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Abstract: This is the third paper in a series of papers adressing the characteristic gluing
problem for the Einstein vacuum equations. We provide full details of our characteristic
gluing (including the 10 charges) of strongly asymptotically flat data to the data of a
suitably chosen Kerr spacetime. The choice of the Kerr spacetime crucially relies on
relating the 10 charges to the ADM energy, linear momentum, angular momentum and
the center-of-mass. As a corollary, we obtain an alternative proof of the Corvino-Schoen
spacelike gluing construction for strongly asymptotically flat spacelike initial data.
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1. Introduction

The gluing problem in general relativity investigates whether it is possible to join two
given vacuum spacetimes. Concretely, one can approach this problem by attempting to
construct a solution to the constraint equations which agrees inside a bounded domain
with specified initial data, and on the complement of a large ball with other specified
initial data. The geometric obstructions to solving the gluing problem provide insights
into the rigidity properties of the Einstein equations.

In [11] we initiated the study of the characteristic gluing problem for initial data for
the Einstein vacuum equations. This problem amounts to connecting two initial data sets
along a truncated null hypersurface by solving the null constraint equations. There are
several reasons for considering the characteristic gluing problem: (1) the null constraint
equations are of transport character (in contrast to the previously studied gluing problem
for spacelike initial data which requires to analyze the elliptic Riemannian constraint
equations), (2) the null lapse function and the conformal geometry of the characteristic
hypersurface can be freely prescribed, (3) characteristic gluing of spacetimes implies
spacelike gluing of the spacetimes.

In [11,12] we explicitly derived a 10-dimensional space of gauge-invariant charges
on sections of null hypersurfaces that act as obstructions to the characteristic gluing
problem and we showed that, modulo this 10-dimensional space, characteristic gluing
is always possible for data sets that are close to the Minkowski data. In this paper, we
prove that characteristic initial data that are close to the Minkowski data can be fully
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glued (including the 10 charges) to the characteristic data of a suitable Kerr spacetime.
By rescaling we show that strongly asymptotically flat data can also be characteristically
glued to the data of some Kerr spacetime. As a corollary, we obtain an alternative proof
of the Corvino–Schoen gluing construction (for strongly asymptotically flat spacelike
initial data) that relies on solving the null constraint equations instead of the Riemannian
constraint equations. Our approach crucially relies on relating the 10 charges to theADM
energy, linear momentum, angular momentum and center-of-mass.

In Sect. 1.1 we discuss the characteristic gluing problem. In Sect. 1.2 we outline the
main results. In Sect. 1.3 we give an overview of the main ideas of the proofs.

1.1. The characteristic gluing problem. In this section we discuss the codimension-10
characteristic gluing for theEinstein vacuumequations introduced in [11].Before stating
the main results of that paper, we introduce the following notation. Let (M1, g1) and
(M2, g2) be two vacuum spacetimes. Let S1 and S2 be two spacelike 2-spheres in M1
andM2, respectively, and assume (without loss of generality) they are each intersection
spheres of local double null coordinate systems, respectively. We define sphere data x1
on S1 and x2 on S2 to be given by the respective restriction of the metric components,
Ricci coefficients and components of the Riemann curvature tensor of the spacetimes
to the respective spheres (see also Sect. 1.3.2) with respect to the respective double null
coordinate system.

One of the main insights of [11,12] is the derivation of a family of charges on the
sections of null hypersurfaces that act as obstructions to the characteristic gluingproblem.
The charges arise from conservation laws for the linearized constraint equations. They
split into two classes: An infinite-dimensional space of gauge-dependent charges and
a 10-dimensional space of gauge-invariant charges. The former charges can always be
overcome by gauge perturbations. We will refer to the gauge-invariant charges as simply
the charges. For further discussion, see Sect. 1.2.1. For precise definition of the charges,
see Sects. 1.3.2 and 2.5.

The main result of [11,12] can be summarized as follows; see Theorem 2.20 in
Sect. 2.9 for the precise statement.

Perturbative codimension-10 characteristic gluing [11,12]. Let on two spheres S1
and S2 be given the sphere data x1 and x2, sufficiently close to the respective sphere
data on the round spheres of radius 1 and 2 in Minkowski spacetime, respectively. Then
there is a null hypersurfaceH′[1,2], connecting the sphere data x1 on S1 to a transversal
perturbation S′

2 of the sphere S2 with sphere data x ′
2, solving the null constraint equa-

tions, and such that all derivatives tangential toH′[1,2] of the sphere data x1 and x ′
2 are

– up to a 10-dimensional space of charges explicitly defined at S′
2 – smoothly glued.

Sphere data determines all derivatives of the metric components up to order 2, hence
perturbative gluing is gluing at the level of C2 of the metric components (up to the 10
charges).

In [11,12] we also consider characteristic gluing along two null hypersurfaces bi-
furcating from an auxiliary sphere, and prove the following result, see also Fig. 1; see
Theorem 2.21 in Sect. 2.9 for the precise citation from [12].

Bifurcate codimension-10 characteristic gluing [11,12]. Let m ≥ 2 be an integer.
Consider two spheres S1 and S2 equippedwith sphere data x1 and x2 aswell as prescribed
mth-order derivatives in all directions, respectively. If this mth-order data on S1 and S2
is sufficiently close to the respective mth-order data on the round spheres of radius 1
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Fig. 1. Perturbative codimension-10 characteristic gluing (on the left) and higher-order codimension-10 char-
acteristic gluing along two null hypersurfaces bifurcating from an auxiliary sphere (on the right)

and 2 in Minkowski spacetime, then it is possible to characteristically glue – up to
a 10-dimensional space of charges – the mth-order data of S1 and S2 along two null
hypersurfaces bifurcating from an auxiliary sphere Saux.
We note that in the above result the spheres S1 and S2 are not perturbed. Moreover,
bifurcate gluing is higher-regularity gluing, that is, we can glue any order m ≥ 2 of
derivatives of the metric components (up to the 10-dimensional space of charges).
We note that the characteristic gluing problem was previously studied by the first author
[8,9] in the much simpler setting of the linear homogeneous wave equation on general
(but fixed) Lorentzian manifolds. Similarly to the present paper, [8] determined that
the only obstructions to solving the characteristic gluing problem are conservation laws
along null hypersurfaces. In the following it was shown that these conservation laws
have important applications in the study of the evolution of scalar perturbations on both
sub-extremal [1,2,5,39] and extremal [3,4,6,7,10,16] black hole spacetimes.

1.2. Main results on the characteristic gluing to the Kerr family. In this section we
outline the main results of this paper on the characteristic gluing to Kerr.

1.2.1. Geometric interpretation of charges As discussed above, the characteristic gluing
of [11,12] holds up to a 10-dimensional space of charges. These charges are calculated
as integrals over spacelike 2-spheres and are denoted by the real number E and the 3-
dimensional vectors P,L andG. At the linear level, the chargesE and P are proportional
to themodes l = 0 and l = 1 of ρ+r div/ β, whileL andG are proportional to themagnetic
and electric parts of the mode l = 1 of β, see Sect. 2.5 for precise definitions.

Theorem 1.1. Given a strongly asymptotically flat family of sphere data on spheres SR,
as defined in Sect.2.7, the charges (ER,PR,LR,GR) have a limit (E∞,P∞,L∞,G∞),
called the asymptotic charges. In case the spheres SR lie in a strongly asymptotically
flat spacelike hypersurface, the asymptotic charges are related to the ADM asymptotic
invariants of the spacelike hypersurface by

(E∞,P∞,L∞,G∞) = (EADM,PADM,LADM,CADM),

whereEADM denotes the energy (often called mass), PADM the linear momentum,LADM
the angular momentum, and CADM the center-of-mass.

Our definitions of the charges are, to leading order, consistent with previous definitions
in general relativity of mass, linear and angular momentum in terms of integrals over
spheres; see [35,36,44].
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Fig. 2. Perturbative (left) and bifurcate (right) characteristic gluing to the Kerr family

1.2.2. Perturbative characteristic gluing to Kerr The following is a first version of our
main result for characteristic gluing to Kerr along one null hypersurface, see Theorem
3.1 for a precise version.

Theorem 1.2. Consider a strongly asymptotically flat family of sphere data xR on
spheres SR. For R ≥ 1 sufficiently large, there exist (1) a perturbation SpertR of SR along
the ingoing null hypersurfaceHR·[−δ,δ], (2) a sphere SKerr2R in some Kerr spacetime, and

(3) a null hypersurface H[R,2R], solving the constraint equations, and connecting SpertR
and SKerr2R and their respective sphere data.

The above perturbative characteristic gluing to Kerr is C2-gluing for the metric com-
ponents. In Theorem 1.2 we glue to a reference sphere in Kerr. We could alternatively
glue to a perturbation of the reference sphere in Kerr to avoid perturbing SR to SpertR . In
Theorem 1.2 it is not necessary to have a family of sphere data data. Indeed, one can
replace this family with one fixed sphere datum with sufficiently strong bounds.

1.2.3. Bifurcate characteristic gluing to Kerr We can also characteristically glue mth-
order derivatives in all directions, for any integer m ≥ 2, (without perturbing any of
the spheres) to Kerr by applying the bifurcate characteristic gluing of [11,12], see the
discussion above and Theorem 2.21 below. This yields higher-regularity gluing ofmetric
components. We refer to Theorem 3.2 for a precise version of the following; see also
Fig. 2 below.

Theorem 1.3. Let m ≥ 2 be an integer. On spheres SR let xR be a strongly asymp-
totically flat family of sphere data together with prescribed mth-order derivatives. For
R ≥ 1 sufficiently large, we can characteristically glue, to mth-order, along two null
hypersurfaces bifurcating from an auxiliary sphere, the sphere SR to a sphere SKerr2R in
some Kerr spacetime.

In Theorem 1.3 it is not necessary to have a strongly asymptotic family of sphere data.
Indeed, one can replace this family with one fixed sphere data with sufficiently strong
bounds.

1.2.4. Spacelike gluing to Kerr As corollary of Theorem 1.3 we can deduce spacelike
gluing to Kerr for strongly asymptotically flat spacelike initial data, see Corollary 3.3
for a precise version, and Fig. 3 below.

Corollary 1.4. Let m ≥ 0 be an integer. Let (�, g, k) be smooth strongly asymptotically
flat spacelike initial data with asymptotic invariants (EADM,PADM,LADM,CADM) such
that (EADM)2 > |PADM|2. Then, sufficiently far out, (g, k) can be glued inCm-regularity
across a compact region to spacelike initial data for some Kerr spacetime.
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Fig. 3. Application of bifurcate characteristic gluing in the proof of smooth spacelike gluing to Kerr

The assumption of strong asymptotic flatness of the spacelike initial data corresponds to
working in the center-of-mass frame of the isolated gravitational system, see [19]. The
proof of Corollary 1.4 is by combining the bifurcate gluing to Kerr with local existence
[37,38] for the characteristic initial value problem. In particular, the ∞th-order version
of bifurcate codimension-10 characteristic gluing (see remarks above) should yield a
smooth spacelike gluing to Kerr; however, we will not provide details here.

1.3. Overview of the main ideas.

1.3.1. Main steps In this sectionwewill outline themain steps of the proofs of Theorems
1.2 and 1.3. We refer the reader to Fig. 4 below for an illustration of the relevant spheres
and charges.

(1) We setup the problem by distinguishing two cases:
(a) We are given a strongly asympotically flat spacelike initial data set (�, g, k)

foliated by 2-spheres SR .
(b) We are given a strongly asymptotically flat family of spheres SR with sphere data

(xR) which are not lying in strongly asymptotically flat spacelike initial data.
(2) We apply the perturbative codimension-10 characteristic gluing of [11,12] to glue a

perturbation Spert(λR)

R of SR to a sphere SλR
2R in some Kerr spacetime λR along a null

hypersurfaceH[R,2R]. Here the vector λR parametrizes the Kerr spacetimes through
asymptotic invariants, see Step (4) below. The gluing holds up to the 10-dimensional
space of charges. We denote the associated charges on SR and Spert(λR)

R by QR and

Qpert(λR)

R , respectively. Moreover, we denote by QλR
2R the charges on SλR

2R calculated

from Kerr, and by Qglue(λR)

2R the charges on the same sphere calculated from the
gluing solution on H[R,2R]. We consider the charge difference

(�Q)(λR) := QλR
2R − Qglue(λR)

2R . (1.1)

Our goal is to determine a Kerr parameter λR for which (�Q)(λR) = 0.
(3) We derive asymptotic expansions for the charges QR for large R ≥ 1 (and denote

the limits by Q∞). In case (a) of a spacelike hypersurface �, we show that these are
related to the asymptotic invariants AI(�) of (�, g, k), thus yielding a geometric
interpretation of the charges. See Sect. 1.3.3.

(4) Wemake use of the 10-dimensional parametrizationλ ∈ R
10 ofKerr spacelike initial

data (�λ, gλ, kλ) by its asymptotic invariantsAI(�λ) developed inChruściel–Delay
[21], and consider spheres Sλ

2R with sphere data xλ
2R lying in these spacelike initial
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Fig. 4. The relevant spheres and charges for the characteristic gluing to the Kerr family

data. In case (a) it suffices to consider the parameter λ of Kerr spacelike initial data
to lie in a ball B of finite radius in R

10. In case (b) we need to consider a larger set
of parameters λ = λR , namely, an ellipsoid ER with semi-major axis proportional
to R1/2. See Sect. 1.3.4.

(5) We derive a homotopy between the charge difference (�Q)(λR) and an appropri-
ate difference between the asymptotic charges Q∞ and the asymptotic invariants
AI(�λR ) of the Kerr initial data�λR . The latter difference is shown to always admit
a root λ′

R . We prove uniform estimates for the homotopy that allow us to conclude
by a topological degree argument that the charge difference (�Q)(λR) also admits
a root. See Sect. 1.3.4.

1.3.2. Sphere data and charges For a given sphere S, the sphere data x on S is given by
the following geometric components on S,

x = (�, g/, trχ, χ̂, trχ, χ̂, η, ω, Dω,ω, Dω, α, β, ρ, σ, β, α).

The above components are expressed in a null frame in the context of a double null
coordinate system. For the precise definitionswe refer to Sect. 2.1. The data x determines
all derivatives of the spacetime timemetric up to order 2 (see also Sect. 2.4). Furthermore,
given sphere data on S we introduce the associated charges Q = (E,P,L,G) on S to
be the integrals (2.21) over S.

We define strongly asymptotically flat sphere data on a family of spheres SR in
accordance with the decay towards spacelike infinity in the works [19] and [34]. Indeed,
we show by explicit construction that each strongly asymptotically flat spacelike initial
data admits strongly asymptotically flat sphere data on families of spheres (but in general
we do not assume that sphere data stems from spacelike initial data). Our construction
is such that the special case of Schwarzschild spacelike data (expressed in isotropic
coordinates so that strong asymptotic flatness holds) leads precisely to the family of
Schwarzschild reference sphere data with respect to Eddington–Finkelstein double null
coordinates. To achieve this for general spacelike initial data, we rescale the coordinate
sphere Sr to S1, apply the coordinate change from isotropic coordinates to Schwarzschild
coordinates, make appropriate gauge choices for ̂L , ̂L and �, and use the definitions of
Ricci coefficients and null curvature components. We show that the rescaled quantities
are well-defined and derive estimates and then we rescale back up. See Sects. 7.1 and
7.2.
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1.3.3. Relation of charges to asymptotic invariants For strongly asymptotically flat fam-
ilies of sphere data xR on spheres SR , the following asymptotic expansions hold for large
R ≥ 1,

E (SR) = E∞ + O(R−1/2), P (SR) = O(R−1/2),

L (SR) = L∞ + O(1), G (SR) = G∞ + O(1).

where (E∞,P∞ = 0,L∞,G∞) are defined as the limits of (E,P,L,G) on SR as R →
∞. These asymptotic charges can also be defined for more general families of sphere
data (not necessarily strongly asymptotically flat), in which case we expect P∞ �= 0 and
G∞ = +∞. On the other hand, if the family of sphere data lies in strongly asymptotically
flat spacelike initial data, then we have the following stronger decay rates for E and P,

E(SR) = E∞ +O(R−1), P(SR) = O(R−3/2). (1.2)

The charges (E,P,L,G) have a well-defined connection to the ADM asymptotic invari-
ants. Indeed, for spheres SR in asymptotically flat spacelike initial data with well-defined
ADM asymptotic invariants, we can relate the charges (E,P,L,G) to the local integrals
Eloc
ADM of the ADM energy, Ploc

ADM of the ADM linear momentum, Lloc
ADM of the ADM

angular momentum, and Cloc
ADM of the ADM center-of-mass as follows,

E(SR) =Eloc
ADM(SR) + O(1), P(SR) =Ploc

ADM(SR) + O(1),

L(SR) =Lloc
ADM(SR) + O(1), G(SR) =Cloc

ADM(SR) − R · Ploc
ADM(SR) + O(1).

(1.3)

Hence in that case,

E∞ = EADM, P∞ = PADM, L∞ = LADM.

For families of sphere data in an asymptotically flat spacelike hypersurface with non-
vanishing total ADM linear momentum PADM �= 0 (such hypersurfaces are not strongly
asymptotically flat), (1.3) shows that P∞ �= 0, and subsequently, |G∞| = +∞. Impor-
tantly, the Kerr spacelike initial data satisfies in general PADM �= 0 which has significant
repercussions for our analysis of the gluing problem to the Kerr family. In particular,
it forces us to consider and prove delicate estimates for spacelike initial data with very
large center-of-mass CADM, see also the discussion in Sect. 1.3.4.

On the other hand, for families of sphere data in strongly asymptotically flat spacelike
hypersurfaces (in which case PADM = 0 and Ploc

ADM(SR) = O(R−3/2)), we have by (1.3)
that G∞ = CADM is well-defined.

