MACHINE LEARNING &, PURPOSE-LED
Science and Technology 7 PUBLISHING™

OPEN ACCESS You may also like

- Physics-inspired machine learning detects

Impact of data bias on machine learning for crystal wnkaoun irkcouns i netuoks
. . . . iscovering network boundaries from
compound synthesizability predictions i o
Peter Sollich

To cite this article: Ali Davariashtiyani et al 2024 Mach. Learn.: Sci. Technol. 5 040501 - The 2019 materials by design roadmap

Kirstin Alberi, Marco Buongiorno Nardelli,
Andriy Zakutayev et al.

- From STEM-EDXS data to phase

separation and guantification using
physics-guided NMF

Adrien Teurtrie, Nathanaél Perraudin,
Thomas Holvoet et al.

View the article online for updates and enhancements.

@H‘e- S Meh=nical Society
247th ECS Meeting

Montréal, Canada
May 18-22, 2025

Palais des Congres de Montréeal

Showcase your science!

Abstract
submission
deadline

ECS UNITED extended:

December 20

This content was downloaded from IP address 104.153.230.225 on 05/12/2024 at 17:52


https://doi.org/10.1088/2632-2153/ad9378
https://iopscience.iop.org/article/10.1088/2632-2153/ad9194
https://iopscience.iop.org/article/10.1088/2632-2153/ad9194
https://iopscience.iop.org/article/10.1088/2632-2153/ad9194
https://iopscience.iop.org/article/10.1088/2632-2153/ad9194
https://iopscience.iop.org/article/10.1088/1361-6463/aad926
https://iopscience.iop.org/article/10.1088/2632-2153/ad9192
https://iopscience.iop.org/article/10.1088/2632-2153/ad9192
https://iopscience.iop.org/article/10.1088/2632-2153/ad9192
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsv0ue8Ouf3FMej5FdeR0Os9DoRGy7Sh3Pwz5pKLwqUHy03uB8ihHVY9S97IhV0JZ90X2f-w6Yq2yHpLNbR_GpQhKzMkW6q-azqPEnns0le4Tm6kSGhvp3tl2ZWg3lyXYMY2SEe1ux5J8mducgmIYaeteG6i3tle9ZlYSKgYSWhfiYwRyBJrcxf1F1NHcVtPVP7gQdPdQENyxI_0Y28_fDScKj8_VLdAPNFJwoPcOwOLxWVyKXbbQZbU4rraHo86fkzuRKfE88xdIVwB_gdSRREkrJgGfhTV0RqiVZa9XFGL_GY4DU9Lsqf3i4uziOUSjK7pAB0-eXu2hgp0PUo2oNJs9RkdrO4pJgPbEckBC6be&sig=Cg0ArKJSzHvGkof-ovhR&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.electrochem.org/247/%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3DIOP_247_abstract_submission_extension%26utm_id%3DIOP%2B247%2BAbstract%2BSubmission%2BExtension

10P Publishing

@ CrossMark

OPEN ACCESS

RECEIVED
23 March 2024

REVISED
16 September 2024

ACCEPTED FOR PUBLICATION
15 November 2024

PUBLISHED
26 November 2024

Original Content from
this work may be used
under the terms of the
Creative Commons

Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOL.

Mach. Learn.: Sci. Technol. 5 (2024) 040501 https://doi.org/10.1088/2632-2153/ad9378

LEARNING

BENCHMARK

Impact of data bias on machine learning for crystal compound
synthesizability predictions

Ali Davariashtiyani', Busheng Wang’, Samad Hajinazar’ (), Eva Zurek’® and Sara Kadkhodaei"*

! Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, IL, United States of America
Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, United States of America
* Author to whom any correspondence should be addressed.

E-mail: sarakad@uic.edu

Keywords: machine learning, data bias, synthesizability, crystal compounds

Abstract

Machine learning models are susceptible to being misled by biases in training data that emphasize
incidental correlations over the intended learning task. In this study, we demonstrate the impact of
data bias on the performance of a machine learning model designed to predict the likelihood of
synthesizability of crystal compounds. The model performs a binary classification on labeled
crystal samples. Despite using the same architecture for the machine learning model, we showcase
how the model’s learning and prediction behavior differs once trained on distinct data. We use two
data sets for illustration: a mixed-source data set that integrates experimental and computational
crystal samples and a single-source data set consisting of data exclusively from one computational
database. We present simple procedures to detect data bias and to evaluate its effect on the model’s
performance and generalization. This study reveals how inconsistent, unbalanced data can
propagate bias, undermining real-world applicability even for advanced machine learning
techniques.

1. Introduction

The increasing availability of large materials datasets has facilitated the rapid growth of machine learning for
materials discovery and design [1-15]. However, the impact of data selection strategies, data quality, or data
bias has been less explored or not clearly demonstrated, even for the most advanced machine learning
models, although these factors can significantly impact model performance, generalizability, and reliability
[16, 17]. In this study, we specifically investigate the effect of data heterogeneity on machine learning models.
For demonstration, we use a machine learning model designed for predicting crystalline compounds’
synthesis feasibility (or synthesizability), previously developed by our group [18]. Our machine learning
model for synthesizability prediction is an ideal platform because data selection for such a model is
inherently challenging. A portion of the data must represent already synthesized materials (synthesizable)
from crystal structure datasets, while another portion must be artificially generated to represent hypothetical
crystals unlikely to be synthesized or formed (unsynthesizable). This challenge has led to arbitrary data
selection in the literature, resulting in different strategies. For example, studies in [19-22] assume that
unsynthesizable examples are not available and thus predicts 2D or crystalline materials’ synthesizability
based on a positive and unlabeled (PU) classification model [23] on data from a single dataset. In contrast,
[18] predicts crystalline materials’ synthesizability based on a binary classifier on labeled data from different
sources. Here, we examine the generalization performance of our synthesizability model for two data
selection approaches: whether data is coming from different sources (heterogeneous data) or from an
identical source (homogeneous data).

