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Resilient Control of Dynamic Flow Networks Subject to Stochastic
Cyber-Physical Disruptions

Yu Tang and Li Jin

Abstract— Modern network systems, such as transporta-
tion and communication systems, are prone to cyber-
physical disruptions and thus suffer efficiency loss. This
paper studies network resiliency, in terms of throughput,
and develops resilient control to improve throughput. We
consider single-commodity networks that admit congestion
propagation. We also apply a Markov process to model
disruption switches. For throughput analysis, we first use
insights into congestion spillback to propose novel Lya-
punov functions and then exploit monotone network dy-
namics to reduce computational costs of verifying stability
conditions. For control design, we show that (i) for a net-
work with infinite link storage space, there exists an open-
loop control that attains the min-expected-cut capacity;
(ii) for a network with observable disruptions that restrict
maximum sending and/or receiving flows, there exists a
mode-dependent control that attains the expected-min-cut
capacity; (iii) for general networks, there exists a closed-
loop control with throughput guarantees. We also derive
lower bounds of resiliency scores for a set of numerical ex-
amples and verify resiliency improvement with our method.

Index Terms: Dynamic flow networks, cyber-physical dis-
ruptions, piecewise-deterministic Markov processes, monotone
dynamical systems.

. INTRODUCTION
A. Motivation

Dynamic flow networks are widely used to model en-
gineering systems including transportation systems [1] and
communication networks [2]. These systems are susceptible to
disruptions both in physical and cyber parts. In the physical
part, link flows can be disrupted by capacity-reducing events
such as traffic incidents [3]. In the cyber part, unreliable state
observation or faulty feedback actuation may occur, which
degrades the effectiveness of feedback controllers and lead
to physical losses [4]. Typically, both types of disruptions
are hard to predict and thus need treatment in a stochastic
manner. For instance, probabilistic models were used to eval-
uate freeway capacity, which is supported by field studies [5].
This modeling technique is also applicable to sensing faults
[6]. Since network systems involve very large numbers of
cyber-physical components, it is neither economically feasible
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nor technically necessary to prevent all disruptions. Instead,
a practical solution is to integrate disruptions into modeling
control schemes [7]. However, limited studies have discussed
such method for dynamic flow networks subject to stochastic
disruptions.

In this paper, we first evaluate network throughput as a
measure of resiliency against stochastic cyber-physical disrup-
tions, arising from reliability failures ', and then design control
strategies that mitigate throughput losses. To this end, we con-
sider single-commodity networks that have found applications
in real systems, such as freeway systems [1]. Although single-
commodity networks could simplify real-word cases, they
are worth studying since multi-commodity networks require
origin-destination (OD) demands that are hard to acquire in
practice. We use a finite-state Markov process to model the
occurrence and clearance of disruptions. Then we investigate
stability condition of networks, which allows for resiliency
quantification and resilient control configuration. Particularly,
our discussion on control design, inspired by the classical
max-flow min-cut theorem [8] for static flow networks, pro-
poses min-expected-cut capacity (MECC) and expected-min-
cut capacity (EMCC) and reveals their relation to throughput,
network storage space, disruptions and control laws. In case
of a general network whose throughput is not guaranteed with
these capacities, we present a closed-loop control with lower-
bounded throughput.

B. Related work

Previous work on dynamic flow networks typically consid-
ered a nominal or robust setting. In the disruption-free case, in-
depth stability analysis was provided for networks character-
ized by various flow structures including monotone dynamics,
nonlinear demand/supply constraints, and congestion spillback
[9]-[13]. Besides, optimal routing control has been extensively
investigated for dynamical flow networks. [9], [14]. Robust
control strategies, along with resiliency analysis, were devel-
oped in the face of physical disruptions [15]-[20]. However,
the above work assumes perfect sensing and actuation; the
resiliency against cyber disruptions remains unclear. Besides,
robust control handles disturbances with uncertainty sets [20];
it does not apply to recurrently switching disruptions.

'In this paper, reliability failures refer to temporary malfunction of com-
ponents of controlled dynamic flow networks, such as node/link breakdown
and sensing/actuation faults. They do not include communication delay or
malicious cyber attacks. Though this paper mainly considers sensing failures
for cyber disruptions, our approach can be applied to address actuation faults
with minor modifications.
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The model we consider belongs to a subclass of piecewise-
deterministic Markov processes (PDMP) [21], sometimes
known as Markov jump nonlinear systems (MJNS) [22], where
continuous states (traffic densities) evolve according to a set of
ordinary differential equations and a discrete state (disruption
mode) determines the mode of the continuous dynamics [23].
Such a formulation allows analysis of joint impacts of cyber
and physical disruptions on network resiliency. Although the
general theories of PDMPs [23]-[25] and MINSs [26], [27]
have been extensively investigated, the implementation is still
challenging due to nonlinear flow dynamics. Typical Lyapunov
functions, such as piecewise quadratic functions [27], fail to
capture congestion dynamics and thus only lead to trivial
stability analysis; see our discussion in Section IIIL. It is vital
to design appropriate Lyapunov functions for analyzing our
model.