1.3.4. Choice of Kerr to glue to The goal is to prove that for sufficiently large R ≥ 1
we can characteristically glue to a Kerr sphere Sλ

2R . Ideally, one would like to consider
a fixed set of Kerr parameters λ such that the spheres Sλ

2R in the corresponding space-
like initial data have asymptotic charges (EKerr∞ ,PKerr∞ ,LKerr∞ ,GKerr∞ ) close to the given
(E∞,P∞,L∞,G∞), and subsequently argue that there exists a λ in that set which solves
the gluing problem.

However, for each fixed λ with PKerr
ADM �= 0 we have by (1.3) that as R → ∞,

GKerr(Sλ
2R) =Cloc

ADM(Sλ
2R)

︸ ︷︷ ︸

→CKerr
ADM

−(2R) · Ploc
ADM(Sλ

2R)
︸ ︷︷ ︸

→PKerr
ADM

+O(1) → ∞,
(1.4)
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which in particular shows that GKerr∞ is far away from matching the finite G∞. Thus we
have to change our approach and consider an R-dependent set of λwhich accommodates
bounded GKerr(Sλ

2R) by allowing for growing center-of-mass CKerr
ADM = O(R1/2) and

small linear momentum PKerrADM = O(R−1/2) to cancel to top order. Namely, we consider
the ellipsoid ER(E∞) defined by

(

R1/2|E(λ) − E∞|
)2

+
(

R1/2|P(λ)|
)2

+
(

R−1/4|L(λ)|
)2

+
(

R−1/2|C(λ)|
)2 ≤ (E∞)2 .

In the simpler case where the spheres SR lie in strongly asymptotically flat spacelike
hypersurfaces, we have the stronger decay P(SR) = O(R−3/2) which implies in the
matching process that GKerr(Sλ

2R) remains finite as R → ∞ (unlike in (1.4)).
To determine the Kerr parameter λR whichmakes the charge difference (�Q)(λR) =

0 (see (1.1) for definition), we use the asymptotic expansions ofQR andQλR
2R (discussed

in Sect. 1.3.3 above) to construct a homotopy from F1(λR) := (�Q)(λR) to themapping
F0(λR) defined by

(E∞,P∞,L∞,C∞) −
(

EKerr
ADM,PKerr

ADM,LKerr
ADM,CKerr

ADM − 2R · PKerr
ADM

)

.

The mapping F0(λR) has a unique zero in the interior of ER(E∞) for large R ≥ 1.
Moreover, as indicated in the previous section, the asymptotic expansions forQλR

2R hold
uniformly for large R ≥ 1 and λ ∈ ER(E∞), so that in particular we have uniform
estimates for the constructed homotopy. Therefore we conclude by a topological degree
argument that the charge difference (�Q)(λR) must have a zero.

1.4. Overview of the paper. The paper is structured as follows.

• In Sect. 2 we introduce the notation and state the definitions and preliminaries.
• In Sect. 3 we precisely state the main results of this paper.
• In Sect. 4 we prove the main theorem of this paper, Theorem 3.1.
• In Sect. 5 we prove Corollary 3.3, the gluing of spacelike initial data to Kerr.
• In Sect. 6 we recapitulate spacelike initial data and asymptotic invariants.
• In Sect. 7 we construct strongly asymptotically flat families of sphere data from
strongly asymptotically flat spacelike initial data, and relate the charges (E,P,L,G)

to the integrals of the ADM asymptotic invariants.

2. Notation, Definitions and Preliminaries

For two real numbers A and B, the inequality A � B means that there is a universal
constant C > 0 such that A ≤ C B. Greek indices range over α = 0, 1, 2, 3, lowercase
Latin indices over a = 1, 2, 3 and uppercase Latin indices over A = 1, 2. For a real
number r > 0 and a point x in a metric space X , denote by B(x, r) the open ball in X of
radius r centered at x . For real numbers ε > 0 and α ≥ 0, let O(εα) denote terms such
that O(εα)/εα remains bounded as ε → 0, and O(εα) denotes terms such that

lim
ε→0

O(εα)

εα
= 0.

For given Cartesian coordinates (x1, x2, x3), define the spherical coordinates (r, θ1, θ2)
by

x1 = r sin θ1 cos θ2, x2 = r sin θ1 sin θ2, x3 = r cos θ1. (2.1)
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2.1. Double null coordinates. In this section we summarize the standard setup of double
null coordinates, Ricci coefficients and null curvature components. We refer to Section
2.1 in [12] for full details. Let (M, g) be a vacuum spacetime, and denote by D its
covariant derivative and by R its Riemann curvature tensor. Let u and v be two local
optical functions on M, and denote

Hu0 = {u = u0}, Hv0
= {v = v0}, Su0,v0 = Hu0 ∩ Hv0

,

where we assume the optical functions u and v are such that the Su,v are spacelike 2-
spheres. Let g/ denote the induced metric on Su,v , and∇/ the induced covariant derivative.
Let r(u, v) denote the area radius of (Su,v, g/), defined by areag/

(

Su,v

) = 4πr2. Define
the geodesic null vectorfields L ′ and L ′, the null lapse �, and the normalized null
vectorfields ̂L and ̂L by

L ′ := −2Du, L ′ := −2Dv, �−2 := −1

2
g

(

L ′, L ′) , ̂L := �L ′, ̂L := � L ′. (2.2)

Let (θ1, θ2) be local coordinates on Su0,v0 , for some given real numbers v0 > u0. We
extend (θ1, θ2) toM by first transporting them along the null generators L ′ ofHu0 and
then onto M along the generators L ′ of the null hypersurfaces Hv . The coordinates
(u, v, θ1, θ2) are called double null coordinates. In particular, it holds in double null
coordinates the null vectorfields L := �̂L and L := �̂L can be expressed as L =
∂v + b and L = ∂u , and the spacetime metric g can be written as g = −4�2dudv +
g/AB

(

dθ A + bAdv
) (

dθ B + bBdv
)

, where the shift vector b = bA∂A is an Su,v-tangential
vectorfield, satisfying b = 0 onHu0 . Through the coordinates (θ1, θ2), we define on
each Su,v the unit round metric

◦
γ :=

(

dθ1
)2

+ sin2 θ1
(

dθ2
)2

. (2.3)

We also define standard vector spherical harmonics (and the associated projections) with

respect to
◦
γ on Su,v; see [11,12,24] for a detailed setup. We decompose the induced

metric g/ into

g/ = φ2g/c where φ2 := √

g/

√

◦
γ

−1

, g/c := φ−2g/, (2.4)

where
√
g/ and

√ ◦
γ denote the volume forms of g/ and

◦
γ with respect to (θ1, θ2), respec-

tively.
The proof of the following calculus lemma is straight-forward and omitted.

Lemma 2.1 (Calculus lemma). Let (S, g/) be a Riemannian 2-sphere equipped with a

round metric
◦
γ as defined in (2.3), and consider the associated spherical harmonics

projections. Let X be a 1-form and W a g/-tracefree symmetric 2-tensor on S, and let K
denote the Gauss curvature of g/. Assume that for a real number ε > 0, it holds that

‖g/ − ◦
γ ‖H6(S) ≤ ε.

There exists a universal real number ε0 > 0 such that if 0 < ε < ε0,
∣

∣

∣(div/ g/X)[0]
∣

∣

∣ � ‖g/ − ◦
γ ‖H6(S) · ‖X‖H2(S),

∣

∣

∣

(

div/ g/W
)[1]∣∣

∣ � ‖g/ − ◦
γ ‖H6(S) · ‖W‖H2(S).

and for m = −1, 0, 1,
∣

∣K (1m)
∣

∣ �
(

‖g/ − ◦
γ ‖H6(S)

)2
.
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We define the Ricci coefficients as follows. For Su,v-tangent vectorfields X and Y , let

χ(X,Y ) := g(DX̂L,Y ), χ(X,Y ) := g(DX ̂L,Y ), ζ(X) := 1

2
g(DX̂L, ̂L),

ζ (X) := 1

2
g(DX ̂L, ̂L), η := ζ + d/ log�, η := −ζ + d/ log�,

ω := D log�, ω := D log�,

(2.5)

where d/ is the extrinsic derivative of Su,v , and for an Su,v-tangent tensor W on M,
we define DW := L/LW and DW := L/ LW , where L/ denotes the projection of the
Lie derivative on M onto the tangent space of Su,v . We remark that ζ = −ζ and
η = −η + 2d/ log�.

We define the null curvature components as follows. For Su,v-tangent vectorfields X
and Y , let

α(X,Y ) := R(X, ̂L,Y, ̂L), β(X) :=1

2
R(X, ̂L, ̂L, ̂L),

ρ := 1

4
R(̂L, ̂L, ̂L, ̂L), σ ∈/(X,Y ) :=1

2
R(X,Y, ̂L, ̂L),

β(X) := 1

2
R(X, ̂L, ̂L, ̂L), α(X,Y ) :=R(X, ̂L,Y, ̂L).

(2.6)

2.2. Null structure equations. The geometric setting and the Einstein equations imply
relations between the metric components, Ricci coefficients and null curvature com-
ponents, the so-called null structure equations. Before stating them, we introduce the
following notation from Chapter 1 of [18]. For two Su,v-tangential 1-forms X and Y , let

(X, Y ) :=g/(X, Y ), (∗X)A :=∈AB X B , div/ X := ∇/ AXA, curl/ X :=∈AB ∇/ AXB ,

(X̂⊗Y )AB :=XAYB + XBYA − (X · Y )g/AB , (∇/ ̂⊗Y )AB := ∇/ AYB + ∇/ BYA − (div/ Y )g/AB ,

where ∈ denotes the area 2-form of Su,v . For two symmetric Su,v-tangential 2-tensors
V and W , and a 1-form X let

trV := g/ABVAB, ̂V := V − 1

2
trV g/, V ∧ W := ∈/ABVACW

C
B,

(V · X)A := VAB X
B, div/ VA := ∇/ BVBA.

For a symmetric Su,v-tangential tensorW , let ̂DW denote the tracefree part of DW with
respect to g/, and ̂DW the tracefree part of DW with respect to g/.
We are now in position to discuss the null structure equations. We have the first variation
equations,

Dg/ =2�χ, Dg/ =2�χ, Dφ = �trχφ

2
, (2.7)

the Raychauduri equations,

Dtrχ +
�

2
(trχ)2 − ωtrχ = − �|χ̂ |2g/, Dtrχ +

�

2
(trχ)2 − ωtrχ = − �|χ̂ |2g/,

(2.8)
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and further

Dχ̂ =�|χ̂ |2g/ + ωχ̂ − �α, Dχ̂ =�|χ̂ |2g/ + ωχ̂ − �α,

Dη =�(χ · η − β), Dη =�(χ · η + β),

Dω =�2(2(η, η) − |η|2 − ρ), Dω =�2(2(η, η) − |η|2 − ρ),

curl/ η = − 1

2
χ̂ ∧ χ̂ − σ, curl/ η = − curl/ η = − curl/ ζ,

D(η) = − �(χ · η − β) + 2d/ ω, D(η) = − �(χ · η + β) + 2d/ ω.

(2.9)

Moreover, we have the Gauss equation,

K +
1

4
trχ trχ − 1

2
(χ̂, χ̂) = −ρ, (2.10)

where K denotes the Gauss curvature of Su,v , the Gauss–Codazzi equations

div/ χ̂ − 1

2
d/ trχ + χ̂ · ζ − 1

2
trχζ = −β, div/ χ̂ − 1

2
d/ trχ − χ̂ · ζ +

1

2
trχζ = β,

(2.11)

While there are more null structure equations, the above suffice for the explicit calcula-
tions in this paper. We refer to [12] for a complete list of the equations.

2.3. Minkowski, Schwarzschild and Kerr spacetimes. In this section we discuss the ge-
ometry of Minkowski, Schwarzschild and Kerr spacetimes.

Minkowski spacetime. The trivial solution to the Einstein equations is Minkowski
spacetime (R4,m) where m = diag(−1, 1, 1, 1). Defining standard spherical coordi-
nates on R

3 by (2.1), the reference double null coordinates on Minkowski are given
by

(u, v, θ1, θ2) =
(

1

2
(t − r) ,

1

2
(t + r) , θ1, θ2

)

, (2.12)

with respect to whichm = −4dudv+(v−u)2
◦
γ ABdθ Adθ B , where

◦
γ is defined in (2.3).

We note that the area radius of the sphere Su,v is given by r = v − u. Explicitly, with
respect to the coordinates (2.12), the non-trivial Minkowski metric components, Ricci
coefficients and null curvature components on Su,v are given by (with r = v − u)

� =1, g/ =r2
◦
γ , trχ =2

r
, trχ = − 2

r
. (2.13)

The family of Schwarzschild spacetimes. For real numbers M ≥ 0, let

gM = −
(

1 − 2M

r

)

dt2 +

(

1 − 2M

r

)−1

dr2 + r2
(

dθ2 + sin2 θdφ2
)

. (2.14)

For M = 0, the metric (2.14) is Minkowski, while for M > 0 it yields a black hole
solution with event horizon at {r = 2M}. The so-called exterior region {r > 2M} can
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be covered by Eddington–Finkelstein double null coordinates (u, v, θ1, θ2)with respect
to which

gM = −4�2
Mdudv + rM (u, v)2

◦
γ CDdθCdθD,

where �M :=
√

1 − 2M
r and the area radius rM (u, v) is implicitly defined by (see (98)

in [26])

v − u

2M
= rM (u, v)

2M
+ log

(

rM (u, v)

2M
− 1

)

. (2.15)

By explicit computation it follows that in Eddington–Finkelstein coordinates, for real
numbers v > u such that rM (u, v) > 2M , the non-vanishing Schwarzschild metric
components, Ricci coefficients and null curvature components on Su,v are given by

�M =
√

1 − 2M

rM
, g/ =r2M

◦
γ , trχ =2�M

rM
,

trχ = − 2�M

rM
, ρ = − 2M

r3M
ω = M

r2M
,

Dω = − 2M

r3M
�2

M , ω = − M

r2M
, Dω = − 2M

r3M
�2

M .

(2.16)

Kerr spacetimes. The Kerr metric is given in Boyer–Lindquist coordinates (t, r, θ1, θ2)
by

g = −dt2 + �

(

1

�
dr2 + d(θ1)2

)

+ (r2 + a2) sin2 θ1d(θ2)2

+
2Mr

�

(

a sin2 θ1 d(θ2)2 − dt
)2

,

where � = r2 − 2Mr + a2 and � = r2 + a2 cos2 θ1. Define the set I (0) of timelike
4-vectors by

I (0) := {(E,P) ∈ R × R
3 : E2 − |P|2 > 0} ⊂ R

4, (2.17)

and define asymptotic invariants vectors λ to be elements of the set λ ∈ I (0)×R
3×R

3.
We denote the components of λ ∈ I (0)×R

3 ×R
3 by λ = (E(λ),P(λ),L(λ),C(λ)). In

Appendix F of [21] it is shown that for every λ ∈ I (0) ×R
3 ×R

3 there is a Kerr space-
time (Mλ, gλ) with spacelike hypersurface �λ carrying induced initial data (gλ, kλ)

satisfying

(EADM,PADM,LADM,CADM)(gλ, kλ) = (E(λ),P(λ),L(λ),C(λ)).
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2.4. Sphere data and null data. In this section we define the notions of sphere data and
null data.

Definition 2.2. (Sphere data). For real numbers v > u, let Su,v be a 2-sphere equipped

with a round metric
◦
γ as in (2.3). Sphere data xu,v on Su,v is given by

x = (�, g/,�trχ, χ̂,�trχ, χ̂, η, ω, Dω,ω, Dω, α, α),

where
• � > 0 is a positive scalar function and g/ is a Riemannian metric,
• �trχ,�trχ,ω, D�,ω, Dω, ρ and σ are scalar functions,
• η, β and β are vectorfields,
• χ̂ , χ̂ , α and α are g/-tracefree symmetric 2-tensors.

Remarks on Definition 2.2.
(1) Sphere data is gauge-dependent, see [11,12].
(2) The null structure equations and null Bianchi equations of Sect. 2.2 determine from

sphere data theRicci coefficients (η, ζ, ζ ) andnull curvature components (β, ρ, σ, β),
as well as the derivatives

(

Dη, Dη, Dζ, Dχ, Dχ, Dω
)

,
(

Dβ, Dρ, Dσ, Dβ, Dα
)

,
(

Dη, Dη, Dζ, Dχ, Dχ, Dω
)

,
(

Dβ, Dσ, Dρ, Dβ, Dα
)

.

(3) In the following we denote by (β, ρ, σ, β)(xu,v) the null curvature components cal-
culated from xu,v by the null structure equations (2.9), (2.10) and (2.11), and interpret
them as part of sphere data.

Notation. We denote the Minkowski reference sphere data on Su,v coming from (2.13)
by mu,v , and for real numbers M ≥ 0, we denote the Schwarzschild reference sphere
data on Su,v coming from (2.16) by mM

u,v .
In Sect. 7 we discuss how to construct a family of sphere data in asymptotically flat

spacelike initial data. Applying this construction to the above Kerr spacelike initial data
(�λ, gλ, kλ), we get a family of Kerr sphere data xλ−R,2R (lying on spheres S−R,2R foliat-

ing�λ). By deep inspection of the construction of [21] and applying the ideas of Sect. 7 to
relate the charges (E,P,L,G) to theADMlocal integrals (Eloc

ADM,Ploc
ADM,Lloc

ADM,Cloc
ADM),

it is possible to prove the following proposition. For readability of this paper, the explicit
proof is omitted.

Proposition 2.3 (Convergence of charges to asymptotic invariants) Let R ≥ 1 and
E0 > 0 be two real numbers. Let ER(E0) be the set of asymptotic invariants vectors λ

such that
(

R1/2|E(λ) − E0|
)2

+
(

R1/2|P(λ)|
)2

+
(

R−1/4|L(λ)|
)2

+
(

R−1/2|C(λ)|
)2 ≤ (E0)

2 .

