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Abstract: This is the third paper in a series of papers adressing the characteristic gluing
problem for the Einstein vacuum equations. We provide full details of our characteristic
gluing (including the 10 charges) of strongly asymptotically flat data to the data of a
suitably chosen Kerr spacetime. The choice of the Kerr spacetime crucially relies on
relating the 10 charges to the ADM energy, linear momentum, angular momentum and
the center-of-mass. As a corollary, we obtain an alternative proof of the Corvino-Schoen
spacelike gluing construction for strongly asymptotically flat spacelike initial data.
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1. Introduction

The gluing problem in general relativity investigates whether it is possible to join two
given vacuum spacetimes. Concretely, one can approach this problem by attempting to
construct a solution to the constraint equations which agrees inside a bounded domain
with specified initial data, and on the complement of a large ball with other specified
initial data. The geometric obstructions to solving the gluing problem provide insights
into the rigidity properties of the Einstein equations.

In [11] we initiated the study of the characteristic gluing problem for initial data for
the Einstein vacuum equations. This problem amounts to connecting two initial data sets
along a truncated null hypersurface by solving the null constraint equations. There are
several reasons for considering the characteristic gluing problem: (1) the null constraint
equations are of transport character (in contrast to the previously studied gluing problem
for spacelike initial data which requires to analyze the elliptic Riemannian constraint
equations), (2) the null lapse function and the conformal geometry of the characteristic
hypersurface can be freely prescribed, (3) characteristic gluing of spacetimes implies
spacelike gluing of the spacetimes.

In [11,12] we explicitly derived a 10-dimensional space of gauge-invariant charges
on sections of null hypersurfaces that act as obstructions to the characteristic gluing
problem and we showed that, modulo this 10-dimensional space, characteristic gluing
is always possible for data sets that are close to the Minkowski data. In this paper, we
prove that characteristic initial data that are close to the Minkowski data can be fully
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glued (including the 10 charges) to the characteristic data of a suitable Kerr spacetime.
By rescaling we show that strongly asymptotically flat data can also be characteristically
glued to the data of some Kerr spacetime. As a corollary, we obtain an alternative proof
of the Corvino—Schoen gluing construction (for strongly asymptotically flat spacelike
initial data) that relies on solving the null constraint equations instead of the Riemannian
constraint equations. Our approach crucially relies on relating the 10 charges to the ADM
energy, linear momentum, angular momentum and center-of-mass.

In Sect. 1.1 we discuss the characteristic gluing problem. In Sect. 1.2 we outline the
main results. In Sect. 1.3 we give an overview of the main ideas of the proofs.

1.1. The characteristic gluing problem. In this section we discuss the codimension-10
characteristic gluing for the Einstein vacuum equations introduced in [ 1 1]. Before stating
the main results of that paper, we introduce the following notation. Let (M, g1) and
(M3, g2) be two vacuum spacetimes. Let S and S, be two spacelike 2-spheres in M
and My, respectively, and assume (without loss of generality) they are each intersection
spheres of local double null coordinate systems, respectively. We define sphere data x
on S1 and x2 on S to be given by the respective restriction of the metric components,
Ricci coefficients and components of the Riemann curvature tensor of the spacetimes
to the respective spheres (see also Sect. 1.3.2) with respect to the respective double null
coordinate system.

One of the main insights of [11,12] is the derivation of a family of charges on the
sections of null hypersurfaces that act as obstructions to the characteristic gluing problem.
The charges arise from conservation laws for the linearized constraint equations. They
split into two classes: An infinite-dimensional space of gauge-dependent charges and
a 10-dimensional space of gauge-invariant charges. The former charges can always be
overcome by gauge perturbations. We will refer to the gauge-invariant charges as simply
the charges. For further discussion, see Sect. 1.2.1. For precise definition of the charges,
see Sects. 1.3.2 and 2.5.

The main result of [11,12] can be summarized as follows; see Theorem 2.20 in
Sect.2.9 for the precise statement.

Perturbative codimension-10 characteristic gluing [11,12]. Let on two spheres S|
and Sy be given the sphere data x| and x;, sufficiently close to the respective sphere
data on the round spheres of radius 1 and 2 in Minkowski spacetime, respectively. Then
there is a null hypersurface HE 1.2]> connecting the sphere data x| on S to a transversal
perturbation S}, of the sphere Sy with sphere data x}, solving the null constraint equa-
tions, and such that all derivatives tangential to HEI,Z] of the sphere data x| and x}, are

— up to a 10-dimensional space of charges explicitly defined at Sy — smoothly glued.
Sphere data determines all derivatives of the metric components up to order 2, hence
perturbative gluing is gluing at the level of C? of the metric components (up to the 10
charges).

In [11,12] we also consider characteristic gluing along two null hypersurfaces bi-
furcating from an auxiliary sphere, and prove the following result, see also Fig. 1; see
Theorem 2.21 in Sect. 2.9 for the precise citation from [12].

Bifurcate codimension-10 characteristic gluing [11,12]. Let m > 2 be an integer.
Consider two spheres S| and Sy equipped with sphere data x| and x» as well as prescribed
mM-order derivatives in all directions, respectively. If this m™M-order data on S and S»

is sufficiently close to the respective m™-order data on the round spheres of radius 1



278 S. Aretakis, S. Czimek, I. Rodnianski

Fig. 1. Perturbative codimension-10 characteristic gluing (on the left) and higher-order codimension-10 char-
acteristic gluing along two null hypersurfaces bifurcating from an auxiliary sphere (on the right)

and 2 in Minkowski spacetime, then it is possible to characteristically glue — up to
a 10-dimensional space of charges — the m™-order data of S1 and S» along two null
hypersurfaces bifurcating from an auxiliary sphere Saux.

We note that in the above result the spheres S; and S are not perturbed. Moreover,
bifurcate gluing is higher-regularity gluing, that is, we can glue any order m > 2 of
derivatives of the metric components (up to the 10-dimensional space of charges).

We note that the characteristic gluing problem was previously studied by the first author
[8,9] in the much simpler setting of the linear homogeneous wave equation on general
(but fixed) Lorentzian manifolds. Similarly to the present paper, [8] determined that
the only obstructions to solving the characteristic gluing problem are conservation laws
along null hypersurfaces. In the following it was shown that these conservation laws
have important applications in the study of the evolution of scalar perturbations on both
sub-extremal [1,2,5,39] and extremal [3,4,6,7,10,16] black hole spacetimes.

1.2. Main results on the characteristic gluing to the Kerr family. In this section we
outline the main results of this paper on the characteristic gluing to Kerr.

1.2.1. Geometric interpretation of charges As discussed above, the characteristic gluing
of [11,12] holds up to a 10-dimensional space of charges. These charges are calculated
as integrals over spacelike 2-spheres and are denoted by the real number E and the 3-
dimensional vectors P, L. and G. At the linear level, the charges E and P are proportional
to the modes/ = Oand ! = 1 of p+r djv8, while L and G are proportional to the magnetic
and electric parts of the mode / = 1 of B, see Sect. 2.5 for precise definitions.

Theorem 1.1. Given a strongly asymptotically flat family of sphere data on spheres Sg,
as defined in Sect. 2.7, the charges (Er, Pr, Lr, Gr) have a limit (Exo, Pxo, Lo, Goo),
called the asymptotic charges. In case the spheres Sg lie in a strongly asymptotically
flat spacelike hypersurface, the asymptotic charges are related to the ADM asymptotic
invariants of the spacelike hypersurface by

(Ecos Poo, Lo, Goo) = (Eapm, Papm, Labm, Capm),

where Eapwm denotes the energy (often called mass), Papm the linear momentum, Lapm
the angular momentum, and Capwm the center-of-mass.

Our definitions of the charges are, to leading order, consistent with previous definitions
in general relativity of mass, linear and angular momentum in terms of integrals over
spheres; see [35,36,44].
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Fig. 2. Perturbative (left) and bifurcate (right) characteristic gluing to the Kerr family

1.2.2. Perturbative characteristic gluing to Kerr The following is a first version of our
main result for characteristic gluing to Kerr along one null hypersurface, see Theorem
3.1 for a precise version.

Theorem 1.2. Consider a strongly asymptotically flat family of sphere data xg on

spheres Sg. For R > 1 sufficiently large, there exist (1) a perturbation S%en of Sg along

the ingoing null hypersurface Hg._s 51, (2) a sphere Sg%" in some Kerr spacetime, and

(3) a null hypersurface H(g 2r), solving the constraint equations, and connecting S%m
and Sg;é“ and their respective sphere data.

The above perturbative characteristic gluing to Kerr is C2-gluing for the metric com-
ponents. In Theorem 1.2 we glue to a reference sphere in Kerr. We could alternatively
glue to a perturbation of the reference sphere in Kerr to avoid perturbing Sk to S%en. In
Theorem 1.2 it is not necessary to have a family of sphere data data. Indeed, one can
replace this family with one fixed sphere datum with sufficiently strong bounds.

1.2.3. Bifurcate characteristic gluing to Kerr We can also characteristically glue m™-
order derivatives in all directions, for any integer m > 2, (without perturbing any of
the spheres) to Kerr by applying the bifurcate characteristic gluing of [11,12], see the
discussion above and Theorem 2.21 below. This yields higher-regularity gluing of metric
components. We refer to Theorem 3.2 for a precise version of the following; see also
Fig. 2 below.

Theorem 1.3. Let m > 2 be an integer. On spheres Sg let xg be a strongly asymp-
totically flat family of sphere data together with prescribed m™-order derivatives. For
R > 1 sufficiently large, we can characteristically glue, to m"-order, along two null
hypersurfaces bifurcating from an auxiliary sphere, the sphere Sg to a sphere S%(;” in
some Kerr spacetime.

In Theorem 1.3 it is not necessary to have a strongly asymptotic family of sphere data.
Indeed, one can replace this family with one fixed sphere data with sufficiently strong
bounds.

1.2.4. Spacelike gluing to Kerr As corollary of Theorem 1.3 we can deduce spacelike
gluing to Kerr for strongly asymptotically flat spacelike initial data, see Corollary 3.3
for a precise version, and Fig. 3 below.

Corollary 1.4. Let m > 0 be an integer. Let (X, g, k) be smooth strongly asymptotically
flat spacelike initial data with asymptotic invariants (Eapm, Papm, Lapm, Capm) such
that (Eapm)? > [Papm|?. Then, sufficiently far out, (g, k) can be glued in C™-regularity
across a compact region to spacelike initial data for some Kerr spacetime.
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Fig. 3. Application of bifurcate characteristic gluing in the proof of smooth spacelike gluing to Kerr

The assumption of strong asymptotic flatness of the spacelike initial data corresponds to
working in the center-of-mass frame of the isolated gravitational system, see [19]. The
proof of Corollary 1.4 is by combining the bifurcate gluing to Kerr with local existence
[37,38] for the characteristic initial value problem. In particular, the ootM_order version
of bifurcate codimension-10 characteristic gluing (see remarks above) should yield a
smooth spacelike gluing to Kerr; however, we will not provide details here.

1.3. Overview of the main ideas.

1.3.1. Main steps Inthis section we will outline the main steps of the proofs of Theorems
1.2 and 1.3. We refer the reader to Fig. 4 below for an illustration of the relevant spheres
and charges.

(1) We setup the problem by distinguishing two cases:
(a) We are given a strongly asympotically flat spacelike initial data set (X, g, k)
foliated by 2-spheres Sg.
(b) We are given a strongly asymptotically flat family of spheres Sg with sphere data
(xg) which are not lying in strongly asymptotically flat spacelike initial data.
(2) We apply the perturbative codimension-10 characteristic gluing of [11,12] to glue a
perturbation Sﬁen(k’* Jof § g to a sphere S; % in some Kerr spacetime A g along a null
hypersurface H|g 2r). Here the vector A g parametrizes the Kerr spacetimes through
asymptotic invariants, see Step (4) below. The gluing holds up to the 10-dimensional

space of charges. We denote the associated charges on Sg and Sﬁm(}”’* ) by Or and

Q%ert(“) , respectively. Moreover, we denote by Q;ﬁ the charges on S;‘ # calculated

from Kerr, and by le;;e(xR) the charges on the same sphere calculated from the

gluing solution on H| 2g]. We consider the charge difference

(AQ)(hg) = 03 — O5x°<. (1.1)

Our goal is to determine a Kerr parameter Ag for which (AQ)(Ag) = 0.

(3) We derive asymptotic expansions for the charges Qg for large R > 1 (and denote
the limits by Q). In case (a) of a spacelike hypersurface ¥, we show that these are
related to the asymptotic invariants AI(X) of (X, g, k), thus yielding a geometric
interpretation of the charges. See Sect. 1.3.3.

(4) We make use of the 10-dimensional parametrization & € R!? of Kerr spacelike initial
data (%, g, k) by its asymptotic invariants AI(X*) developed in Chrusciel-Delay
[21], and consider spheres S%R with sphere data x%R lying in these spacelike initial
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Fig. 4. The relevant spheres and charges for the characteristic gluing to the Kerr family

data. In case (a) it suffices to consider the parameter A of Kerr spacelike initial data
to lie in a ball B of finite radius in R19. In case (b) we need to consider a larger set
of parameters A = Ag, namely, an ellipsoid £ with semi-major axis proportional
to R'/2. See Sect.1.3.4.

(5) We derive a homotopy between the charge difference (A Q)(Agr) and an appropri-
ate difference between the asymptotic charges Q~ and the asymptotic invariants
AI(X*®) of the Kerr initial data £ . The latter difference is shown to always admit
aroot A’,. We prove uniform estimates for the homotopy that allow us to conclude
by a topological degree argument that the charge difference (A Q)(Ag) also admits
aroot. See Sect. 1.3.4.

1.3.2. Sphere data and charges For a given sphere S, the sphere data x on S is given by
the following geometric components on S,

x = (Q 4.ty T, g X, 0, 0. Do, w, Do, o, p. p. 0. p. ).
The above components are expressed in a null frame in the context of a double null
coordinate system. For the precise definitions we refer to Sect. 2.1. The data x determines
all derivatives of the spacetime time metric up to order 2 (see also Sect. 2.4). Furthermore,
given sphere data on S we introduce the associated charges Q = (E, P, L, G) on S to
be the integrals (2.21) over S.