Inherent data bias is a common challenge in machine learning [17], stemming from sampling bias, data
collection bias, domain bias, or labeling bias. The bias in data usually leads to spurious correlations and
biases picked up by the model, regardless of the choice of the machine learning algorithm [17]. In the field of
data-driven materials research, some studies have explored the influence of data on the performance of
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machine learning models [24-28]. For example, Kumagai et al demonstrated that data bias influences the
error and reliability of predictions made by a machine learning model [24]. Using the experimental property
data from the Starrydata2 database as a demonstration platform, they defined an applicability domain—a
material space to which the machine learning model can be applied based on its similarity to known
materials used for training. They revealed that model predictions are more reliable within the applicability
domain. Within the applicability domain, prediction accuracy remains high, while outside the defined
applicability domain, accuracy significantly decreases. They also observed that the prediction error decreases
within the applicability domain as the number of neighboring known materials increases. In another study,
Zhang et al [25] introduced an information entropy-based metric to measure data bias and developed an
entropy-targeted active learning (ET-AL) framework to mitigate it. They utilized the ET-AL framework to
guide new data acquisition in density functional theory (DFT)-generated materials databases (such as
OQMD (29, 30] and JARVIS [31]) by addressing the imbalanced coverage of formation energy among
different crystal systems (i.e. structure-stability bias). This approach aimed to enhance the diversity of
underrepresented crystal systems and, as a result, improved the performance of machine learning models
[25]. In a separate study, Li ef al [26] investigated the impact of distribution shifts (or domain shifts) on the
performance of machine learning models, offering solutions for diagnosing, anticipating, and addressing this
challenge. Data distribution can undergo significant shifts, even between different versions of an actively
expanding database, owing to changes in preferences or focus over time. For instance, they illustrated a
significant decline in the performance of a formation energy prediction model trained on Materials Project
2018 (e.g. ALIGNN-MP18 [32]) when applied to new compounds in the Materials Project 2021 database
[33], with prediction errors ranging from 23 to 160 times larger than those observed when the model is
tested on Materials Project 2018. By utilizing a uniform manifold approximation and projection (UMAP)
approach as a measure of similarity to cluster the data, they observed that test samples with low prediction
errors tend to reside within clusters covered by the training data (i.e. similar to the training data). Conversely,
the majority of poorly predicted test samples form a distinct, isolated cluster separate from the rest of the
data. To enhance prediction robustness and generalizability of the machine learning model, they introduced
both UMAP-guided and query-by-committee data acquisition strategies. Other studies noted the impact of
data bias on machine learning model performance [34, 35]. For example, our group observed that the bias in
the DFT materials database, specifically the imbalanced distribution of negative and positive formation
energies in the Materials Project, results in diminished prediction performance for larger, positive-value
ranges of formation energy and is the likely cause for the progressive increase of error from metallic to ionic
materials [34].

As a demonstration platform for exploring data bias, we utilize a machine learning model developed by
our group to predict the synthesizability of crystal compounds [18], albeit with significant modifications that
enhance its performance (as detailed in the Methods section). Therefore, we present a concise review of
machine-learning methods applied to materials synthesis, categorizing these studies into two groups: the first
group are studies that focus on developing machine learning models for predicting the synthesis feasibility
(i.e. synthesizability) of given products or crystal compounds [18-22, 36, 37]. The demonstrative model used
in this study belongs to this group. These models typically involve learning correlations between
chemical/structural patterns in existing crystal compounds and a score of synthesizability (or synthesizability
likelihood). As mentioned earlier, data selection and labeling are difficult in such models due to the absence
of unsynthesizable crystal compounds. The second group of studies aims to develop models for predicting
synthesis routes or reactions (e.g. solid-state, sol-gel, or solution—hydrothermal, precipitation), synthesis
procedures, synthesis conditions (e.g. temperatures, times), or synthesis precursors or reactants [38—47].
These studies encompass a range of approaches, from data-driven learning of materials synthesis
information using natural language processing of existing scientific literature [39-45], to the development of
graph-based networks based on thermodynamic and kinetic data (i.e. physics-informed) [47-50]. The latter
approach is employed for predicting chemical reaction pathways in solid-state materials synthesis.

In this study, we analyze the performance of a crystal compound synthesizability model trained on two
sets of data through a comparative modeling experiment. In the first experiment, data is collected from two
distinct sources, creating a mixed-source or heterogeneous dataset. Synthesizable crystal compounds are
sourced from the Crystallography Open Database (COD) [51], while unsynthesizable samples are
computationally generated using the crystal structure prototype database (CSPD) [52]. Details of the
generation of unsynthesizable samples are provided in the Methods section and in appendix C. In the second
experiment, data for both classes is collected from a single dataset, specifically the DFT-generated Materials
Project database [33]. We refer to this dataset as a single-source or homogeneous dataset. The atomic
configurations of the reported crystal compounds in Materials Project, compromising the single-source
dataset, are relaxed through DFT geometry and cell optimizations. Therefore, the crystal structure data from
the Materials Project corresponds to zero-pressure and no-applied-stress conditions within the DFT
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calculations. For the mixed-source dataset, the COD dataset does not report pressure for every entry, but
most samples were likely obtained under ambient conditions (details below). In our data collection approach
pressure was not specified nor was inferred for the mixed dataset. Appendix C provides details for CSPD
structure generation. In both experiments, we employ the same machine learning architecture—a
convolutional neural network (CNN) for processing sparse voxel image representations of crystals connected
to a binary classifier. Further details of the machine learning model are provided in the Methods section. We
compare the predictive performance and generalizability of both models and investigate the underlying
reasons for performance differences.