(2.18)

Then for R ≥ 1 sufficiently large, for all λ ∈ ER(E0), for m = −1, 0, 1, (i−1, i0, i1) =
(2, 3, 1), the Kerr sphere data xλ−R,2R is well-defined and

‖xλ−R,2R − mE0‖X (S−R,2R) �R−1 · |E(λ) − E0| + R−1 · |P(λ)|
+ R−2 · |L(λ)| + R−2 · |C(λ)|

+

(

R−2 · |L(λ)| + |P(λ)|
E0

· R−2 · |C(λ)|
E0/R

)2

,

(2.19)
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and

E
(

xλ−R,2R

) =E(λ) +O(R−1), Pm (

xλ−R,2R

) =P(λ)im +O(R−3/2),

Lm (

xλ−R,2R

) =L(λ)im +O(R−1/2), Gm (

xλ−R,2R

) =C(λ)im − 3R · P(λ)im +O(R−1/4).

Along a null hypersurface, we consider the following null data.

Definition 2.4 (Ingoing and outgoing null data). For three real numbers u0 < v1 <

v2, outgoing null data xu0,[v1,v2] on Hu0,[v1,v2] is given by a family of sphere data
(

xu0,v
)

v1≤v≤v2
on Hu0,[v1,v2] = ⋃

v1≤v≤v2

Su0,v . Similarly, for three real numbers u1 <

u2 < v0, ingoing null data x[u1,u2],v0 on H[u1,u2],v0 is given by a family of sphere data
(

xu,v0

)

u1≤u≤u2
onH[u1,u2],v0 = ⋃

u1≤u≤u2
Su,v0 .

In addition to the above sphere data xu,v on spheres Su,v , we also consider for integers
m ≥ 1 the higher-order sphere data on Su,v

(

xu,v,DL ,m
u,v ,D L,m

u,v

)

, (2.20)

where xu,v denotes sphere data and DL ,m and D L,m are tuples of L- and L-derivatives
of sphere data up to order m; we refer to Section 2.10 in [12] for definitions and dis-
cussion. We denote the Schwarzschild reference higher-order sphere data of order m by
(

mM
u,v,DL ,m,M

u,v ,D L,m,M
u,v

)

.

Importantly, the gluing of higher-order sphere data implies the higher regularity (in
all directions) of the constructed gluing solution. Similarly, we consider higher-order
outgoing and ingoing null data onHu0,[v1,v2] andH[u1,u2],v0 , respectively.We remark that
higher derivatives are subject to the higher-order null structure equations, see Section
2.10 in [12] for details.

2.5. Definition of charges (E,P,L,G). The following charges play an essential role for
the characteristic gluing problem. In [11,12] they are identified as geometric obstacles
to characteristic gluing.

Definition 2.5 (Charges). For sphere data xu,v and m = −1, 0, 1 define the charges

E := − 1

8π

√
4π

(

r3 (ρ + r div/ β)
)(0)

,

Pm := − 1

8π

√

4π

3

(

r3 (ρ + r div/ β)
)(1m)

,

Lm := 1

16π

√

8π

3

(

r3 (d/ trχ + trχ(η − d/ log�))
)(1m)

H
,

Gm := 1

16π

√

8π

3

(

r3 (d/ trχ + trχ(η − d/ log�))
)(1m)

E
,

(2.21)

where r denotes the area radius calculated from xu,v , and the spherical harmonics pro-

jections are defined with respect to the unit round metric
◦
γ on Su,v .

The numerical factors in the definitions of the charges are determined by comparison to
the ADM asymptotic invariants, see Sects. 7.3, 7.4, 7.5 and 7.6. By explicit calculation,
for real numbers M ≥ 0, and v > u, (E,P,L,G) (mM

u,v) = (M, 0, 0, 0).
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2.6. Norms on spheres and null hypersurfaces. In this section we define the norms used
in this paper. They are analogous to the norms in [12], but with the difference that they
contain weights in v −u for suitable scaling properties (see Lemma 2.16, and also [11]).

Definition 2.6 (Norms on 2-spheres). Let v > u be two real numbers and let Su,v be a

2-sphere equipped with a roundmetric
◦
γ as in (2.3). For integersm ≥ 0 and Su,v-tangent

k-tensors T , define

‖T ‖2Hm (Su,v)
:=

∑

0≤i≤m

(v − u)2(i+k−1)
∥

∥

∥∇/ i T
∥

∥

∥

2

L2(Su,v)
,

where the covariant derivative ∇/ and the volume element of the L2-norm are with

respect to the round metric γ = (v − u)2
◦
γ on Su,v . Moreover, let Hm(Su,v) := {T :

‖T ‖Hm (Su,v) < ∞}.
Definition 2.7 (Norms on null hypersurfaces). For real numbers u0 < v1 < v2, let T
be an Su0,v-tangential tensor onHu0,[v1,v2]. For integers m ≥ 0 and l ≥ 0, define

‖T ‖2Hm
l

(Hu0,[v1,v2]
) :=

v2
∫

v1

∑

0≤i≤l

(v − u0)
2i−1

∥

∥

∥DiT
∥

∥

∥

2

Hm (Su0,v)
dv,

where theLie derivativeD iswith respect to the referenceMinkowskimetric onHu0,[v1,v2].
Let further Hm

l

(Hu0,[v1,v2]
) := {T : ‖T ‖Hm

l

(Hu0,[v1,v2]
) < ∞}.

For real numbers u1 < u2 < v0, let T be an Su,v0 -tangential tensor on H[u1,u2],v0 . For
integers m ≥ 0 and l ≥ 0, define

‖T ‖2
Hm
l

(

H[u1,u2],v0
) :=

u2
∫

u1

∑

0≤i≤l

(v0 − u)2i−1
∥

∥

∥DiT
∥

∥

∥

2

Hm (Su,v0 )
du,

where theLie derivativeD iswith respect to the referenceMinkowskimetric onH[u1,u2],v0 .
Let further Hm

l

(H[u1,u2],v0
) := {T : ‖T ‖

Hm
l

(

H[u1,u2],v0
) < ∞}.

In the following we define the norms of sphere data and null data using the above norms
on spheres and null hypersurfaces. Their definition includes weights in v − u to make
them invariant under the scaling introduced in Sect. 2.8, see Lemma 2.17.

Definition 2.8 (Norm for sphere data). Let xu,v be sphere data on the sphere Su,v . The
norm of xu,v is defined by

‖xu,v‖X (Su,v) :=‖�‖H6(Su,v)
+ (v − u)−2‖g/‖H6(Su,v)

+ ‖η‖H5(Su,v)

+ (v − u)‖trχ‖H6(Su,v) + (v − u)−1‖χ̂‖H6(Su,v)

+ (v − u)‖trχ‖H4(Su,v)
+ (v − u)−1‖χ̂‖H4(Su,v)

+ (v − u)‖ω‖H6(Su,v)
+ (v − u)2‖Dω‖H6(Su,v)

+ (v − u)‖ω‖H4(Su,v)
+ (v − u)2‖Dω‖H2(Su,v)

+ ‖α‖H6(Su,v)

+ (v − u)‖β‖H5(Su,v)
+ (v − u)2‖ρ‖H4(Su,v) + (v − u)2‖σ‖H4(Su,v)

+ (v − u)‖β‖H3(Su,v)
+ ‖α‖H2(Su,v)

,
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where the norms are with respect to (v − u)2
◦
γ on Su,v , see Definition 2.6. Moreover, let

X (Su,v) := {xu,v : ‖xu,v‖X (Su,v) < ∞}.
Definition 2.8 reflects the regularity hierarchy of the null structure equations in the L-
direction. For sphere data xu,v ∈ X (Su,v), the charges E,P,L and G introduced in
Definition 2.5 are well-defined.

Definition 2.9 (Norms for null data). Let R ≥ 1 be a real number. We have the
following.

• Let u0 < v1 < v2 be three real numbers. Let xR := xR·u0,R·[v1,v2] be null data onHR := HR·u0,R·[v1,v2]. The norm of xR on HR is defined by

‖xR‖X (HR) :=‖�‖H6
3 (HR) + ‖g/‖H6

3 (HR) + ‖η‖H5
2 (HR) + R‖�trχ‖H6

3 (HR)

+ R−1‖χ̂‖H6
2 (HR) + R‖�trχ‖H4

2 (HR) + R−1‖χ̂‖H4
3 (HR)

+ R‖ω‖H6
2 (HR) + R2‖Dω‖H6

1 (HR) + R‖ω‖H4
3 (HR)

+ R2‖Dω‖H2
3 (HR) + ‖α‖H6

1 (HR) + R‖β‖H5
2 (HR) + R2‖ρ‖H4

2 (HR)

+ R2‖σ‖H4
2 (HR) + R‖β‖H3

2 (HR) + ‖α‖H2
3 (HR);

see Definition 2.7 for norms over H−R,[R,2R]. Let X (HR) := {xR : ‖xR‖X (HR) <

∞}.
• Let u1 < u2 < v0 be three real numbers. Let xR := xR·[u1,u2],R·v0 be null data onHR := HR·[u1,u2],R·v0 . The norm of xR on HR is defined by

‖xR‖X (HR) :=‖�‖H6
3 (HR) + ‖g/‖H6

3 (HR) + ‖η‖H5
2 (HR) + R‖�trχ‖H6

3 (HR)

+ R−1‖χ̂‖H6
2 (HR) + R‖�trχ‖H4

2 (HR) + R−1‖χ̂‖H4
3 (HR)

+ R‖ω‖H6
2 (HR) + R2‖Dω‖H6

1 (HR) + R‖ω‖H4
3 (HR)

+ R2‖Dω‖H2
3 (HR) + ‖α‖H6

1 (HR) + R‖β‖H5
2 (HR) + R2‖σ‖H4

2 (HR)

+ R2‖ρ‖H4
2 (HR) + R‖β‖H3

2 (HR) + ‖α‖H2
3 (HR);

see Definition 2.7 for norms over HR . Let X (HR) := {xR : ‖xR‖X (HR) < ∞}.
In addition to the above normX (H) for ingoing null data, we define the following higher
regularity norm X +(H). This norm is necessary for the characteristic gluing of [11,12].

Definition 2.10 (Norm for higher-regularity ingoing null data). Let u1 < u2 < v0 be
three real numbers. Let xR := xR·[u1,u2],R·v0 be null data onHR := HR·[u1,u2],R·v0 . The
norm of x is defined by

‖xR‖X +(HR) :=‖�‖H12
9 (HR) + ‖g/‖H12

9 (HR) + ‖η‖H11
8 (HR) + R‖�trχ‖H12

9 (HR)

+ R−1‖χ̂‖H12
8 (HR) + R‖�trχ‖H10

8 (HR) + R−1‖χ̂‖H10
9 (HR)

+ R‖ω‖H12
8 (HR) + R2‖Dω‖H12

7 (HR) + R‖ω‖H10
9 (HR)

+ R2‖Dω‖H8
9 (HR) + ‖α‖H12

7 (HR) + R‖β‖H11
8 (HR) + R2‖σ‖H10

8 (HR)

+ R2‖ρ‖H10
8 (HR) + R‖β‖H9

8 (HR) + ‖α‖H8
9 (HR),
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where the norms over HR are defined in Definition 2.7. Moreover, let

X +(HR) := {x : ‖x‖X +(HR) < ∞}.

Notation. Given sphere data xu,v on Su,v and real numbers M ≥ 0, we write ‖xu,v −
mM‖X (Su,v) to denote ‖xu,v − mM

u,v‖X (Su,v). Similarly for outgoing null data xu0,[v1,v2]
onHu0,[v1,v2] and ingoing null data x[u0,u1],v0 on H[u0,u1],v0 .

2.7. Asymptotically flat families of sphere data and ingoing null data. In this section, we
introduce asymptotically flat families of sphere data and ingoing null data, and introduce
the asymptotic charges.

Definition 2.11 (Strongly asymptotically flat sphere data). Let v > u be two fixed real
numbers, and let (xR·u,R·v)R≥1 be a family of sphere data. We say that (xR·u,R·v) is a
strongly asymptotically flat family of sphere data if there is a real number M ≥ 0 such
that

‖xR·u,R·v − mM‖X (SR·u,R·v) = O(R−3/2), ‖β[1](xR·u,R·v)‖L2(SR·u,R·v) = O
(

R−3
)

.

(2.22)

Remarks on Definition 2.11.

(1) In this paper we work with strongly asymptotically families of sphere data (x0,R)

(that is, u = 0 and v = 1), in Theorem 3.2 and the proof of Corollary 3.3, and
(x−R,R) (that is, u = −1 and v = 1) in Definition 2.14 below.

(2) By Definition 2.8, the decay (2.22) implies in particular

R‖α‖L2(SR·u,R·v) + R‖α‖L2(SR·u,R·v) + R‖β‖L2(SR·u,R·v) =O
(

R−3/2
)

,

R3/2‖β[1]‖L2(SR·u,R·v) =O(R−3/2).

(3) These decay rates are in agreement with a sequence of spheres going to spacelike
infinity in a strongly asymptotically flat spacetime; see Theorem 7.1 and [19].

(4) Clearly, the above definition can be generalized in a straight-forwardway tomth-order
sphere data; we omit the explicit setup of the appropriate higher-regularity norm.

We define the following asymptotic charges.

Definition 2.12 (Asymptotic charges). Let (xR·u,R·v) be a strongly asymptotically flat
family of sphere data. Let

E∞ := lim
R→∞E(xR·u,R·v), P∞ := lim

R→∞P(xR·u,R·v),

L∞ := lim
R→∞L(xR·u,R·v), G∞ := lim

R→∞G(xR·u,R·v),

where the charges (E,P,L,G) are defined in Definition 2.5.

The asymptotic charges satisfy the following basic properties. We omit their proofs.
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Lemma 2.13 (Properties of asymptotic charges). Let (xR·u,R·v) be a strongly asymptot-
ically flat family of sphere data. Then its asymptotic charges are well-defined,

|E∞| + |P∞| + |L∞| + |G∞| < ∞,

and it holds that E∞ = M and P∞ = 0, where M is the real number appearing in
(2.22), and

E
(

xR·u,R·v
) =E∞ + O(R−1/2), P

(

xR·u,R·v
) =O(R−1/2),

L
(

xR·u,R·v
) =L∞ + O(1), G

(

xR·u,R·v
) =G∞ + O(1).

The above notion of asymptotic flatness is generalized to ingoing null data as follows.

Definition 2.14 (Strongly asymptotically flat ingoing null data). Let δ > 0 be a real num-
ber.Let (x−R+R·[−δ,δ],R)R≥1 be a family of ingoingnull data.We say that (x−R+R·[−δ,δ],R)

is strongly asymptotically flat if there is a real number M > 0 such that, as R → ∞,

‖x−R+R·[−δ,δ],R − mM‖X +
(H−R+R·[−δ,δ],R

) = O
(

R−3/2
)

,

‖β[1](x−R,R)‖L2(S−R,R) = O
(

R−3
)

,
(2.23)

where the sphere data x−R,R := x |S−R,R . Define the asymptotic charges (E∞,P∞,L∞,

G∞) of the family of ingoing null data (x−R+R·[−δ,δ],R) by applying Definition 2.12 to
the family (x−R,R).

In this paper, strongly asymptotically flat families of ingoing null data (x−R+R·[−δ,δ],R)

are used in Theorem 3.1 and Theorem 7.1. Moreover, for strongly asymptotically flat
families of ingoing null data (x−R+R·[−δ,δ],R), the sphere data (x−R,R) := (x |S−R,R )

forms a strongly asymptotically flat family of sphere data.

2.8. Scaling of Einstein equations. In this section we introduce the scaling used in this
paper and subsequently discuss howgeometric quantities change under scaling. Consider
local double null coordinates (u, v, θ1, θ2) in a spacetime (M, g),

g = −4�2dudv + g/AB
(

dθ A + bAdv
) (

dθ B + bBdv
)

.

The scaling is defined in two steps.

(1) For a real number R ≥ 1, define the local coordinates (R · ũ, R · ṽ, θ̃1, θ̃2) =
(u, v, θ1, θ2). Clearly it holds that du = Rdũ, dv = Rd ṽ, dθ1 = d θ̃1, dθ2 =
d θ̃2, and thus

g = − 4R2 · �2dũd ṽ + g/AB
(

d θ̃ A + R · bAd ṽ
) (

d θ̃ B + R · bBd ṽ
)

=R2
(

−4 · �2dũd ṽ + R−2g/AB
(

d θ̃ A + R · bAd ṽ
) (

d θ̃ B + R · bBd ṽ
))

.

(2) It is well-known that given a Lorentzian metric g is a solution to the Einstein equa-
tions, the conformal metric (R)g := R−2g is also a solution.
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Expressing (R)g in coordinates (ũ, ṽ, θ̃1, θ̃2), we get the spacetime metric

(R)g = −4(R)�2dũd ṽ + (R)g/AB
(

d θ̃ A + (R)bAd ṽ
) (

d θ̃ B + (R)bBd ṽ
)

with (R)�(ũ, ṽ) := �(Rũ, Rṽ), (R)g/(ũ, ṽ) := R−2g/(Rũ, Rṽ), (R)b(ũ, ṽ) := R b(Rũ,

Rṽ).

Notation. Denote in the following the scaling �R(ũ, ṽ, θ̃1, θ̃2) := (R · ũ, R · ṽ, θ̃1, θ̃2).
The following lemma shows how the Ricci coefficients and null curvature components
change under scaling; the proof is by explicit computation and omitted.