Our work is also related to stochastic fluid models [28],
[29]. These models are applied to performance analysis or
admission/priority control for servers subject to demand or
service disruptions [30], [31]. Currently, limited results con-
sider congestion spillback over stochastic flow networks, let
alone the corresponding control design. Only a few results
were developed for networks with special structures, such as
parallel links [3], [32] and serial links [33], [34]. To our best
knowledge, the general stochastic flow networks are still not
well investigated.

C. Our contributions

This paper focuses on the two following questions:

(i) How to quantify resiliency against stochastic disruptions,
especially for networks with congestion propagation?
(i) How to attain resiliency-by-design or improve resiliency?

We define resiliency score as a ratio of disrupted network
throughput to its nominal value. Here the disrupted (resp.
nominal) throughput means the maximal inflow under which
the network with (resp. without) disruptions can be stabilized,
i.e. traffic densities in all links being bounded on average. The
max-flow min-cut theorem states that the nominal throughput
equals min-cut capacity [8], but we can hardly resolve the dis-
rupted throughput in an analytical way. It is because our PDMP
model allows complicated disruptions, including the physical
ones creating new bottlenecks and the cyber ones inducing
mismatches between control instructions and actual inter-link
flows. Thus we address (i) by deriving and sharpening lower
bounds of throughput. The lower bounds are obtained from
a set of stability conditions built on the Foster-Lyapunov
criterion [35]. To formulate the stability conditions, we use the
insights into network-wide congestion propagation to propose
a set of novel Lyapunov functions. We also exploit monotone
network dynamics to simplify the condition verification from
over unbounded sets to over only compact sets, which saves
computational costs.

As indicated above, the max-flow min-cut theorem could
be compromised. Thus we consider its variants for resiliency-
by-design control. Meanwhile, a more practical concern is
that full observation of disruption modes and network states
(traffic densities) could not be available to control design.

To answer (ii), we first show that there exists an open-loop
control that attains the MECC if all links have infinite storage
space. Second, we show that there exists a mode-dependent
control that attains the EMCC if the disruptions restrict
maximum sending/receiving flows. The above results resemble
the classical max-flow min-cut theorem. Third, we propose
a density-dependent control, that is throughput-guaranteed,
for general networks disrupted stochastically. Finally, we use
numerical examples to demonstrate that our methods can
enhance network resiliency.

The rest of this paper is organized as follows. Section II
introduces our PDMP model for networks subject to stochastic
cyber-physical disruptions. Section III analyzes the resiliency
of this network. Section IV presents resilient control design.
Section V summarizes the main conclusions and discusses
future directions.

[I. DYNAMIC FLOW NETWORK WITH CYBER-PHYSICAL
DISRUPTIONS

Consider a single-origin-single-destination directed network
G = (V,€), where V and £ denote the node set and the
link set, respectively. Though single-commodity networks may
have multiple origins and destinations, we can introduce one
artificial origin and destination so that we obtain single-origin-
single-destination networks where demands are routed from
the artificial origin to real ones by proportions. For ease of
presentation, we assume that the network is acyclic. Note that
the proposed method can be applied to cyclic networks as well;
see our discussion in Appendix B. We denote the starting and
ending nodes of link e by o, and 7., respectively. We number
the origin node as v, and the destination node as vg4. The
origin is subject to a constant inflow of o € R>q. Without loss
of generality, we assume that the flow enters the network via
link e,; see Fig. 1. Following the convention [18], we consider

=

.. Destination

Fig. 1: A single-origin-single-destination network: we denote by
Ee (resp. £5,) the set of incoming links of link e (resp. node oe),
by EF (resp. 5;*;) the set of outgoing links of link e (resp. node
7e), by Az the set of links upstream of link e, and by A the set
of links downstream of link e.

traffic density (mass per unit) as the network state and denote
by X.(t) the density of link e at time ¢. We also assume that all
links have the same unit length for convenience of computing
densities. For link e with finite storage space, X.(t) can only
take values from a closed interval [0, z**], where ** < oo
is called the jam density. For link e with infinite storage space,
X(t) can take values from R>o and we let 2"** = co. In
particular, we assume that link e, has infinite storage space;
this ensures that no traffic is rejected into e,. We use X, to

denote the set of X (t), X = [[ e Xe C Rgo to denote the
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set of the state vector X (t), where R ; stands for a set of non-
negative vectors whose components are indexed by elements
of £.