We define strongly asymptotically flat sphere data on a family of spheres Sg in
accordance with the decay towards spacelike infinity in the works [19] and [34]. Indeed,
we show by explicit construction that each strongly asymptotically flat spacelike initial
data admits strongly asymptotically flat sphere data on families of spheres (but in general
we do not assume that sphere data stems from spacelike initial data). Our construction
is such that the special case of Schwarzschild spacelike data (expressed in isotropic
coordinates so that strong asymptotic flatness holds) leads precisely to the family of
Schwarzschild reference sphere data with respect to Eddington—Finkelstein double null
coordinates. To achieve this for general spacelike initial data, we rescale the coordinate
sphere S, to S, apply the coordinate change from isotropic coordinates to Schwarzschild
coordinates, make appropriate gauge choices for L, L and €2, and use the definitions of
Ricci coefficients and null curvature components. We show that the rescaled quantities
are well-defined and derive estimates and then we rescale back up. See Sects.7.1 and
7.2.
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1.3.3. Relation of charges to asymptotic invariants For strongly asymptotically flat fam-
ilies of sphere data x g on spheres Sg, the following asymptotic expansions hold for large
R>1,

E (Sg) = Eoo + O(R™Y?), P (Sg) = O(R™1/?),
L (Sg) = Loc + 0(1), G (Sg) = G + O(1).

where (Exo, Poo = 0, Loo, Goo) are defined as the limits of (E, P, L, G) on Sg as R —
oo. These asymptotic charges can also be defined for more general families of sphere
data (not necessarily strongly asymptotically flat), in which case we expect P, 7% 0 and
Goo = +00. On the other hand, if the family of sphere data lies in strongly asymptotically
flat spacelike initial data, then we have the following stronger decay rates for E and P,

E(Sg) = Eoo + O(R™Y), P(Sg) = O(RT/?). (1.2)

The charges (E, P, L, G) have a well-defined connection to the ADM asymptotic invari-
ants. Indeed, for spheres Sg in asymptotically flat spacelike initial data with well-defined
ADM asymptotic invariants, we can relate the charges (E, P, L, G) to the local integrals
EI%S,, of the ADM energy, PR, of the ADM linear momentum, LS, | of the ADM

angular momentum, and CIXIC)M of the ADM center-of-mass as follows,

E(Sg) =ERE(Sk) +0(1),  P(Sg) =PR5\(Sr) +O(1),

(1.3)
L(Sg) =LY\ (Sg) +0(1),  G(Sg) =CR5\(Sk) — R - PREV(SR) +O(1).

Hence in that case,
Ew = Eapm, P = PabpMm, Loo = LapMm.

For families of sphere data in an asymptotically flat spacelike hypersurface with non-
vanishing total ADM linear momentum Papy # O (such hypersurfaces are not strongly
asymptotically flat), (1.3) shows that P, # 0, and subsequently, |G| = +00. Impor-
tantly, the Kerr spacelike initial data satisfies in general PApm # 0 which has significant
repercussions for our analysis of the gluing problem to the Kerr family. In particular,
it forces us to consider and prove delicate estimates for spacelike initial data with very
large center-of-mass Cappm, see also the discussion in Sect. 1.3.4.

On the other hand, for families of sphere data in strongly asymptotically flat spacelike
hypersurfaces (in which case Papy = 0 and PK’IC)M(SR) = O(R™3/)), we have by (1.3)
that Goo = Capwm 1s well-defined.

1.3.4. Choice of Kerr to glue to The goal is to prove that for sufficiently large R > 1
we can characteristically glue to a Kerr sphere S%R. Ideally, one would like to consider
a fixed set of Kerr parameters A such that the spheres S%R in the corresponding space-
like initial data have asymptotic charges (EXe™, pXerr [ Ker GKerr) ¢lose to the given
(Eco, Pso, Lo, Go), and subsequently argue that there exists a A in that set which solves
the gluing problem.

However, for each fixed A with PK%YK,I # 0 we have by (1.3) thatas R — oo,

G (830) = CIE 1 (ShR) —(2R) - PRS(ShR) +0(1) — o0,
/ ADMIT2R (1.4)

Kerr Kerr
—Cabm —PAbm
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which in particular shows that G§§“ is far away from matching the finite Goo. Thus we
have to change our approach and consider an R-dependent set of A which accommodates
bounded GKe (S%R) by allowing for growing center-of-mass CE%YITVI = O(R'?) and
small linear momentum PK‘“’DFR,[ = O(R™1/2) to cancel to top order. Namely, we consider
the ellipsoid Eg (E) defined by

(RV21EG) ~ Encl) + (RY21P)1) + (R4LGI) + (R721C001) < (Bec)?.

In the simpler case where the spheres Sg lie in strongly asymptotically flat spacelike
hypersurfaces, we have the stronger decay P(Sg) = O(R™3/?) which implies in the
matching process that GKCH(SQR) remains finite as R — oo (unlike in (1.4)).

To determine the Kerr parameter A g which makes the charge difference (A Q)(Ag) =
0 (see (1.1) for definition), we use the asymptotic expansions of Qr and Q;fe (discussed
in Sect. 1.3.3 above) to construct a homotopy from F1(Agr) := (A Q)(Ag) to the mapping
Fy(AR) defined by

Kerr Kerr Kerr Kerr Kerr
(Eoo, Poo, Loo, Coo) — (EADM’ Papm: Lapm: Capm — 2R - PADM) .

The mapping Fo(Ag) has a unique zero in the interior of £g(E) for large R > 1.
Moreover, as indicated in the previous section, the asymptotic expansions for Q’;g hold
uniformly for large R > 1 and A € Er(Ey), so that in particular we have uniform
estimates for the constructed homotopy. Therefore we conclude by a topological degree
argument that the charge difference (A Q)(Ag) must have a zero.

=~
N

. Overview of the paper. The paper is structured as follows.

In Sect.2 we introduce the notation and state the definitions and preliminaries.

In Sect.3 we precisely state the main results of this paper.

In Sect. 4 we prove the main theorem of this paper, Theorem 3.1.

In Sect.5 we prove Corollary 3.3, the gluing of spacelike initial data to Kerr.

In Sect. 6 we recapitulate spacelike initial data and asymptotic invariants.

In Sect.7 we construct strongly asymptotically flat families of sphere data from
strongly asymptotically flat spacelike initial data, and relate the charges (E, P, L, G)
to the integrals of the ADM asymptotic invariants.

2. Notation, Definitions and Preliminaries

For two real numbers A and B, the inequality A < B means that there is a universal
constant C > 0 such that A < C B. Greek indices range over o = 0, 1, 2, 3, lowercase
Latin indices over a = 1,2, 3 and uppercase Latin indices over A = 1, 2. For a real
number » > 0 and a point x in a metric space X, denote by B(x, r) the open ball in X of
radius r centered at x. For real numbers ¢ > 0 and o > 0, let O (&%) denote terms such
that O(e¥) /e remains bounded as ¢ — 0, and O(g%) denotes terms such that

. 0(e%)
lim

e—0 &%

=0.

For given Cartesian coordinates (x L x2, x3), define the spherical coordinates (r, 6 L 62)
by

x!' =rsin6'cosH?, x> =rsind'sind?, x> =rcoshl. 2.1)
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2.1. Double null coordinates. In this section we summarize the standard setup of double
null coordinates, Ricci coefficients and null curvature components. We refer to Section
2.1 in [12] for full details. Let (M, g) be a vacuum spacetime, and denote by D its
covariant derivative and by R its Riemann curvature tensor. Let # and v be two local
optical functions on M, and denote

Huo = {1 = w0}, H,, = {v =100}, Sugvy = Hug NH

—UO —v0°’

where we assume the optical functions u# and v are such that the S, , are spacelike 2-
spheres. Let ¢ denote the induced metric on S, ,,, and ¥ the induced covariant derivative.
Let 7 (u, v) denote the area radius of (S, v, §), defined by areay ( ) = 47r2. Define

the geodesic_null vectorfields L' and L', the null lapse Q, and the normalized null
vectorfields L and L by

1 ~ ~
L' :=-2Du, L' :=—2Dv, Q7 %:= —Eg(L/, L), L:=qL, L:=QL. 22)

Let (91, «92) be local coordinates on S, .,, for some given real numbers vy > ug. We
extend (8!, 62) to M by first transporting them along the null generators L’ of H,,, and
then onto M along the generators L’ of the null hypersurfaces H,. The coordinates
(u, v, 01, 62) are called double null coordinates. In particular, it holds in double null
coordinates the null vectorfields L := QL and L := QL can be expressed as L =
3, +b and L = ,, and the spacetime metric g can be written as g = —4Q*dudv +
gap (d6" +bAdv) (A6 + bBdv), where the shift vector b = A3, isan S, ,-tangential

vectorfield, satisfying b = 0 on H,,,. Through the coordinates (91, 92), we define on
each S, , the unit round metric

_ <d91>2 +sin? 6! (d92>2. (2.3)

We also define standard vector spherical harmonics (and the associated projections) with

respect to )3 on Sy ; see [11,12,24] for a detailed setup. We decompose the induced
metric ¢ into

—1
¢ = ¢°4, where ¢? := /Qﬁ . =074, 24)

where /¢ and \/E denote the volume forms of ¢ and 33 with respect to (', 62), respec-
tively.
The proof of the following calculus lemma is straight-forward and omitted.

Lemma 2.1 (Calculus lemma). Let (S, ¢) be a Riemannian 2-sphere equipped with a

round metric )3 as defined in (2.3), and consider the associated spherical harmonics
projections. Let X be a 1-form and W a g¢-tracefree symmetric 2-tensor on S, and let K
denote the Gauss curvature of g. Assume that for a real number ¢ > 0, it holds that

o
g —vilngecs) = e.

There exists a universal real number gy > 0 such that if 0 < ¢ < &,

. o . 1 o
| X0 S 1 = Fllaos) 1 X Tz |(@e W) S g = Pllgscs) - IWlzgs)

° 2
and form = —1,0,1, |[K™| < (||g— V||H6(S)) .
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We define the Ricci coefficients as follows. For S, ,-tangent vectorfields X and Y, let

~ ~ 1 ~ o~
x(X,Y):=gMDxL,Y), x(X,Y):=gDxL,Y), $(X) = Eg(DXL’ L),
1 ~ -~
¢(X) = -gDx L. L), n:=1¢+dlog, n:=—C+dlog€2,
w:= DlogQ, w = Dlog 2,
(2.5)

where ¢ is the extrinsic derivative of S, ,, and for an S, ,-tangent tensor W on M,
we define DW := ;W and DW := £ W, where £ denotes the projection of the
Lie derivative on M onto the tangent space of S, ,. We remark that { = —¢ and
n=—n+2d log Q. N

"~ We define the null curvature components as follows. For S, ,,-tangent vectorfields X
and Y, let

—~ —~ 1 ~ o~ o~
a(X,Y) :=R(X,L.,Y, L), BX) :=3R(X.L, L, L),
1~~~ ~ 1 ~
pi=R(L L, L L), o @ X,Y):=JR(X.Y, L, L), (2.6)
1 _~ o~ o~ o~ o~
E(X) = ER(X’ L, L, L), a(X,Y) =R(X, L,Y, L).

2.2. Null structure equations. The geometric setting and the Einstein equations imply
relations between the metric components, Ricci coefficients and null curvature com-
ponents, the so-called null structure equations. Before stating them, we introduce the
following notation from Chapter 1 of [18]. For two §,, ,-tangential 1-forms X and Y, let

(X, Y) :=¢(X, ¥), *X)4 :=€ap XP, dvX := ¥ X a, cuflX :=e"P ¥ X5,
(X®Y)ap :=XaYp + Xp¥Ya — (X - Y)gsp, (VRY)ap := VaVp +VpYa — (dWY)g 45,
where € denotes the area 2-form of S, ,. For two symmetric S, ,-tangential 2-tensors

V and W, and a 1-form X let
~ 1
trV = gABv,p, V=V — SUVE VAW = By ewS,,
(V- X)a = VapXP® dipVa := VP Vpa.
For a symmetric S, ,-tangential tensor W, let DW denote the tracefree part of DW with
respect to ¢, and DW the tracefree part of DW with respect to g.

‘We are now in position to discuss the null structure equations. We have the first variation
equations,

Qtry ¢
2 9

D¢ =2Qx, D¢ =2Qx, D¢ = 2.7
the Raychauduri equations,

Dtr £ 2_ = Q72 & 2 _ —_op
xX+3 (try)” —owtry =—Q[xly, Dtrx + > (ry)” —otryx =—Qxly.
(2.8)
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and further
DY =Q[X1*¢ + 0X — Qa, DY =Q|x|*¢ + o} — Qe
Dn =Q(x -n—p), Dn =Q(x -n+p),
Do =Q*Q2(n.n) — InI* = p). Do =Qxn.n) — nl* - p). (2.9)
cufly = — 15(\/\2— o, cutln = — cutly = — cutle,

2
D) =—-Q(x-n=P+2dw, Dm) == n+p)+2dw.

Moreover, we have the Gauss equation,

1 1
K + Ztrxtrl— E(j(\, Z) = —p, (2.10)

where K denotes the Gauss curvature of S, ,, the Gauss—Codazzi equations

1 _ 1 L1 _ 1
divX — dtrx + 3§ — Strxd = = divX — Sdryx — X - L+ Syl = B,

@2.11)

While there are more null structure equations, the above suffice for the explicit calcula-
tions in this paper. We refer to [12] for a complete list of the equations.

2.3. Minkowski, Schwarzschild and Kerr spacetimes. In this section we discuss the ge-
ometry of Minkowski, Schwarzschild and Kerr spacetimes.

Minkowski spacetime. The trivial solution to the Einstein equations is Minkowski
spacetime (R4, m) where m = diag(—1, 1, 1, 1). Defining standard spherical coordi-
nates on R? by (2.1), the reference double null coordinates on Minkowski are given
by

(u,v,91,92)=(%(l—r),%(t+r),91,92>, (2.12)

with respect to whichm = —4dudv+ (v —u)%y 4 gd64d6 8, where y is defined in (2.3).
We note that the area radius of the sphere S, , is given by r = v — u. Explicitly, with
respect to the coordinates (2.12), the non-trivial Minkowski metric components, Ricci
coefficients and null curvature components on S, , are given by (with r = v — u)

o 2
Q=1, ¢g=r’y, tryx==, trxy=—-. (2.13)
r

- r

The family of Schwarzschild spacetimes. For real numbers M > 0, let

r

oM oM\ !
g = — (1 — _> dt* + (1 - —) dr? +r? <d92 +sin? ¢9d¢2> . (214)
.

For M = 0, the metric (2.14) is Minkowski, while for M > 0 it yields a black hole
solution with event horizon at {r = 2M}. The so-called exterior region {r > 2M} can
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be covered by Eddington—Finkelstein double null coordinates (u, v, ol 92) with respect
to which

g¥ = —4Q% dudv + ry (u, v)*y ¢ pd0€d6P,

where Q7 == ,/1 — % and the area radius rys (u, v) is implicitly defined by (see (98)
in [26])

2.15)

o M

v—u  ry(u,v) ry(u, v)
_ +log (MUY )
2M 2M

By explicit computation it follows that in Eddington—Finkelstein coordinates, for real
numbers v > u such that ry;(u, v) > 2 M, the non-vanishing Schwarzschild metric
components, Ricci coefficients and null curvature components on S, , are given by

oM 5 2Qu
QM = 1_ ] g_rMya trX = 5
M ™M
2Q 2M M
try =— —M -5 e==, (2.16)
- m "M "y
oM, M 2M
Dw = TQM’ w = 7 D_=— 3 QM
Ty Ty Ty

Kerr spacetimes. The Kerr metric is given in Boyer—Lindquist coordinates (¢, 7, 61, 6%)
by

1
g=—di’+3 <Zdr2 +d(91)2> + (2 +a®)sin?0'd(6%)?

2Mr
+

(asin’6! a@?)? - dt)z,

where A = r2 —2Mr +a% and £ = r? + a? cos? 6. Define the set 1 (0) of timelike
4-vectors by

1(0) :={(E,P) e R x R®: E> — |P|* > 0} C R, (2.17)

and define asymptotic invariants vectors ) to be elements of the set A € 1(0) x R3 x R3.
We denote the components of A € 1(0) x R3 x R3 by L = (E(A), P(1),L(A), C(V)). In
Appendix F of [21] it is shown that for every A € I(0) x R? x R there is a Kerr space-
time (M”*, g*) with spacelike hypersurface ©* carrying induced initial data (g”, k)
satisfying

(Eapm, Papm, Lapm, Capm) (g”, k*) = (E(1), P(1), L(1), C(1)).
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2.4. Sphere data and null data. In this section we define the notions of sphere data and
null data.