Lemma 2.15 (Scaling of Ricci coefficients and null curvature components). Under the
above scaling, the Ricci coefficients and null curvature components transform as follows,

(R)χAB = R−1 (χAB ◦ �R) , (R)ζA = ζA ◦ �R, (R)ηA = ηA ◦ �R, (R)ω = R (ω ◦ �R) ,

(R)χ
AB

= R−1
(

χ
AB

◦ �R

)

, (R)ζ
A

= ζ
A

◦ �R, (R)η
A

= η
A

◦ �R, (R)ω = R
(

ω ◦ �R
)

,

(R)αAB = αAB ◦ �R, (R)βA = R (βA ◦ �R) , (R)ρ = R2 (ρ ◦ �R) ,

(R)σ = R2 (σ ◦ �R) , (R)β
A

= R
(

β
A

◦ �R

)

, (R)αAB = αAB ◦ �R .

tr(R)g/
(R)χ = R (trχ ◦ �R) , (R)χ̂AB = R−1 (χ̂AB ◦ �R) , (R)(Dω) = R2 ((Dω) ◦ �R) ,

tr(R)g/
(R)χ = R

(

trχ ◦ �R

)

, (R)χ̂
AB

= R−1
(

χ̂
AB

◦ �R

)

, (R)Dω = R2 (

(Dω) ◦ �R
)

,

where the tracefree parts of (R)χ, (R)χ and χ, χ are calculated with respect to (R)g/ and

g/, respectively. Furthermore, the area radius r scales as (R)r = R−1 (r ◦ �R).

Notation. For real numbers R ≥ 1 and sphere data xRu,Rv on SRu,Rv , denote the rescaled
sphere data on Su,v following Lemma 2.15 by (R)xu,v .
By the invariance of the Einstein equations under the above scaling, it follows that the
null structure equations and the null Bianchi equations of Sect. 2.2 are scale-invariant
under the scaling of Lemma 2.15. Importantly, we have the following scale-invariance
of Schwarzschild and Kerr. It is straight-forward to show that for real numbers M ≥ 0,
R ≥ 1 and v > u, for Schwarzschild,

(R)mM
u,v = m

M/R
u,v , (2.24)

and for λ ∈ I (0) × R
3 × R

3, for Kerr,

(R)xλ−1,2 := x
(R)λ−1,2, (2.25)

for (R)λ = (R−1E(λ), R−1P(λ), R−2L(λ), R−2C(λ)).
The following three lemmas consider the scaling of tensor norms, data norms and

charges. Their proofs are omitted.

Lemma 2.16 (Scaling of tensor norms). Let p ∈ R and R ≥ 1 be two real numbers,
and let m ≥ 0 and l ≥ 0 be two integers. Let F be a tensor on Su,v for real numbers
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v > u, and define the tensor (R)F by (R)F := Rp · (F ◦ �R). Then it holds for integers
i, l ≥ 0 that

‖(R)F‖Hi (Su,v)
=Rp · ‖F‖Hi (SR·u,R·v),

‖(R)F‖Hi
l

(Hu0,[v1,v2]
) =Rp · ‖F‖Hi

l

(Hr ·u0,[R·v1,R·v2]
),

‖(R)F‖
Hi
l

(

H[u1,u2],v0
) =Rp · ‖F‖

Hi
l

(

HR·[u1,u2],R·v0
).

Lemma 2.17 (Scale-invariance of data norms). Let R ≥ 1 be a real number. Then it
holds that for sphere data xu,v on Su,v ,

‖(R)xR−1u,R−1v‖X (SR−1u,R−1v
) = ‖xu,v‖X (Su,v),

for outgoing null data xu0,[v1,v2] on Hu0,[v1,v2],

‖(R)xR−1u0,R−1[v1,v2]‖X (HR−1u0,R−1[v1,v2]) = ‖xu0,[v1,v2]‖X (Hu0,[v1,v2]),

and for ingoing null data x[u1,u2],v0 on H[u1,u2],v0 ,

‖(R)xR−1[u1,u2],R−1v0
‖X (HR−1[u1,u2],R−1v0

) =‖x[u1,u2],v0‖X (H[u1,u2],v0 ),

‖(R)xR−1[u1,u2],R−1v0
‖X +(HR−1[u1,u2],R−1v0

) =‖x[u1,u2],v0‖X +(H[u1,u2],v0 ),

where the norms X (Su,v),X (Hu0,[v1,v2]),X (H[u1,u2],v0) and X +(H[u1,u2],v0) are de-
fined in Definitions 2.8, 2.9 and 2.10, respectively.

Lemma 2.18 (Scaling of charges). Let xu,v be sphere data and let R ≥ 1 be a real
number. Let (R)xR−1u,R−1v denote the rescaling of xu,v according to Definition 2.15.
Then it holds that

E
(

(R)xR−1u,R−1v

)

=R−1 · E(xu,v), P
(

(R)xR−1u,R−1v

)

=R−1 · P(xu,v),

L
(

(R)xR−1u,R−1v

)

=R−2 · L(xu,v), G
(

(R)xR−1u,R−1v

)

=R−2 · G(xu,v).
(2.26)

From Lemmas 2.13, 2.17 and 2.18, (2.24) and Definitions 2.5, 2.11 and 2.12 we directly
get the following lemma.

Lemma 2.19 (Rescaling of strongly asymptotically flat families). For two fixed real
numbers v > u, let (xR·u,R·v) be strongly asymptotically flat family of sphere data with
asymptotic charge E∞ as defined in Definition 2.12. Then it holds that

‖(R)xu,v − m
E∞/R
u,v ‖X (Su,v) = O

(

R−3/2
)

, ‖β[1]((R)xu,v)‖L2(Su,v) = O
(

R−2
)

.

Moreover, for a fixed real number δ > 0, let (x−R+R·[−δ,δ],R) be a strongly asymptotically
flat family of ingoing null data with asymptotic charge E∞ as defined in Definition 2.14.
Then it holds that

‖(R)x−1+[−δ,δ],1 − m
E∞/R
−1+[−δ,δ],1‖X +

(H−1+[−δ,δ],1
) = O

(

R−3/2
)

, ‖β[1]((R)x |−1,1)‖L2(S−1,1)

= O
(

R−2
)

.
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2.9. Codimension-10 characteristic gluing results of [12]. In this section we state the
precise codimension-10 null gluing result of [12]. First, we have the following pertur-
bative null gluing result.

Theorem 2.20 (Codimension-10 perturbative null gluing of [12]) Let δ > 0 be a real
number. Let x0,1 be sphere data on S0,1, and consider sphere data x̃0,2 on S̃0,2 contained
in ingoing null data x̃ on H̃[−δ,δ],2 solving the null structure equations. Assume that for
some ε > 0 it holds that

‖x0,1 − mM‖X (S0,1) + ‖x̃ − mM‖X +(H̃[−δ,δ],2)
≤ ε. (2.27)

There are universal reals M0 > 0 and ε0 > 0 such that for all reals 0 ≤ M < M0 and
0 < ε < ε0 sufficiently small, there exist

• a solution x to the null structure equations on on H0,[1,2],
• sphere data x0,2 on the sphere S0,2 ⊂ H̃[−δ,δ],2 stemming from a perturbation of

S̃0,2, that is, there exist perturbation functions f and q (see [12] for the precise setup)
such that

x0,2 = P f,q(x̃),

such that on S0,1 the following matching of sphere data holds,

x |S0,1 = x0,1, (2.28)

and on S0,2, matching up to the charges (E,P,L,G) holds, that is, if

(E,P,L,G) (x |S0,2) = (E,P,L,G)
(

x0,2
)

, (2.29)

then

x |S0,2 = x0,2. (2.30)

Moreover, the following estimates hold,

‖x − mM‖X (H0,[1,2]) + ‖x0,2 − x̃0,2‖X (S0,2) �ε,

‖ f ‖Y f + ‖q‖Yq �ε,
(2.31)

where we denoted x̃0,2 := x̃ |S0,2 . In addition, the following perturbation estimate holds,
∣

∣(E,P,L,G)
(

x0,2
) − (E,P,L,G)

(

x̃0,2
)∣

∣ � εM + ε2, (2.32)

as well as the transport estimate
∣

∣(E,P,L,G)
(

x |S0,2
) − (E,P,L,G)

(

x |S0,1
)∣

∣ � εM + ε2. (2.33)

Second, we have the following bifurcate null gluing result.

Theorem 2.21 (Codimension-10 bifurcate null gluing of [12]) Let m ≥ 0 be an integer.
Consider given smooth higher-order sphere data

(x0,1,DL ,m
0,1 ,D L,m

0,1 ) on S0,1 and (x−1,2,DL ,m
−1,2,D L,m

−1,2) on S−1,2.

For (x0,1,DL ,m
0,1 ,D L,m

0,1 ) and (x−1,2,DL ,m
−1,2,D L,m

−1,2) sufficiently close to the their respec-
tive reference values in a Schwarzschild spacetime of sufficiently small mass M ≥ 0,
there exist
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• a smooth solution (x,DL ,m,D L,m) to the higher-order null constraint equations
onH[−1,0],1, satisfying the following higher-order sphere data matching on S0,1,

(x,DL ,m,D L,m)

∣

∣

∣

S0,1
=(x0,1,DL ,m

0,1 ,D L,m
0,1 ),

• a smooth solution (x,DL ,m,D L,m) to the higher-order null structure equations on
H−1,[1,2], agreeing with (x,D) on S−1,1,

(x,DL ,m,D L,m)

∣

∣

∣

S−1,1
=(x,DL ,m,D L,m)

∣

∣

∣

S−1,1

such that (x,DL ,m,D L,m)matches (x−1,2,DL ,m
−1,2,D L,m

−1,2)up to the charges (E,P,L,G)

on the sphere S−1,2, that is, if it holds that

(E,P,L,G)
(

x |S−1,2

) = (E,P,L,G)
(

x−1,2
)

,

then automatically

(x,DL ,m,D L,m)

∣

∣

∣

S−1,2
=(x−1,2,DL ,m

−1,2,D L,m
−1,2).

Moreover, we have charge estimates analogous to (2.33) in Theorem 2.20 for
∣

∣(E,P,L,G)(x |S−1,2) − (E,P,L,G − 2P) (x0,1)
∣

∣ .

3. Statement of Main Results

The following is the precise version of the main theorem of this paper.

Theorem 3.1 (Perturbative characteristic gluing to Kerr, version 2) Let δ > 0 be a
real number, and let (x̃−R+R·[−δ,δ],R) along H̃−R+R·[−δ,δ],R be a strongly asymptotically
flat family of ingoing null data with asymptotic charges (E∞,P∞ = 0,L∞,G∞) ∈
I (0) × R

3 × R
3. For sufficiently large R ≥ 1, there exist

• spheredata x ′−R,R onaperturbation S
′−R,R of the sphere S̃−R,R along H̃−R+R·[−δ,δ],R,• outgoing null data x on a null hypersurface H−R,[R,2R] solving the null structure

equations,
• sphere data xKerr−R,2R on a spacelike 2-sphere SKerr−R,2R in a Kerr spacetime,

such that we have full matching of sphere data on S−R,R ⊂ H−R,[R,2R] and on S−R,2R ⊂
H−R,[R,2R],

x−R,R = x ′−R,R, x−R,2R = xKerr−R,2R, (3.1)

and the following estimates hold,

‖x − mE∞‖X (H−R,[R,2R]) + ‖x ′−R,R − mE∞‖X (S−R,R) =O
(

R−3/2
)

. (3.2)

Moreover, the sphere SKerr−R,2R in Kerr lies in a spacelike hypersurface �Kerr whose
asymptotic invariants are bounded by

EADM =E∞ + O(R−1/2), PADM =O(R−1/2),

LADM =L∞ + O(1), CADM =G∞ + 3R · PADM + O(1).
(3.3)
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Moreover, if the strongly asymptotically flat family of ingoing null data (x̃−R+R·[−δ,δ],R)

satisfies the stronger decay rates

E(x̃−R,R) = E∞ +O(R−1), P(x̃−R,R) = O(R−3/2), (3.4)

then the asymptotic invariants of the spacelike hypersurface �Kerr are bounded by

EADM = E∞ +O(R−1), PADM = O(R−3/2),

LADM = L∞ + O(1), CADM = G∞ + O(1),
(3.5)

so, in particular, CADM is not growing in R.

Remarks on Theorem 3.1.

(1) The key ingredients of the proof are the perturbative characteristic gluing of [11,12]
(used as black box) and the geometric interpretation of the asymptotic charges
(E∞,P∞,L∞,G∞) in terms of the ADM asymptotic invariants energy, linear mo-
mentum, angular momentum, and center-of-mass in Sect. 7.

(2) The additional convergence condition (3.4) is satisfied by sphere data constructed
from strongly asymptotically flat spacelike initial data, see Sect. 7.

(3) The smallness on the right-hand side of (3.2) is consistent with our definition of
strong asymptotic flatness, see Definition 2.14.

(4) Theorem 3.1 is at the level of C2-gluing for the metric components. It can be gen-
eralized to include higher-order derivatives tangential to the gluing hypersurface
H−R,[R,2R]; see Theorem 3.2 in [12] for the corresponding setup. For the gluing of
higher-order derivatives in all directions, we refer to Theorem 3.2 below.

(5) More precisely, in Theorem 3.1 we glue to a Kerr reference sphere Sλ−R,2R for some

asymptotic invariants vector λ ∈ I (0) × R
3 × R

3.
(6) In Theorem 3.1 it is not necessary to have a family of ingoing null data data. Indeed,

one can replace this familywith one fixed ingoing null datumwith sufficiently strong
bounds.

(7) The sphere SKerr−R,2R in Kerr admits a future-complete outgoing null congruence and
past-complete ingoing null congruence. The explicit proof of this property, based
on a classical perturbation argument, is omitted here.

(8) The condition (E∞,P∞ = 0) ∈ I (0) (see definition in (2.17)) implies in particular
that E∞ > 0.

The argument for the matching to Kerr in Theorem 3.1 applies similarly to the bifurcate
characteristic gluing of [11,12] (i.e. Theorem 2.21), see Remark 4.2. The corresponding
theorem is the following.

Theorem 3.2 (Bifurcate characteristic gluing to Kerr) Let m ≥ 1 be an integer. Let
(

x0,R,DL ,m
0,R ,D L,m

0,R

)

be a strongly asymptotically flat family of smooth higher-order sphere data with asymp-
totic charges

(E∞,P∞ = 0,L∞,G∞) ∈ I (0) × R
3 × R

3.

For sufficiently large R ≥ 1, there exist
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• smooth higher-order ingoing null data (x,DL ,m,D L,m) onH[−R,0],R and outgoing
higher-order null data (x,DL ,m,D L,m) onH−R,[R,2R] solving the higher-order null
structure equations and matching to order m on S−R,R,

• smoothhigher-order spheredata
(

xKerr−R,2R,DL ,m,Kerr
−R,2R ,D L,m,Kerr

−R,2R

)

ona smooth space-

like 2-sphere SKerr−R,2R in a Kerr spacetime,

such that
(

x,DL ,m,D L,m
)

|S0,R =
(

x0,R,DL ,m
0,R ,D L,m

0,R

)

,
(

x,DL ,m,D L,m
)

∣

∣

S−R,2R
=

(

xKerr−R,2R,DL ,m,Kerr
−R,2R ,D L,m,Kerr

−R,2R

)

.

The sphere SKerr−R,2R in Kerr lies in a spacelike hypersurface with asymptotic invariants

EADM =E∞ + O(R−1/2), PADM =O(R−1/2),

LADM =L∞ + O(1), CADM =G∞ + 3R · P(λ) + O(1).

amd admits a future-complete outgoing null congruence and past-complete ingoing null
congruence. Moreover, if the strongly asymptotically flat family of sphere data (x0,R)

satisfies the stronger decay condition

E(x0,R) = E∞ +O(R−1), P(x0,R) = O(R−3/2),

then the asymptotic invariants of the spacelike hypersurface �Kerr are bounded by

EADM = E∞ +O(R−1), PADM = O(R−3/2),

LADM = L∞ + O(1), CADM = G∞ + O(1).

Remarks on Theorem 3.2.

(1) The strong asymptotic flatness of the family x0,R is consistent with decay towards
spacelike infinity. In particular, the spheres S0,R should be interpreted as spheres on
a spacelike hypersurface with radius of size R.

(2) Theorem 3.2 is at the level of Cm+2-gluing for the metric components, for integers
m ≥ 0; see Section 2.10 in [12] for the precise definition of higher-order sphere
data.

As corollary of Theorem 3.2, we give in Sect. 5 an alternative proof of the Corvino–
Schoen [22,23] gluing to Kerr for strongly asymptotically flat spacelike initial data.
We refer to Sect. 6 below for the definition of spacelike initial data, strong asymptotic
flatness and asymptotic invariants EADM, PADM, LADM and CADM.

Corollary 3.3 (Spacelike gluing to Kerr, version 2). Let m ≥ 0 be an integer. Consider
smooth strongly asymptotically flat spacelike initial data (�, g, k) with asymptotic in-
variants

(EADM,PADM = 0,LADM,CADM) ∈ I (0) × R
3 × R

3.

For real numbers R ≥ 1 sufficiently large, there exists a Kerr spacetime (MKerr, gKerr)

and a spacelike hypersurface �Kerr with asymptotic invariants
(

EKerr
ADM,PKerr

ADM,LKerr
ADM,

CKerr
ADM

)

such that the spacelike initial data (g, k) of � can be glued in Cm-regularity
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across a spacelike annulus A[R,3R] to the induced spacelike initial data (gKerr, kKerr) of
�Kerr. The Kerr asymptotic invariants can bounded by

EKerr
ADM = EADM +O(R−1), PKerr

ADM = O(R−3/2),

LKerr
ADM = LADM + O(1), CKerr

ADM = CADM + O(1).

More precisely, in Corollary 3.3 we glue to Kerr spacelike initial data (gλ, kλ) for some
asymptotic invariants vector λ ∈ I (0) × R

3 × R
3.