2. Methods

Crystal synthesizability model

Our crystal synthesizability model consists of a CNN connected to a neural network classifier. The
interconnect CNN and neural network perform feature learning and classification tasks, respectively, on
labeled crystal structure data. This model operates on sparse voxel images of crystals, as developed by our
group [18, 34]. Our voxel image representation creates a 3D visual depiction of the crystal structure
color-coded by the identities of its constituent chemical elements (see [34] for details). The voxel images are
created in a cubic box with a 50 A edge. The atoms in the crystal unit cell are repeated to fill the cube. Then,
the cube is partitioned into a voxel grid of size 128 x 128 x 128. The voxel images are RGB color-coded with
the three channels representing atomic number, group number, and valence number, respectively. The CNN
encodes the hidden structural and chemical patterns of crystal compounds by processing the sparse voxel
images into a low-dimension set of latent features. The latent features are input into the neural network
classifier (a binary classifier). The model is trained on labeled crystal images, representing two classes of
synthesizable and unsynthesizable crystals. The architecture of the synthesizability model is shown in figure 1
and is detailed in our previous work [18]. The CNN consists of a sequence of three blocks, each consisting of
a convolution, an activation, and a pooling layer. The CNN architecture flattens the output and propels it
through a 3-layer dense neural network with a (13,13,13,1) node architecture. This model is operated on our
most recent framework for sparse voxel image representation of crystalline materials as detailed in [34].
Compared to our previous study [18], the synthesizability model used in this work adopts a more advanced
voxel image representation (as detailed in [34]). Additionally, the presented synthesizability model employs
augmentation of rotated crystal samples (data augmentation) during training and an ensemble averaging
technique during prediction to improve the model’s consistency and rotational invariance. Details of the data
augmentation and ensemble averaging are provided in [34] with a brief discussion in appendix A.

Labeling approach

The binary classification is performed on two classes of crystalline materials: synthesizable versus
unsynthesizable crystals, the latter being the hypothetical crystalline materials that are unlikely to be
synthesized. The positive or synthesizable class comprises experimentally synthesized crystal compounds
readily available in crystal databases (e.g. inorganic crystal structure database (ICSD) [53] and COD [51]).
On the other hand, the negative or unsynthesizable class must represent crystal compounds that are unlikely
to form or be experimentally synthesized, at least based on the existing scope of synthesis techniques and
conditions available to us. Therefore it lacks a dedicated repository, which makes the collection of data for
this class challenging. Other models for synthesizability in previous studies [19, 20, 22] use PU learning as
they assume the absence of explicit negative class samples. In contrast, we use an a priori labeling approach
by carefully selecting negative class samples. Our strategy involves identifying the top 0.1% of well-studied
crystal compounds in the materials science literature from 1922 to 2021, resulting in 108 compositions or
chemical formulas, as presented in appendix B. The rationale behind this approach is that these
compositions have been extensively explored, ensuring that all possible synthesizable crystal structures have
likely been realized. Those hypothetical polymorphs of these compositions that have not been synthesized
are most likely unsynthesizable. We employed a natural language processing tool to select these
compositions, as detailed in [18]. For these compositions, we assign a negative label to crystal structure
polymorphs not found in existing experimental databases. Crystal samples come from either a single source
or multiple sources, as explained below.

In contrast to our a priori labeling approach, alternative synthesizability models employ a
semi-supervised learning strategy, incorporating both labeled and unlabeled data (PU learning). This
involves learning characteristics of negative samples through a data-driven machine learning technique
known as pseudo-labeling. Notable examples include the transductive bagging scheme utilized in [19-21],
and the dynamic entropy-based pseudo-labeling within a teacher—student dual neural network [22]. In PU
learning, the model is trained to learn characteristics associated with positive samples by distinguishing them
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Figure 1. The overall framework of the synthesizability likelihood prediction model. (a) Data collection for the two distinct data
sets used in this study. For data set 1 or mixed-source data, crystal samples for the synthesizable class are obtained from the
Crystallographic Open Database (COD) and crystal samples for the synthesizable class are generated using the CSPD. For data set
2 or single-source data, crystal samples for both classes are collected from the Materials Project database. (b) The crystal
information files (CIFs) are converted into color-coded voxel images, which are used as the inputs for the convolutional encoder.
(c) The convolution encoder followed by a multi-layer perceptron (MLP) binary classifier trained on labeld data, referred to as the
CNN classifier.

from the ‘average’ characteristics of unlabeled data, according to a similarity or distance measure between
unlabeled and positive samples. In contrast, our synthesizability model learns distinguishing characteristics
of positive and negative samples from explicit examples of each class. Therefore, it can be considered a more
supervised approach that incorporates a level of human-based physical interpretation of the negative
samples.

Both the semi-supervised learning approach and the explicit labeling approach introduce biases into the
data and subsequent learning processes (i.e, labeling bias). In our labeling approach in this work, inherent
bias arises due to the limited chemical distribution of explicit negative samples, encompassing only 108
chemical compositions as examples of the negative class. We opt against expanding the chemical distribution
of negative samples by selecting a larger percentile of top-studied compositions in the literature. This choice
is motivated by the need to maintain confidence in designating negative examples, avoiding potential
mislabeling. On the other hand, the PU learning approach may introduce other biases. For instance, any
unlabeled sample representing a hypothetical crystal compound can contribute to patterns correlated with a
negative sample through a weighted average scheme based on similarity measures. However, many of these
unlabeled samples collected from computational databases are examples of undiscovered or unexplored
synthesizable polymorphs. Therefore, the PU approach has the potential to introduce implicit mislabeling
biases to the learning process. Identifying and addressing implicit biases associated with negative samples are
beyond the scope of this study. Instead, our focus is on examining the biases introduced through the
collection of examples for the positive and negative classes, whether from a single database or multiple
databases.

Mixed-source data collection

The mixed-source dataset is compiled from two distinct databases. Positive examples, representing
synthesizable materials, are sourced from the experimental COD [51, 54-58], while negative samples,
indicating unsynthesizable materials, are generated using the CSPD[52]. The procedure for generating
negative samples is as follows: initially, we select the topmost studied compositions in the literature, resulting
in 108 unique compositions (details provided in appendix B). These chemical compositions are then input
into the CSPD toolkit to generate all possible hypothetical crystal polymorphs. For a given chemical formula,
CSPD selects known crystal prototypes from its database as templates. In this process, elemental sites are
substituted with the desired chemical elements, and the lattice parameters are adjusted to match a target
volume. Finally, the inter-atomic distances of the generated structures undergo validation. Details of utilizing
CSPD for generating crystal samples is given in appendix C. From the structures generated by CSPD, we filter
out those having identical crystal structures in COD, designating them as belonging to the positive class.
Following this procedure, we generated 597 negative samples. For the positive class, we limit the collection to
2960 crystal samples from COD to maintain a balanced sample size between positive and negative classes.
The positive samples encompass all crystal polymorphs for the selected 108 chemical compositions available
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in COD (367 crystals), with the remaining samples randomly chosen from other compositions (2633
crystals). Some of these crystals are filtered out due to image resolution constraints (see [18] for details),
resulting in 2960 positive crystal samples passable to the model. The data including positive and negative
samples is split into training (60%), validation (20%), and test (20%) sets.