For a node v € V, we let £, := {e € &|r. = v} (resp.
&S = {e € &|lo. = v}) denote the set of its incoming (resp.
outgoing) links; for a link e € £, we use £, = {i € &|1; =
o} (resp. EF = {j € E|o; = 7.}) to denote the set of its
upstream (resp. downstream) adjacent links. Clearly, we have
Ey =& ifv=o0,and & = EF if v = 7.. We also let
P = {(e,j)le € £,j € EF} denote the set of ordered pairs
of adjacent links. It follows |P|= 3 ¢ |ES |, where |-| denotes
the cardinality of a set. We say that link e is accessible from
link ¢, denoted by ¢ — e, if there exists a directed path starts
with link 4 and ends at link e. For link e € &, let A, = {i €
E|i — e} be the set of links from which link e is accessible,
and let AT := {j € €]e — j} be the set of links that are
accessible from link e.

In the rest of this section, we first define flow functions,
control laws, and disruption modes (Section II-A), and then
specify the network’s dynamics as a piecewise-deterministic
Markov process (Section II-B). Finally, we define network
stability and resiliency score (Section II-C).

A. Flows, control laws and disruptions

Below we introduce the essential definitions and assump-
tions for our network model. The illustrative examples are
also provided.

1) Sending/receiving flows: The sending flow of link e is
specified by f. : &z — Rx>(. It stands for the maximum
outflow from link e given a state . The receiving flow of
link e is specified by r. : X, — R>. It is recognized as
the maximum inflow allowed into link e given a state x.. We
assume that these flows satisfy:

Assumption 1 (Sending/receiving flows).

1.1 Sending flows: For every e € &, fo(x.) is Lipschitz con-
tinuous and non-decreasing in x.. Furthermore, fo(x.) =
0 if v. = 0 and sup,,, fe(w.) < oo.

1.2 Receiving flows: For every e € &, r.(x.) is Lipschitz
continuous and non-increasing in x.. Furthermore, for
link e with finite storage space, we assume 7¢(x.) = 0
if e = x2'®%; for link e with infinite storage space, we
assume a constant receiving flow r. independent of x..

Note that receiving flows are not considered in some flow
networks. In that case we just let link e have infinite storage
space with r. = oo.

We define link capacity Q). and critical density x¢ as

Qe = Slell))( min{fe(xe)are(xe)}, (1a)
xf = inf{x. € Xe|fe(ze) = Qe}- (1b)

Practically, the capacity (). indicates an upper bound of
sustainable outflow from link e, and the critical density x¢
denotes an threshold where the capacity flow (). can be
maintained with a relatively high speed Q./z¢. Link e is
considered as ‘“congested” when its density z. exceeds the
critical value z¢.

Here are two examples of sending and receiving flows. In
road network, as per the cell transmission model (CTM [36]),
the sending and receiving flows are given by:

fe(xe) = min{vfa:e, Qe}a

Te(ze) = min{Qe, we(zg™ — z¢)},

(2a)
(2b)

where x. represents vehicle density of road section e, and
traffic parameters vy, Qe, w. and x2** are typically assumed
to satisfy Q./zP** < wvpw./(vy + w.) [34]. It follows
x¢ = Q./vs. In data networks, the sending flow can be
approximated as a fluid model [18] with

fe(we) = Qe(1 — e Pe™), 3)

where z. stands for queue length on channel e, p, is a positive
constant, and (. is channel capacity. The receiving flow is
not explicitly modeled in data networks and thus we assume
Te = 00, Which yields ¢ = oco.

Qe N Qe
AN

T €

(a) Road networks. (b) Data networks.

Fig. 2: Examples of sending/receiving flows.

2) Control laws: We consider a control law 4 : X — RZ to
be a concatenation of controllers y.; : X — R, (e, ) €cP,
that regulate flows from link e to link j. In this paper we focus
on locally responsive control laws defined below.

Definition 1 (Locally responsive control laws). A control law
p for a network G = (V, &) is locally responsive if p.;(x),
for any (e,j) € P, can depend on the states of the links in
E UEY only, where £- U & denotes the set of incoming
and outgoing links of node 7,.

In general, actual inter-link flows ¢* : X — REO may
not equal the control inputs g (z) if the control law violates
sending or receiving flows, e.g. under open-loop control. We
define it as follows:

gt () == min{pe; (z), f2 (), vl (@)}, )
where
iy e Mei(®) s
fey (J}) : Zj/eg;r /ftej’(m) fe(ze)7 (5a)
e — (z) (5b)

=——1(x;).
oI
This modelling approach enables us to study inappropri-
ate control instructions induced by cyber-physical disruption
introduced later. It is necessary since controllers may not
have accurate knowledge of sending/receiving flows due to
disruptions. The actual controlled flow qé‘j(x) represents how
the network responds to the control input p. The sending and
receiving flows are allocated proportionally to fi;(x), which
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is a typical modeling approach; for more discussion on this
and alternative models, see [37]. Obviously, these techniques,
with minor modifications, can be applied to flow allocations
in multi-commodity dynamical flow networks [38]. Note that
the superscript “4” in (4) indicates the reliance of inter-links
flows on the control law. We typically omit it unless we want

to emphasize the dependence on a particular control law.