The spacelike gluing of Corollary 3.3 should also be available in the smooth category.
Indeed, Theorem 2.21 (and hence Theorem 3.2) should extend to smooth codimension-
10 bifurcate null gluing of smooth ∞th-order sphere data. We will, however, not be
providing details here.

4. Proof of Perturbative Characteristic Gluing to Kerr

In this sectionwe prove Theorem 3.1. Let δ > 0 be a real number and let (x̃−R+R·[−δ,δ],R)

be a strongly asymptotically flat family of ingoing null data with asymptotic charges

(E∞,P∞ = 0,L∞,G∞)

with E∞ > 0. We proceed as follows.

(1) In Sect. 4.1 we rescale the strongly asymptotically flat ingoing null data
(x̃−R+R·[−δ,δ],R) to ingoing null data ((R) x̃−1+[−δ,δ],1). For R ≥ 1 sufficiently large,
this rescaled ingoing null data is close to Schwarzschild ofmassE∞/R, see Sect. 4.1
below.

(2) In Sect. 4.2 we apply the perturbative characteristic gluing of [11,12] to glue – up to
the 10-dimensional space of charges (E,P,L,G) – from the rescaled ingoing null
data ((R) x̃−1+[−δ,δ],1) to sphere data corresponding to a sphere in a Kerr spacetime
to be determined.

(3) In Sect. 4.3 we use a classical topological degree argument to prove that there exists
a sphere in a Kerr spacetime such that, following Step (2) above, also the charges
(E,P,L,G) are glued.

(4) In Sect. 4.4 we conclude the proof of Theorem 3.1 by writing out the explicit esti-
mates and scaling the gluing construction from H−1,[1,2] toH−R,[R,2R].

4.1. Rescaling to small sphere data. Using the scaling of the Einstein equations, see
Definition 2.15, for R ≥ 1 large we rescale (x̃−R+R·[−δ,δ],R) to ingoing null data
((R) x̃−1+[−δ,δ],1). By Lemma 2.19 and (2.24), it holds that

‖(R) x̃−1+[−δ,δ],1 − mE∞/R‖X +
(H−1+[−δ,δ],1

) =O(R−3/2). (4.1)

4.2. Application of perturbative characteristic gluing of [11,12]. In this section we
apply the perturbative characteristic gluing of [11,12] (i.e. Theorem 2.20) to glue from
the rescaled ingoing null data ((R) x̃−1+[−δ,δ],1) to sphere data of a Kerr spacetime.
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Consider asymptotic invariants vectors λ ∈ ER(E∞), see (2.18). Then by Proposition
2.3 we have that

‖(R)xλ−1,2 − mE∞/R‖X (S−1,2) �R−1 · |E(λ) − E∞| + R−1 · |P(λ)|
+ R−2 · |L(λ)| + R−2 · |C(λ)|

+

(

R−2 · |L(λ)| + |P(λ)|
E∞ · R−2 · |C(λ)|

E∞/R

)2

= O
(

R−3/2
)

.

(4.2)

Hence, by (4.1) and (4.2), for R ≥ 1 sufficiently large we can apply the perturbative
characteristic gluing of [11,12], i.e. Theorem 2.20, withM = E∞/R and ε = O(R−3/2)

to glue from the rescaled ingoing null data (R) x̃−1+[−δ,δ],1 to (R)xλ−1,2 for an asymptotic
invariants vector λ ∈ ER(E∞) to be determined. That is, there are

• sphere data (R)x−1,1 on a sphere S−1,1 stemming from a perturbation of S̃−1,1 in
H̃−1+[−δ,δ],1,• a solution x ∈ X (H−1,[1,2]) to the null structure equations onH−1,[1,2],

such that x |S−1,1 = (R)x−1,1 and x |S−1,2 agrees with
(R)xλ−1,2 up to the 10-dimensional

space of charges (E,P,L,G), that is, if we have that

(E,P,L,G) (x |S−1,2) = (E,P,L,G)
(

(R)xλ−1,2

)

, (4.3)

then the constructed solution x satisfies x |S−1,2 = (R)xλ−1,2.

By M = E∞/R and ε = O(R−3/2) with the estimates proved in [12], see Theorem
2.20, the following general charge perturbation estimate holds,

(E,P,L,G)
(

x |S−1,2

) − (E,P,L,G)
(

(R) x̃−1,1

)

= O
(

E∞
R

R−3/2
)

+O(R−3)

= O(R−5/2).

(4.4)

4.3. Choice of Kerr spacetime. In this section we use a classical topological degree
argument to determine an asymptotic invariants vector λ′ ∈ ER(E∞) such that (4.3)
holds. The idea to determine the λ′ by a degree argument is similar to [23].

First, for asymptotic invariants vectors λ ∈ ER(E∞), we define the error map fR (λ)

by

fR (λ) :=
(

R E, R P, R2 L, R2 G
)

(

x |S−1,2

) −
(

R E, R P, R2 L, R2 G
) (

(R)xλ−1,2

)

.

(4.5)

In the following we show that for R ≥ 1 sufficiently large, there is a λ′ ∈ ER(E∞) such
that

fR(λ′) = 0. (4.6)
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By definition of fR in (4.5), the condition (4.6) is equivalent to charge matching at S−1,2,
see (4.3), which subsequently implies the full matching.

Toprove the existenceofλ′ satisfying (4.6),we estimate fR(λ) and apply a topological
degree argument. First, we estimate fR(λ) by using the following estimates for the
charges (E,P,L,G).

• From (4.4) we have

(E,P,L,G)
(

x |S−1,2

) − (E,P,L,G)
(

(R) x̃−1,1

)

= O(R−5/2). (4.7)

• By Lemma 2.13, the strongly asymptotically flat family of sphere data (x̃−R,R)

satisfies (with P∞ = 0)

(E,P,L,G)
(

x̃−R,R
) = (E∞,P∞,L∞,G∞) +

(

O(R−1/2),O(R−1/2),O(1),O(1)
)

.

(4.8)

• By Proposition 2.3, for R ≥ 1 large, the Kerr reference sphere data xλ−R,2R satisfies
for λ ∈ ER(E∞),

E
(

xλ−R,2R

) =E(λ) +O(R−1), P
(

xλ−R,2R

) =P(λ) +O(R−3/2),

L
(

xλ−R,2R

) =L(λ) +O(R−1/2), G
(

xλ−R,2R

) =C(λ) − 3R · P(λ) +O(R−1/4).

(4.9)

Applying (4.7), (4.8) and (4.9) to (4.5), we can estimate fR (λ) as follows,

fR (λ) =
(

R E, R P, R2 L, R2 G
) (

(R) x̃−1,1

)

−
(

R E, R P, R2 L, R2 G
) (

(R)xλ−1,2

)

+
(

O(R−3/2),O(R−3/2),O(R−1/2),O(R−1/2)
)

= (E,P,L,G)
(

x̃−R,R
) − (E,P,L,G)

(

xλ−R,2R

)

+
(

O(R−3/2),O(R−3/2),O(R−1/2),O(R−1/2)
)

= (E∞,P∞,L∞,G∞) − (E(λ),P(λ),L(λ),C(λ) − 3R · P(λ))

+
(

O(R−1/2),O(R−1/2),O(1),O(1)
)

,

(4.10)

where we underline that the error terms also depend on λ ∈ ER(E∞).
Second, we have the following classical topological degree argument; see Chapter 1

of [41].

Lemma 4.1 (Topological degree argument). Let B ⊂ R
10 be the open unit ball. Let f0

and f1 be two continuous maps on B into R10 and assume that f0 is a homeomorphism
on B with f0(λ0) = 0 for a λ0 ∈ B. For 0 ≤ t ≤ 1, let f (λ, t) be a homotopy on
B such that f (λ, 0) = f0(λ) and f (λ, 1) = f1(λ). If for all 0 ≤ t ≤ 1 it holds that
0 /∈ f (∂B, t), then there exists λ′ ∈ B such that f1(λ′) = 0.

Remark 4.2. The proof of (4.6) below uses only the charge estimate (4.7). Given that the
bifurcate characteristic gluing (see Theorem 2.21) provides analogous charge estimates,
the proof applies also to the matching to Kerr in Theorem 3.2.
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We are now in position to prove the existence of λ′ such that (4.6) is satisfied. Based on
(4.10), define for 0 ≤ t ≤ 1 the homotopy fR(λ, t) on ER(E∞) by

fR(λ, t) := (E∞,P∞,L∞,G∞) − (E(λ),P(λ),L(λ),C(λ) − 3R · P(λ))

+ t ·
(

O(R−1/2),O(R−1/2),O(1),O(1)
)

,
(4.11)

such that

fR(λ, 0) = (E∞,P∞,L∞,G∞) − (E(λ),P(λ),L(λ),C(λ) − 3R · P(λ)) ,

fR(λ, 1) = fR(λ).
(4.12)

We make the following three observations.

(1) From (4.12) it follows that fR(λ, 0) is a homeomorphism on ER(E∞).
(2) For R ≥ 1 large, we have that λ0 := (E∞, 0,L∞,G∞) ∈ ER(E∞) and satisfies, by

the definition of fR(λ, 0) in (4.12), fR(λ0, 0) = 0.
(3) For R ≥ 1 sufficiently large and all 0 ≤ t ≤ 1, it holds that

0 /∈ fR(∂ER (E∞) , t). (4.13)

Indeed, assume by contradiction that there are λ̃ ∈ ∂ER (E∞) and 0 ≤ t̃ ≤ 1 such
that

fR(λ̃, t̃) = 0. (4.14)

Then by definition of fR(λ, t) in (4.11),

R1/2
(

E(λ̃) − E∞
)

= t̃ · O(1), R1/2 · P(λ̃) = t̃ · O(1),

R−1/4
(

L(λ̃) − L∞
)

= t̃ · O(R−1/4),

and

R−1/2

2

(

C(λ̃) − G∞
)

= R−1/2

2

(

−3R · P(λ̃) + t̃ · O(1)
)

= R−1/2

2

(

−3R · t̃ · O(R−1/2) + t̃ · O(1)
)

= t̃ · O(1).

The above estimates imply that for R ≥ 1 sufficiently large,

(

R1/2|E(λ̃) − E∞|
)2

+
(

R1/2|P(λ̃)|
)2

+
(

R−1/4|L(λ̃)|
)2

+
(

R−1/2|C(λ̃)|
)2

� t̃ · O(1) < (E∞)2 ,

which implies that λ̃ /∈ ∂ER (E∞) (see the definition of ER(E∞) in (2.18)). This is
a contradiction and hence finishes the proof of (4.13).
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By the above observations and the fact that the set ER (E∞) ⊂ R
10 is topologically a

ball, we can apply Lemma 4.1 to the homotopy fR(λ, t) for R ≥ 1 sufficiently large,
and conclude the existence of a vector λ′ ∈ ER (E∞) such that

fR(λ′, 1) = 0. (4.15)

This finishes the proof of (4.6). Moreover, we deduce from (4.11) that

E(λ′) =E∞ + O(R−1/2), P(λ′) =O(R−1/2),

L(λ′) =L∞ + O(1), C(λ′) =G∞ + 3R · P(λ′) + O(1).
(4.16)

It remains to show that in case of the stronger decay assumption (3.4),

E(x−R,R) = E∞ +O(R−1), P(x−R,R) = O(R−3/2), (4.17)

we have the improved estimate (3.5) for λ′,

E(λ′) = E∞ +O(R−1), P(λ′) = O(R−3/2),

L(λ′) = L∞ + O(1), C(λ′) = G∞ + O(1).
(4.18)

Indeed, applying (4.17) in the above derivation of (4.10), we get that the errormap fR (λ)

satisfies the improved bound

fR (λ) := (E∞,P∞,L∞,G∞) − (E(λ),P(λ),L(λ),C(λ) − 3R · P(λ))

+
(

O(R−1),O(R−3/2),O(1),O(1)
)

.

This shows that λ′ which satisfies by construction fR
(

λ′) = 0, see (4.6), satisfies the
improved bound (4.18).

4.4. Conclusion of proof. In this section we conclude the proof of Theorem 3.1. By
(4.16) with the first of (4.2) (see also Proposition 2.3), we have the estimate

‖(R)xλ′
−1,2 − mE∞/R‖X (S−1,2) � R−1 · |E(λ′) − E∞| + R−1 · |P(λ′)| + R−2 · |L(λ′)|

+ R−2 · |C(λ′)|

+

⎛

⎝

R−2 · |L(λ′)| + |P(λ′)|
E∞ · R−2 · |C(λ′)|

E∞/R

⎞

⎠

2

= O
(

R−3/2
)

,

which, togetherwith (4.1), implies that the constructed solution x onH−1,[1,2] is bounded
by

‖x − mE∞/R‖X (H−1,[1,2]) +
∥

∥

∥x |S−1,1 − (R) x̃−1,1

∥

∥

∥X (S−1,1)
=O(R−3/2). (4.19)

Applying the scaling of Sect. 2.8 with scale factor R−1, we get by (2.24), (4.19) and
Lemma 2.17 that

‖(R−1)x − mE∞‖X (H−R,[R,2R]) + ‖(R−1)x − x̃−R,R‖X (S−R,R) =O(R−3/2).

This finishes the proof of Theorem 3.1.
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5. Proof of Spacelike Gluing to Kerr

In this section we prove Corollary 3.3, the gluing of spacelike initial data to Kerr.
Let (�, g, k) be given smooth strongly asymptotically flat spacelike initial data with
asymptotic invariants

(EADM,PADM,LADM,CADM) ∈ I (0) × R
3 × R

3,

where by the strong asymptotic flatness, PADM = 0. We proceed in four steps.

(1) We apply the material of Sects. 7.1 and 7.2 where it is shown how to construct and
estimate families of higher-order sphere data from given spacelike initial data. We
work in the rescaled picture, that is, we construct smooth higher-order sphere data
on a sphere S0,1 ⊂ � in the rescaled spacelike initial data.

(2) We use the bifurcate characteristic gluing of Theorem 3.2 to glue the constructed
higher-order sphere data on S0,1 to a sphere S

(R)λ−1,2 in a Kerr spacetime.
(3) We construct a local spacetime (M, g) by applying local existence results for the

spacelike and characteristic initial value problem for the Einstein equations, and pick
a spacelike hypersurface connecting S0,1 and S

(R)λ−1,2. We conclude the construction
by rescaling.

Notation. For ease of presentation, we work in the following with smooth spacelike
initial data and smooth higher-order sphere data (x,DL ,m,D L,m) for a fixed integer
m ≥ 1.
(1) Rescaling and construction of sphere data. In this section we follow the construc-
tion of Sects. 7.1 and 7.2: We start by rescaling the given spacelike initial data by scaling
factor R to ((R)g, (R)k) and constructing on the sphere S0,1 := SrEADM/R(0,1) ⊂ � the
higher-order sphere data (see (2.20) and also Remark 7.2)

(

(R)x0,1,
(R)DL ,m

0,1 , (R)D L,m
0,1

)

. (5.1)

In Sects. 7.1 and 7.2 it is shown that by the strong asymptotic flatness and the scaling of
spacelike initial data (see Sect. 6.4), the constructed higher-order sphere data (5.1) is –
with respect to an appropriate higher-regularity norm–O(R−3/2)-close to Schwarzschild
reference higher-order sphere data of order m of mass EADM/R; we denote this by

(

(R)x0,1,
(R)DL ,m

0,1 , (R)D L,m
0,1

)

−
(

m
EADM/R
0,1 ,DL ,m,EADM/R

0,1 ,D L,m,EADM/R
0,1

)

= O(R−3/2).

(5.2)

Moreover, in Theorem 7.1 it is proved that the charges (E,P,L,G)((R)x0,1) can be
estimated by

(

R · E
(

(R)x0,1
)

, R · P
(

(R)x0,1
)

, R2 · L
(

(R)x0,1
)

, R2 · G
(

(R)x0,1
))

= (EADM,PADM,LADM,CADM) +
(

O(R−1),O(R−3/2),O(1),O(1)
)

.
(5.3)

(2) Application of bifurcate characteristic gluing to Kerr. By (5.2) and (5.3), we can
apply Theorem 3.2 (to be precise, the rescaled version thereof) to the higher-order sphere
data (5.1) to get
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Fig. 5. The spacetime (M′, g′) is denoted as shaded region, and the spacelike hypersurface �′′ is indicated
by the bold blue line

• smooth higher-order outgoing null data ((R)x, (R)DL ,m, (R)D L,m) onH−1,[1,2] and
smooth higher-order ingoing null data ((R)x, (R)DL ,m, (R)D L,m) on H[−1,0],1 satis-
fying the higher-order null structure equations and matching on S−1,1,

• a Kerr reference sphere S
(R)Kerr−1,2 in a Kerr spacetime (M(R)Kerr, g

(R)Kerr) with Kerr
reference higher-order sphere data

(x
(R)Kerr−1,2 ,DL ,m,(R)Kerr

−1,2 ,D L,m,(R)Kerr
−1,2 ).

such that we have matching up to order m on S−1,1, S0,1 and S−1,2,

((R)x, (R)DL ,m, (R)D L,m)|S−1,1 =((R)x, (R)DL ,m, (R)D L,m)|S−1,1 ,

((R)x, (R)DL ,m, (R)D L,m)|S0,1 =((R)x0,1,
(R)DL ,m

0,1 , (R)D L,m
0,1 ),

((R)x, (R)DL ,m, (R)D L,m)|S−1,2 =(x
(R)Kerr−1,2 ,DL ,m,(R)Kerr

−1,2 ,D L,m,(R)Kerr
−1,2 ).

