ALw are also comparable to the AUC curves obtained when
good estimations of r* are available.

6.2. Abstention on easy examples

In this scenario, we test with the labeler who abstains from
labeling easy data, which are far from the true decision boundary.
This setting may seem counter-intuitive, but it is in fact not unre-
alistic. For example in the learning with corrupted labels setting
discussed in Section 1, easy examples may be considered less
important than hard examples and thus were less protected than
hard ones. In this case, an attacker may attempt to corrupt the
labels of those easy examples to bring down the performance of
the learned classifier. Furthermore, under a heavy attack, we may
expect a high abstention percentage. As another example, in med-
ical diagnosis, lung cancer screening is only recommended for the
high-risk group (heavy smoking, 55-74 years old, etc.) [33], so
labels (cancer or no cancer) for the low-risk group (easy data) are
often unavailable.

We simulate the abstention pattern for this scenario by first
learning a logistic regression model with regularizer 6> = 0.5 on
the whole training data set and then measuring the distance
between the model’s prediction probability to 0.5 for each exam-
ple. The labeler would always abstain from labeling the subset of
the training data (with size depending on the abstention percent-
age) that have the largest such distances while he would always
give labels for the other examples. Fig. 5 (first row) shows the

ALa (good r* est.)
ALw (good r* est.)
PL

AlLg

AlLa

ALw

701

area under accuracy curve

65 1

400 600 800 1000 1200 1400 1600 1800
pool size

Fig. 4. AUC scores (with standard errors) vs. pool size for a labeler abstaining on
examples unrelated to target task.
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Fig. 5. AUC scores (with standard errors) for a labeler abstaining on easy examples (first row) and on hard examples (second row).

results for this setting on the following 4 binary text classification
data sets from the 20 Newsgroups data (from left to right):

e comp.sys.mac.hardware/ comp.windows.x,
e rec.motorcycles/ rec.sport.baseball,

e sci.crypt/ sci.electronics,

e sci.space/ soc.religion.christian.

From the results, ALa and ALw have similar performance and
work very well when the abstention percentage is above 50%. This
shows that it is useful to learn and take into account the abstention
probabilities when the abstention percentage is high (e.g., under
heavy attacks), and our algorithms provide a good way to exploit
this information. When the abstention percentage is small, the
advantages of ALa and ALw diminish. This is expected because in
this scenario, learning the abstention pattern is more expensive
than simply ignoring it. However, when a good estimate of r* is
available, ALa and ALw perform better than all the other algo-
rithms for most abstention percentages.

6.3. Abstention on hard examples

In this scenario, we test with the labeler who abstains from
labeling hard data, which are near to the true decision boundary.
This setting is common when the labeler wants to maximize the
number of labels giving to the learner (e.g., in crowdsourcing
where he is paid for each label provided). The abstention pattern
in this experiment is generated similarly to the previous scenario,
except that the labeler abstains from labeling the examples having
the smallest distances above instead of those with the largest
distances.

Fig. 5 (second row) shows the results for this scenario on the
same 4 data sets above. These results suggest that this is a more
difficult setting for active learning. From the figure, ALw performs
better than ALa, but both of them are only better than the baselines
when the abstention percentage is from 20-40%. For other absten-
tion percentages, ALa, ALw, and ALg do not provide much advan-
tage compared to PL. However, when a good estimate of r* is
available, ALa and ALw perform very well and are better than all
the other algorithms.

Summary: The results above have shown that the proposed
algorithms are useful for pool-based active learning with absten-
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tion feedbacks when the abstention percentage is within an appro-
priate range that depends on the problem. The algorithms are
especially useful when a good estimate of the abstention rate r*
is available. In practice, this estimate can be pre-computed from
previous interactions between the learning systems and the labeler
(e.g., using previous labeling preferences of the labeler), and then
inputted into our algorithms as the priors p,[r]. During the execu-
tion of our algorithms, this estimate will be gradually improved.

Note that in some of our plots (see Figs. 3 and 5), the perfor-
mance of our algorithms decreases at abstention percentages
around 10-20% and then increases for those within 30-50% before
decreasing again. One possible explanation for this behavior is that
our algorithms rarely observe rejected examples at a low absten-
tion percentage, and thus it is relatively harder for the algorithms
to learn the abstention rate r* accurately, leading to a sub-optimal
selection of queries.