Definition 2.2. (Sphere data). For real numbers v > u, let S, ,, be a 2-sphere equipped
with a round metric )3 as in (2.3). Sphere data x,, ,, on S, , is given by
x=(Q, ¢, Qrx, X, Qry, X, n, 0, Do, 0, Do, a, a),
where
e Q > 0 is a positive scalar function and ¢ is a Riemannian metric,
e Qtry, Qtry, w, DQ, w, Dw, p and ¢ are scalar functions,
e 7, B and f are vectorfields,
o, Z a and a are g-tracefree symmetric 2-tensors.
Remarks on Definition 2.2.
(1) Sphere data is gauge-dependent, see [11,12].
(2) The null structure equations and null Bianchi equations of Sect. 2.2 determine from

sphere data the Ricci coefficients (1, ¢, ¢) and null curvature components (8, p, o, B),
as well as the derivatives - -

(Dn, Dy, D¢, Dy, Dy, DQ) , (D,B, Dp, Do, DB, Dg) ,

(Dn. Dn, D¢, Dy, Dy, Do) , (DB, Do, Dp, DB, Da).

(3) In the following we denote by (8, p, o, B)(x,,,) the null curvature components cal-
culated from x,, ,, by the null structure equations (2.9), (2.10) and (2.11), and interpret
them as part of sphere data.

Notation. We denote the Minkowski reference sphere data on S, ,, coming from (2.13)
by m,_,, and for real numbers M > 0, we denote the Schwarzschild reference sphere
data on S, , coming from (2.16) by m}/ .

In Sect.7 we discuss how to construct a family of sphere data in asymptotically flat
spacelike initial data. Applying this construction to the above Kerr spacelike initial data
(X%, g*, k*), we get a family of Kerr sphere data xﬁRlR (lying on spheres S_g 2 foliat-
ing ©*). By deep inspection of the construction of [21] and applying the ideas of Sect. 7 to
relate the charges (E, P, L, G) to the ADM local integrals (E};’I‘SM, P};’EM, L},SBM, CIXI%M),
it is possible to prove the following proposition. For readability of this paper, the explicit
proof is omitted.

Proposition 2.3 (Convergence of charges to asymptotic invariants) Let R > 1 and
Eo > 0 be two real numbers. Let Eg(Eq) be the set of asymptotic invariants vectors A
such that

(R'2EG) — Eol) + (R 1PG) + (RALGI) + (R21C01) < (B,
(2.18)

Then for R > 1 sufficiently large, for all . € Eg(Eg), form = —1,0, 1, (i_1, ip, i1) =
(2,3, 1), the Kerr sphere data xﬁR’ZR is well-defined and

Ix* g 2 = Ml x(s_gop) SR [E) —Eo| + R™' - [P(V)]|
+ R L[+ R™2-|CW)|

(2.19)
<R2 L]+ B R |C(A>|)2
+ 9

Eo/R
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and
E (x*z2g) =EQ) + O(R™Y), P" (x" g o) =PV + O(R™2),
L™ (x2 g og) =LY + OR™'2), G (xkg op) =C(U™ —3R-POY™ + O(R™H).
Along a null hypersurface, we consider the following null data.

Definition 2.4 (Ingoing and outgoing null data). For three real numbers ug < v; <
v2, outgoing null data x,, [y, v,] 07 Hyy,[vy,0,] 1 given by a family of sphere data

(xuo,v)vqu2 on Hug.wyn] = U Sug.v- Similarly, for three real numbers u; <
- VI <v=vy
up < v, ingoing null data xiy, uy),vy O Hyy, uy).0, 18 iven by a family of sphere data
(x”’v())u1<u<u2 on ﬂ[umn],vo = U SM,U()'
- Up=u=up

In addition to the above sphere data x,, ,, on spheres S, ,, we also consider for integers
m > 1 the higher-order sphere data on S, ,,

(xu,u,Dﬁ,j”,D ) (2.20)
where x,, , denotes sphere data and D'~ and DL are tuples of L- and L-derivatives

of sphere data up to order m; we refer to Section 2.10 in [12] for definitions and dis-

cussion. We denote the Schwarzschild reference higher-order sphere data of order m by
(m%Ua D:f,’én’M ’ Dl%bm’M

Importantly, the gluing of higher-order sphere data implies the higher regularity (in
all directions) of the constructed gluing solution. Similarly, we consider higher-order
outgoing and ingoing null data on Hyg, [v;,vy] and Ky, 51,4, TESpectively. We remark that
higher derivatives are subject to the higher-order null structure equations, see Section

2.10 in [12] for details.

2.5. Definition of charges (E, P, L, G). The following charges play an essential role for
the characteristic gluing problem. In [11,12] they are identified as geometric obstacles
to characteristic gluing.

Definition 2.5 (Charges). For sphere data x,, , and m = —1, 0, 1 define the charges
1 (]
E:=— —ar (r3 (p+r dj/vﬁ)) ,
8

si il (P o+ rdj/v,B)>(1m) ,
T
2.21)
Lot 87 (r (dtry +tx(n—d 1o sz))) o
=1 X +trx(n g :
1 [8x m)
G" = Ten il (r (dtry +trx(n—¢log§2))) ,

where r denotes the area radius calculated from x,, ,, and the spherical harmonics pro-
jections are defined with respect to the unit round metric )3 on Sy.y-
The numerical factors in the definitions of the charges are determined by comparison to

the ADM asymptotic invariants, see Sects. 7.3, 7.4, 7.5 and 7.6. By explicit calculation,
for real numbers M > 0, and v > u, (E, P, L, G)(m ») =(M,0,0,0).
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2.6. Norms on spheres and null hypersurfaces. In this section we define the norms used
in this paper. They are analogous to the norms in [12], but with the difference that they
contain weights in v — u for suitable scaling properties (see Lemma 2.16, and also [11]).
Definition 2.6 (Norms on 2-spheres). Let v > u be two real numbers and let S, , be a

2-sphere equipped with a round metric )3 asin (2.3). Forintegers m > 0 and S, ,-tangent
k-tensors T, define

. . 2
1T Bings, ) = 3 0 —w? 0| pir|

L2(Suy)
0<i<m ( u,v)

where the covariant derivative ¥ and the volume element of the L?-norm are with
respect to the round metric y = (v — u)zjc} on S, . Moreover, let H"(S,.,) = {T :
1Tl Em s,y < oo}

Definition 2.7 (Norms on null hypersurfaces). For real numbers ug < v; < vp, let T’
be an S, ,-tangential tensor on H, [v,,v,]- For integers m > 0 and / > 0, define

T m : v — 1)~ HD’ H dv,
W70 g 1) f Y (v —u) s

0<i<l

where the Lie derivative D is withrespect to the reference Minkowski metric on H, (v, v]-
Let further H;" (Hug,(v1.021) = AT 1T I (34, 10, 1) < -

For real numbers u; < uz < vo, let T be an Sy ,-tangential tensor on H, 1., For
integers m > 0 and [/ > 0, define

T o — )% 1HD TH u,
I8 ) / > o —w s

<l < u, vo)

where the Lie derivative D is with respect to the reference Minkowski metric on 7,
Let further H" (H; (T :|IT]

[ur,u2],v0°

[u1,uz], ) )<OO}

Hm (H[u| uplvg

In the following we define the norms of sphere data and null data using the above norms
on spheres and null hypersurfaces. Their definition includes weights in v — u to make
them invariant under the scaling introduced in Sect.2.8, see Lemma 2.17.

Definition 2.8 (Norm for sphere data). Let x, , be sphere data on the sphere S, ,,. The
norm of x, , is defined by

Ixu,vlls, ) =g, ) + (© — M)72||8(||H6(5u,v) +nll g5 s, )
+ (= wlltrx | gocs, ) + @ = 0 X prscs, )
+ =gl gacs, )+ © =07 1K s,
+ = wllolyss,,) + © = w? Dol yes, ,)
+(v— '4)”9”}14(3”’“) +(v— Hy”@”[ﬂ(su’v) + ||0l||H6(su,v)
+ =W Bll s, )+ © = w3llpllgacs, ) + © = wlloll g, )

+ @ —wlBllu3es,,) + 12lm2s, ),
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where the norms are with respect to (v — u)z)(; on S, y, see Definition 2.6. Moreover, let
X(Suv) == {xuv: ”xu,v”X(SM,U) < oo}

Definition 2.8 reflects the regularity hierarchy of the null structure equations in the L-
direction. For sphere data x,, € X (S,.,), the charges E, P, L and G introduced in
Definition 2.5 are well-defined.

Definition 2.9 (Norms for null data). Let R > 1 be a real number. We have the
following.

e Let ug < vi < vy be three real numbers. Let xg := Xg.4, R-[v;,0,] D€ null data on
Hr = HR-up,R-[v1,v,]- The norm of xz on Hp is defined by

Il =R g5 + 18158 ) + 101 3 200 + RIQEX | o
+ RNT N s + RIQULN 3 e + R™Z 2
+ Rl 5 30 + R2ID0l 534,00 + RI2N 14,
+ RYID@l 234 + 11 115 1) + RUBI 13340 + R2NP N 13 34
+ R2”U”H£‘(HR) + R||é||1-123(7—(R) + ”g”Hf(HR);

see Definition 2.7 for norms over H_g [r 2r). Let X(HR) = {xg : |xrllxHz) <
oo}

e Letu; < uz < vg be three real numbers. Let Xxg 1= XR.[u;,us], R-v, DE NUIl data on
Hg = HR[u,.ur). R-vy- The norm of xg on Hp is defined by

xRl =120 sy + 181 msaee + 1130, + RIQUX 804,
+RZN ) + RIQUA N g3 340 + R IR 13 2
+ Rl o) + R2ID@N o g, + Rl s a1,
+ R Doll g2 ) + 12 15 0y + RIBI 331y + R0 N 133
+ R0 g3 30 + RUBI 3340 + N0l 2200
see Definition 2.7 for norms over Hp. Let X (Hy) := {xg : Ixrll 23z < 00}

In addition to the above norm &’ (H) for ingoing null data, we define the following higher
regularity norm X* (7). This norm is necessary for the characteristic gluing of [11,12].

Definition 2.10 (Norm for higher-regularity ingoing null data). Letu; < up < vg be
three real numbers. Let Xg = XR.[u;,u,], R-vy e NUll data on Hp := Hp 4, up). Rvy- ThE
norm of x is defined by

||xR||X+(ﬂR) :=”Q”ng(ﬂR) + “g”Hng(ﬂR) + ”n”Hgn(ﬂR) + R”Qtrlanlz(ﬂR)
1y~ 1y~
+R ”lanu(ﬂR) + R||Qtry ”wa(ﬂR) + R X ”ng(ﬂR)
2
+ Rll@ll g0 + R2ID0l g1z a0, + R0l oy,
2 2
+ R2D0l s 0, + el g + RIBN 411 0 + B2 100

+ R0 o ) + RIBI 9 ) + 1t 18 2



292 S. Aretakis, S. Czimek, I. Rodnianski

where the norms over H  are defined in Definition 2.7. Moreover, let
XT(Hpg) = {x ¢ xllx+ry) < oo}

Notation. Given sphere data x, , on S, , and real numbers M > 0, we write ||x, , —
oM xs, ,) to denote [|x,» — mb [l xs, ,)- Similarly for outgoing null data Xy, v, ,v,]
on My, [v1,v,] and ingoing null data x(y,u,1,0, ON ﬂ[uo,m],v(y

2.7. Asymptotically flat families of sphere data and ingoing null data. In this section, we
introduce asymptotically flat families of sphere data and ingoing null data, and introduce
the asymptotic charges.

Definition 2.11 (Strongly asymptotically flat sphere data). Let v > u be two fixed real
numbers, and let (xg.,.gv)r>1 be a family of sphere data. We say that (xg., r.y) is a
strongly asymptotically flat family of sphere data if there is a real number M > 0 such
that

IxR w80 = M (s ) = OR™), NIBN R k) 12055 00y = O (R‘3) :
(2.22)
Remarks on Definition 2.11.

(1) In this paper we work with strongly asymptotically families of sphere data (xo r)
(that is, u = 0 and v = 1), in Theorem 3.2 and the proof of Corollary 3.3, and
(x_g.Rr) (thatis, u = —1 and v = 1) in Definition 2.14 below.

(2) By Definition 2.8, the decay (2.22) implies in particular

RIC 225, 0 + RIQ 250, 1) + RIBIL2 5, ) =0 (R2))
R8N 25, 5 =ORTY2).

(3) These decay rates are in agreement with a sequence of spheres going to spacelike
infinity in a strongly asymptotically flat spacetime; see Theorem 7.1 and [19].

(4) Clearly, the above definition can be generalized in a straight-forward way to m™-order
sphere data; we omit the explicit setup of the appropriate higher-regularity norm.

We define the following asymptotic charges.

Definition 2.12 (Asymptotic charges). Let (xg., r.v) be a strongly asymptotically flat
family of sphere data. Let

Eoo = lim E(xR.u,R.v), Poo = lim P(XR-u,R-v)y
R—o0 R—o00

Leo := lim L(xgu,rv): Goo = lim G(xg.u,R-v),
R— 00 R—o0

where the charges (E, P, L, G) are defined in Definition 2.5.

The asymptotic charges satisfy the following basic properties. We omit their proofs.
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Lemma 2.13 (Properties of asymptotic charges). Let (xg.,, r.v) be a strongly asymptot-
ically flat family of sphere data. Then its asymptotic charges are well-defined,

[Eco| + [Poo| + [Loo| + [Gool < 00,

and it holds that Eooc = M and Ps, = 0, where M is the real number appearing in
(2.22), and

E (xR-u,R~v) ZEOO + O(R_l/2), P (XRM,R-U) IO(R_UZ),

L (.XR~u,R~v) =Ly +O(1), G (xR‘u,R‘v) =Goo + O(1).

The above notion of asymptotic flatness is generalized to ingoing null data as follows.

Definition 2.14 (Strongly asymptotically flat ingoing null data). Let§ > 0be areal num-
ber. Let (x_g+r.[—5,5],R) R>1 be afamily of ingoing null data. We say that (x_ g4+ g.[—s,5],R)
is strongly asymptotically flat if there is a real number M > 0 such that, as R — oo,

oM _ ~3/2
lXx—R+r[-5,5,R — M ||X+(ﬂ7R+R‘[7515]’R) =0 (R ) ,

| 5 (2.23)

1Bk )l 25 = O (RT?).
where the sphere data x_g g := x|s_g . Define the asymptotic charges (Eco, Poo, Lo,
Goo) of the family of ingoing null data (x_g4+r.[—s,5],8) by applying Definition 2.12 to
the family (x_g g).

In this paper, strongly asymptotically flat families of ingoing null data (x_g4+gr.[—5,5].R)
are used in Theorem 3.1 and Theorem 7.1. Moreover, for strongly asymptotically flat
families of ingoing null data (x_g+r.[~5,51,R), the sphere data (x_g g) := (x|s_gz)
forms a strongly asymptotically flat family of sphere data.