In particular, it holds that

(1) the null data ((R)x, (R)DL ,m, (R)D L,m) onH−1,[1,2] and ((R)x, (R)DL ,m, (R)D L,m)

on H[−1,0],1 are O(R−3/2)-close to Schwarzschild reference higher-order null data
of mass M/R, respectively, and

(2) the sphere S
(R)Kerr−1,2 lies in aKerr reference spacelike hypersurface�

(R)Kerr ⊂ M(R)Kerr

with asymptotic invariants (see Sects. 2.3 and 6.4)

E
(R)Kerr
ADM =R−1 · EADM +O(R−2), P

(R)Kerr
ADM =O(R−5/2),

L
(R)Kerr
ADM =R−2 · LADM + O(R−2), C

(R)Kerr
ADM =R−2 · CADM + O(R−2).

(5.4)

(3) Construction of spacelike hypersurface. The constructed solutions to the higher-
order null structure equations,

((R)x, (R)DL ,m, (R)D L,m) onH−1,[1,2] and ((R)x, (R)DL ,m, (R)D L,m) on H[−1,0],0,

form characteristic initial data for the Einstein vacuum equations which is O(R−3/2)-
close to Schwarzschild of mass E∞/R. By the work of Luk and Luk–Rodnianski on
the characteristic initial value problem for the Einstein equations [37,38], for R ≥
1 sufficiently large, the associated maximal globally hyperbolic spacetime (M′, g′)
contains slabs of universal width along the null hypersurface H[−1,0],1 and H−1,[1,2];
see also Remark 5.1 below.
Applying local existence for the spacelike Cauchy problem defined on � (the resulting
region is shaded red in Fig. 5), and, subsequently, for the characteristic Cauchy problems



Characteristic Gluing to the Kerr Family 307

(the resulting regions are shaded green in Fig. 5) defined on ∂+D(�) and ∂+M′, ∂−D(�)

and H, ∂+M′ and ∂+M(R)Kerr, and H and ∂−M(R)Kerr, we construct the spacetime
(M′′, g′′), see Fig. 5. Here ∂+ and ∂− denote the future and past boundaries, and D(�)

the domain of dependence of �.
In (M′′, g′′) we define a spacelike hypersurface �′′ (see Fig. 5) such that (i) �′′ agrees
with � in (M, g), (ii) �′′ is spacelike and contained in the slabs in (M′, g′), (iii)
�′′ agrees with �

(R)Kerr in (M(R)Kerr, g
(R)Kerr). By construction, the induced spacelike

initial data on �′′ agrees with ((R)g, (R)k) on �, and with Kerr reference spacelike
initial data (g

(R)Kerr, k
(R)Kerr) on �

(R)Kerr. In particular, it is a solution to the spacelike
gluing problem from the rescaled spacelike initial data ((R)g, (R)k) to the Kerr reference
spacelike initial data (g

(R)Kerr, k
(R)Kerr).

Scaling the above spacelike initial data by factor R−1, and using the scale-invariance
of the Kerr reference spacelike initial data (see also (2.25)), we conclude the spacelike
gluing to Kerr at the level of order m sphere data.

Remark 5.1 (On the well-posedness of the characteristic Cauchy problem for the con-
structed initial data and the regularity of the resulting spacetime). First we recall the
normX (H) in which our constructed gluing solution lies (see Definition 2.9, where also
the analogous X (H) is defined),

‖x‖X (H) :=‖�‖H6
3 (H) + ‖g/‖H6

3 (H) + ‖η‖H5
2 (H) + ‖�trχ‖H6

3 (H) + ‖χ̂‖H6
2 (H)

+ ‖�trχ‖H4
2 (H) + ‖χ̂‖H4

3 (H) + ‖ω‖H6
2 (H) + ‖Dω‖H6

1 (H)

+ ‖ω‖H4
3 (H) + ‖Dω‖H2

3 (H) + ‖α‖H6
1 (H) + ‖β‖H5

2 (H) + ‖ρ‖H4
2 (H)

+ ‖σ‖H4
2 (H) + ‖β‖H3

2 (H) + ‖α‖H2
3 (H),

(5.5)

where we recall that Hm
l (H) boundsm ∇/ -derivatives and l ∂v-derivatives in L2(H), that

is, for a tensor T

‖T ‖2Hm
l (H) :=

1
∫

0

∑

0≤i≤l

∥

∥

∥DiT
∥

∥

∥

2

Hm (S0,u)
dv.

For local existence of the characteristic Cauchy problemwe refer to the main theorem of
the work [38] by Luk–Rodnianski which states the following. Let g/ denote the induced
metric on the spheres S0,u and Su,0 foliating the null hypersurfacesH andH, respectively.
Let ψ and � denote Ricci coefficients and null curvature components, respectively.
Consider characteristic initial data satisfying, for two real numbers 0 < c < C ,

c < |det(g/)| < C,
∑

i≤3

∣

∣

∣∂
i
θg/

∣

∣

∣ ≤ C,

∑

i≤3

(

sup
u

‖∇/ iψ‖L2(S0,u) + sup
u

‖∇/ iψ‖L2(Su,0)

)

,

∑

i≤2

⎛

⎝

∑

�∈{β,ρ,σ,β}
sup
u

‖∇/ i�‖L2(S0,u) +
∑

�∈{ρ,σ,β,α}
sup
u

‖∇/ i�‖L2(Su,0)

⎞

⎠ ,

(5.6)
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where ∂θ denotes coordinate angular derivatives and ∇/ the covariant derivative with
respect to g/. For ε > 0 sufficiently small depending on the constants C > 0 and c > 0,
there exists a spacetime (M, g) endowed with a double null foliation u, u solving the
characteristic initial value problem to the vacuum Einstein equations in 0 ≤ u ≤ u∗,
0 ≤ u ≤ u∗ for u∗, u∗ ≤ ε. The metric is continuous and takes the form

g = −2�2(du ⊗ du + du ⊗ du) + g/AB(dθ A − bAdu)(dθ B − bBdu).

The spacetime (M, g) is aC0-limit of smooth solutions to the vacuumEinstein equations
and is the unique spacetime solving the characteristic initial value problem among all
C0 limits of smooth solutions. In (M, g) it holds

∂θg, ∂ug ∈C0
uC

0
u L

4(S), ∂2θ g, ∂u∂θg, ∂
2
u ∈C0

uC
0
u L

2(S),

∂ug, ∂u
(

g/AB∂ug/AB
)

∈L∞
u L∞

u L∞(S), ∂θ ∂ug, ∂u∂ug, ∂
2
u b

A ∈L∞
u L∞

u L4(S).

In the (u, u, θ1, θ2)-coordinates, the Einstein equations are satisfied in L∞
u L∞

u L2(S).
Furthermore, higher angular differentiability in the data results in higher angular differ-
entiability of the solution.

In short, (5.6) asks that 3 ∇/ -derivatives of Ricci coefficients, and 2 ∇/ -derivatives
of null curvature components are bounded in L2(S0,u) (or L2(Su,0), respectively). The
normX (H) defined in (5.5) bounds these quantities by a standard Sobolev trace theorem
(or X (H) bounds them, respectively) and the norm is actually stronger than necessary
for this local existence result.

We remark that the result of Luk–Rodnianski assumes that the characteristic initial
data satisfies the gauge-condition � ≡ 1 along H, which is not the case for our con-
structed characteristic initial data. However, once our gluing characteristic initial data
is constructed, we can apply a straight-forward gauge-change on H to make � ≡ 1
(in other words: make a change of the v-foliation along H). From the explicit trans-
formation formulas for Ricci coefficients and null curvature components under change
of v-foliation (see, for example, [25]) one can see that our constructed � is sufficiently
regular (see the norm (5.5)) that this gauge-change does not lead to a change of regularity
for the Ricci coefficients and null curvature components (i.e. we are still in X (H)). We
then can cite the Luk–Rodnianski local existence result.

6. Spacelike Initial Data and Asymptotic Invariants

6.1. The spacelike constraint equations and spacelike initial data. Let (M, g) be a
spacetime, and denote its Riemann curvature tensor by R. Let � be a spacelike hy-
persurface in M with future-directed timelike unit normal T . The electric-magnetic
decomposition of R on � is given by

Eab := RTaTb, Hab := ∗RTaTb, (6.1)

where ∗Rαβγ δ := 1
2 ∈αβμν Rμν

γ δ denotes the Hodge dual of R with respect to the
volume form ∈ on (M, g). The 2-tensors E and H are symmetric and tracefree, and
(see [19])

RabcT = − ∈ s
ab Hsc, Rabcd = − ∈abs∈cdl E

sl , (6.2)
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where ∈abc:=∈Tabc denotes the induced volume element on �.
In the following, let g be the induced metric and k be the second fundamental form

of � ⊂ M. Denote the covariant derivative of g by ∇ and the Ricci tensor of g by Ric.
It holds that

Rici j − kiak
a
j + ki j trk = Ei j , ∇i k jm − ∇ j kim =∈ l

i j Hlm, (6.3)

where trk := gabkab. Taking the trace of (6.3) with respect to g leads to the spacelike
constraint equations,

Rscal = |k|2 − (trk)2, divk = d(trk), (6.4)

where d denotes the exterior derivative on � and Rscal := gabRicab.
Spacelike initial data for the Einstein equations is specified by a triple (�, g, k)where

(�, g) is a Riemannian 3-manifold and k is a symmetric 2-tensor on �, satisfying the
spacelike constraint equations (6.4). Local well-posedness of the Cauchy problem of
general relativity with sufficiently regular spacelike initial data is well-known [15,28,
33].
Schwarzschild reference spacelike initial data. The Schwarzschild metric of mass
M ≥ 0 is given in Schwarzschild coordinates (t, r, θ, φ) by

g = −
(

1 − 2M

r

)

dt2 +

(

1 − 2M

r

)−1

dr2 + r2
(

dθ2 + sin2 θdφ2
)

.

The induced spacelike initial data on the spacelike hypersurface {t = 0} ∩ {r > 2M} is
given by

(�, g, k) =
(

R
3 \ B(0, 2M),

(

1 − 2M

r

)−1

dr2 + r2
(

dθ2 + sin2 θdφ2
)

, 0

)

.

(6.5)

It is well-known that the induced metric g is conformally flat. Indeed, defining isotropic
coordinates (r̃ , θ̃ , φ̃) the from Schwarzschild coordinates (r, θ, φ) by the relations

r

r̃
=

(

1 +
M

2r̃

)2

, θ̃ = θ, φ̃ = φ, (6.6)

it holds that for r > 2M ,

g =
(

1 +
M

2r̃

)4

ẽ, (6.7)

where ẽi j denotes the Euclidean metric in Cartesian isotropic coordinates (x̃1, x̃2, x̃3)
defined by (2.1) from (r̃ , θ̃ , φ̃).
Notation.For real numbersM ≥ 0,wedenote themetric components of theSchwarzschild
reference metric g in Schwarzschild Cartesian coordinates (x1, x2, x3) by gMi j , and in

isotropic Cartesian coordinates by g̃Mi j . The following strong asymptotic flatness cor-
responds to the center-of-mass frame of the isolated system under consideration, see
[17,19,34].
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Definition 6.1 (Strong asymptotic flatness). Spacelike initial data (�, g, k) is strongly
asymptotically flat if there exist a real number M ≥ 0, a compact set K ⊂ � such that
its complement � \ K is diffeomorphic to the complement of the closed unit ball in
R
3, and a coordinate system (x1, x2, x3) defined near spacelike infinity such that, as

|x | → ∞,

gi j (x) =
(

1 +
2M

|x |
)

ei j + O
(

|x |−3/2
)

, ki j (x) = O
(

|x |−5/2
)

. (6.8)

We moreover require analogous conditions on successive derivatives as needed.

Remarks on Definition 6.1.

(1) In this paper, strong asymptotic flatness is used to bound the error terms when we re-
late the local integrals (E,P,L,G)on the large sphere SR to the limits (E∞,P∞,L∞,

G∞). These error terms need to be sufficiently small for the classical degree argu-
ment work.

(2) The class of strongly asymptotically flat spacelike initial data is of interest for the
community (in particular, the data does not need to be Kerr outside a compact set);
see, for example, the work by Dain-Friedrich [27] where a large class of spacelike
initial data with the following (stronger) asymptotics is constructed,

gi j (x) =
(

1 +
2M

|x |
)

ei j +O
(

|x |−2
)

, ki j (x) = O
(

|x |−3
)

.

6.2. Asymptotic invariants of asymptotically flat spacelike initial data. Given asymp-
totically flat spacelike initial data (�, g, k) with Cartesian coordinates (x1, x2, x3) near
spacelike infinity, define standard spherical coordinates (r, θ1, θ2) by (2.1), and let the
2-spheres Sr ⊂ � be defined as the level sets of r . The following asymptotic invariants
are fundamental quantities in mathematical relativity, see [13,17,19,23].

Definition 6.2 (Asymptotic invariants). Let (�, g, k) be asymptotically flat spacelike
initial data with coordinates (x1, x2, x3) near spacelike infinity. For i = 1, 2, 3, define

EADM := lim
r→∞

1

16π

∫

Sr

∑

j=1,2,3

(

∂ j g jl − ∂l g j j
)

Nldμg/,

(PADM)i := lim
r→∞

1

8π

∫

Sr

(kil − trk gil) N
ldμg/,

(LADM)i := lim
r→∞

1

8π

∫

Sr

(k jl − trk g jl)
(

Y(i)
) j

N ldμg/,

and

(CADM)i := lim
r→∞

∫

Sr

⎛

⎝xi
∑

j=1,2,3

(

∂ j g jl − ∂l g j j
)

Nl −
∑

j=1,2,3

(

g ji N
j − g j j N

i
)

⎞

⎠ dμg/,

where N denotes the outward-pointing unit normal to Sr and dμg/ the induced vol-
ume element on Sr . Furthermore, Y(i), i = 1, 2, 3, are the rotation fields defined by
(Y(i)) j :=∈il j xl .
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Remarks on Definition 6.2.

(1) The asymptotic invariants can be interpreted as energy EADM, linear momentum
PADM, angular momentum LADM and center-of-mass CADM of the spacelike initial
data set.

(2) The asymptotic invariants are well-defined and foliation-independent for strongly
asymptotically flat spacelike initial data (as well as for more general asymptotics),
see [17,23] and references therein.

(3) By the positive energy theorem [42,43,45] it holds for sufficiently regular asymp-
totically flat spacelike initial data that EADM ≥ 0. Moreover, if equality holds, then
the initial data must be isometric to initial data for Minkowski spacetime.

(4) For strongly asymptotically flat initial data, it holds that (see [19]) EADM = M and
PADM = 0, where M is the real number appearing in (6.8).

It is well-known (see [14,20,30–32,40]) that the asymptotic invariantsEADM andCADM
can be calculated in terms of the Ricci tensor as follows.

Theorem 6.3 (Alternative expressions for EADM and CADM). Let (�, g, k) be asymp-
totically flat spacelike initial data such thatEADM > 0. Then it holds that for i = 1, 2, 3,

EADM = lim
r→∞ − 1

8π

∫

Sr

(

Ric − 1

2
Rscal g

)

(X, N )dμg/,

(CADM)i = lim
r→∞

1

16π

∫

Sr

(

Ric − 1

2
Rscal g

)

(Z (i), N )dμg/,

where X and Z (i), i = 1, 2, 3, are defined with respect to Cartesian coordinates
(x1, x2, x3) by

X := xi∂i , Z (i) :=
(

|x |2δi j − 2xi x j
)

∂ j . (6.9)

The vectorfields X and Z (i), i = 1, 2, 3, are conformal Killing vectorfields of Euclidean
space. An explicit calculation shows that Z (i), i = 1, 2, 3, can be expressed in terms of
spherical harmonics as follows, with (m1,m2,m3) := (1,−1, 0),

Z (i) = −|x |3
√

8π

3
E (1mi ) − |x |2

(
√

4π

3
Y (1mi )

)

∂r . (6.10)

Based on Definition 6.2 and Theorem 6.3 we introduce the following local integrals.
Their relations to the charges (E,P,L,G) of Definition 2.5 is studied in Sects. 7.3, 7.4,
7.5 and 7.6.

Definition 6.4 (Local integrals). Let (�, g, k) be asymptotically flat spacelike initial
data such that EADM > 0, and let (x1, x2, x3) be corresponding Cartesian coordinates
near spacelike infinity. For real numbers r ≥ 1 sufficiently large and i = 1, 2, 3, define
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Eloc
ADM(Sr , g, k) := − 1

8π

∫

Sr

(

Ric − 1

2
Rscal g

)

(X, N )dμg/,

(

Ploc
ADM

)i
(Sr , g, k) := 1

8π

∫

Sr

(kil − trk gil) N
ldμg/,

(

Lloc
ADM

)i
(Sr , g, k) := 1

8π

∫

Sr

(k jl − trk g jl)
(

Y(i)
) j

N ldμg/,

(

Cloc
ADM

)i
(Sr , g, k) := 1

16π

∫

Sr

(

Ric − 1

2
Rscal g

)

(Z (i), N )dμg/.

(6.11)

Remark 6.5. The local integrals Eloc
ADM and Cloc

ADM are defined following Theorem 6.3.
This has the advantage that Eloc

ADM and Cloc
ADM are more natural to relate to the charges

(E,P,L,G), see Sects. 7.3 and 7.6.

The following classical lemma analyses the convergence rates of Eloc
ADM and Ploc

ADM for
strongly asymptotically flat spacelike initial data. It is applied in Sect. 7.7. Its proof is
based on Stokes’ theorem and the spacelike constraint equations, and is omitted here.

Lemma 6.6 (Convergence rates for Eloc
ADM and Ploc

ADM for strongly asymptotically flat
initial data). Let (�, g, k) be strongly asymptotically flat initial data. Then it holds that

Eloc
ADM(Sr , g, k) = EADM +O(r−1), Ploc

ADM(Sr , g, k) = O(r−3/2).