Single-source data collection

The single-source dataset is exclusively compiled from crystal structures in Materials Project (MP
v2022.10.28) [33], which is a DFT database for crystal compounds. To ensure consistency between the two
datasets for the comparative analysis in this study, we reference the same chemical compositions constituting
the mixed-source dataset. For the compositions in the positive class, any MP crystal structure entry that
matches the composition and has an ICSD tag is collected as a positive sample. MP entries that match the
mixed-source dataset’s negative class compositions without an ICSD tag are identified as negative samples.
Following this approach, a total of 1068 positive and 930 negative crystal structures are collected from MP.
We split the data into training (60%), validation (20%), and test (20%) sets.

3. Results

3.1. Data bias detection

To identify bias within a dataset, one needs to define metrics for measuring such bias. In this study, we
employ density and mean atomic mass as two metrics to detect potential biases in both single-source and
mixed-source datasets. These features, chosen to represent fundamental characteristics of crystal samples, are
selected with the awareness that they are not expected to exhibit a direct correlation with synthesizability.
Noticeable differences in the distributions of these basic features between the two classes indicate the
presence of data bias that could adversely impact model performance. Distribution discrepancies across
datasets have been used in other studies to reveal potential data bias. For instance, Kumagai et al [24]
compared the distributions of average atomic masses and average electronegativities across different
databases, including ICSD, materials project, magnetic materials, and Starrydata2. The observed differences
in distributions were considered as a potential source of data bias.

Figures 2(a) and (b) compares the density distributions between synthesizable and unsynthesizable
samples for both the single-source and mixed-source datasets. Density is calculated as the total atomic mass
divided by the crystal structure volume. As shown in figure 2(a), the density distribution of synthesizable
samples is significantly different from the unsynthesizable class in the mixed-source data. Unsynthesizable
samples demonstrate a substantially wider density range with a flat peak and a higher average density.
Synthesizable samples exhibit a relatively sharp peak around 2 g/cc, while unsynthesizable sample densities
widely spread from 2 to 15 g/cc. The higher densities observed in unsynthesizable samples are likely a result
of the low-fidelity procedure used to generate hypothetical crystal samples in CSPD, especially when
assigning a target volume to the hypothetical crystal. This contrasts with a more accurate albeit
computationally intense approach, such as relaxing the crystal volume based on DFT forces (as is done for
any hypothetical crystal in the MP database). CSPD constructs a new chemical arrangement of atoms on a
crystal prototype skeleton based on simple norms (e.g. composition, symmetry, and configuration) and
similarity to available crystal prototypes in its database. As a result of this high-throughput procedure, the
target volumes assigned by CSPD to the unsynthesizable samples are systematically smaller than the
equilibrium (or relaxed) volume, as evident in figure 2(e). In contrast, the single-source data exhibit similar
atomic volume distributions between the negative and positive samples, as shown in figure 2(f). It is
important to note that the majority of experimentally synthesized crystals are associated with ambient
pressure conditions. For example, our query on the 2023 version of the ICSD database shows that 208 954
crystal entries are associated with pressures below 1 MPa (i.e. ambient pressure) while only 748 crystal entries
are for pressure above 1 MPa. The distribution of ICSD crystal samples under pressure (above 1 MPa) is
shown in figure E.1 in appendix E. While the pressure information in the ICSD signifies the external
conditions during synthesis, it is reasonable to assume that the resulting synthesized crystal reaches
equilibrium with its external environment and thus corresponds to the external pressure condition. The
systematically larger density of the unsynthesizable samples compared to synthesizable ones indicates a
source of bias in the mixed-source data (see figure 2(e)). The illustration of data bias in figure 2(a) and
previous studies [24] underscores the need for caution when collecting data from distinct databases, as is the
case in this study with mixed-source data. Such data become susceptible to inherent biases measured based
on different basic characteristics. The single-source data indicates similar density distributions between the
synthesizable and unsynthesizable samples, as shown in figure 2(b). The density distributions for positive
and negative samples are both centered around 3 g/c, although the positive class shows a bimodal
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Figure 2. Density, mean atomic mass, and atomic volume distributions of crystal samples across different classes and datasets. (a),
(b) Density, (c), (d) mean atomic mass, and (e), (f) atomic volume distributions of crystal samples (synthesizable versus
unsynthesizable) in the mixed-source and single source datasets, respectively. (g) Density distributions of crystal samples of the
single-source test set, shown for their original (relaxed) volume and compressed volumes by 55%. Both synthesizable and
unsynthesizable samples are included in the test set.

distribution with peaks slightly below and above the center. Unlike the mixed-source data, the single-source
data does not exhibit any systematic density shift between the synthesizable and unsynthesizable samples.
Apart from density, we compare the mean atomic mass distributions of the two classes in the
single-source and mixed-source datasets, as shown in figures 2(c) and (d). We observe noticeable differences
in the mean atomic mass distributions between the synthesizable and unsynthesizable classes in the
mixed-source data. However, this difference is not as significant as the density distributions. As illustrated in
figure 2(c), in the mixed-source data, the synthesizable samples cluster around lower mean atomic masses
compared to the unsynthesizable ones. In contrast, the mean atomic mass is more evenly distributed between
the synthesizable and unsynthesizable samples in the single-source data (see figure 2(d)). The discrepancy in
mean atomic mass distributions in the mixed-source data likely arises from the more diverse chemical
compositions accessible in the CSPD database compared to the MP database. In both the single-source and
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mixed-source data, we draw unsynthesizable samples from the exact same 108 unique chemical formulas.
However, the high-throughput nature of the CSPD approach for generating crystal structures results in a
more diverse set of crystal structures covering most of the 108 compositions, thereby exhibiting a diverse
distribution among different mean atomic masses. On the other hand, for a computationally expensive DFT
database such as MP, crystal samples associated with these 108 chemical formulas are less diverse, leading to a
sharper peak in the mean atomic mass distribution for negative samples in the single-source data (see

figure 2(d)). Comparing figures 2(c) and (d) indicates a more balanced coverage of mean atomic mass
between the positive and negative classes in the single-source data, while the negative class shows a larger
average mean atomic mass in the mixed-source data. The distribution of other features can be examined
between classes to detect potential biases. For example, as shown in appendix D, the distribution of atomic
species does not exhibit any significant bias in either the mixed-source or single-source datasets. The
observed density distribution discrepancy or imbalance is a result of bias introduced in the mixed-source
data rather than any realistic correlation between synthesizability and mean atomic mass.