2.8. Scaling of Einstein equations. In this section we introduce the scaling used in this
paper and subsequently discuss how geometric quantities change under scaling. Consider
local double null coordinates (u, v, ol 92) in a spacetime (M, g),

g = —4Q%dudv + g (d@A + bAdv) (deB + deu) .

The scaling is defined in two steps.

(1) For a real number R > 1, define the local coordinates (R - i, R - f),ﬂ 1 9~2)
(u,v,0',0%). Clearly it holds that du = Rdii, dv = Rdv, d0' = df', do?* =
d92, and thus

g = — 4R Q2didi + ¢,p (déA +R- bAdﬁ) (déB +R- deﬁ)
—R? (—4 - Q2diidi + R 2 4 (déA +R- bAdf)> (déB +R- b3d5>) .

(2) It is well-known that given a Lorentzian metric g is a solution to the Einstein equa-
tions, the conformal metric (®'g := R~2g is also a solution.
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Expressing ®)g in coordinates (if, 7, ', 62), we get the spacetime metric

By — _4BQqia5+ Ry, (déA + (R)bAdf)) (déB + (R)def)>
with ®Q (i, 7) := Q(Ri, R), ® g, v) := R 2¢(Rii, RD), ®b(i, v) :== Rb(Ri,

RYv).

Notation. Denote in the following the scaling W (i, v, él, 9“2) =(R-u,R-v, él, 52).
The following lemma shows how the Ricci coefficients and null curvature components
change under scaling; the proof is by explicit computation and omitted.

Lemma 2.15 (Scaling of Ricci coefficients and null curvature components). Under the
above scaling, the Ricci coefficients and null curvature components transform as follows,

R yan =R (xapoWr), ®ta=caoWg, ®ns=na0Wg, Pow=RwoWwp),
s =B (2o ¥r). Py =2, 00p. ®ny =0, 0wp. P =R (wowr).
Rasp =arpoWr, Pps=R(BaoWr), Bp=R(poWp),

®o = R (0 o Wa), B, =R (B, 0Wr). sy =aypo0 .

trw g ® x = R(try o W), P xan = R (Xan 0 Wr). P (Dw) = R* (Dw) o Wp) ,

tr(’”x(R)l =R (trlo \IIR) ’ (R)ZAB =R (ZAB © lIJR) Do = R* ((Dw) 0 Wg) ,

where the tracefree parts of (® y, (&) X and x, x are calculated with respect to (B ¢ and
g4, respectively. Furthermore, the area radius r scales as ®r = R~ (r o Wg).

Notation. For real numbers R > 1 and sphere data x g, g, On Sgy, gy, denote the rescaled
sphere data on S, , following Lemma 2.15 by (R)xu,u.
By the invariance of the Einstein equations under the above scaling, it follows that the
null structure equations and the null Bianchi equations of Sect.2.2 are scale-invariant
under the scaling of Lemma 2.15. Importantly, we have the following scale-invariance
of Schwarzschild and Kerr. It is straight-forward to show that for real numbers M > 0,
R > 1 and v > u, for Schwarzschild,

(R) iy M M/R (2.24)

u,v = mu,v ’
and for A € 1(0) x R3 x R3, for Kerr,

Rk =2k, (2.25)
for ®x = (RT'E(V), R~'"P(L), R72L(%), R"2C(})).

The following three lemmas consider the scaling of tensor norms, data norms and
charges. Their proofs are omitted.

Lemma 2.16 (Scaling of tensor norms). Let p € R and R > 1 be two real numbers,
and let m > 0 and | > 0 be two integers. Let F be a tensor on S, for real numbers
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v > u, and define the tensor ® F by B F .= RP . (F o Wg). Then it holds for integers
i, > 0 that

I F Il i 5,00 =R IF N b (S o)

(R) . —RP. .
I F”H/’ (Huov[vl.uzl) =R ”F”H; (H"uov[R'Ul-R"’Z])’

(R) — .
l FIIH],-@[ )_RI’ HF”Hf(ﬂze-[ul.m.k.uo)'

uy,ul,vg

Lemma 2.17 (Scale-invariance of data norms). Let R > 1 be a real number. Then it
holds that for sphere data x,, ,, on Sy v,

R
1% g1 R 1S, o1y = 1wl s,

for outgoing null data x, (v, v,] 0N Hug,[v1,02]>

”(R)

XR=1ug, R [vy 0o ] | X (H 0. fw1. 021 L2 (Hug oy 01

uO,R_I[ul,vzj) -

and for ingoing null data Xpu, uy1,vo 00 iy, 1s).000

(R
I >xR71[u1,u2],R71v0IIX@,FI[

s i=Tog) =lxtur a0l @y, )00

(R) —

I xR*l[”l»MZ]»Rflvo”XJr(ﬂR*l[m.uzJ.R*lvo)_“x[“l’uﬂ’vo”XJr(E[ub“szo)’
where the norms X (Sy.v), X (Hug. (v, X Hiy, n10p) @A X¥(Hypy, 1).0,) @re de-

fined in Definitions 2.8, 2.9 and 2.10, respectively.

Lemma 2.18 (Scaling of charges). Let x, ., be sphere data and let R > 1 be a real

number. Let (R)folunglv denote the rescaling of x,,, according to Definition 2.15.
Then it holds that

E(®xptgp) =R B, P(Pxgo o) =R P,

(2.26)
L ((R)folu,Rflv) =R7*. L), G ((R)folu,R*1v> =R7*. G(xy,).

From Lemmas 2.13,2.17 and 2.18, (2.24) and Definitions 2.5, 2.11 and 2.12 we directly
get the following lemma.

Lemma 2.19 (Rescaling of strongly asymptotically flat families). For two fixed real
numbers v > u, let (Xg., r.v) be strongly asymptotically flat family of sphere data with
asymptotic charge Ex as defined in Definition 2.12. Then it holds that

Eoo/R _ _
1P 50 = wis s, = 0 (R2) 1B Px)ll s, ) = 0 (R2).

Moreover, for a fixed real number § > 0, let (x_ p+r.[—s,5],R) be a strongly asymptotically
flat family of ingoing null data with asymptotic charge Eoo as defined in Definition 2.14.
Then it holds that

R Eoo/R -3/2 11/(R
1B aiss1 = w5 ey ) = © (R™2) B P x1 Dllags.,

=0 (r?).
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2.9. Codimension-10 characteristic gluing results of [12]. In this section we state the
precise codimension-10 null gluing result of [12]. First, we have the following pertur-
bative null gluing result.

Theorem 2.20 (Codimension-10 perturbative null gluing of [12]) Let § > 0 be a real
number. Let x,1 be sphere data on So,1, and consider sphere data xo,» on So 2 contained

in ingoing null data X on ﬂk 5.61.2 solving the null structure equations. Assume that for
some ¢ > 0 it holds that

o, = mM sy, + 1% = mM e gy 2.27)

<e&.
—5.82) —

There are universal reals My > 0 and o > 0 such that for all reals 0 < M < My and
0 < & < gg sufficiently small, there exist

e a solution x to the null structure equations on on Ho [1,2),

e sphere data xo 2 on the sphere So» C H_s 51, stemming from a perturbation of

5‘0,2, that is, there exist perturbation functions f and q (see [12] for the precise setup)
such that

x0,2 = Pr,q(X),
such that on So,1 the following matching of sphere data holds,
X|so., = 0,1, (2.28)
and on Sp 2, matching up to the charges (E, P, L, G) holds, that is, if
(E,P,L,G) (x|s,,) = (E,P,L,G) (x0,2), (2.29)
then
X|$p0 = X0,2- (2.30)

Moreover, the following estimates hold,

e = Mg ) + 1%0,2 = Zg 2l (5p0) 6 (2.31)
£y, +lqlly, Se.

where we denoted X, 5 := X|s, ,. In addition, the following perturbation estimate holds,

|(E.P,L,G) (x02) — (E.P,L,G) (¥,,)| < eM +&>, (2.32)
as well as the transport estimate
|(E,P,L,G) (x]s,,) — E,P,L,G) (x|s,,)| S eM + . (2.33)
Second, we have the following bifurcate null gluing result.

Theorem 2.21 (Codimension- 10 bifurcate null gluing of [12]) Let m > 0 be an integer.
Consider given smooth higher-order sphere data

L L
(x0.1. D" Dy™) on So.1 and (x_1.2, D*{"y, DH"3) on S_1 5.

L L, . .
For (xo.1, Dé ’lm, Dof’lnf) and (x_1 2, Df’{g, D:lfnz) sufficiently close to the their respec-
tive reference values in a Schwarzschild spacetime of sufficiently small mass M > 0,
there exist
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e a smooth solution (x, DX, DE™) to the higher-order null constraint equations
on H_; oy.1, satisfying the following higher-order sphere data matching on So,1,

(x,D

L.m L,m
5 =(x0,15 D()g] alD(),l ),
0,1

e a smooth solution (x, DLm DLMY 16 the higher-order null structure equations on
H_1,1,2), agreeing with (x, D) on S_1 1,

(LQL"”,QL”")‘ =(x,DL’m,DL’m)‘

S_11 S_11

suchthat (x, DEM DLMy matches (x=1.2, Df’]”"z, D%{HZ) up tothe charges (E, P, L, G)
on the sphere S_1 3, that is, if it holds that

(E,P,L,G) (x|s_,,) = (E,P,L,G) (x_1,),

then automatically
L,
(6, DEM DEM)| | =(xo12, DH D).
—-1,2

Moreover, we have charge estimates analogous to (2.33) in Theorem 2.20 for

|(E.P,L,G)(x|s_,,) — (E,P,L,G —2P) (x0,1)| -

3. Statement of Main Results

The following is the precise version of the main theorem of this paper.

Theorem 3.1 (Perturbative characteristic gluing to Kerr, version 2) Let § > 0 be a
real number; and let (X_g4Rr.[—s,5],R) along ﬂfRJrR,lﬂ;’s]’R be a strongly asymptotically
flat family of ingoing null data with asymptotic charges (Eco, Poo = 0, Loo, Go) €
1(0) x R3 x R3. For sufficiently large R > 1, there exist

o spheredatax’_  p onaperturbation S’ p  ofthe sphere S_g.galongH_ R+R-[=5.8].R>
o outgoing null data x on a null hypersurface H_ R.[R.2R] solvmg the null structure
equations,

Kerr

e sphere data x“3', p on a spacelike 2-sphere SKerr

% 2r in a Kerr spacetime,
such that we have full matching of sphere dataon S_g p C H_g [r2r)andon S_gor C
H_R,[R2R):

X—-R,R = x/—R,R’ X—-R2R = XE%ITzRy (3.1

and the following estimates hold,
It = e s+ 15,k = Ml =0 (R2)). (3.2)

Moreover, the sphere Sf%”z g in Kerr lies in a spacelike hypersurface sk whose
asymptotic invariants are bounded by

Eapm =Eoo + O(R™1/?),  Papy =0(R™/?),

3.3)
Lapm =Leo + O(1), CapMm =Goo + 3R - Papm + O(1).
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Moreover, if the strongly asymptotically flat family of ingoing null data (X_g4+Rr.[—s,5],R)
satisfies the stronger decay rates

E(F_gr) =Ex + O(R™), P(i_gr) = OR™?), (3.4)
then the asymptotic invariants of the spacelike hypersurface X are bounded by

Eapm = Eoo + O(R™Y), Papm = O(R7/?),

3.5)
Lapm = Loo + 0(1), Capm = G + O(1),

so, in particular, Capm is not growing in R.
Remarks on Theorem 3.1.

(1) The key ingredients of the proof are the perturbative characteristic gluing of [11,12]
(used as black box) and the geometric interpretation of the asymptotic charges
(Eco, Poo, Lo, Go) in terms of the ADM asymptotic invariants energy, linear mo-
mentum, angular momentum, and center-of-mass in Sect.7.

(2) The additional convergence condition (3.4) is satisfied by sphere data constructed
from strongly asymptotically flat spacelike initial data, see Sect.7.

(3) The smallness on the right-hand side of (3.2) is consistent with our definition of
strong asymptotic flatness, see Definition 2.14.

(4) Theorem 3.1 is at the level of C2-gluing for the metric components. It can be gen-
eralized to include higher-order derivatives fangential to the gluing hypersurface
H_R.[r.2R]; see Theorem 3.2 in [12] for the corresponding setup. For the gluing of
higher-order derivatives in all directions, we refer to Theorem 3.2 below.

(5) More precisely, in Theorem 3.1 we glue to a Kerr reference sphere S* r.2g forsome

asymptotic invariants vector A € 1(0) x R3 x R3.

(6) In Theorem 3.1 it is not necessary to have a family of ingoing null data data. Indeed,
one can replace this family with one fixed ingoing null datum with sufficiently strong
bounds.

(7) The sphere S 5332 g in Kerr admits a future-complete outgoing null congruence and
past-complete ingoing null congruence. The explicit proof of this property, based
on a classical perturbation argument, is omitted here.

(8) The condition (Ex, P = 0) € 1(0) (see definition in (2.17)) implies in particular
that Eoc > 0.

The argument for the matching to Kerr in Theorem 3.1 applies similarly to the bifurcate
characteristic gluing of [11,12] (i.e. Theorem 2.21), see Remark 4.2. The corresponding
theorem is the following.

Theorem 3.2 (Bifurcate characteristic gluing to Kerr) Let m > 1 be an integer. Let
L, L.m
(XO,Rf Do,zgl’ Do’k )

be a strongly asymptotically flat family of smooth higher-order sphere data with asymp-
totic charges

(Eoos Poo = 0, Lo, Gso) € 1(0) x R x R3.

For sufficiently large R > 1, there exist
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e smooth higher-order ingoing null data (x, D™, DL™) on H_g o). g and outgoing
higher-order null data (x, pL.m pLmyop ‘H_R,[R2R)] Solving the higher-order null
structure equations and matching to order m on S_g R,

. L,m,K

e smooth higher-order sphere data (xE%rrz R> Df’]:,"’zlfem, Djkmé Rerr) onasmooth space-

like 2-sphere SE‘}{’TZ g in a Kerr spacetime,

such that
L, L, L.m L.m
(x,D m,'D*m)|50YR Z(XO‘Rnyo’R’D(),R>v

L,m L,m _ ( JKerr L,m,Kerr L,m,Kerr
(x, D=".D ) |57R_2R = (x—R,ZR’ DZpaor »Plror )-
The sphere Sf%rz g in Kerr lies in a spacelike hypersurface with asymptotic invariants

Eapm =Eoo + O(R™Y%),  Papm =0(R™'/?),
Lapm =L + O(1), Capm =G +3R -P(L) + O(1).

amd admits a future-complete outgoing null congruence and past-complete ingoing null
congruence. Moreover, if the strongly asymptotically flat family of sphere data (xo r)
satisfies the stronger decay condition

E(x0.8) = Eos + O(R™"), P(xo,r) = O(R™?),
then the asymptotic invariants of the spacelike hypersurface £ are bounded by

Eapm = Ec + O(R™Y), Papm = O(RT3/?),
Lapm = Loo + O(1), Capm = Goo + O(1).

Remarks on Theorem 3.2.

(1) The strong asymptotic flatness of the family xo g is consistent with decay towards
spacelike infinity. In particular, the spheres Sp g should be interpreted as spheres on
a spacelike hypersurface with radius of size R.