6.3. Foliation geometry in spacelike initial data. In this section we set up notation for
the geometry of foliations of spacelike initial data by 2-spheres. Let (�, g, k) be strongly
asymptotically flat spacelike initial data, and let (x1, x2, x3) be corresponding Carte-
sian coordinates near spacelike infinity. Denote by (r, θ1, θ2) the associated spherical
coordinates, see (2.1). We have the following notation.

• Let Sr denote the level sets of r , and let g/ and ∇/ denote the induced metric and
covariant derivative. Let K denote the Gauss curvature of g/.

• Let N denote the outward pointing unit normal to Sr . The second fundamental form
� of Sr is defined by �AB := DANB , and composes into trace and tracefree part as
follows,

tr� := g/AB�AB, ̂�AB := �AB − 1

2
tr�g/AB .

• Let (eA)A=1,2 denote a local orthonormal frameon Sr .Wedecompose the symmetric
2-tensor k into the Sr -tangent tensors

kNN , kN/A := kN A, k/AB := kAB . (6.12)

The Gauss–Codazzi equations of Sr ⊂ � are (see Section 3.1 in [19])

RicAN = div/ ̂�A − 1

2
d/ trθA, RicNN − 1

2
Rscal = −K +

1

4
(tr�)2 +

1

2
|̂�|2, (6.13)

where d/ denotes the exterior derivative on Sr , and for a symmetric 2-tenors V on Sr ,

(div/ V )A := ∇/ BVBA, |V |2 := g/ABg/CDVACVBD .
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6.4. Scaling of spacelike initial data and local norms. In this section we define, analo-
gous to Sect. 2.8, the scaling of spacelike initial data, and introduce local norms.

Let (�, g, k) be an asymptotically flat spacelike initial data set and let (x1, x2, x3)
denote associated coordinates near spacelike infinity. We define the scaling of (g, k) in
two steps.

(1) For a real number R ≥ 1, define new coordinates (y1, y2, y3) by

�R(y1, y2, y3) := (R · y1, R · y2, R · y3) = (x1, x2, x3). (6.14)

(2) Based on the conformal scaling of spacetime metrics (R)g := R−2g (see Sect. 2.8)
and that k is the second fundamental form of �, we define ((R)g, (R)k) by

(R)g := R−2g, (R)k := R−1 k. (6.15)

By construction, ((R)g, (R)k) solve the spacelike constraint equations (6.4).

By (6.14) and (6.15), for all integers l ≥ 0, we have the relations

∂ ly

(

(R)gi j
)

= Rl
(

∂ lx gi j
)

◦ �R, ∂ ly

(

(R)ki j
)

= Rl+1
(

∂ lx ki j
)

◦ �R, (6.16)

where we denote

(R)gi j := (R)g(∂yi , ∂y j ),
(R)ki j := (R)k(∂yi , ∂y j ).

Remarks on the scaling of spacelike initial data.

(1) Analogous to Lemma 2.18, we deduce from (6.16) that the charges scale as follows.
The proof is omitted.

Eloc
ADM

(

Sr0 ,
(R)g, (R)k

)

= R−1Eloc
ADM

(

SR·r0 , g, k
)

,

Ploc
ADM

(

Sr0 ,
(R)g, (R)k

)

= R−1Ploc
ADM

(

SR·r0 , g, k
)

,

Lloc
ADM

(

Sr0 ,
(R)g, (R)k

)

= R−2Lloc
ADM

(

SR·r0 , g, k
)

,

Cloc
ADM

(

Sr0 ,
(R)g, (R)k

)

= R−2Cloc
ADM

(

SR·r0 , g, k
)

.

(2) Applying the scaling to Schwarzschild reference spacelike initial data, see (6.5), we
have

(R)gMi j = gM/R
i j , (R)g̃Mi j = g̃M/R

i j (6.17)

(3) By (6.16), the property of strong asymptotic flatness is conserved under rescaling.

We now turn to the introduction of local norms for spacelike initial data. For ease of
presentation we use Ck-spaces.

Definition 6.7 (Norms for tenors). Let K ⊂ R
3 denote a compact set with smooth

boundary, and let T be an j-tensor on K . For integers k ≥ 0 define

‖T ‖Ck (K ) :=
∑

1≤i1,···i j≤3

∑

0≤|α|≤k

‖∂αTi1···i j ‖L∞(K ),
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where α = (α1, α2, α3) ∈ N
3, ∂α = ∂

α1
1 ∂

α2
2 ∂

α3
3 and Ti1···il denotes the Cartesian co-

ordinate components of T . Define Ck(K ) to be the space of k-times continuously dif-
ferentiable tensors T on K with ‖T ‖Ck (K ) < ∞. Moreover, let Ck

loc(R
3 \ B(0, 1))

be the space of k-times continuously differentiable tensors T on R
3\B(0, 1) such that

‖T ‖Ck (K ) < ∞ for each compact subset K ⊂ R
3 \ B(0, 1).

Definition 6.8 (Local norm for spacelike initial data). Let 0 < r1 < r2 be two real
numbers, and let k ≥ 1 be an integer. We define for spacelike initial data (g, k) on the
annulus A[r1,r2] := {

x ∈ R
3 : r1 ≤ |x | ≤ r2

}

the norm

‖(g, k)‖Ck (A[r1,r2])×Ck−1(A[r1,r2]) := ‖g‖Ck (A[r1,r2]) + ‖k‖Ck−1(A[r1,r2]).

Notation. In the following we assume that the metric g is k0-times and the second
fundamental form k is k0-times continuously differentiable, where the universal integer
k0 ≥ 8 is determined inSect. 7 by the condition that the ingoingnull data to be constructed
from spacelike initial data is sufficiently regular.
By scaling and the definition of strong asymptotic flatness, we have the following esti-
mates for rescaled spacelike initial data. Its straight-forward proof is omitted.

Lemma 6.9 (Smallness of rescaled spacelike initial data). Let (�, g, k) be strongly
asymptotically flat spacelike initial data with Cartesian coordinates (x1, x2, x3) near
spacelike infinity. For real numbers R ≥ 1 sufficiently large, the rescaled spacelike
initial data ((R)gi j , (R)ki j ) is well-defined on A[1/2,7/2] and

‖
(

(R)g − g̃M/R, (R)k
)

‖Ck0 (A[1/2,7/2])×Ck0−1(A[1/2,7/2]) = O(R−3/2), (6.18)

where M is the real number appearing in (6.8).

Moreover, we note the following lemma. Its proof follows from (6.5) and is omitted.

Lemma 6.10 (Estimates for Schwarzschild reference metric). For real numbers M ≥ 0
sufficiently small,

‖gM − e‖Ck0 (A[1/2,7/2]) � M.

7. Construction of Sphere Data from Spacelike Initial Data

In this section we construct families of ingoing null data from spacelike initial data. The
following theorem is the main result of this section.

Theorem 7.1 (Constructionof ingoingnull data fromspacelike initial data). Let (�, g, k)
be strongly asymptotically flat spacelike initial data with asymptotic invariants

(EADM,PADM,LADM,CADM),

where PADM = 0 by the strong asymptotic flatness. There is a real number δ > 0 and
a strongly asymptotically flat family of ingoing data (x−R+R·[−δ,δ],R), constructed on
spheres in �, such that for m = −1, 0, 1 and (i−1, i0, i1) = (2, 3, 1),

E(x−R,R) =EADM +O(R−1), Pm(x−R,R) = (PADM)im +O(R−3/2),

Lm(x−R,R) = (LADM)im + O(1), Gm(x−R,R) = (CADM)im + O(1).

Moreover, if the spacelike initial data is smooth, then the constructed ingoing null data
is smooth, along with all higher-order derivatives in all directions.
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In the particular case of Schwarzschild reference spacelike initial data in isotropic coor-
dinates, g̃EADM

i j , the construction of Theorem 7.1 produces the Schwarzschild reference

family of sphere datamEADM−R,R in Eddington–Finkelstein coordinates, see (2.16). The proof
of Theorem 7.1 is structured as follows.

• In Sect. 7.1 we rescale the strongly asymptotically flat spacelike initial data on the
annulus A[R/2,7R/2] to spacelike initial data on A[1/2,7/2] and change from isotropic
to Schwarzschild coordinates, to arrive at spacelike initial data on A[1,3] close to
Schwarzschild (in Schwarzschild coordinates) of mass M/R.

• In Sect. 7.2 we construct from the spacelike initial data on A[1,3] ingoing null data
((R)x−1+[−δ,δ],1), and prove estimates.

• In Sects. 7.3, 7.4, 7.5 and 7.6 we compare the charges (E,P,L,G) of (R)x−1,1 with
the local integrals (Eloc

ADM,Ploc
ADM,Lloc

ADM,Cloc
ADM) on S−1,1 ⊂ A[1,3] of the spacelike

initial data.
• In Sect. 7.7we conclude the proof of Theorem 7.1 by scaling the constructed ingoing
null data ((R)x−1+[−δ,δ],1) up to (x−R+R·[−δ,δ],R), and analyzing the asymptotics of
(E,P,L,G)(x−R,R) by use of the estimates of Sects. 7.3, 7.4, 7.5 and 7.6.

7.1. Rescaling and change to Schwarzschild coordinates. Let (�, g, k) be strongly
asymptotically flat spacelike initial data, and let (x1, x2, x3) denote corresponding coor-
dinates near spacelike infinity. In the followingwefirst rescale to small data on an annulus
A[1/2,7/2] and then change from isotropic coordinates to Schwarzschild coordinates, see
(6.6), yielding spacelike initial data on the annulus A[1,3].

In the particular case of Schwarzschild reference spacelike data in isotropic coor-
dinates of mass M , denoted by g̃Mi j , the following construction maps to Schwarzschild
reference spacelike initial data in Schwarzschild coordinates of mass M/R, denoted by
gMi j /R.

First, let ((R)g, (R)k) denote the rescaled spacelike initial data. By Lemma 6.9 we
have that

∥

∥

∥

(

(R)g − g̃M/R, (R)k
)∥

∥

∥

Ck0 (A[1/2,7/2])×Ck0−1(A[1/2,7/2])
= O(R−3/2), (7.1)

Second, we apply the coordinate change � from isotropic coordinates (r̃ , θ̃1, θ̃2) to
Schwarzschild coordinates (r, θ1, θ2), see (6.6), with M/R,

� : (r̃ , θ̃1, θ̃2) → (r, θ1, θ2) :=
(

r̃

(

1 +
M/R

2r̃

)2

, θ̃1, θ̃2

)

,

On the one hand, for R ≥ 1 sufficiently large, the Schwarzschild coordinates (r, θ1, θ2)
range over the coordinate domain A[1,3]. On the other hand, by (6.6) we can estimate
for R ≥ 1 sufficiently large

‖D� − Id‖Ck0 (A[1/2,7/2]) ≤ C, (7.2)

where C > 0 is a universal constant. Thus by (7.1) and (7.2),
∥

∥

∥�∗ (

(R)g
)

− gM/R
∥

∥

∥

Ck0 (A[1,3])
=

∥

∥

∥�∗ (

(R)g − g̃M/R
)∥

∥

∥

Ck0 (A[1,3])

�
∥

∥

∥

(R)g − g̃M/R
∥

∥

∥

Ck0 (A[1/2,7/2])
= O(R−3/2),
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where we used that by (6.7), �∗ (

g̃M/R
) = gM/R . Furthermore, by (7.1) and (7.2) it

similarly follows that
∥

∥

∥�∗ (

(R)k
)∥

∥

∥

Ck0−1(A[1,3])
= O(R−3/2).

To summarize the above, for R ≥ 1 sufficiently large, we constructed from strongly
asymptotically flat spacelike initial data (�, g, k) the spacelike initial data

(

�∗ (

(R)g
)

,�∗ (

(R)k
))

on A[1,3],

satisfying
∥

∥

∥�∗ (

(R)g
)

− gM/R
∥

∥

∥

Ck0 (A[1,3])
+

∥

∥

∥�∗ (

(R)k
)∥

∥

∥

Ck0 (A[1,3])
= O(R−3/2). (7.3)

Notation. We use the following notation in Sects. 7.2, 7.3, 7.4, 7.5 and 7.6.

(1) We denote the R-dependent smallness on the right-hand side of (7.3) by

εR := O(R−3/2). (7.4)

(2) For ease of presentiation we abuse notation by denoting
(

�∗ (

(R)g
)

,�∗ (

(R)k
))

by
(g, k).

7.2. Construction of sphere data. Let M ≥ 0 and R ≥ 1 be two real numbers. Consider
spacelike initial data (g, k) on A[1,3] such that

∥

∥

∥

(

g − gM/R, k
)∥

∥

∥

Ck0 (A[1,3])×Ck0−1(A[1,3])
≤ εR, (7.5)

see (7.4) for the εR-notation. In this section we construct from (g, k) the ingoing null
data ((R)x−1+[−δ,δ],1) and prove that for R ≥ 1 sufficiently large,

‖(R)x−1+[−δ,δ],1 − mM/R‖X +(H−1+[−δ,δ],1) � εR . (7.6)

In the particular case Schwarzschild reference data in Schwarzschild coordinates, gM/R ,
the construction of this section produces the Schwarzschild reference ingoing null data
in Eddington–Finkelstein coordinates mM/R

−1+[−δ,δ],1. We remark that the universal inte-
ger k0 ≥ 6 is determined from the regularity in (7.6), see the notational remark after
Definition 6.8.

Definition of S−1,1 and gauge choices. Let (M, g) denote the unique maximal future
globally-hyperbolic development of the spacelike initial data (A[1,3], g, k).Let T denote
the future-directed timelike unit vector to A[1,3] in (M, g), and let N denote the outward
pointing unit normal to Sr ⊂ � tangent to A[1,3] for 1 ≤ r ≤ 3. For R ≥ 1 sufficiently
large, consider the sphere SrM/R(−1,1) ⊂ A[1,3] where the definition of rM (u, v) is given
in (2.15). On SrM/R(−1,1) ⊂ � define the renormalized null vectors (̂L, ̂L) by

̂L = T + N , ̂L = T − N , (7.7)
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which satisfy by construction g(̂L, ̂L) = −2. We can construct around SrM/R(−1,1) ⊂ �

a local double null coordinate system (u, v, θ1, θ2) such that with respect to (u, v) we
have S−1,1 = SrM/R(−1,1), and moreover, the following holds on S−1,1 (which is in
agreement with (2.16))

�2 :=1 − 2M/R

rM/R(−1, 1)
, ω := M/R

(

rM/R(−1, 1)
)2 , ω := − M/R

(

rM/R(−1, 1)
)2 ,

Dω := − 2�2M/R
(

rM/R(−1, 1)
)3 , Dω := − 2�2M/R

(

rM/R(−1, 1)
)3 .

(7.8)

Definition and analysis of χ and χ . Defining χ and χ as in Definition 2.5, we have by
(6.12) and (7.7),

χAB = −k/AB + �AB, χ
AB

= −k/AB − �AB . (7.9)

Taking the tracefree part and trace with respect to g/, we get

trχ = −trk/+ tr�, χ̂AB = −̂k/AB + ̂�AB, trχ = −trk/− tr�, χ̂
AB

= −̂k/AB − ̂�AB .

(7.10)

By (2.16), (7.5) and (7.10) we have that for R ≥ 1 sufficiently large,

‖χ̂‖H6(S−1,1)
+ ‖χ̂‖H6(S−1,1)

�εR,
∥

∥

∥

∥

trχ − 2�M

rM/R(−1, 1)

∥

∥

∥

∥

H6(S−1,1)

+

∥

∥

∥

∥

trχ +
2�M

rM/R(−1, 1)

∥

∥

∥

∥

H6(S−1,1)

�εR .
(7.11)

Definition and analysis of ζ and η. Defining ζ and η on S−1,1 as in Definition 2.5, we
have by (7.7) that

ζA :=1

2
g

(

DÂL, ̂L
) = −1

2
g (DAT, N ) +

1

2
g (DAN , T ) = −g (DAT, N ) = k/A,

ηA :=ζA + d/ log� = k/A + d/ log� = k/A,

(7.12)

where we used (7.7) and (7.8). Subsequently, by (7.5) and (7.12) we have that for R ≥ 1
sufficiently large,

‖ζ‖H5(S−1,1)
+ ‖η‖H5(S−1,1)

� εR . (7.13)

Definition and analysis of α and α. By Definition 2.6, (6.1), (6.2), (6.3) and (7.7), we
have that

αAB :=R
(

eA, ̂L, eB , ̂L
)

=RAT BT + RAT BN + RAN BT + RAN BN

=EAB− ∈ s
AN HsB− ∈ s

BN HsA+ ∈ANs∈BNl E
sl .

(7.14)

Subsequently, by (7.5) and (7.14) we have that for R ≥ 1 sufficiently large,

‖α‖H6(S−1,1)
� εR . (7.15)
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Similarly, by Definition 2.6, (6.1), (6.2), (6.3), (7.7) and (7.14) we get that for R ≥ 1
sufficiently large,

‖α‖H2(S−1,1)
� εR . (7.16)

Definition and analysis of (R)x−1,1 on S−1,1. Let (R)x−1,1 be the sphere data on S−1,1
determined by the quantities constructed in (7.8), (7.9), (7.10), (7.12) and (7.14). From
the estimates (7.11), (7.13), (7.15) and (7.16), it follows that

‖(R)x−1,1 − mM/R‖X (S−1,1) � εR . (7.17)

Definition and analysis of (R)x−1+[−δ,δ],1 on H−1+[−δ,δ],1. Following (7.7) and (7.8),
define L ′ on S−1,1 by

L ′ := �−1
M

̂L = 1
√

1 − 2M/R
rM/R(−1,1)

(T − N ) ,

and extend L ′ to the spacetime (M, g) as null geodesic vectorfield. The ingoing null
hypersurface H1 ⊂ M passing through SrM/R(−1,1) ⊂ � is ruled by L ′. We define on
H1 the function u by

L ′(u) = 1
√

1 − 2M/R
rM/R(u,1)

on H1 and u|S−1,1 = −1.