The baseline feature comparisons in this section reveal clear evidence of data bias between the
synthesizable and unsynthesizable samples in the mixed-source data. The balanced distribution of density
and mean atomic mass between the two classes in the single-source data highlights the benefits of compiling
data from a single source to minimize potential biases. If data collection from distinct sources is necessary,
then practices should be considered to make the data from different sources consistent or mitigate the bias
they introduce into the model. In the next section, we demonstrate how our machine learning model is
susceptible to learning the incidental associations introduced by the bias between classes rather than
capturing the intended structural and chemical signatures of synthesizability likelihood.

3.2. Impact of data bias on model performance

Learning performance

Figures 3(a) and (b) compares the learning curves of the synthesizability model trained on both the
single-source and mixed-source datasets. It illustrates the model’s accuracy on the training and validation
sets over 500 epochs. Interestingly, the model exhibits different learning behaviors on the two datasets.
Training on the mixed-source data results in rapid convergence, reaching a 90% accuracy on both the
training and validation sets after the first epoch. The model exhibits minimal incremental learning over the
subsequent epochs, and eventually reaches a near-perfect accuracy within less than 50 epochs. This rapid
convergence suggests that the model distinguishes between synthesizable and unsynthesizable samples too
easily, likely biased by the larger density of the unsynthesizable samples, rather than learning inherent
synthesizability features. An apparent gap in prediction accuracy between the training and validation sets
also suggests overfitting, although accuracy is surprisingly high on both sets. In contrast, when trained on the
single-source data, the model exhibits a much slower convergence, starting with a modest 52% accuracy in
the first epoch, which is as good as random guessing, before stabilizing at 80% after 100 epochs. Notably, the
model trained on the single-source data does not show signs of over- or under-fitting, with both training and
validation accuracy reaching 80%. During training, we apply a random rotation to each crystal image at each
epoch to promote approximate rotation invariance (see details in [34]).

The disparity between the learning curves highlights that the classification success on the mixed-source
data may be spurious and is likely influenced by inherent bias between class samples. In other words, we
hypothesize that the bias in the training data has misled the model to learn features that are not truly
indicative of the learning objective. The observations in this section elucidate that while the model’s
architecture is maintained, the nature and systematic differences within training examples can significantly
influence model’s learning behavior.

Evaluation on test set

We assess the performance of synthesizability models trained on both single-source and mixed-source data
using their respective test sets. The synthesizability likelihood for each sample in the test set is averaged over
an ensemble of 100 randomly rotated images of the crystal. Additional details on the choice of the ensemble
size are provided in appendix A. For evaluating the classification performance on the test data, we employ
metrics such as the area under the receiver operating characteristic curve (AUC-ROC), accuracy, precision,
recall, and specificity (a classification threshold of 0.5 is utilized). Figures 3(c) and (d) compares the
prediction performance of the model trained on mixed-source versus single-source data. In figure 3(c) the
ROC curve for the mixed-source synthesizability model is illustrated, showing a high AUC value of 0.995.
The mixed-source model exhibits high values for accuracy (0.967), precision (0.990), recall (0.971), and
specificity (0.95), indicating the model’s near-perfect performance in positive predictions as well as
maintaining low false-negative predictions. The synthesizability likelihood distribution of test samples in the
mixed-source model, as shown in figure 3(e), indicates that the model can distinctly differentiate between
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Figure 3. The synthesizability model’s training history and performance using mixed-source and single-source data. (a), (b)
Learning curves of the synthesizability model on the mixed-source and single-source data, respectively. The learning curves show
the classification accuracy over epochs, for both training and validation sets. (c), (d) Receiver operating characteristic (ROC)
curves of the synthesizability model on the mixed-source and single-source data, respectively. The area under the curve (AUC) is
shown for each model. (e), (f) Normalized distribution of synthesizability likelihood of crystals in the test sets of the
mixed-source and single-source data, respectively.

samples of the two classes. Almost all negative and positive samples are classified with synthesizability
likelihoods of 0 and 1, respectively. This clear separation implies that the classification task is straightforward
for the mixed-source model.

In figure 3(d), the ROC curve for the single-source model is presented. In comparison to the
mixed-source model, the single-source model demonstrates an overall lower prediction performance, with
an AUC of 0.862. The single-source model’s accuracy is 0.778 (compared to mixed-source accuracy of 0.967).
Recall remains reasonably high at 0.859 (compared to mixed-source accuracy of 0.971), indicating the
single-source model’s ability to detect positive samples with a low number of false negatives. The precision
and specificity of 0.749 and 0.69 suggests a relatively higher number of false positive and negative
predictions, respectively. Figure 3(f) illustrates the distribution of the single-source model’s synthesizability
likelihood, depicting the false positive and negative predictions.

The evaluation of the two models’ performance on their respective test data reveals very similar trends to
their performance on their training and validation sets. While both models are considered good classifiers
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Figure 4. Evaluation of synthesizability model performance outside its test set under two scenarios: cross-evaluation on swapped
test sets and assessment on compressed crystal data. Cross-evaluation assesses the performance of two models (mixed-source and
single-source models) on each other’s test sets. (a) Distribution of synthesizability likelihood for crystals in the single-source test
set predicted by the mixed-source model, with accuracy, precision, recall, and specificity of 0.51, 0.51, 0.94, 0.04, respectively. (b)
Distribution of synthesizability likelihood for crystals in the mixed-source test set predicted by the single-source model, with
accuracy, precision, recall, and specificity of 0.63, 0.81, 0.73, 0.15, respectively. (c) Distribution of synthesizability likelihood for
compressed crystals in the single-source test set predicted by the mixed-source model, with accuracy, precision, recall, and
specificity of 0.56, 0.61, 0.43, 0.7, respectively. (d) Distribution of synthesizability likelihood for compressed crystals in the
single-source test set predicted by the single-source model, with accuracy, precision, recall, and specificity of 0.61, 0.58, 0.94, 0.23,
respectively.

according to key metrics, the mixed-source model demonstrates notably superior performance. In the next
sections, we demonstrate that this superior performance is biased and thereby not reliable.