(2) Theorem 3.2 is at the level of C"*+2-gluing for the metric components, for integers
m > 0; see Section 2.10 in [12] for the precise definition of higher-order sphere
data.

As corollary of Theorem 3.2, we give in Sect.5 an alternative proof of the Corvino—
Schoen [22,23] gluing to Kerr for strongly asymptotically flat spacelike initial data.
We refer to Sect. 6 below for the definition of spacelike initial data, strong asymptotic
flatness and asymptotic invariants Eapm, Papm, Lapm and Capwm.

Corollary 3.3 (Spacelike gluing to Kerr, version 2). Let m > 0 be an integer. Consider
smooth strongly asymptotically flat spacelike initial data (X, g, k) with asymptotic in-
variants

(Eapm, Papm = 0, Lapm, Capm) € 1(0) x R® x R3.

For real numbers R > 1 sufficiently large, there exists a Kerr spacetime (MXe™ germ)

and a spacelike hypersurface L with asymptotic invariants (EE%{VI, PEeDrfW LEeDrlr\,l,

CE%%) such that the spacelike initial data (g, k) of ¥ can be glued in C™ -regularity
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across a spacelike annulus A[g 3R] to the induced spacelike initial data (gKe‘T, kKerr) of
SKe The Kerr asymptotic invariants can bounded by

EX = Eapm + O(R™Y), PRET = O(RT/?),

LK = Lapm + 0(1), CKS = Capm + 0(1).

More precisely, in Corollary 3.3 we glue to Kerr spacelike initial data (¢”, k*) for some
asymptotic invariants vector . € I1(0) x R3 x R>.

The spacelike gluing of Corollary 3.3 should also be available in the smooth category.
Indeed, Theorem 2.21 (and hence Theorem 3.2) should extend to smooth codimension-
10 bifurcate null gluing of smooth co™-order sphere data. We will, however, not be
providing details here.

4. Proof of Perturbative Characteristic Gluing to Kerr

In this section we prove Theorem 3.1. Let § > 0 be areal number and let (X_ g+g.[—5.5],R)
be a strongly asymptotically flat family of ingoing null data with asymptotic charges

(EOOa Poo = 07 Lo<>7 Goo)

with Eoc > 0. We proceed as follows.

(1) In Sect.4.1 we rescale the strongly asymptotically flat ingoing null data
(X—R+R[—5,8],R) to ingoing null data ((R))Z_H[_(g,a],l). For R > 1 sufficiently large,
this rescaled ingoing null data is close to Schwarzschild of mass E /R, see Sect. 4.1
below.

(2) In Sect.4.2 we apply the perturbative characteristic gluing of [11,12] to glue — up to
the 10-dimensional space of charges (E, P, L, G) — from the rescaled ingoing null
data (®%_14(_s.51.1) to sphere data corresponding to a sphere in a Kerr spacetime
to be determined.

(3) In Sect.4.3 we use a classical topological degree argument to prove that there exists
a sphere in a Kerr spacetime such that, following Step (2) above, also the charges
(E,P,L, G) are glued.

(4) In Sect.4.4 we conclude the proof of Theorem 3.1 by writing out the explicit esti-
mates and scaling the gluing construction from H_1 [1 2] to H_g [r.2R]-

4.1. Rescaling to small sphere data. Using the scaling of the Einstein equations, see
Definition 2.15, for R > 1 large we rescale (¥_g+g.[—5,5],r) tO ingoing null data
(®F_141—s.5.1). By Lemma 2.19 and (2.24), it holds that

” (R))z—l+[—8,b‘],l _ mEoo/R ||X+(ﬂ71+[75,5]91) = O(R_3/2). (41)
4.2. Application of perturbative characteristic gluing of [11,12]. In this section we

apply the perturbative characteristic gluing of [11,12] (i.e. Theorem 2.20) to glue from
the rescaled ingoing null data ((R))E_H[_a,,g], 1) to sphere data of a Kerr spacetime.
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Consider asymptotic invariants vectors A € Eg(Eo), see (2.18). Then by Proposition
2.3 we have that

1Rx2 5 —mP/ Ry ) SRV EQ) — Egol + R [P
+R72- L)+ R |C)|

R Lol + BOL g2 jco)l)” @2)
’ Eoo/R

_o(r).

Hence, by (4.1) and (4.2), for R > 1 sufficiently large we can apply the perturbative
characteristic gluing of [11,12], i.e. Theorem 2.20, with M = Eo,/R and ¢ = O(R_3/2)
to glue from the rescaled ingoing null data ®%_1,(_s 51 to ®x*  , for an asymptotic
invariants vector A € Eg(Es) to be determined. That is, there are

° ~sphere data (R)x_l,l on a sphere S_; | stemming from a perturbation of S_ 1,1 1n

ﬂ—1+[—§,5],1’ )
e asolution x € X'(H_1,[1,2]) to the null structure equations on H_1 (1,2,

such that x|g_, | = = ®x_1and x|s_ |, agrees with (R) x 1., up to the 10-dimensional
space of charges (E P, L, G), that is, if we have that

(E,P.L,G) (x|s_,,) = (E,P,L,G) (“%&1,2) , (4.3)

then the constructed solution x satisfies x|s_, = ®x*

By M =Ey/Rand ¢ = O(R_3/ 2) with the estimate’s proved in [12], see Theorem
2.20, the following general charge perturbation estimate holds,

(E,P,L,G) (x|s ,,) — (E,P,L,G) (<R>x 11) 0) (E%R_3/2> +OR™3)

= O(R1).
(4.4)

4.3. Choice of Kerr spacetime. In this section we use a classical topological degree
argument to determine an asymptotic invariants vector A’ € Eg(Eso) such that (4.3)
holds. The idea to determine the A’ by a degree argument is similar to [23].

First, for asymptotic invariants vectors A € Eg(Ex), we define the error map fr (1)
by

frG) = (RE.RP, R*L, R*G) (xls.,,) — (RE. RP, L, R*G) (Fx* ;).
4.5)

In the following we show that for R > 1 sufficiently large, there is a A" € Eg(Ex) such
that

frRO) =0. (4.6)
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By definition of f in (4.5), the condition (4.6) is equivalent to charge matching at S_; »,
see (4.3), which subsequently implies the full matching.

To prove the existence of A’ satisfying (4.6), we estimate fg(A) and apply a topological
degree argument. First, we estimate fr(A) by using the following estimates for the
charges (E, P, L, G).

e From (4.4) we have
(E.P.L.G) (xls ,,) - (B.P.L.G) (F511) =0R™).  @7)

e By Lemma 2.13, the strongly asymptotically flat family of sphere data (X_g r)
satisfies (with P, = 0)
(E.P.L,G) (F-,8) = (Eoo, Poo, Liw, Goo) + (O(R™/2), 0(R™/2), 0(1), 0(1))
(4.8)

e By Proposition 2.3, for R > 1 large, the Kerr reference sphere data x* 2R satisfies
for A € Er(Exo),

E (x* g 22) =EQ) + OR™Y, P (x'p,x) =P+ OR™),
L (x2 g p) =LY+ O(R™'?), G (xlg z) =C(h) = 3R - P(G) + O(R™/H).
4.9)

Applying (4.7), (4.8) and (4.9) to (4.5), we can estimate fg (1) as follows,
fr(O) = (R E,RP, R°L, R? G) (“%z_l,l) - (R E,RP, R’L, R? G) (“%&m)

+ (O(R’3/2), OR™3?), O(R™1?), O(R*1/2)>

=(E.P,L,G) (f_g.g) — (E,P,L,G) (x} 4 1z)
+ (O(R’3/2), OR™3?), O(R™1?), O(R*1/2)>

— (Eo, Poo, Lo, Goo) — (E(1), P(), L(1), C(W) — 3R - P(L)
+ (ORI, 0(R™'2), 0(1), 0(1)).

(4.10)

where we underline that the error terms also depend on A € Eg(Eqo)-
Second, we have the following classical topological degree argument; see Chapter 1
of [41].

Lemma 4.1 (Topological degree argument). Let B C R'C be the open unit ball. Let f;
and_f1 be two continuous maps on B into R'C and assume that fo is a homeomorphism
on B with fo(ho) = 0 forarp € B. For 0 <t < 1, let f(X,t) be a homotopy on
B such that f,0) = fo(d) and f(A, 1) = fi(A). If forall 0 <t < 1 it holds that
0 ¢ f(0B,1), then there exists \' € B such that fi(\") = 0.

Remark 4.2. The proof of (4.6) below uses only the charge estimate (4.7). Given that the
bifurcate characteristic gluing (see Theorem 2.21) provides analogous charge estimates,
the proof applies also to the matching to Kerr in Theorem 3.2.
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We are now in position to prove the existence of A" such that (4.6) is satisfied. Based on
(4.10), define for 0 < ¢ < 1 the homotopy fr(A, ) on Eg(Es) by

Jr(A, 1) == (Eco, Poo, Lo, Goo) — (E(V), P(1), L(2), C(A) — 3R - P(2))

+7- (O(R_l/z)’ O(R_l/z), O(l), O(l)) ’ (411)

such that

TR, 0) = (Eco, Poo, Lo, Goo) — (E(R), P(1), L(2), C(2) — 3R - P(})) ,

(4.12)
RO D) =fr(V).

We make the following three observations.

(1) From (4.12) it follows that fz(A, 0) is a homeomorphism on Eg (Exo).

(2) For R > 1 large, we have that Ag := (Ex, 0, Loo, Go) € Er(Eoo) and satisfies, by
the definition of fg(A, 0) in (4.12), fr(Xo,0) = 0.

(3) For R > 1 sufficiently large and all 0 < ¢ < 1, it holds that

0¢ frROOER (Exo) , 1). (4.13)

Indeed, assume by contradiction that there are X € dE ® (Eso) and 0 < f < 1 such
that

fr(h, 1) = 0. (4.14)
Then by definition of fg(A, ) in (4.11),

R!/2 (E(I\) - Eoo) —7.001), RV PG)=7-0(),

R4 (L(X) — LOO> —7.o(R™/4,

and
R—l/2 B R—1/2 B
(C(A) — Goo) - (—3R PO)+7- (9(1))
R o )
— (—3R.z-o(R )+z-o(1))=z-0(1).

The above estimates imply that for R > 1 sufficiently large,
172135 2 121p5 1) 14 ) 12100501\
(R'ZIEG) — Bwcl) + (RPN + (RTVLAN) + (R7121CA1)
ST-0() < (Bx)?,

which implies that % ¢ &R (Eoo) (see the definition of Eg(Eso) in (2.18)). This is
a contradiction and hence finishes the proof of (4.13).
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By the above observations and the fact that the set £z (Eoo) C R is topologically a
ball, we can apply Lemma 4.1 to the homotopy fr(A,t) for R > 1 sufficiently large,
and conclude the existence of a vector ' € Eg (Eoo) such that

frO, 1) =0. (4.15)
This finishes the proof of (4.6). Moreover, we deduce from (4.11) that
E()) =Ex +0(R™'?), PO))=0R™'/?),

(4.16)
L)) =Ly + 0(1), C(\) =Goo +3R -P(V) + 0(1).
It remains to show that in case of the stronger decay assumption (3.4),
E(x-gRr) =Ex+ OR™), Px_gr) = OR?), (4.17)
we have the improved estimate (3.5) for A/,
E(V) =Ex + O(R™Y), P(V) = O(RT?),
1) =Ex+OR™), P(1) ( ) 4.18)

L()) = Loo + 0(1), C(X') = Goo + 0(1).

Indeed, applying (4.17) in the above derivation of (4.10), we get that the error map fr (1)
satisfies the improved bound

JrR(A) = (Exo, Po, Loo, Goo) — (E(1), P(1), L(A), C(X) — 3R -P(1))
+ (O(R—l), O™, 0(1). 0(1)) .

This shows that A" which satisfies by construction fg ()J) = 0, see (4.6), satisfies the
improved bound (4.18).

4.4. Conclusion of proof. In this section we conclude the proof of Theorem 3.1. By
(4.16) with the first of (4.2) (see also Proposition 2.3), we have the estimate

[Bxt) ) —mFe/ R ps ) SRTVEQ) — Eool + R7' - [PQV)[ + R72 LG
+R72-|CO)|

R LG+ B R72 1 1C0))|
Eo/R

—o(k ),

which, together with (4.1), implies that the constructed solution x on H_1 |1 2; is bounded
by

lx = mE/ Rl ey 0 + Hxls,l,l - Pz 1, H =0(R™/?). (4.19)
X(S-1,0)
Applying the scaling of Sect.2.8 with scale factor R™!, we get by (2.24), (4.19) and
Lemma 2.17 that

1R Dy )

—1 - _
— 5 v (3 par) F I X = TR Rl x(s_p ) =ORT?)

This finishes the proof of Theorem 3.1.
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5. Proof of Spacelike Gluing to Kerr

In this section we prove Corollary 3.3, the gluing of spacelike initial data to Kerr.
Let (X, g, k) be given smooth strongly asymptotically flat spacelike initial data with
asymptotic invariants

(Eapm. Papm. Lapm. Capm) € 1(0) x R? x R?,
where by the strong asymptotic flatness, Papm = 0. We proceed in four steps.

(1) We apply the material of Sects.7.1 and 7.2 where it is shown how to construct and
estimate families of higher-order sphere data from given spacelike initial data. We
work in the rescaled picture, that is, we construct smooth higher-order sphere data
on a sphere Sp,1 C X in the rescaled spacelike initial data.

(2) We use the bifurcate characteristic gluing of Theorem 3.2 to glue the constructed

higher-order sphere data on Sp 1 to a sphere Sfl) ’Az in a Kerr spacetime.
(3) We construct a local spacetime (M, g) by applying local existence results for the

spacelike and characteristic initial value problem for the Einstein equations, and pick
. . (R) .
a spacelike hypersurface connecting Sp 1 and S_IAZ. We conclude the construction

by rescaling.

Notation. For ease of presentation, we work in the following with smooth spacelike
initial data and smooth higher-order sphere data (x, DL-m DLMy for a fixed integer
m > 1.

(1) Rescaling and construction of sphere data. In this section we follow the construc-
tion of Sects. 7.1 and 7.2: We start by rescaling the given spacelike initial data by scaling
factor R to (Mg, k) and constructing on the sphere So.1 := S, r0.1) C E the
higher-order sphere data (see (2.20) and also Remark 7.2)

L,
(®xo1, ®DG", BDE"). 5.1)

In Sects. 7.1 and 7.2 it is shown that by the strong asymptotic flatness and the scaling of
spacelike initial data (see Sect. 6.4), the constructed higher-order sphere data (5.1) is —
with respect to an appropriate higher-regularity norm— O (R ~3/?)-close to Schwarzschild
reference higher-order sphere data of order m of mass Expm/R; we denote this by

L L, E R L.m,E R L.mE R —
((R)xo,l,(R)Do,’f",(R)Dal’") _ (mOjDM/ , DLmEsom/R p LimExvu/ ): O(R™2).