The level sets Su,1 ⊂ H1 of u are locally well-defined and foliate H1 by construction
with Schwarzschild reference null lapse.

By the smallness (7.5) together with the above gauge choices (7.7) and (7.8), by the
local existence andCauchy stability for the spacelikeCauchyproblem, see [15], it follows
that for R ≥ 1 and k0 ≥ 6 sufficiently large, there is a universal real number δ > 0,
such that the foliated null hypersurface H−1+[−δ,δ],1 := ⋃

−δ≤u≤δ

Su,1 is well-defined in

(M, g) and the induced null data, denoted by (R)x−1+[−δ,δ],1, satisfies

‖(R)x−1+[−δ,δ],1 − mM/R‖X +
(H−1+[−δ,δ],1

) � εR . (7.18)

To summarise the above, we constructed ingoing null data ((R)x−1+[−δ,δ],1) satisfying

‖(R)x−1+[−δ,δ],1 − mM/R‖X +
(H−1+[−δ,δ],1

) � εR . (7.19)

This finishes the proof of (7.6).

Remark 7.2 In case of higher regularity, we impose gauge conditions on Dmω and Dmω,
for integersm ≥ 2 on S−1,1 in accordancewith the Schwarzschild reference higher-order
sphere data (2.16). Subsequently, the higher-order sphere data on S−1,1 can be explicitly
calculated and estimated by the Bianchi identities.



Characteristic Gluing to the Kerr Family 319

7.3. Comparison of E and Eloc
ADM. In this section we prove that

E((R)x−1,1) = Eloc
ADM(S−1,1, g, k) +O

(

M

R
εR

)

+O(ε2R). (7.20)

In the following we rewrite E into Eloc
ADM, where we eased notation. Using the null

structure equations (2.10) and (2.11), and the relations (7.10) and (7.12), we can write

ρ + r div/ β = −
(

K − 1

4
(tr�)2 +

1

2
|̂�|2 + 1

4
(trk/)2 +

1

2
|̂k/|2

)

− r div/

(

div/
(−̂k/+ ̂�

) − 1

2
d/ (−trk/+ tr�)

)

− r div/

(

(−̂k/+ ̂�
) · k/− 1

2
(−trk/+ tr�) k/

)

.

(7.21)

Plugging the Gauss equation (6.13) into the right-hand side of (7.21) leads to

ρ + r div/ β = − 1

2

(

Rscal − 2RicNN +
1

2
(trk/)2 + |̂k/|2 + |̂�|2

)

− r div/

(

div/
(−̂k/+ ̂�

) − 1

2
d/ (−trk/+ tr�)

)

− r div/

(

(−̂k/+ ̂�
) · k/− 1

2
(−trk/+ tr�) k/

)

.

Hence we get that

− 8π√
4π

E = −
(

r3

2

(

Rscal − 2RicNN +
1

2
(trk/)2 + |̂k/|2 + |̂�|2

))(0)

−
(

r4 div/

(

div/
(−̂k/+ ̂�

) − 1

2
d/ (−trk/+ tr�)

))(0)

−
(

r4 div/

(

(−̂k/+ ̂�
) · k/− 1

2
(−trk/+ tr�) k/

))(0)

,

which we can estimate by (7.5) and Lemma 2.1 for R ≥ 1 sufficiently large and (6.11)
as

E =
√
4π

8π

(

r3

2
(Rscal − 2RicNN )

)(0)

+O
(

M

R
εR

)

+O(ε2R)

= − 1

8π

∫

S−1,1

(

Ric − 1

2
Rscal g

)

(r N , N )dμg/ +O
(

M

R
εR

)

+O(ε2R)

= − 1

8π

∫

S−1,1

(

Ric − 1

2
Rscal g

)

(x j∂ j , N )dμg/ +O
(

M

R
εR

)

+O(ε2R)

=Eloc
ADM +O

(

M

R
εR

)

+O(ε2R),

where we used Lemma 6.10. This finishes the proof of (7.20).
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7.4. Comparison of P and Ploc
ADM.. Next we prove that for i = 1, 2, 3, (m1,m2,m3) =

(1,−1, 0),

(

Ploc
ADM

)i
(S−1,1, g, k) = Pmi ((R)x−1,1) +O

(

M

R
εR

)

+O(ε2R). (7.22)

In the following we rewrite
(

Ploc
ADM

)i
into Pmi , where we eased notation. By (7.5), for

R ≥ 1 sufficiently large, it holds that on the annulus A[1,3], (∂i ) j −(∇xi ) j = ei j −gi j =
O (M

R

)

+O(εR). Hence we can write, using that N is normal to S−1,1,
∫

S−1,1

(kiN − trk giN ) dμg/

=
∫

S−1,1

(

k j N − trk g jN
)

(∇xi ) j dμg/ +O
(

M

R
εR

)

+ O
(

ε2R

)

=
∫

S−1,1

(

k j N − trk g jN
)

(

N (xi )N j +
(

∇/ xi
) j

)

dμg/ +O
(

M

R
εR

)

+ O
(

ε2R

)

=
∫

S−1,1

(

(kNN − trk) N (xi ) + k(N ,∇/ xi )
)

dμg/ +O
(

M

R
εR

)

+ O
(

ε2R

)

.

(7.23)

Using that by (7.7) and (7.12), for R ≥ 1 sufficiently large we have on S−1,1,

kNN − trk = −trk/= 1

2

(

trχ + trχ
)

, k(N ,∇/ xi ) = ζ(xi ),

N (xi ) = xi

r
+O

(

M

R

)

+O (εR) ,

where r denotes the area radius on (S−1,1, g/), we get from (7.23) that
∫

S−1,1

(kiN − trk giN ) dμg/

=
∫

S−1,1

(

1

2

(

trχ + trχ
) xi

r
+ ζ(xi )

)

dμg/ +O
(

M

R
εR

)

+O
(

ε2R

)

=
∫

S−1,1

(

1

2

(

trχ − trχ
)

+ trχ − r div/ ζ

)

(
√

4π

3
Y (1mi )

)

dμ
r2

◦
γ

+O
(

M

R
εR

)

+O
(

ε2R

)

,

(7.24)

where we used that for i = 1, 2, 3, xi
|x | =

√

4π
3 Y (1mi ) with (m1,m2,m3) = (1,−1, 0).

In the following we use two identities to rewrite the right-hand side of (7.24). First, by
(2.10),
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1

2

(

trχ − trχ
)

= r

(

−ρ − K +
1

2
(χ̂, χ̂)

)

− 1

r
− r

4

(

trχ − 2

r

) (

trχ +
2

r

)

, (7.25)

Next, we can express by (2.11)

r div/ ζ = r2 div/ β − 1

2

◦�/ trχ +
1

2

( ◦�/ − r2�/
)

trχ

+ r2 (div/ div/ χ̂ + div/ (χ̂ · ζ )) − r2

2
div/

((

trχ − 2

r

)

ζ

)

.

(7.26)

Plugging (7.25) and (7.26) into the right-hand side of (7.24), and using that for any scalar

function f , for m = −1, 0, 1, (
◦�/ f )(1m) = −2 f (1m), we get that for R ≥ 1 sufficiently

large,

8π · (

Ploc
ADM

)i

=
∫

S−1,1

(

1

2

(

trχ − trχ
)

+ trχ − r div/ ζ

)
√

4π

3
Y (1mi )dμ

r2
◦
γ
+O

(

M

R
εR

)

+O (

ε2R
)

=
∫

S−1,1

(

−rρ − r2 div/ β + trχ +
1

2

◦�/ trχ

)
√

4π

3
Y (1mi )dμ

r2
◦
γ
+O

(

M

R
εR

)

+O (

ε2R
)

+R

= 8π · Pmi +O
(

M

R
εR

)

+O (

ε2R
)

+R,

(7.27)

where the remainder term R is given by

R =
∫

S−1,1

(

−r K +
r

2
(χ̂ , χ̂) − 1

r
− r

4

(

trχ − 2

r

)(

trχ +
2

r

))
√

4π

3
Y (1mi )dμ

r2
◦
γ

−
∫

S−1,1

(

1

2

( ◦�/ − r2�/
) (

trχ − 2

r

)

+
r2

2
div/ div/ χ̂

)
√

4π

3
Y (1mi )dμ

r2
◦
γ

−
∫

S−1,1

(

r2 div/ (χ̂ · ζ ) − r2

2
div/

((

trχ − 2

r

)

ζ

))
√

4π

3
Y (1mi )dμ

r2
◦
γ
.

To conclude (7.22), it remains to show that for R ≥ 1 sufficiently large,

R = O(ε2R) +O
(

M

R
εR

)

. (7.28)

Indeed, (7.28) follows in a straight-forward fashion, using Lemma 2.1. This proves
(7.22).
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7.5. Comparison of L and Lloc
ADM.. In this section we prove that for i = 1, 2, 3 and

(m1,m2,m3) = (1,−1, 0),

Lmi ((R)x−1,1) =
(

Lloc
ADM

)i
(S−1,1, g, k) +O

(

M

R
εR

)

+O(ε2R). (7.29)

On the one hand we have, using that d/ �M = 0, and that (d/ f )H = 0 for any scalar
function f ,

Lmi = 1

16π

√

8π

3
r3 (trχ · η)

(1mi )
H

= 1

8π

√

8π

3
r2η(1mi )

H +
1

16π

√

8π

3
r3

((

trχ − 2

r

)

· η

)(1mi )

H

= 1

8π

√

8π

3
r2η(1mi )

H +O
(

M

R
εR

)

+O(ε2R),

(7.30)

On the other hand,
(

Lloc
ADM

)i = 1

8π

∫

S−1,1

k j N
(

Y(i)
) j

dμg/ − 1

8π

∫

S−1,1

trk g
(

Y(i), N
)

︸ ︷︷ ︸

=0

dμg/

= 1

8π

∫

S−1,1

ηA
(

Y(i)
)A

dμ
r2

◦
γ
+O(ε2R)

= 1

8π

√

8π

3
r2η(1mi )

H +O(ε2R),

(7.31)

where we used (7.12) and that the rotation fields Y(i), i = 1, 2, 3, are S−1,1-tangential
and related to the standard vector spherical harmonic H (1m), m = −1, 0, 1, as follows

Y(i) =
√

8π

3
|x |2H (1mi ) with (m1,m2,m3) = (1,−1, 0).

Combining (7.30) and (7.31) finishes the proof of (7.29).

7.6. Expression of G in terms of Cloc
ADM and Ploc

ADM.. In this section we prove that for
i = 1, 2, 3 and (m1,m2,m3) = (1,−1, 0),

Gm((R)x−1,1) =
(

Cloc
ADM

)im
(S−1,1, g, k) − r(S−1,1, g, k) ·

(

Ploc
ADM

)im
(S−1,1, g, k)

+O
(

M

R
εR

)

+O
(

ε2R

)

.

(7.32)

Consider first Cloc
ADM. By (6.10) and g(E (1m), N ) = 0 we have that

16π
(

Cloc
ADM

)i = −
√

8π

3

∫

S−1,1

|x |3Ric
(

E (1mi ), N
)

dμg/

−
√

4π

3

∫

S−1,1

|x |2
(

Ric − 1

2
Rscal g

)

(∂r , N )Y (1mi )dμg/,

(7.33)
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By (6.13), the second integral on the right-hand side of (7.33) can be expressed as
∫

S−1,1

|x |2
(

Ric − 1

2
Rscal g

)

(∂r , N )Y (1mi )dμg/

=
∫

S−1,1

|x |4
(

−K +
1

4
(tr�)2 + |̂�|2

)

Y (1mi )dμ ◦
γ
+O

(

M

R
εR

)

+O(ε2R)

= −
∫

S−1,1

|x |4K · Y (1mi )dμ ◦
γ

︸ ︷︷ ︸

:=I1

+
1

4

∫

S2

|x |4(tr�)2 · Y (1mi )dμ ◦
γ

︸ ︷︷ ︸

:=I2

+O
(

M

R
εR

)

+O(ε2R),

(7.34)

where we used Lemma 6.10. In the following we analyse I1 and I2. First, by (7.1) and
Lemma 2.1 we have that for R ≥ 1 sufficiently large,

I1 = |x |4K (1mi ) = O(ε2R). (7.35)

Second, by the relation Y (1m) = 1√
2

◦
div/ E (1m), integration by parts, and the Gauss–

Codazzi equations (6.13), we have that

I2 = − 4√
2

∫

S−1,1

|x |4 · tr� · ◦
γ

(

1

2
d/ tr�, E (1mi )

)

dμ ◦
γ

= 8√
2

∫

S−1,1

|x |3 · g/
(

div/ ̂� − 1

2
d/ tr�, E (1mi )

)

dμg/ +O
(

M

R
εR

)

+O(ε2R)

= 8√
2

∫

S−1,1

|x |3 · Ric(E (1mi ), N )dμg/ +O
(

M

R
εR

)

+O(ε2R),

(7.36)

where we used that tr� − 2
|x | = O (M

R

)

+ O(εR) by (7.1) and Lemma 6.10. Plugging
(7.35) and (7.36) into (7.34) and subsequently into (7.33), we get that

16π
(

Cloc
ADM

)i = − 2

√

8π

3

∫

S−1,1

|x |3 · Ric(E (1mi ), N )dμg/ +O
(

M

R
εR

)

+O(ε2R).

(7.37)

Consider now Gm . By Definition 2.5, (2.11) and (7.8), we have that

8π

√

3

8π
· Gm =

(

r3 (β + div/ χ̂ + χ̂ · η)
)(1m)

E
= r3β(1m)

E +O(ε2R), (7.38)

where we used (7.1), (7.10) and (7.12).
Recalling the definition of P from Definition 2.5 and applying (7.1), it holds that

−8π

√

3

4π

1

r3
Pm =ρ(1m) +

(

1

r

◦
div/ β

)(1m)

+O(ε2R) = ρ(1m) +

(

1

r

√
2β(1m)

E

)

+O(ε2R).
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In particular, β(1m)
E can expressed as β

(1m)
E = − r√

2

(

8π
√

3
4π

1
r3
Pm + ρ(1m)

)

+O(ε2R).

Plugging this into the right-hand side of (7.38) yields

8π

√

3

8π
· Gm = r3β(1m)

E +O(ε2R) = r3
(

− r√
2

(

8π

√

3

4π

1

r3
Pm + ρ(1m)

))

+O(ε2R)

= −8π

√

3

8π
· r · Pm − r4√

2
ρ(1m) +O(ε2R).

(7.39)

The second term on the right-hand side of (7.39) can be rewritten by the Gauss equation
(2.10), Lemma 2.1, application of (7.1) and (7.10), and use of (7.36) as follows,

ρ(1m) =
(

−K − 1

4
trχ trχ +

1

2
(χ̂, χ̂)

)(1m)

= − 1

4

(

trχ trχ
)(1m)

+O(ε2R)

= − 1

4

(

(−trk + tr�)(−tr� − trk)
)(1m)

+O(ε2R)

=1

4

(

(tr�)2
)(1m)

+O(ε2R)

= 2√
2

∫

S−1,1

1

|x | · Ric(E (1mi ), N )dμg/ +O
(

M

R
εR

)

+O(ε2R).

Plugging this into (7.39), and using (7.22) and (7.37), we get

8π

√

3

8π
Gm = − 8π

√

3

8π
· r · Pm − r3

∫

S2

Ric(N , E (1m))dμg/ +O
(

M

R
εR

)

+O (

ε2R
)

= − 8π

√

3

8π
· r · (

Ploc
ADM

)im + 8π

√

3

8π

(

Cloc
ADM

)im +O
(

M

R
εR

)

+O (

ε2R
)

.

This finishes the proof of (7.32).

7.7. Conclusion of proof of Theorem 7.1. From (7.6) we have that the constructed in-
going null data ((R)x−1+[−δ,δ],1) satisfies, for R ≥ 1 sufficiently large,

‖(R)x−1+[−δ,δ],1 − mM/R‖X +
(H−1+[−δ,δ],1

) = O
(

R−3/2
)

.

By Lemma 2.17, the rescaled ingoing null data x−R+R[−δ,δ],R := (R−1)
(

(R)x−1+[−δ,δ],1
)

satisfies

‖x−R+R[−δ,δ],R − mM‖X +
(H−R+R[−δ,δ],R

) = O
(

R−3/2
)

.

Next we show that

‖β[1](x−R,R)‖L2(S−R,R) =O
(

R−3
)

. (7.40)
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We claim that (7.40) follows from the finiteness of the charges L∞ and G∞ shown
below. Indeed, by Definition 2.5, (2.11), Lemma 2.18 and (7.6), we have that for R ≥ 1
large,

Lm(x−R,R) = R2 · Lm((R)x−1,1) =R2 · (−r3 (β + div/ χ̂ + χ̂ · (η − d/ log�))
)(1m)

H ((R)x−1,1)

Gm(x−R,R) = R2 · Gm((R)x−1,1) =R2 ·
(

− (

rM/R(−1, 1)
)3

β
(1m)
E ((R)x−1,1) +O(R−3)

)

.

Hence by Definition 2.12 and the finiteness of L∞ and G∞ (discussed below) we get
that |β(1m)

H ((R)x−1,1)| + |β(1m)
E ((R)x−1,1)| = O(R−2). Together with the scaling of β,

see Lemma 2.15, this implies that

‖β[1](x−R,R)‖2L2(S−R,R)
= R−2 · ‖β[1]((R)x−1,1)‖2L2(S−1,1)

= O(R−6).

This finishes the proof of (7.40). It thus only remains to analyze the asymptotics of the
charges (E,P,L,G)(x−R,R). These follow straight-forward fromLemmas 2.18 and 6.6,
Sect. 6.4 and (7.20), (7.22), (7.29) and (7.32), and are omitted. This finishes the proof
of Theorem 7.1.
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