Assumption 2 (Controlled flows).
2.1 Continuity: The controlled flow q(x) is Lipschitz contin-
uous in . for any e € £.
2.2 Monotonicity: For any two different links e, e’ € &,
(i) D ice- Gie(T) is non-decreasing in s
(ii) 3 cet Gej(@) is non-increasing in wer.

Assumption 2.1 indicates that our approach is applicable
to non-smooth control laws. Assumption 2.2 implies that the
considered dynamic flow network is cooperative, which is
a special class of monotone systems [39]. The following
elaborates Assumption 2.2 (i) to reveal the cooperativity. If
link ¢’ locates upstream of link e and x. increases, As-
sumption 2.2 (i) implies that the link set £ tends to send
more flows to link e in order to avoid density accumulation
in the upstream. If ¢ does not appear upstream of link e
and ¢’ # e, the increase of z. implies that somewhere (at
least not link e) becomes congested and Assumption 2.2 (i)
indicates that the link set £ tends to send more flows to link
e, which benefits alleviating congestion somewhere. A similar
explanation applies to Assumption 2.2 (ii). Thus Assumption
2.2 indicates how the links reduce congestion cooperatively.

While dynamic flow networks are, in general, not monotone
[10], the rationale behind Assumption 2.2 lies in that the
monotonicity applies to a broad class of flow networks [19]
and provides a tractable structure that benefits analysis and
computation. The assumption of monotonicity can be relaxed
in our stability analysis, with a rise of computational costs;
see Propositions 1 and 2.

Below are the examples regarding routing and merging
strategies satisfying Assumption 2. Consider routing control
for a diverging junction with an upstream link e. The classical
logit routing policy [18] gives
e—0i%;

Lz} ©
D jreer€ T

where 0; quantifies the sensitivity of route choice to x;. Now
consider a merging junction with a minor upstream link e;,,
a major upstream link e;, and a downstream link e. A typical
ramp metering policy, namely the occupancy strategy [40],
yields

ej(x) = min {

(7a)
(7b)

Qeile(m) = min{u — KRe;, fEil (inl )7 re(xe)}a
qeiQS(x) = min{re(xe) - Qeile(x)v fe«gg (inQ )}7

where u, x > 0 are control parameters.

3) Disruption modes: We consider a set S of modes that
capture cyber and/or physical disruptions. With a slight abuse
of notation, we use f. : S X X; = R, 7 : S x X, — R>o,
p:SxX = RE and ¢ : S x X = RE to denote the
sending flow of link e, the receiving flow of link e, the control

law and the actual inter-link flows influenced by disruptions,
respectively.

Assumption 3 (Cyber-physical disruptions).

3.1 Nominal mode: There exists a nominal mode, denoted
by so € S, under which the network is free from cyber-
physical disruptions and thus stable.

3.2 Disrupted sending/receiving flows: For every s € § and
e € & fe(s,xe) and r(s,x.) satisfy Assumption 1.
Furthermore, f.(s,x.) < fe(S0,%c) and ro(s,2.) <
re(S0, Te)-

3.3 Disrupted controlled flows: For every s € S and e € €,
q(s,x) satisfies Assumption 2.

Assumption 3.1 ensures one stable mode. In this paper, our
primal interest is to study whether the network is destabilized
given the switched modes. Assumptions 3.2 and 3.3 imply that
disruptions will not fundamentally change the flow dynamics.
They hold for typical reliability failures?; see the examples
later. Then mode-specific link capacities and critical densities
are given by

Qse := sup min{fe(s,ze),re(s,ze)}, (8a)
Te€EXe
'ng ::inf{xe S Xe‘f@(syxe) = Qse}- (Sb)

Note that Assumption 3.2 also indicates Qs < (s, for any
s € S and e € £. We denote by 2¢* the maximum critical
density over disruption modes:

C* C
‘= max<zx ee€f. 9
e seS se? ( )

T
The following are examples of physical and cyber disrup-
tions. Consider logit routing for a diverging junction with an
upstream link e, and suppose that the outflow from link e may
decrease by a certain ratio. Thus we consider S = {sg, s1}
and fe(s1,2ze) = xfe(s0,2e), where x € [0,1). The actual
inter-link flows are given by
670jx]~

Sy fels, e ri(a) } (10

Gej(s,x) = min{ —
jrect € T

Now suppose that the observation of link j* € £F, denoted

by Tj-(s,z), may be biased. Without loss of generality, we

let Tj«(s1,2) := K- with some £ > 0 and T}/ (s,x) = xj

for any (s,5’) # (s1,5*). The controlled flows are given by
efejTj (S,ZL’)