7. Conclusion

We proposed two new greedy algorithms under the Bayesian
active learning with abstention feedbacks framework. This frame-
work is useful in many real-world scenarios, including learning
from multiple labelers and under corrupted labels. We proved that
the algorithms have theoretical guarantees in the average and
worst cases and empirically showed that they are useful for classi-
fication, especially when a good estimate of the abstention rate is
available. Our results suggest that keeping track and learning the
abstention patterns of labelers are important for active learning
with abstention feedbacks in practice.
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Appendix A. Proofs
A.1. Proof of Theorem 5.1

To prove this theorem, we first apply Theoremb5.1 in [6]. This
requires us to prove that the utility function g(S, (f, k)) is adaptive
monotone and adaptive submodular with respect to the joint prior
distribution q,. Note that g(S, (f, k)) is the version space reduction
function with respect to the joint prior g, on the joint space F x K.
From the results in Section 9 of [6], version space reduction func-
tions are adaptive monotone and adaptive submodular with
respect to the corresponding prior. Thus, the utility function
g(S,(f,k)) is adaptive monotone and adaptive submodular with
respect to the joint prior q,.

With the above properties of g, applying Theorem 5.2 in [6], we
have:

Gavg(Tgreedy) > (1 — 1/€)Gayg (T,

where Tyeeqy is the greedy algorithm that selects the examples
maximizing the expected utility gain at each step. From the proof
of Theorem 5.2 of [7], this greedy algorithm is equivalent to the
maximum Gibbs error algorithm that selects the examples accord-
ing to the criterion:

x =argmax{l - pi4[Z=1:x"~

Zyeypifl [Y =Yy NZ = O;X}z}v

where p; ; is the current posterior distribution, Y is the random
variable for the label of x, and Z is the random variable for the
abstention pattern of x. To understand this equation, we can think
of the considered problem as a classification problem with labels
(y,z=0) or (z= 1), where (y,z = 0) indicates an example is labeled
the label y and (z = 1) indicates an example is not labeled.

Since y and z are independent, Eq. (8) is equivalent to:

(8)

x = argmax{l—p[Z=1:x"~

Syep(PiaZ = 0:Xlp; [Y =y X))}

argmax{1—p;4[Z = 1:x"~

pialZ= O?X}ZZPM Y =y;x}.
yey

We also have:

pialZ=1:x]= [pi;[rr(x)dr

Erep, [F(X)]
r(x).

Similarly, p; ;[Z = 0;x] =1 — ().
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Hence, the previous equation is equivalent to:

* _ 7 2 _ _ 7 2 i — v 2
X" =argmax{l —r(x)” — (1 - 7(x)) yzgyjpm Y = y:x]°},
which is Eq. (3). Therefore, the average-case BALAF algorithm is
equivalent to Tgreeqy and Theorem 5.1 holds.

A.2. Proof of Theorem 5.2

To prove this theorem, we first apply Theorem 3 in [8]. This
requires us to prove that the utility g(S, (f, k)) is pointwise mono-
tone and pointwise submodular. Note that g(S, (f, k)) is the version
space reduction function with respect to the joint prior q, on the
joint space F x K. From the proof of Theorem 5 in [8], version
space reduction functions are both pointwise monotone and point-
wise submodular. Thus, g(S, (f,k)) is pointwise monotone and
pointwise submodular.

With the above properties of g, applying Theorem 3 in [8], we
have:

Gworst(n/greedy) > (1 - 1/e)GW0rSt(n:vorst)7

where Tl/geeqy is the greedy algorithm that selects the examples
maximizing the worst-case utility gain at each step. From the proof
of Theorem 5 of [8], this greedy algorithm is equivalent to the least
confidence algorithm that selects the examples according to the
criterion:

X =argmin{max{p, ;[Z = 1;x],

maxp; 4[Y =y AZ = 0;x}}, )

where p; ; is the current posterior distribution, Y is the random
variable for the label of x, and Z is the random variable for the
abstention pattern of x. Similar to the proof of Theorem 5.1 above,
to understand this equation, we can think of the considered prob-
lem as a classification problem with labels (y,z=0) or (z=1),
where (y,z =0) indicates an example is labeled the label y and
(z=1) indicates an example is not labeled.
Since y and z are independent, Eq. (9) is equivalent to:

x* = argmin{max{p,,[Z = 1;],

Xe
maxp;[Y = y;xlp;1[Z = 0;x1}}
argmin{max{p;_;[Z = 1:x],

PialZ = 0;xjmaxp; 4 [Y = y;x]}}.

From the proof of Theorem 5.1, we have p; ;[Z =1;x] =7(x) and
Di1lZ =0;x] =1 —TF(x).
Hence, the previous equation is equivalent to:

x = argmin(max{F(x). (1 - F(x)maxp; ,[Y =y},

which is Eq. (6). Therefore, the worst-case BALAF algorithm is
equivalent to T/geeqy and Theorem 5.2 holds.
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