(5.2)

Moreover, in Theorem 7.1 it is proved that the charges (E, P, L, G)((R)xo,l) can be
estimated by

(R -E <(R)x0,1) ,R-P <(R)X()’1) s R2 -L <(R)x0’1) s R2 -G <(R)x0’1)>

(5.3)

= (EapMm; Papm, Lapm, Capm) + (O(R_l), O(R™%), 0(1), (9(1)> :
(2) Application of bifurcate characteristic gluing to Kerr. By (5.2) and (5.3), we can
apply Theorem 3.2 (to be precise, the rescaled version thereof) to the higher-order sphere
data (5.1) to get
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S_1,1 So1

Fig. 5. The spacetime (M, g) is denoted as shaded region, and the spacelike hypersurface ¥ is indicated
by the bold blue line

e smooth higher-order outgoing null data ((®'x, ®pLm (RIpLmyon 1y 15 and
smooth higher-order ingoing null data (®x, ®pLm (RDLmyon 1, | | satis-
fying the higher-order null structure equations and matching on S_j i,

e a Kerr reference sphere s 1Kerr in a Kerr spacetime (M Kerr, g(R)Kerr ) with Kerr
reference higher-order sphere data

(R)Kerr L,m,(R)Kerr L,m,(R)KeFT
()Ll,z ’D—l,z D )-

such that we have matching up to order m on S_ 1, So,1 and S_1 2,

((R)x, (R)DL,m’ (R)’DL,MHS_H =((R’)x7 (R)'DLM (R)DL’mNS -
L,
((R)x’ (R)'DLJ"’ (R)DLJ"NSO] =((R)xo 1 (R)D m’ (R)DO ),
(R) L,m, BK L,m, BK
((R) (R)pL.m (R)DL e L= Kerr DL m err ,D:lr’r; err)'

In particular, it holds that

(1) the null data ((Rx, ®OpLm (RIDLmyonH_y 1o and (B x, ®IDLm (RpL.m)
on H;_ op.; are O(R~3/?)-close to Schwarzschild reference higher-order null data

of mass M / R respectively, and

(2) the sphere s Ke“ lies in a Kerr reference spacelike hypersurface ®Kerr = pf @ Kerr

with asymptot1c invariants (see Sects.2.3 and 6.4)

Exss™ =R~ Eapm + O(R™2),  Pupse™ =O(R™/?),

(R Kerr -2 -2 (R)Kerr -2 -2 4

(3) Construction of spacelike hypersurface. The constructed solutions to the higher-
order null structure equations,

(Bx, ®plm RIDL™My onH_y 15y and (Bx, RDEM BDLMy on 1 0,

form characteristic initial data for the Einstein vacuum equations which is O(R —3/2y.
close to Schwarzschild of mass E,/R. By the work of Luk and Luk—Rodnianski on
the characteristic initial value problem for the Einstein equations [37,38], for R >
1 sufficiently large, the associated maximal globally hyperbolic spacetime (M’, g’)
contains slabs of universal width along the null hypersurface H;_, o, ; and H_1,[1,2);
see also Remark 5.1 below.

Applying local existence for the spacelike Cauchy problem defined on ¥ (the resulting
region is shaded red in Fig. 5), and, subsequently, for the characteristic Cauchy problems
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(the resulting regions are shaded green in Fig. 5) defined on 9*D(X) and 07 M', 0~ D(X)

and H, 0* M’ and 3+ M Kerr , and H and 9= M VKerr , we construct the spacetime
(M”, g"), see Fig.5. Here 3" and 8~ denote the future and past boundaries, and D(X)
the domain of dependence of X.
In (M”, g"”) we define a spacelike hypersurface ¥ (see Fig.5) such that (i) X" agrees
with £ in (M, g) (i) X" is spacelike and contained in the slabs in (M’, g’), (iii)
" agrees with » WKerr i (A VKerr g(R)Kerr) By construction, the induced spacelike
initial data on " agrees with (R g, ® k) on ¥, and with Kerr reference spacelike
initial data (g )Ke", " )Ke”) x PKerr particular, it is a solution to the spacelike
gluing problem from the rescaled spacelike initial data ((®) g, ®k) to the Kerr reference
spacelike initial data (g Kerr, kKerr),

Scaling the above spacelike initial data by factor R~!, and using the scale-invariance
of the Kerr reference spacelike initial data (see also (2.25)), we conclude the spacelike
gluing to Kerr at the level of order m sphere data.

Remark 5.1 (On the well-posedness of the characteristic Cauchy problem for the con-
structed initial data and the regularity of the resulting spacetime). First we recall the
norm X (H) in which our constructed gluing solution lies (see Definition 2.9, where also
the analogous X' (H) is defined),

¥l ke =190 g0y + 180 mscrey + Il + 12X sy + 1R s
+ ”QU’&”HE‘(H) + ”Z”Hf(?'() + ”w||H26(H) + ”DWHHIG(H) 5.5)
el sy + 100l 254y + 1l s vy + 181 g3 p0y + 101 s
10 sy + 181 w3 + 1l 220y
where we recall that H;" (H) bounds m W¥-derivatives and / d,-derivatives in LZ(H), that
is, for a tensor T

1

2
T\ = ”DlTH av
I ||H/ (H) / Z H™(S0.4) v

0 0o<i<l

For local existence of the characteristic Cauchy problem we refer to the main theorem of
the work [38] by Luk—Rodnianski which states the following. Let ¢ denote the induced
metric on the spheres Sy , and S, o foliating the null hypersurfaces H and H, respectively.
Let ¢ and W denote Ricci coefficients and null curvature components, respectively.
Consider characteristic initial data satisfying, for two real numbers 0 < ¢ < C,

c < |det(g)| < C,

S C!
i<3
> (sup 17/ ¥ lli2(s,0 + 50 IF ¥ s, 0)> (5.6)
i<3 U

YU DD swlV Wi+ Dl swplV Wlleg, |-

i<2 \We(B.p.op} * velp.o.pal
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where dg denotes coordinate angular derivatives and ¥ the covariant derivative with
respect to ¢. For ¢ > 0 sufficiently small depending on the constants C > 0 and ¢ > 0,
there exists a spacetime (M, g) endowed with a double null foliation u, u solving the
characteristic initial value problem to the vacuum Einstein equations in 0 < u < u,,
0 <u =<u, foruy, u, <e&.Themetric is continuous and takes the form

g = =29 du ® du +du ® du) + g, 5(d0? — b du)(d6® — bBdu).

The spacetime (M, g) is a C°-limit of smooth solutions to the vacuum Einstein equations
and is the unique spacetime solving the characteristic initial value problem among all
€Y limits of smooth solutions. In (M, g) it holds

d9g. dug €CYCILA(S). 958, dudpg. 0y €CICILA(S),
808, 0 (gABaﬂgAB) ELPLEL(S),  369ug, dudug, 920" LCLLA(S).

In the (u, u, 01, 6%)-coordinates, the Einstein equations are satisfied in LgoL;oLz(S).
Furthermore, higher angular differentiability in the data results in higher angular differ-
entiability of the solution.

In short, (5.6) asks that 3 ¥ -derivatives of Ricci coefficients, and 2 WV -derivatives
of null curvature components are bounded in L2(So) u) (or LZ(SM)O), respectively). The
norm X (H) defined in (5.5) bounds these quantities by a standard Sobolev trace theorem
(or X(H) bounds them, respectively) and the norm is actually stronger than necessary
for this local existence result.

We remark that the result of Luk—Rodnianski assumes that the characteristic initial
data satisfies the gauge-condition Q2 = 1 along H, which is not the case for our con-
structed characteristic initial data. However, once our gluing characteristic initial data
is constructed, we can apply a straight-forward gauge-change on H to make Q = 1
(in other words: make a change of the v-foliation along H). From the explicit trans-
formation formulas for Ricci coefficients and null curvature components under change
of v-foliation (see, for example, [25]) one can see that our constructed €2 is sufficiently
regular (see the norm (5.5)) that this gauge-change does not lead to a change of regularity
for the Ricci coefficients and null curvature components (i.e. we are still in X' (H)). We
then can cite the Luk—Rodnianski local existence result.

6. Spacelike Initial Data and Asymptotic Invariants

6.1. The spacelike constraint equations and spacelike initial data. Let (M, g) be a
spacetime, and denote its Riemann curvature tensor by R. Let X be a spacelike hy-
persurface in M with future-directed timelike unit normal 7. The electric-magnetic
decomposition of R on X is given by

Eap = Rrarp, Hap = >kRTaTbv (6.1)

where *Ropys = 5 €apuv R, denotes the Hodge dual of R with respect to the

volume form € on (M, g). The 2-tensors E and H are symmetric and tracefree, and
(see [19])

S 1
Roper = — eabv He, Ruped = — €aps€cal E® s (62)
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where €,p-:=€74pc denotes the induced volume element on X.

In the following, let g be the induced metric and k be the second fundamental form
of X C M. Denote the covariant derivative of g by V and the Ricci tensor of g by Ric.
It holds that

RiC,‘j — k,’akaj +k,-jtrk = E,‘j, Vikjm — ijim =€ijl Hy,, (6.3)

where trk := g*k,;. Taking the trace of (6.3) with respect to g leads to the spacelike
constraint equations,

Recal = |k|* — (trk)?, divk = d(trk), 6.4)

where d denotes the exterior derivative on X and Rycy) := g“h Ricgp.

Spacelike initial data for the Einstein equations is specified by a triple (2, g, k) where
(X, g) is a Riemannian 3-manifold and k is a symmetric 2-tensor on X, satisfying the
spacelike constraint equations (6.4). Local well-posedness of the Cauchy problem of
general relativity with sufficiently regular spacelike initial data is well-known [15,28,
33].

Schwarzschild reference spacelike initial data. The Schwarzschild metric of mass
M > 0 is given in Schwarzschild coordinates (¢, r, 6, ¢) by

2M oM\

g = — (1 - —) di* + (1 . —> dr? + 12 <d92 + sin? 6d¢2) .
r r

The induced spacelike initial data on the spacelike hypersurface {t = 0} N {r > 2M} is

given by
3\ B0 A oM\~ 2,2 2, wan? 2
(= ek =(RN\BO,2M), (1-22) ar?+r (d@ +5in 0d¢ ),0 .

r

(6.5)

It is well-known that the induced metric g is conformally flat. Indeed, defining isotropic
coordinates (r, 0, ¢) the from Schwarzschild coordinates (r, 6, ¢) by the relations

M\ - 8
§=<1+—~> LG=0.d=9¢. (6.6)
r 2r
it holds that for r > 2M,
4
M
g = <1 + —~) e, (6.7
2r

where ¢;; denotes the Euclidean metric in Cartesian isotropic coordinates ()?1 X2, )23)
defined by (2.1) from (7, 6, ¢).

Notation. Forreal numbers M > 0, we denote the metric components of the Schwarzschild
reference metric g in Schwarzschild Cartesian coordinates (xl, x2, x3) by gi"]’.’ , and in
isotropic Cartesian coordinates by g{? . The following strong asymptotic flatness cor-

responds to the center-of-mass frame of the isolated system under consideration, see
[17,19,34].



310 S. Aretakis, S. Czimek, I. Rodnianski

Definition 6.1 (Strong asymptotic flatness). Spacelike initial data (X, g, k) is strongly
asymptotically flat if there exist a real number M > 0, a compact set K C X such that
its complement ¥ \ K is diffeomorphic to the complement of the closed unit ball in
R3, and a coordinate system (x1 L x2, x3) defined near spacelike infinity such that, as
lx| — o0,

oM - ~
gij(x) = (1 + W) eij +0 (le 3/2) ki) =0 (|x| 5/2) . (6.8)

We moreover require analogous conditions on successive derivatives as needed.
Remarks on Definition 6.1.

(1) In this paper, strong asymptotic flatness is used to bound the error terms when we re-
late the local integrals (E, P, L, G) on the large sphere Sg to the limits (Eo, Poo, Lo,
Go). These error terms need to be sufficiently small for the classical degree argu-
ment work.

(2) The class of strongly asymptotically flat spacelike initial data is of interest for the
community (in particular, the data does not need to be Kerr outside a compact set);
see, for example, the work by Dain-Friedrich [27] where a large class of spacelike
initial data with the following (stronger) asymptotics is constructed,

gij(x) = (1 + 2|x_1v|1) eij +O (|x|_2) ki) =0 (|x|_3) .

6.2. Asymptotic invariants of asymptotically flat spacelike initial data. Given asymp-
totically flat spacelike initial data (X, g, k) with Cartesian coordinates (x 1 x2, x3) near
spacelike infinity, define standard spherical coordinates (r, 8!, §) by (2.1), and let the
2-spheres S, C X be defined as the level sets of r. The following asymptotic invariants
are fundamental quantities in mathematical relativity, see [13,17,19,23].

Definition 6.2 (Asymptotic invariants). Let (X, g, k) be asymptotically flat spacelike
initial data with coordinates (xl, x2, x3) near spacelike infinity. For i = 1, 2, 3, define

EapMm := lim —/ Z 0jgji — Blg”)Nd,ug,

r—o0 1677
§ J=123

(Papw)’ = lim — / (kit — trk gir) N'd g,

5,
i 13 1 J arl
Lapw)' = lim o [ (kji =k g;0) (Yo))" N'dpg.
5,
and
(Cabm)’ = = lim / (3jgjl—algj/')Nl - (gjiNj _gijl) ity
j= 12% j=123

where N denotes the outward-pointing unit normal to S, and duy the induced vol-
ume element on §,. Furthermore, Y(;), i = 1,2, 3, are the rotation fields defined by

Ya))j =€ilj x
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Remarks on Definition 6.2.

(1) The asymptotic invariants can be interpreted as energy Eapwm, linear momentum
Papm, angular momentum Lapm and center-of-mass Capwm of the spacelike initial
data set.

(2) The asymptotic invariants are well-defined and foliation-independent for strongly
asymptotically flat spacelike initial data (as well as for more general asymptotics),
see [17,23] and references therein.

(3) By the positive energy theorem [42,43,45] it holds for sufficiently regular asymp-
totically flat spacelike initial data that Eoppy > 0. Moreover, if equality holds, then
the initial data must be isometric to initial data for Minkowski spacetime.

(4) For strongly asymptotically flat initial data, it holds that (see [19]) Eapm = M and
Papm = 0, where M is the real number appearing in (6.8).

Itis well-known (see [14,20,30-32,40]) that the asymptotic invariants Eopy and Capm
can be calculated in terms of the Ricci tensor as follows.

Theorem 6.3 (Alternative expressions for Eapy and Capm). Let (2, g, k) be asymp-
totically flat spacelike initial data such that Eapym > 0. Then it holds that fori = 1,2, 3,

. 1 . 1
EapMm =r1gl;o—§/ (RIC - ERscal g) (X, N)duy,
5,

—00 167

r

i 1 1 o1 ,
(Capm)’ = lim —— <R1c— 5 Rsca g) (Z. Nydpy.

where X and Z9, i = 1,2,3, are defined with respect to Cartesian coordinates
(xl, xz, x3) by

X o=ty 70 = (o8 — 247 ) 0, 6.9)

The vectorfields X and Z®, i = 1, 2, 3, are conformal Killing vectorfields of Euclidean
space. An explicit calculation shows that Z @i =1,2,3, canbe expressed in terms of
spherical harmonics as follows, with (m, m2, m3) := (1, —1, 0),

7 _ _|x|3 S?nE(lmi) _ |x|2 ( /%Y(lm,-)) 9. (6.10)

Based on Definition 6.2 and Theorem 6.3 we introduce the following local integrals.
Their relations to the charges (E, P, L, G) of Definition 2.5 is studied in Sects. 7.3, 7.4,
7.5 and 7.6.