The evaluation exercise in this section demonstrates typical procedures widely used to assess machine
learning model performances, specifically by evaluating the model’s predictions on the test set. However, we
illustrate that such evaluation procedures are not suitable for detecting spurious or biased learning by the
model or the detrimental effects of data bias on the model’s performance.

Cross-evaluation on swapped test sets

To extend beyond test set evaluation, we assess the classification metrics of both single-source and
mixed-source models on swapped test sets. Specifically, we evaluate the mixed-source synthesizability model
(trained on data from COD and CSPD) on the test set derived from single-source data (collected from MP).
While the mixed-source synthesizability model performs near perfectly on its original test set, it encounters
challenges in differentiating between unsynthesizable and synthesizable samples in the single-source test
data. There is a significant performance drop in this scenario, with accuracy, precision, recall, and specificity
dropping from 0.967 to 0.51, 0.990 to 0.51, 0.971 to 0.94, and 0.95 to 0.04, respectively. In figure 4(a), the
distribution of synthesizability likelihood for single-source test samples is depicted using the mixed-source
model. As observed in figure 4(a), the combination of a high number of false positives and a close-to-zero
number of false negatives (high recall and very low specificity) implies that the model mistakenly identifies
all crystal samples as synthesizable or positive. This observation can be explained by the fact that the
mixed-source model tends to categorize any crystal sample within a density range of approximately

1.5—4 g/cc as synthesizable, a pattern learned from the bias in its training data (refer to figure 2(a)). This
density range corresponds to the majority of samples in the single-source data (refer to figure 2(b)),
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including the test samples in this exercise. In essence, the mixed-source model has predominantly learned
variations in crystal density rather than chemical and structural synthesizability attributes. This observation
supports our hypothesis that the mixed-source model has captured a spurious correlation between density
and synthesizability likelihood, derived from the bias in its training data. As demonstrated in the previous
section, this spurious correlation cannot be detected through a standard test set evaluation procedure.

We also assess the performance of the single-source synthesizability model (trained on data exclusively
from MP) on the test set derived from mixed-source data. As anticipated, the model’s performance decreases
compared to when evaluated on its original test set; however, the performance drop is less severe than that of
the mixed-source model. The accuracy, precision, recall, and specificity of the single-source model are 0.63,
0.81, 0.73, 0.15, respectively, when tested on the mixed-source test data. Figure 4(b) depicts the distribution
of synthesizability likelihood of mixed-source test samples using the single-source model. An interesting
observation emerges: the recall is relatively high (0.73), indicating a low number of false negatives. In other
words, the single-source model correctly predicts most of the synthesizable crystals as synthesizable. On the
other hand, the specificity is low (0.15), indicating that many of the unsynthesizable samples are incorrectly
predicted as synthesizable. The primary reason for the notable difference between recall and specificity is that
the positive samples in the mixed-source data set share similarities in their density and mean atomic mass
with both the positive and negative samples observed and learned by the single-source model (see figure 2).
In simpler terms, the positive samples in the test set fall within the applicability domain of the single-source
model. In contrast, the negative samples in the mixed-source dataset differ in their density and mean atomic
mass from both the positive and negative samples learned by the single-source model, placing them outside
the applicability domain of the model. This discrepancy explains the less accurate prediction of
unsynthesizable samples. Kumagai et al demonstrated that the prediction performance of machine learning
models significantly decreases outside their applicability domain [24].

Another important observation is that the prediction performance of the single-source model on
mixed-source negative test samples is better than the mixed-source model’s performance on single-source
negative test samples. Specifically, the single source model’s specificity on the mixed-source data is still larger
than the mixed-source model’s on the single source data (0.15 vs. 0.04), indicating that the single-source
model generalizes better outside of its applicability domain. Although the number of mispredictions are high
(attributed to test data being outside the applicability domain), the single-source model predicts a broader
range of synthesizability likelihoods on negative samples compared to the mixed-source model tested on
single-source data (compare figures 4(a) and (b)). This observation suggests that the single-source model
does not recognize density as the primary correlated attribute to synthesizability. This further confirms our
hypothesis that a model trained on heterogeneous or mixed-source data is susceptible to capturing spurious
correlations.

Crystal compression test

To further test our hypothesis that the mixed-source model primarily bases its decisions on density, we
conduct a compression experiment on crystal samples in the single-source test data (exclusively from MP).
We then assess the performance of both the mixed-source and single-source models on the compressed
crystal structures. For this experiment, we apply a 55% isotropic volume reduction to each crystal sample in
the single-source test set. Figure 2(e) illustrates the density distribution of the test set samples before and
after the volume reduction. As shown in figure 4(c), the mixed-source model predicts many of the samples as
unsynthesizable. This result strongly supports our hypothesis because the same model could not recognize
any of the same examples as unsynthesizable when uncompressed (compare figures 4(a) and (c)). In other
words, the mixed-source model predictions largely vary with the density variation of the crystal sample,
indicating that the model has established a strong correlation between crystal structure density and
synthesizability. Additionally, on the compressed data, the mixed-source model mispredicts many of the
positive samples as unsynthesizable when compressed (compare the blue bars in figures 4(a) and (c)). This
showcases that the chemical or structural features underlying synthesizability of crystal compounds are not
learned by the mixed-source model. On the other hand, the predictions of the single-source model on
compressed single-source data did not change significantly compared to its predictions on the mixed-source
data (compare figures 4(b) and (d)). This implies that the single-source model does not identify any strong
correlation between crystal density and synthesizability likelihood. The performance of the single-source
model drops on the compressed crystal test samples compared to the uncompressed test samples, with its
accuracy reducing from 0.778 to 0.61 (compare figures 3(f) and 4(d)). However, this performance drop is
much less significant compared to the mixed-source model, especially on the positive samples, showcasing
the better generalization of the single-source model. As mentioned earlier, this performance drop is related to
the use of the model outside its applicability domain. Even when utilized on the compressed crystal samples,
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the single-source model’s performance on positive samples remains very good (recall of 0.94), indicating that
the model has in fact learned the underlying chemical or structural features of synthesizability.