—Gj/Tj/(s,m) fE(‘TE)?Tj(zj)}'

(1)

e; (s, ) = min
yeed ©

B. PDMP model

Now we can define the piecewise-deterministic dynam-
ics of the controlled process {(S(¢),X(t));t > 0}. The
discrete-state process {S(t);t > 0} of the mode is a ho-
mogeneous finite-state Markov process that is independent
of the continuous-state process {X(t);t > 0} of the traffic
densities. The state space of the discrete process is S :=

2Security failures, which are beyond the scope of this paper, however, may
violate this assumption.
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{50, 81, -, $m}. The transition rate from mode s to mode
s’ is Assr. Without loss of generality, we assume that A\;s = 0
for all s € S. The discrete-state process evolves as follows:

Pr{S(t+0) = s'|S(t) = s} = Assd +0(d), Vs,s €S,

where § denotes an infinitesimal increment. We assume that
the discrete-state process is ergodic, which means that every
disruption will be resolved in finite time almost surely. It
follows that {S(t);t > 0} admits a unique steady-state
probability vector p 1= [ps,, Psys s Pspr) T € RS So satisfying

ATp=o0, (12)
where 0 denotes the zero vector and A is the transition matrix
given by

- Z )\505/ )\sosl )\sosM
s'eS
Asiso = 2 Ass Asysns
A= s'eS
)‘SMSO >‘SMsl - Z )‘SMS’
s'eS

13)

The continuous-state process {X (¢);¢ > 0} is defined as

follows. We let G¢(s,z) := (d/dt) X, (t) The conservation
law associated with flows implies

Ge(S(1), X(1) =

o — Z qe;(S(t), X(t)), if 7. =, (14a)
je&s

S aie(S(1), X ()

€€
= > 4 (S(),X(1), if 7o & {vo,va}  (14D)

je&s

S qiel(S(8), X (1))

i€ES
—fe(S(t), X (¢)), if 7, = vg. (14¢)

Note G, is bounded. So is G(s,x) := (d/dt) X (¢).

The joint evolution of S(t) and X (¢) is a PDMP and can
be described compactly using an infinitesimal generator [35]

LV(s,x) =
G(s,2)TV,V(s,2) + Y A (V(s',2) = V(s,2)) (15
s'eS

for any differentiable function V' : & x & — Rx>(, where
V.V (s, x) is the gradient of V' with respect to z. The bounded
dynamics G(s,x) indicates that {(S(t), X (¢));t > 0} is a
non-explosive Markov process, which is a prerequisite for
discussing stability [35].

C. Stability and resiliency

In this subsection, we define network stability and resiliency,
which are the focus of the subsequent analysis.

1) Stability and invariant set: Below we present several
concepts regarding stability.

Definition 2 (Stability & Instability). The network is stable if
there exists a scalar Z < oo such that for any initial condition
(s,z) eSx X

1 t
lim sup g/ E[| X (7)||S(0) = s, X(0) = z]dT < Z, (16)
t—o0 =0
where |X(t)| denotes 1-norm of X(¢), namely |X(t)|=
> ecelXe(t)]. The network is unstable if there does not exist
Z < oo such that for any initial condition (s, z) € S x X such

that the inequality (16) holds.

The notion of stability follows a classical definition [28],
which is closely related to “first-moment stable” [22]. Prac-
tically, if the time-average traffic densities in all links are
bounded, the network is stable; otherwise, it is unstable.

Verifying the stability requires to check (16) for all initial
conditions (s,z) € S x X. This can be simplified by con-
sidering an invariant set X* C X [24], which is defined as
follows:

Definition 3 (Invariant set). For the PDMP {(S(t), X (¢));t >
0}, a subset X* C X is an invariant set if it is (i) globally
attracting and (ii) positively invariant:

(i) ¥(S(0), X(0)) € S x X,
Jim Pr{X(t) € X*|(S(0), X(0))} = I
(ii) ¥(S(0), X(0)) € S x X¥, Wt > 0, X(t) € XM,

The definition above indicates that i) for any initial condition
X (0) € X, the state X (¢) enters X'* almost surely, and that ii)
given any initial condition X (0) € X', the state X (¢) never
leaves X'#. Note that one trivial candidate set is &’ itself, but a
tight invariant set depends on the control law p and disruption
modes S. It is assumed that X'* is unbounded; otherwise, the
network is naturally stable. Besides, we define

= Sup Ze, e €E.
TEXH

zt = inf z., z¥
TEXH
If z. does not have an invariant upper bound, we let =
Clearly, we have X* C [] .c[zt, Z4].