Definition 6.4 (Local integrals). Let (X, g, k) be asymptotically flat spacelike initial
data such that Eopp > 0, and let (xl, x2, x3) be corresponding Cartesian coordinates
near spacelike infinity. For real numbers » > 1 sufficiently large and i = 1, 2, 3, define
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1
};)]C)M(Sra g k) =— _f <RIC_ z scalg> (X, N)d/,Lg,
(Phiw) (S g00 = [ s = wk i) Wy,
; { > ‘ (6.11)
(L5u) (570 = [ s = kg (Vo) Wy,
5,

1 . 1 ;
(Cln) (5780 = (Rlc—ERsca1g> (2, Nydpy.

Remark 6.5. The local integrals E}glc)M and C}SIC)M are defined following Theorem 6.3.

This has the advantage that ElOC by and Cloc ADM are more natural to relate to the charges
(E,P, L, G), see Sects.7.3 and7 6.

The following classical lemma analyses the convergence rates of EK’BM and Pk’BM for
strongly asymptotically flat spacelike initial data. It is applied in Sect.7.7. Its proof is
based on Stokes’ theorem and the spacelike constraint equations, and is omitted here.

Lemma 6.6 (Convergence rates for E&’BM and PL¢ ADM for strongly asymptotically flat

initial data). Let (X, g, k) be strongly asymptotically flat initial data. Then it holds that
ERbum(Sr. 8.K) = Eapm + O ™), Pihy(Sr. 8. k) = O ™2),

6.3. Foliation geometry in spacelike initial data. In this section we set up notation for
the geometry of foliations of spacelike initial data by 2-spheres. Let (X, g, k) be strongly
asymptotically flat spacelike initial data, and let (x!, x?, x3) be corresponding Carte-
sian coordinates near spacelike infinity. Denote by (r, 8, §%) the associated spherical
coordinates, see (2.1). We have the following notation.

e Let S, denote the level sets of r, and let ¢ and ¥ denote the induced metric and
covariant derivative. Let K denote the Gauss curvature of g.

e Let N denote the outward pointing unit normal to S,. The second fundamental form
® of S, is defined by ®4p := D4 Np, and composes into trace and tracefree part as
follows,

~ 1
r® 1= ¢8O 45, Oup :=Opp — EtI'@gAB-

e Let(es)a=12denotealocal orthonormal frame on S,. We decompose the symmetric
2-tensor k into the S,-tangent tensors

knn, kya:=kna, Hap :=kap. (6.12)
The Gauss—Codazzi equations of S, C X are (see Section 3.1 in [19])

~ 1 1 1 1 ~
Rican = divOs — Sd o, Rieyy = 2 Rica = =K + Z(tr@)z + §|®|2, (6.13)

where ¢ denotes the exterior derivative on S,, and for a symmetric 2-tenors V on S,

dvV)a == VB Vg4, |VI? := g2 B¢ PVucVpp.
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6.4. Scaling of spacelike initial data and local norms. In this section we define, analo-
gous to Sect. 2.8, the scaling of spacelike initial data, and introduce local norms.

Let (%, g, k) be an asymptotically flat spacelike initial data set and let ()c1 cx2, %3 )
denote associated coordinates near spacelike infinity. We define the scaling of (g, k) in
two steps.

(1) For areal number R > 1, define new coordinates (y', y?, y3) by
Wr(y', y%, y) = Ry, R- YL Ry = (' 22,57, (6.14)

(2) Based on the conformal scaling of spacetime metrics Kg := R 2g (see Sect.2.8)
and that k is the second fundamental form of ¥, we define (®'g, (®k) by

Rg.= R2g, ®p.=R k. (6.15)

By construction, (‘®) g, (®k) solve the spacelike constraint equations (6.4).

By (6.14) and (6.15), for all integers / > 0, we have the relations
ol (<R>g,»,-) -y (a;gij) o Wg, 9! (<R>k,-,-) = R (a;kij) oWg,  (6.16)
where we denote
B gij =gy, 0,), Phij =Pk, 0,).

Remarks on the scaling of spacelike initial data.

(1) Analogous to Lemma 2.18, we deduce from (6.16) that the charges scale as follows.
The proof is omitted.

Efbu (Sro’ (R)k) R™ERSn (Srro 8. K)
P (S P, ®k) = RPlSyy (ks 8. K)
L (sro, & k) = R 2Ly (k. 2.4).
ot (Sr0: ®g. ®k) = R2C50 (Sks 8. 1)
(2) Applying the scaling to Schwarzschild reference spacelike initial data, see (6.5), we
have
(R g ggl/R, (R ght — éf}“R 6.17)

(3) By (6.16), the property of strong asymptotic flatness is conserved under rescaling.

We now turn to the introduction of local norms for spacelike initial data. For ease of
presentation we use C¥-spaces.

Definition 6.7 (Norms for tenors). Let K C R denote a compact set with smooth
boundary, and let 7' be an j-tensor on K. For integers k > 0 define

ITlery = >, D 10T, o)

1<iy, i <3 0<|ar| <k
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where & = (a1, a2, 03) € N3, 3% = 995205 and Tj,...; denotes the Cartesian co-
ordinate components of 7. Define C¥(K) to be the space of k-times continuously dif-
ferentiable tensors 7 on K with ||T||ckgy < o0o. Moreover, let CII‘OC(R3 \ B(0, 1))
be the space of k-times continuously differentiable tensors 7 on R3\ B(0, 1) such that
71| ckky < oo for each compact subset K C R3\ B(O, 1).

Definition 6.8 (Local norm for spacelike initial data). Let 0 < r; < r be two real
numbers, and let k > 1 be an integer. We define for spacelike initial data (g, k) on the
annulus Ap, ] = {x eR3: r < |x| < rz} the norm

(g, k)”Ck(Am-rzl)xck_'(AIrwzl) = ||g||ck(A[,1V,2]) + ||k||ck—1(A[,11,2])-

Notation. In the following we assume that the metric g is ko-times and the second
fundamental form k is ko-times continuously differentiable, where the universal integer
ko > 8isdeterminedin Sect. 7 by the condition that the ingoing null data to be constructed
from spacelike initial data is sufficiently regular.

By scaling and the definition of strong asymptotic flatness, we have the following esti-
mates for rescaled spacelike initial data. Its straight-forward proof is omitted.

Lemma 6.9 (Smallness of rescaled spacelike initial data). Let (X, g, k) be strongly
asymptotically flat spacelike initial data with Cartesian coordinates (x', x>, x3) near
spacelike infinity. For real numbers R > 1 sufficiently large, the rescaled spacelike
initial data ((R)gij, (R)kij) is well-defined on Ayy2,7/2) and

R sM/R (R -3/2
I <( )g —& / ’( )k) ||Ck0(A[1/2,7/2J)><Ck0_](All/2.7/21) =O(R / ), (6.18)

where M is the real number appearing in (6.8).
Moreover, we note the following lemma. Its proof follows from (6.5) and is omitted.
Lemma 6.10 (Estimates for Schwarzschild reference metric). For real numbers M > 0

sufficiently small,

M _ <
llg €||ck0(A“/2_7/2]) S M.

7. Construction of Sphere Data from Spacelike Initial Data

In this section we construct families of ingoing null data from spacelike initial data. The
following theorem is the main result of this section.

Theorem 7.1 (Construction of ingoing null data from spacelike initial data). Let (X, g, k)
be strongly asymptotically flat spacelike initial data with asymptotic invariants

(EapMm; Papm, Lapm, Capm),

where Papm = 0 by the strong asymptotic flatness. There is a real number § > 0 and
a strongly asymptotically flat family of ingoing data (x_pg+R.[—s,5),R), constructed on
spheres in X, such that form = —1,0, 1 and (i—1, iy, i1) = (2,3, 1),

E(x_g.r) =Eapm + O(R™)),  P"(x_g &) = (Papm)™ + O(R/?),
L™ (x_g,g) = (Lapm)™ +O(1), G™(x_g,g) =(Capm)™ +O(1).

Moreover, if the spacelike initial data is smooth, then the constructed ingoing null data
is smooth, along with all higher-order derivatives in all directions.
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In the particular case of Schwarzschild reference spacelike initial data in isotropic coor-

dinates, gEADM, the construction of Theorem 7.1 produces the Schwarzschild reference

family of sphere data m?’}‘emlg in Eddington—Finkelstein coordinates, see (2.16). The proof

of Theorem 7.1 is structured as follows.

e In Sect.7.1 we rescale the strongly asymptotically flat spacelike initial data on the
annulus A[g/2 7r/2] to spacelike initial data on A(1,2,7/2) and change from isotropic
to Schwarzschild coordinates, to arrive at spacelike initial data on Ajfj 3 close to
Schwarzschild (in Schwarzschild coordinates) of mass M/R.

e In Sect.7.2 we construct from the spacelike initial data on A[; 3} ingoing null data
(®x_14-s.51.1), and prove estimates.

e In Sects.7.3,7.4,7.5 and 7.6 we compare the charges (E, P, L, G) of (R)x,l,l with
the local integrals (Eff)M, P}&CDM, Lk’f)M, CXEM) on S_j1 C Ay 3 of the spacelike
initial data.

e InSect. 7.7 we conclude the proof of Theorem 7.1 by scaling the constructed ingoing
null data (®x_14_5.5.1) up to (x_g+r[-s.5].%), and analyzing the asymptotics of
(E, P, L, G)(x_g,r) by use of the estimates of Sects.7.3, 7.4, 7.5 and 7.6.

7.1. Rescaling and change to Schwarzschild coordinates. Let (X, g, k) be strongly
asymptotically flat spacelike initial data, and let (x', x?, x3) denote corresponding coor-
dinates near spacelike infinity. In the following we first rescale to small data on an annulus
A{1/2,7/2) and then change from isotropic coordinates to Schwarzschild coordinates, see
(6.6), yielding spacelike initial data on the annulus Ay 3;.

In the particular case of Schwarzschild reference spacelike data in isotropic coor-
dinates of mass M, denoted by g;‘f , the following construction maps to Schwarzschild
reference spacelike initial data in Schwarzschild coordinates of mass M/ R, denoted by
g{;’.[ /R.

First, let (B g, ®k) denote the rescaled spacelike initial data. By Lemma 6.9 we
have that

H ((R) g — gMIR, (R)k)‘

Second, we apply the coordinate change ® from isotropic coordinates (7,6, 62) to
Schwarzschild coordinates (r, 8!, 82), see (6.6), with M /R,

. M/R\% . .
@7 0'0% > (r,0',0% = (‘f(1+ 2/~ ) ,91,92>,

7

= O(R™/?), (7.1)

cko (Ar1/2,7/21) cko—1 (Ar1/2,7/21)

On the one hand, for R > 1 sufficiently large, the Schwarzschild coordinates (r, 6 L 02)
range over the coordinate domain Apj 3). On the other hand, by (6.6) we can estimate
for R > 1 sufficiently large

ID® — Id”cko(A“/”/z]) <C, (7.2)

where C > 0 is a universal constant. Thus by (7.1) and (7.2),
(90 =8| |9 (=52

SRSR

Cko(Ap3p Cho(Ap3p

= 0(R™?),
cko (Ar1/2,7/21)
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where we used that by (6.7), ®* (§"/R) = gM/R. Furthermore, by (7.1) and (7.2) it
similarly follows that
|o* ()]

To summarize the above, for R > 1 sufficiently large, we constructed from strongly
asymptotically flat spacelike initial data (X, g, k) the spacelike initial data

(3 (%) (48)) e 2

= O(R7?%).
cko=1(Ap a7

satisfying

O N L ]
” g g CkO(A[]V:;])

Notation. We use the following notation in Sects. 7.2, 7.3, 7.4, 7.5 and 7.6.

= O(R7/?). (7.3)

Cho(Ap3))

(1) We denote the R-dependent smallness on the right-hand side of (7.3) by
gg = O(R™/?). (7.4)

(2) For ease of presentiation we abuse notation by denoting (CD* ((R) g) , OF ((R)k)) by
(8, k).

7.2. Construction of sphere data. Let M > 0 and R > 1 be two real numbers. Consider
spacelike initial data (g, k) on A[q 3] such that

| (s =57 5)]

see (7.4) for the eg-notation. In this section we construct from (g, k) the ingoing null
data ((R)x_1+[_5,5],1) and prove that for R > 1 sufficiently large,

(7.5)

<
Cho(Ap s xR~ (Apap —

IR x g g—s,80,1 — mM/R||X+(ﬂ,1+[,515],1) S er- (7.6)

In the particular case Schwarzschild reference data in Schwarzschild coordinates, g™/~
the construction of this section produces the Schwarzschild reference ingoing null data

in Eddington—Finkelstein coordinates li/f[ 5511 . We remark that the universal inte-
ger kg > 6 is determined from the regularity in (7.6), see the notational remark after
Definition 6.8.

Definition of S_; ; and gauge choices. Let (M, g) denote the unique maximal future
globally-hyperbolic development of the spacelike initial data (A[; 3}, g, k). Let T denote
the future-directed timelike unit vector to Ay;,3;in (M, g), and let N denote the outward
pointing unit normal to S, C X tangent to Ay 3) for 1 <r < 3. For R > 1 sufficiently
large, consider the sphere S;,, k(=11 C A[1,3) where the definition of ry (u, v) is given

in (2.15). On §,,, (=1, C Y. define the renormalized null vectors (Z, Z) by

L=T+N, L=T—N, (1.7)
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which satisfy by construction g(f, Z) = —2. We can construct around S,,, r(=1,1) C )]

a local double null coordinate system (u, v, ol 92) such that with respect to (u, v) we
have S_11 = S, JR(=11)5 and moreover, the following holds on S_j ; (which is in
agreement with (2.16))

5 2M/R M/R M/R
Q ::1——, a)2=—2, w = — 2
rM/R(—l,l) (rM/R(—l,l)) (rM/R(_171))
2Q*M /R 2Q°M /R
Dwi=——""1" _ Dw:i=-—

(ruyr(—=1, 1) (rayr(—=1, 1))

(7.8)

Definition and analysis of x and x. Defining x and x as in Definition 2.5, we have by
(6.12) and (7.7),

XAB = —Hap+Ouap, X ,p, = —Wap —Oap. (7.9)
Taking the tracefree part and trace with respect to ¢, we get

try = —trf +tr®, Xap = —/IEAB +Oup, try = —trf — tr@®, ZAB = —/IEAB — Oyup.

(7.10)
By (2.16), (7.5) and (7.10) we have that for R > 1 sufficiently large,
XN oo,y + 1X N Hos_, ) Sers
try — —2QM + |try + —ZQM <eg. (710
rm/R(=1 Dl gogs_, ) ru/R(=1 Dl gocs_ 1y

Definition and analysis of ¢ and 7. Defining ¢ and n on S_; ; as in Definition 2.5, we
have by (7.7) that
1 ~ ~ 1 1
¢ai=58(DaL, L) = =38 AT, N) + 58 DaN, T) = g D4T. N) = s,

A =ta+d 1ogQ =Fa+dlogQ =¥,
(7.12)

where we used (7.7) and (7.8). Subsequently, by (7.5) and (7.12) we have that for R > 1
sufficiently large,

N as sy + Il Ess_, S €R- (7.13)

Definition and analysis of @ and «. By Definition 2.6, (6.1), (6.2), (6.3) and (7.7), we
have that

aap =R (ea, L,ep, L)
=Ruarpr + RaTBN + RaANBT + RANBN (7.14)
; : il
=FEap— € n° Hsp— €y’ Hia+ €ansepnt E.