The compression test exercise in this section introduces a simple evaluation procedure for assessing how
the performance of a model is influenced by the bias in data. In this study, we observed a clear bias in the
density of crystal samples in the mixed-source data. Therefore, creating test data with systematic variation in
their density through the compression test provides a reasonable platform to detect the propagated bias in
the models’ learning and performance.

4. Conclusion

This study compares the learning behavior and prediction performance of a machine learning model trained
on two different data sets. The model performs a classification task to differentiate between samples of
synthesizable versus unsynthesizable crystal compounds. To compile the data set for the binary classification,
we follow two procedures: the mixed-source data set consists of data from separate computational and
experimental crystal structure databases while the single-source data set consists of data from a single
computational source. We detect a clear bias in the density and mean atomic mass distribution between
samples of the two classes in the mixed-source data. Our results indicate that the mixed-source model
produces biased and unreliable predictions, although all standard classification metrics suggest it is a
near-perfect classifier. On the other hand, the single-source model shows a less accurate yet more reliable
prediction performance. This study presents simple evaluation procedures beyond standard evaluation
practices in the literature to measure the effect of data inconsistency on the model’s prediction performance.

In conclusion, we underscore the potential for obscure inconsistency in data resulting from data
collection across multiple sources. As demonstrated in this study, the collection of crystal structure samples
for binary classification can introduce inconsistencies, particularly in their density distribution. This form of
data bias is easily overlooked, given that it remains undetectable through standard evaluation procedures
commonly employed in typical machine learning studies for materials prediction or discovery. Hence, it
becomes imperative to systematically compare data across various properties, such as density, chemical
composition, and structural distribution, in order to identify any potential imbalances or sources of bias
before initiating model training.

While demonstrating the detrimental effect of data bias on machine learning models, this study does not
propose detailed pathways for mitigating such bias in the model’s learning and performance. However, we do
highlight the superior performance and generalization of a model trained on homogeneous data. Mitigation
strategies should be tailored to the specific nature of the data bias and the chosen learning approach. In the
case of this study, using universal potential models, like CHGNET [59], can provide computationally feasible
volume-relaxation tool to address the density bias in CSPD-derived structures (see appendix F). However,
caution is advised when using these models, as they are not specifically designed to describe forces in highly
distorted structures far from equilibrium, which is often the case for CSPD-derived structures or those
generated by similar high-throughput structure generation methods. If computationally feasible, more
accurate models, such as DFT, are recommended. More broadly, the path forward should involve careful data
selection methods that promote diverse and unbiased datasets. Mitigating data bias will be crucial for
achieving reliable and useful machine learning predictions in materials science. Data bias detection and
mitigation studies in the literature [24-28], while few, provide the roadmap for future studies in machine
learning applied to materials science.
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Appendix A. Rotational ensemble averaging

Table A.1. The agreement between predicted labels of the 288 samples of the single-source model test set in terms of the ensemble size
used for each sample prediction. A sample is deemed consistent if all predicted labels are identical, and inconsistent otherwise. The
consistent prediction percentage column represents the fraction of samples with consistent predicted labels among the 288 samples. The
standard deviation of an inconsistent sample is measured among all the copies in the ensemble. The average standard deviation over
inconsistent samples is presented in the last column.

Number of
Ensemble inconsistent Consistent prediction Average standard deviation
size predictions percentage of inconsistent predictions
1 123 56.4% 0.109
2 79 72.0% 0.085
5 45 84.0% 0.055
10 39 86.2% 0.039
20 33 88.3% 0.030
30 27 90.4% 0.024
50 18 93.6% 0.020
75 17 94.0% 0.017
100 12 95.7% 0.015
150 11 96.1% 0.011
200 9 96.8% 0.010

We employ an ensemble averaging method for predicting the synthesizability likelihood of crystal
compounds. Once a crystal sample is input into the trained model, a ensemble of N randomly rotated
instances of the sample is generated and the synthesizability likelihood prediction is averaged over the
ensemble, where N is an adjustable parameter of the model denoting the ensemble size. The ensemble
averaging methods improves the prediction accuracy and robustness of our model, as shown in our earlier
study for formation energy prediction [34], and as illustrated in the following for synthesizability prediction.

Table A.1 illustrates the single-source model’s prediction consistency and stability on its test set in terms
of the ensemble size. As the ensemble size increases, the number of inconsistent predictions dramatically
decreases. The prediction on a crystal sample is considered consistent if the predicted labels for all the
rotational instances of the crystal sample are identical, and inconsistent otherwise. A negative label is
assigned if the predicted synthesizability likelihood is below 0.5 and a positive label is assigned otherwise
(i.e. a classification threshold of 0.5 is utilized). There exist 288 distinct crystal samples in the single-source
model test set. As shown in table A.1, for an ensemble of size 1, 123 out of the 288 samples have inconsistent
predictions, resulting in consistent prediction percentage of around 56%. A rapid monotonic increase in
prediction consistency is observed as the ensemble size increases, leading to a consistency percentage of 90%
and above 96% for ensemble sizes of 30 and 100, respectively. Another metric we use to measure the
consistency is the standard deviation of synthesizability likelihood predictions for a given crystal sample. The
standard deviation is measured over N rotational instances of the crystal compound. Table A.1 shows the
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average standard deviation of synthesizability likelihood of the inconsistent crystal samples in the test set in
terms of the ensemble size. A descending trend in the standard deviation as the ensemble size grows is
demonstrative of the model’s enhanced confidence in its predictions. This suggests that larger ensembles
translate to more consistent and confident results. For example, for an ensemble of size 50, the average
standard deviation over the 11 inconsistent crystal samples stands at a mere 0.011. Notably, the small
standard deviation indicates that the inconsistent predictions corresponds to crystal samples located close to
the decision boundary, where the predictions should be close to 0.5 with small oscillations of around 0.011
that render their labels positive or negative.