The following sets of links are induced by the invariant set
X*#. Clearly they also depend on the control law p, but we
omit the superscript “x” for notational convenience without
causing confusion. We denote by Eins = {e € &|zH = oo} the
set of density-unbounded links. For any e € ing, let A, ¢ :
AZ NEint (resp. Ae inf = AT NEinr) denote its upstream (resp
downstream) dens1ty -unbounded links. We also define the set
of density-bounded links that are upstream (resp. downstream)
of link e € Eing, denoted by A g = A7 \A;inf (resp.
Ae ay = AL \Ae,inf). Particularly, we let

BF i={neAf|Vt e {n}u (AT NA,),
()éeAeﬁn,
(i1) A(s,z) e S x XF,Fi € &,

min{pie(s, x), fiy(s, 2)} > riy(s, )}
a7

no—
B = oo.
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denote the set of links downstream of link e € &;,¢ such that
(i) link n € B is density-bounded, (ii) link n € B can block
the flows from its upstream link ¢, and (iii) any link ¢ between
e and n, namely ¢ € A} N A, satisfies (i) and (ii), where
fh(s,x) (resp. rt,(s,x)), similar to (5a) (resp. (5b)), denotes
allocated sending (resp. receiving) flow between links 7 and
{. Intuitively, Bj is the set of connected bottlenecks, between
link e and its downstream density-unbounded links, that induce
congestion spillback and block the discharging flow of link e.

We use the classical Wheatstone bridge [41] to illustrate
the definitions above; see Fig. 3. Suppose that only links e,
and e5 have infinite storage and that the flows out of links eq
and e; are decreased randomly by physical disruptions. Then
the congestion builds up at links es and e5. Due to the infinite
storage, the traffic density at link e; may blow up. Meanwhile,
link e, could be blocked as well once the jam at link es spills
back to link e, via link e;. It indicates Einr = {e,, €5} with
Béro = {61,62} and B:rs = .

| -

1B

e .

AN, R _

LerT T Nl Acgiint |
i‘//,/\\ -.“--CU- es,

c4 A es ! ’

reag ¥ eat | !

L AT

L eo,inf

A+

eo,fin

|
v

¢ and A

es,fin’

() AF

o,inf’

and BY, . (b) A

es,in

Fig. 3: Wheatstone bridge with &,y = {eo,e5} denoted by dotted

lines: B(J{O = {61,62}, A:o,inf = {65}, 'A:_O,ﬁn = {61,62,63,64},
Ag, ing = {eo} and AT = {e1,e2, €4}

2) Resiliency, throughput and min-cut capacities: The
throughput o of a network with control p is defined as the
maximal demand that the network can accept while maintain-
ing stability, i.e. traffic densities in all links being bounded on
average:

ot :=supa s.t. network is stable. (18)

For a network G = (&,V) with link capacities Q :=
{Qcle € &}, we denote by C(Q;G) its min-cut capacity
(MCC). The min-cut max-flow theorem states that the nominal
throughput equals the MCC [8], which is obtained by solving
the maximum flow problem:

Pq) max «
a>0,u€RE
s.t. o = Z Uejs Te = Vo, (19a)
jeed
> tie= Y e, e € V\{vo,va},  (19b)
icES jeed
D tie <Qe, e €V \ {vo}, (19¢)
€€
D tej < Qey e €V {val, (19d)
jees

where the optimal o* is equal to C(Q;G). Then we define
resiliency score as

n = a"/C(Qsy: ), (20)

where C'(Q,,;G) denotes the MCC in the nominal mode sg.
Assumption 3.2 indicates n* € [0,1]. If n* = 1, we say
that the control law p is strongly resilient against disruptions.
The motivation for the resiliency score lies in that min-cut
capacity is an important measurement of network capability.
Meanwhile, for monotone dynamical flow networks, it is easily
attainable with an open-loop control in the nominal case; see
Appendix A. Thus the ratio can capture throughput losses due
to disruptions.

[1I. RESILIENCY ANALYSIS

In this section, we analyze a network’s stability under a
given control law p. The main results allow quantification of
the resiliency score n* given by (20).

To state the results, we define

I(s,x) := Z G (s,z) + Z Gie(s, ), (21a)
meA; €€y
Oc(s,2) = > qej(s,2) = Y pex)Ge(s,z), (21b)
jeES eBt
where p; : R>9 — R>¢ is a weight function:
0 Ty < g?,
x —31'“ L —
pe(ze) = mfﬁ a)f <z < T, (22)
1 Ty > T