Subsequently, by (7.5) and (7.14) we have that for R > 1 sufficiently large,

leell grogs_, 1y < €r- (7.15)
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Similarly, by Definition 2.6, (6.1), (6.2), (6.3), (7.7) and (7.14) we get that for R > 1
sufficiently large,

lell g2es_, ) S €r- (7.16)

Definition and analysis of ®x_; ; on S_; 1. Let ®x_; | be the sphere dataon S_; 1
determined by the quantities constructed in (7.8), (7.9), (7.10), (7.12) and (7.14). From
the estimates (7.11), (7.13), (7.15) and (7.16), it follows that

I®x_1 1 —mM By ) S er. (7.17)

Definition and analysis of ®)x_y,; 551 on H_,,;_; 5 . Following (7.7) and (7.8),
define L’ on S_; | by

I o-17T _ 1
L''=Q, L=————
= = [ MR

ry/r(—1,1)

and extend L’ to the spacetime (M, g) as null geodesic vectorfield. The ingoing null
hypersurface ; C M passing through S, r(-1,1) C T is ruled by L’. We define on
‘H, the function u by

(T = N),

L'(u) = onH; and uls_, , = —1.

1
[{ — 2M/R
ry/Ru,1)

The level sets S,,1 C H; of u are locally well-defined and foliate 7{; by construction
with Schwarzschild reference null lapse.

By the smallness (7.5) together with the above gauge choices (7.7) and (7.8), by the
local existence and Cauchy stability for the spacelike Cauchy problem, see [15], it follows
that for R > 1 and ko > 6 sufficiently large, there is a universal real number § > 0,
such that the foliated null hypersurface H_ ;551 := U Su.1 is well-defined in

—0<u<é

(M, g) and the induced null data, denoted by ®)x_1,_s 5.1, satisfies

”(R)

X—14[—8,81,1 — mM/R||X+(ﬂ71+[ ER- (7.18)

<
75,5],1) ~
To summarise the above, we constructed ingoing null data ((R)x,“[,,g,(;],]) satisfying

R M/R
I )x71+[78,8],1 —m'/ ||X+(ﬂ—1+[—a,51.1) S er. (7.19)

This finishes the proof of (7.6).

Remark 7.2 In case of higher regularity, we impose gauge conditions on D" w and D" w,
forintegers m > 2 on S_; 1 inaccordance with the Schwarzschild reference higher-order
sphere data (2.16). Subsequently, the higher-order sphere data on S_1 1 can be explicitly
calculated and estimated by the Bianchi identities.
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7.3. Comparison of E and E}g’f)M. In this section we prove that
(R) loc M 2
ECYVx_1,1) =Expm(S-1,1, 8.0+ O ESR +O(ep). (7.20)

In the following we rewrite E into Ek’fDM, where we eased notation. Using the null
structure equations (2.10) and (2.11), and the relations (7.10) and (7.12), we can write

. 1 1~y 1 P
p+rdng=—(K — 7 (tr®)~ + §|®| + 7 (trk)~ + §|I¢|
— rdiv <dj/v (—#+0) — %d (—trk + tr@)) (7.21)
— rdjy ((—% 0) k- % (—trf + r©) 1¢) .
Plugging the Gauss equation (6.13) into the right-hand side of (7.21) leads to
: 1 ; 1 2.2 01612
prrdivp=—7 <Rscal — 2Ricyy + 2 (i)™ + [#” + 6] )
—rdp (dyv (—H+0©) - %91 (—trk + tr@))
—rdy ((—7,2+ ©) K- % (—trlf + tr®) 1,/) .

Hence we get that

8 3 Lo, oW
—ﬁE=— (3 <Rscal —2RiCNN+§(U/¢’) + K" +10] ))

1 ©0)

- <r4 div (dj/v (—k+0) - 4 (ki tr@)))
P 1 )

- (r4 diy <(—/¢+ O) ¥- 5 (~trf+ we) 1,1)) ,

which we can estimate by (7.5) and Lemma 2.1 for R > 1 sufficiently large and (6.11)

as
V4 3 © M
E N (% (Rgcal — 2RiCNN)) +0 (E8R> + 0(8%)

T 8n

1 . 1 M
=~ % (RIC — ERscal g> (rN,N)dug +0O (ESR> + O(a%)
—1,1
1 . 1 . M
=~ <RIC — ERscal g> (x79;, N)duy + O (EER> + O(s%)
S_11

M
=Effy+0 (;ek) +O(e%),

where we used Lemma 6.10. This finishes the proof of (7.20).
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7.4. Comparison of P and P};’BM.. Next we prove that fori = 1,2, 3, (m, mp, m3) =
(15 _17 0)’

i . M
(Plng) S_11,8.k)=P"(Bx_ 1 H+0O <EsR> +O(e%). (7.22)

In the following we rewrite (P}&C)M)i into P, where we eased notation. By (7.5), for
R > 1 sufficiently large, it holds that on the annulus A; 31, (3;)) = (Vxi) = el —gij =
O (%) + O(eg). Hence we can write, using that N is normal to S_ 1,

f (kin —trk gin) d g
S_1,1

= / (ij — tl‘kng) (in)jd,ug +0O <%8R> +0 (8%)

S_11

= / (kjn —trk gjn) (N(xi)Nj + (Wxi>j> dpg +O (%m) +0 (8%)

S_11

. . M
_ / ((kNN — trk) N(x') + k(N le)) dpg +O (EeR> +0 (8%) .
S-1.1
(7.23)

Using that by (7.7) and (7.12), for R > 1 sufficiently large we have on S_1 1,
1 . )
k= trk = —trf = - (tri+trx) L k(N, Yx') = (e,
. i M
NG = a +0O (—) + O (er),
r R
where r denotes the area radius on (S—1,1, &), we get from (7.23) that

f (kin —trk gin) dpy
S-11

= / <% (tr£+tr)(> le +§(xi)) dug +0O (%€R> +0 (5%)

S-11 (7.24)

1 : [ATT
= / <§ (tr&—trx) +try —rd;’v;) < ?HY(I ')> dﬂrz;

S_11
+0 (%zm) +0 (8%) ,

where we used that for i = 1,2, 3, ﬁ =/ Z YU with (my, ma, m3) = (1, -1, 0).
In the following we use two identities to rewrite the right-hand side of (7.24). First, by
(2.10),
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1 | SN 1 r 2 2
—(trx—trx):r -0 —K+=-0.x))———-|tux——){tx+-), (7.25)
2\ = 27 = r 4 r = r

Next, we can express by (2.11)

g = 2 djop — Sty + g (Z - r%) trx
. , (7.26)

o~ . ~ r :
+r? (divdivyg +div (X - ©)) — > d;/v((trx - ;) C) :

Plugging (7.25) and (7.26) into the right-hand side of (7.24), and using that for any scalar

function f, form = —1,0, 1, (Af)(lm) = —2f(""), we get that for R > 1 sufficiently
large,

87 - (P}&C)M)i

1 arx M
_ L Cedwe ) [ yamog, 2
= / (2 (tri trx) +try rdyvg) 3 Y durzy +(’)<R 8R> +(’)(8R)
1o 4 M
= / (—rp — 2 divp +try + EAtrx) ,/% yImdy o +0 (Te sR> +0(e3)+R

S_11
m; M 2
=87 - P" +O( er +0 (ex) + R,
(7.27)

where the remainder term R is given by

r 1 r 2 2 4
_ _ - o~ o~ - _ = = (lml) .
R = ( rK+2(X,X) . 4<trx r)(trx+r>),/—3 Y& dp oe
S_

1,1

_/ l 2_,~2A tr _% +£dj/vdj/v" 4_7TY(lmi)d
2 *Tr)T2 AR Hry

—1,1

2 2 4
- / (rzdyv@- 0 - %dyv((trx - ;) ;)> VS dp s

S-1.1

To conclude (7.22), it remains to show that for R > 1 sufficiently large,
M
R=0@E%)+0 <E8R> . (7.28)

Indeed, (7.28) follows in a straight-forward fashion, using Lemma 2.1. This proves
(7.22).
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7.5. Comparison of L and L}%M.. In this section we prove that for i = 1,2,3 and
(my,my,m3) =(1,-1,0),

L (Px_ ) —<LADM> (S_11, g k)+(9<—eR> +O(ed). (7.29)

On the one hand we have, using that d 257 = 0, and that ({ )y = 0 for any scalar
function f,

1 [8x
L™ =T —r (try -y
1 87 5 (my 1 [ g<< 2) )“’"”
=—.—r’p +— = [trx—=)7n (7.30)
srV 3 'H 16zV 3 r H

L 87 5 (imy) M 2
ZQ Ti‘ ﬂHm +0O ESR +O(8R),
On the other hand,
i 1 i 1
(LRom) = / ki (Yo dig = o— / trk g (Ya), N) ding
T 8 —_—
S_11 S-1.1 =0
_ 1 Ad O 2
=% na (Yi)) Mg+ (k) (7.31)
S_11

/877 2 (Im;) 2
87‘[ 3 77Hm +O(eR),

where we used (7.12) and that the rotation fields Y;), i = 1, 2, 3, are S_1,1-tangential
and related to the standard vector spherical harmonic H am) 1 = —1,0, 1, as follows

8
Yy =\ S R PHO™ with Gy ma, m3) = (1, =1,0).
Combining (7.30) and (7.31) finishes the proof of (7.29).

7.6. Expression of G in terms of CIOCM and Pk’gM.. In this section we prove that for
i=1,2,3and (m;,mp, m3) = (1, —1, 0),

im im
6" (®x_1) = (Cltbw) " S-11.8.0 = r(S-1.1. 8.0 (Pl ) " (S-1108.K)

+O <M8R> +0 (eg) .

(7.32)
Consider first C}AO]C)M. By (6.10) and g(E(lm), N) = 0 we have that
i 8w
loc __ 2= 3p: (Im;)
167 (CADM> =-3 / x*Ric (E , N) diig
S—11
(7.33)

4 . 1 )
V5 / lx[? (Rlc—ERsmlg> @, N)Y " Vdpuy,
S-1,1
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By (6.13), the second integral on the right-hand side of (7.33) can be expressed as

. 1 .
/ |x|2 <RIC — ERscal g) (9r, N)Y(lm’)dl/«g
S_1,1
4 1 2 512 (1m;) M 2
= [x] _K+Z(tr®) +|0|° )Y 'du;+(’) EgR +O(ex)
S_1,1

1 M
=— f |x|4K-Y(]m")d,u; +Z/|x|4(tr®)2-Y(lm")d,u; +O (ESR>+(’)(8%),
S_1,1 $

::Il =1
(7.34)

where we used Lemma 6.10. In the following we analyse Z; and 7. First, by (7.1) and
Lemma 2.1 we have that for R > 1 sufficiently large,

Ty = x[*K1m) = O(e2). (7.35)

Second, by the relation Y (1" = \%d}’vE (m) " integration by parts, and the Gauss—
Codazzi equations (6.13), we have that

__¢ 4 o (] (my)
Iz__ﬁ / |X| tr@y(zdtr®,E dM}O/

S-1.1

8 3 o1 (Imy) M 2
=% / |x] -g<d¥v®—§dtr®,E dug + O\ wer | +OER) (736)
S_11

8 M
-7 [ |x|3~Ric(E(1m"),N)dug+O<EsR>+O(8%),

S_11

where we used that tr® — ll =0 (%) + O(eg) by (7.1) and Lemma 6.10. Plugging

[x

(7.35) and (7.36) into (7.34) and subsequently into (7.33), we get that

. : y
167 ( k’BM)l =-2 ?” f x> - Ric(E"™), N)dpy + O (EsR> +O(e}).
-1

,1

(7.37)
Consider now G”. By Definition 2.5, (2.11) and (7.8), we have that

3 o \am
8\ oG = (r3 B+dNT+7 - n))E = r3BU™ L 02), (7.38)
T

where we used (7.1), (7.10) and (7.12).
Recalling the definition of P from Definition 2.5 and applying (7.1), it holds that

[3 1 1o \Um 1
—87 E—Pm =pm 4 <;dj/vﬂ> +0(e3) = pI™ + (;ﬁﬁg’”)) +O(s%).

r3
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In particular, ,8(1'") can expressed as ﬂ(lm) _T 8 P’" + p(l’")) + (9(8 ).

Plugging this into the right-hand side of (7.38) yields

= r [3 1
8 S .G = r3ﬂgm) + O(S%{) = r3 (_E <87T Hr_3Pm +p(lm)>> +O(8%)
3 4
= —8ﬂ,/§ P — j/i'o(lm) +O(8%).

(7.39)

The second term on the right-hand side of (7.39) can be rewritten by the Gauss equation
(2.10), Lemma 2.1, application of (7.1) and (7.10), and use of (7.36) as follows,

. 1 1 (m)
ptm = (—K — XX+ E(X,L))

1 (1m) 5
=-7 (trxtrl> + O(ex)

1 — — .\ (1m) 5
=—2 ((—trk + r®)(—tr® — trk))"  + O(ef)

I (m)
-2 ((tr@)z) +O(d)

2 1 M
=— — . Ric(E")  NYd +O(—8 )+(9 £2).
7 / ] ( Yy R ER (er)

S_11

Plugging this into (7.39), and using (7.22) and (7.37), we get

M
871,/ Gm = 871,/ — .y P" - RIC(N E(lm))dug +0 <—8R> +0 (aR)
/3 | im /3 ! im M 2
= — 8 gr(P/g]C)M) + 8 Q(CX]%M) +O<;8R)+O(8R).

This finishes the proof of (7.32).

7.7. Conclusion of proof of Theorem 7.1. From (7.6) we have that the constructed in-
going null data ((R)x_“[_g,(;],l) satisfies, for R > 1 sufficiently large,

||(R))C_1+[—5,8],1 — mM/R ”X*'(E—H[fé,é],l) =0 (Rf?)/z) .

By Lemma 2.17, the rescaled ingoing null data x_ gy g[—s.5].8 := (R™H (®x_14—s.6,1)
satisfies

M _ —3/2
- reri=ssnk = 7 s a0 =€ (RT2).

Next we show that

1B e r 25 =O (RT) (7.40)
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We claim that (7.40) follows from the finiteness of the charges Lo, and G, shown
below. Indeed, by Definition 2.5, (2.11), Lemma 2.18 and (7.6), we have that for R > 1
large,

L™ (_gp) = R>-L"(Rx_y 1) =R* - (= (B+ AT+ % - (1 — d log )y (Px_1.1)
G"(ogp) = B2 Gy ) =R (= (raaye(=1. D)’ B (W1 + OR ).

Hence by Definition 2.12 and the finiteness of Ly, and G (discussed below) we get
that |,8;11 m)((R)x_1,1)| + |,8§51 m)((R)x_1’1)| = O(R™?). Together with the scaling of 3,
see Lemma 2.15, this implies that

BN R 25y = R IBMPxi Dl ) = ORT).

This finishes the proof of (7.40). It thus only remains to analyze the asymptotics of the
charges (E, P, L, G)(x_g r). These follow straight-forward from Lemmas 2.18 and 6.6,
Sect. 6.4 and (7.20), (7.22), (7.29) and (7.32), and are omitted. This finishes the proof
of Theorem 7.1.
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