We select an ensemble size of 100 for our model prediction. For an ensemble size of 100, the model
exhibits a high consistency percentage of 95.7% on its test samples, while simultaneously maintaining a low
average standard deviation of 0.015 over the inconsistent samples. Beyond ensemble 100, the incremental
improvements in both the consistency percentage and average standard deviation are relatively minor. Given
these results, ensemble 100 emerges as an optimal balance between performance and computational
efficiency. It offers high consistency and confidence in predictions without the necessity for considerably
larger ensemble sizes that would demand more computational resources without a sufficient improvement in
model performance.

Appendix B. Well-studied chemical compositions in the materials science literature

We utilize a natural language processing model developed by Tshitoyan et al [60] that encompasses
knowledge from the materials science literature spanning from 1922 to 2018. We rank the available chemical
compositions in the literature based on their frequency of occurrence. The top 0.1% comprises the first 108
unique compositions, each of which is mentioned at least 3306 times (see supplementary table 1 in [18]).
These compositions are shown in table B.1.

Table B.1. The top 0.1% chemical compositions in the materials science literature based on their frequency of occurrence, collected
using the natural language processing model of [60]. Formulas are ordered by frequency, decreasing from top left to bottom right, with
frequency decreasing left to right within each row.

O,Ti OZn CO; 0,Si Al O3 CSi
AsGa GaN 0,Zr 0,5n MgO CdS
CeO, H,O Fe3;04 CINa CuO NiO
CH4 SZn NTi OsW MoS; AIN
H3N CdTe Fez 03 ClH CTi O3Y2
MnO; HNaO CaO InP Co0304 BaOsTi
CdSe N4Si3 CuzO AslIn OsVz Ozs
O3SrTi H>04S SeZn NO, H,S MoO3
NiTi FeLiO4P CIK B,Ti AsGaln GeSi
Cr203 InzO3 B203 AgCl HfOz CsN
AlAsGa N20 Bi203 Bz Mg GeV LazO3
HNO3 FLi AlNi CCaO3 Can sz 05
0, U GalnN PbS AlGaN CH, B4C
AlTi 048 BiFeOs3 LiMn,O4 Na,O CoLiO,
CoFe; 04 O2Ru LiNbO3 CsFOS ByZr GaSb
OPb BRh CoO CrN NayO04S MnO
CH3 BiO4V OzV HzMg Li4012Ti5 OsTaz
OsP; FePt Li,O FeO NOs; TeZn

Appendix C. CSPD atomic structure generator

The CSPD[52] is constructed by extracting crystal structure prototypes from the COD[61], which includes
various compounds except bio-polymers. The process involves filtering structures for quality, classifying
them based on composition and atom count, distinguishing between inorganic and organic structures, and
assessing structural similarity.

The CSPD approach, developed by Chuanxun Su et al, generates structures for prediction by first
transforming a raw database into a composition-crystal-structure prototype database, significantly reducing
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the number of candidate structures [52]. This process, known as the big data method (BDM), involves
selecting structure prototypes based on targeted composition, substituting elements, adjusting lattice
parameters, and checking minimal interatomic distances. The effectiveness of this method was demonstrated
through the generation and evaluation of candidate structures for typical systems, showing that the BDM not
only efficiently predicts lower-energy structures but also aligns with experimental findings, underscoring its
potential in identifying novel, energetically favorable materials configurations.

The CSPD structure generator is publicly available on GitHub [62]. When utilizing the CSPD for
structure generation, users can choose to specify either atomic density or volume as guiding parameters for
crystal structure creation. In instances where users do not provide these parameters, CSPD employs the
covalent radii of species to deduce atomic density, determining the arrangement density of atoms within the
generated structure. This approach provides flexibility in tailoring structure generation without requiring
explicit pressure settings. In this study, we have used this option to generate crystal samples for the
unsynthesizable class.

Alternative methods to the CSPD have been developed in recent years. One notable examples is the
CrystaLLM by Luis Antunes et al, which presents an innovative approach to the generation of crystal
structures [63]. Utilizing autoregressive large language models to interpret Crystallographic Information File
formats, CrystaLLM accelerates the discovery of inorganic compounds suitable for applications in energy
and electronics, highlighting a significant advancement in the efficiency of crystal structure prediction.

Appendix D. Distribution of atomic species across datasets

Figure D.1 illustrates the the distribution of atomic species between the synthesizable and unsynthesizable
classes in both the mixed-source and single-source data.

a) Mixed-source data
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Figure D.1. Distribution for atomic species among the synthesizable and unsynthesizable samples in the mixed-source and
single-source databases.
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Appendix E. Distribution of ICSD crystals over external pressure

See figure E.1.
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Figure E.1. Distribution for high-pressure ICSD crystal samples (i.e. above ambient pressure). Only samples with pressure below
50 GPa are displayed. The pressure value indicates the external pressure during synthesis.

Appendix F. Mitigating density bias in the mixed-source data

We employ CHGNET [59] to relax the structures in the mixed-source dataset. The relaxation process is
conducted using the FIRE optimizer, which adjusts the crystal cell and atomic positions until the
CHGNET-calculated forces converge to 0.1 eV A~!, or until the optimizer reaches 300 iterations. Negative
samples from the CSPD are uniformly expanded by 250% before being subjected to optimization. This
manual expansion helps address the inherent bias of CSPD-derived structures toward small atomic volumes,
making them more suitable for optimization with CHGNET and resulting in a larger proportion of negative
samples being successfully optimized. Despite these efforts, CHGNET failed to optimize a significant portion
of the dataset, with 295 out of 600 CSPD samples and 1621 out of 3000 COD samples not converging (i.e. the
forces diverged even after 300 iterations). Figure F.1 shows the distribution of the maximum atomic forces at
the final step for the successfully relaxed structures. Additionally, figure F.2 presents the density and atomic
volume distribution of the mixed-source data before and after CHGNET-based relaxation. Following the
relaxation process, the disparity in density and atomic volume distributions between synthesizable and
non-synthesizable samples was reduced.
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Figure E.1. Distribution of the last relaxation step atomic force for the synthesizable and unsynthesizable crystal samples in the
mixed source dataset.
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Figure F.2. Density and atomic volume distributions of crystal samples in the mixed source dataset before and after CHGNET
relaxation.
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