The weight function indicates that G4, the dynamics of link /,
has more impacts on (21b) as the traffic density x, increases.
We interpret (21a) as the inflow from the origin v, to link e,
by considering the flow conservation but not the dynamics on
the intermediate links. To see that, we first notice by (14a)-
(14c¢) that G, (s, x) is the net flow only considering neighbor
links of link mn, and then recognize >, . ,— Gm(s,z) as the
net flow of the upstream network whose inflow is the demand
« and whose outflows comprise of i) those passing link e and
i) those never passing link e. Since the former outflows are
canceled by >, e gic(8, ) in (21a), it is easy to understand
that (21a) denotes the demand o minus the flows never passing
link e. In a similar way, we interpret (21b) as a weighted
outflow of link e including those traversing the downstream
bottlenecks and those not. Aware of the physical meanings of
(21a)-(21b), we let

Ne(s,x) :=I.(s,2) — Oc(s, x) (23)

denote the net flow of link e considered in a larger scope, from
the location of demand generation to the sites of bottleneck
dissipation. It captures necessary networkwide dynamics and
thus helps investigate the network stability conditions.

We use the Wheatstone bridge in Fig. 3 to enhance the
understandings of (21a)-(21b). First, we have I (s,z) =
Q — (eye5(8,x), where the flow ¢.,., never enters link es.
If we plug p, = 1 into (21b), we obtain O, (s,z) =
Qeges (8, T) + Geres (8, T) 4 Geges (S, ), wWhere ge,e, denotes the
outflow of link e, through the bottleneck and ge, e, + Geqes
represents the flows never entering the bottleneck. Although
the physical meaning is clear given p; = 1, it leads to
trivial stability analysis. This is because congestion spillback
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is oversimplified. For example, the flows g, ., and gc,., are
omitted in O, (s, ). This will happen if piecewise quadratic
Lyapunov functions with p, = 1 are used.

A. Main results

This subsection presents two main results of stability analy-
sis. The first stability condition emphasizes a physical intuition
that any dynamic flow network is stable if the long-term net
flow is negative for each density-unbounded link; the second
is stronger but more abstract.

The first main result is as follows:

Theorem 1. Consider an acyclic network satisfying Assump-
tions 3.1-3.3. Suppose that the network admits a demand o
and an invariant set X" C [] .¢lxt, 28] under a control law
p:8S x X — RE,. Then, the network is stable if

Zps max Ne(s,z) <0, Ve € Eng,
s€S €Dy

(24)

where {ps|s € S} is the steady-state probability distribution
of disruption modes and D{; is given by

DE = {z|ze = 28, =2, Ym € A7,
T, =7l Vne &\ (A, U{etUB),

zg € [z, 7], VL € Bl }. (25)

Theorem 1 essentially states that the network is stable if the
expectation of the maximum N, (s, x) over D¥ is negative for
every link e € &, where DY is a refinement of [ . o[z#, z¥]
by using monotone network dynamics. Recalling the defini-
tion of N.(s,z) and the physical meanings of I.(s,z) and
O.(s, ), we see that the lower bounds z! and the upper
bounds ¥ in DY make our stability verification consider as
many flows as possible from the origin into link e to act
as the inflow of link e. Note that x,, will take the infinite
value if ¥ = oo; we conclude the limit exists as x, — oo
by noting that N.(s,z) is non-decreasing in z, for n €
EN\{A; U{e} UBI} (see the proof in Section II-C) and
that N (s, ) is bounded.

Another observation on Theorem 1 is that we use a
rectangle-like set [ .c[z#,7¥], instead of A, to simplify
the computation. Though simple, such kind of set suffices to
yield interesting results; see Theorems 3 and 4. In general,
the invariant set X'* could be in other shapes; the stability
condition can be further refined given a specific invariant set.

One can obtain a lower bound of the resiliency score by
finding the supremum of those demands « that satisfy the
criterion (24). It involves solving a set of maximization prob-
lems only over compact sets [ [, 5+ [z, Z}']. Thus we are able
to find the global optimal solution efficiently with searching
algorithms. This is a significant refinement with respect to the
general stability criteria, which essentially require search over
unbounded sets [24]. Note that though the criterion (24) is a
sufficient condition, it is also necessary in particular settings;
see Theorems 3 and 4.

Theorem 1 is proved based on a novel Lyapunov function
(32) relying on the weight function (22). We enhance it by
considering more general weights for links from the sets

A_ g, and B, which is achieved by a more sophisticated
Lyapunov function (41). Weighting link dynamics G(s, x),
l € .A;ﬁn, can enhance the stability analysis if there are
upstream bottlenecks with congestion spillback. Note that
by appropriately restricting the weights for .A*ﬁ and B,
we only need to consider z,, = zf,, m € A_, ., when
checking the stability, just like Theorem 1. We do not consider
weighting G, (s,z), m € A_,_, for two reasons. First, link
me A c.int Nas infinite storage and does not block its inflow.
Second, weighting G, (s,z), m € A_,, will destroy the
monotonicity with respect to x,,, which incurs additional
computational costs of the stability verification.

For AZq, UBS = {ei,, iy, €iy ), we define its state
vector by

e,inf

H

Along with the advanced Lyapunov function (41), we let

ST Gulsa) + 268 (02) Buebi(a?)

meA_, U{e}

e " [weilvxe,;Za" : axeiH

NZ(s,x):=

+ Z /\ss/g;cr(xZ)(BS'e — Bse)&r(ze) (26)
s'eS
denote a generalization of N,(s,z), where
Ep(al) = [1’%1""’xem’"'7xlgi1""7xfiH]T c ngg+1
is a monomial basis of degree k for z7,
d

Eu(at) = (D)

is the derivative of & (x}) with respect to time ¢, and B, €
Sf_H *1is a symmetric positive definite matrix for s € S and
e € Ens.

The second main result of this section is as follows:

Theorem 2. Consider an acyclic network satisfying Assump-
tions 3.1-3.3. Suppose that the network admits a demand «
and an invariant set X* C [] .oz, zk] under a control
w:SxX — R>o Besides, there exist a set of symmetric
positive definite matrices Bge € SiHH, e €& SES, such
that

0 < 2‘]5 ( ) sefk( ) < 1 VQ]‘ € H W (27)
where
Jeu(w7) 1= = —6u(az) € ROTFDXH
is a Jacobian matrix. Then, the network is stable if
max NJ(s,x) <0, Ve € Eng,s €S, (28)
xeDl
where DE* is given by
D= {x|xe = 25, Ty = 2H,, Ym € Ae inf>
x, =", Vne &\ (A U{e}uBh),
x € [zy,7y], Ve Ajg, UBS Y. (29)
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The weight constraint (27) induces each weight function of
the link dynamics G, (s, ) to have a range [0, 1]. The non-
negativity endows the weighted Geih(s,m) with the correct
physical meaning of net flows, and less than one makes x,,,
m € A,y € A, attain the minimum value by monotone
network dynamics, like Theorem 1.

The proof of Theorem 2 is based on the generalized
Lyapunov function (41). Note that the extension is not unique.
For example, we can further adapt the Lyapunov function if
the control law is specified; see our proof of Theorem 3 in
Section IV-C.

In general, Theorem 2 yields stronger criteria than Theo-
rem 1. The throughput bounds derived from Theorem 2 can
be further sharpened by increasing the degree k of the basis
&k (x}), but it requires more computational costs. We check the
stability by solving the following semi-infinite programming
(SIP [42]) with finite decision variables but infinite constraints:

(P2) min vy

»Dse

s.t. 27),

v > Ni(s,x), V(s,z) € S x DE* Ve € e (30)

The programming problem has infinite constraints because
(27) and (30) should hold for infinitely many states x. If the
optimal v* < 0, we say the network is stable. Since link
¢ € A_g, UBS is density-bounded, the constraint (27) is
required to hold over the compact set Hle XE as well.
Thus we can solve P efficiently with the solution algorithms
for SIPs, such as adaptive convexification [42].

The rest of this section is devoted to a numerical example
for resiliency analysis based on the above results (Section III-
B) and the proof of Theorem 1 (Section III-C) and Theorem 2
(Section III-D).

B. Numerical example

Consider the network in Fig. 3. The sending flow function of
link e is given by fe(s,z.) = min{vsze, Qse }, Where vy > 0
is a coefficient of free-flow speed [36] and Q. is the mode-
specific capacity of link e. The receiving flow functions are
given by

o0,

if 7% < oo,
max
€

if = o0,
where w. > 0 is a coefficient of congestion-wave speed [36]
and Q). is the nominal capacity. In this example, we set vy = 1,
We = 1/2’ Qea = Qel = Q65 = 1, and Q€2 = Qe3 =
Q., = 1/2. If links ey, -- -, e5 have finite storage space, we
let 27 = 1% = 3, and 2™ = 20 = 202 = 3/2.

The network is subject to cyber-physical disruptions as fol-
lows. On link ey4, the traffic state z., may temporarily appear
to be zero to the controller. On link e5, the sending capacity
can be temporarily reduced to zero. Table I characterizes the
fault mapping T, (s, x) for cyber disruptions and the mode-
specific capacity ()., for physical disruptions. The other links
are not subject to disruptions; i.e. T(s,x) = z, for all s and
all e # ey, and Qs = Q. for all s and all e # e5. Hence, the

network has at most four modes.

TABLE I: Modes of network in Figure 3.

Mode S0 S1 52 53

Tey(s,2) Tey  Tey 0 0
Qses 1 0 1 0

If the network suffers the cyber and physical disruption
simultaneously, the mode transition rate matrix is

—-0.2 0.1 0.1 0
A= 0.1 -0.2 0 0.1
0.1 0 —-0.2 0.1

0 0.1 0.1 -0.2

The corresponding steady-state probabilities ps can be com-
puted for the mode s € {so, s1,$2,53}: Dsg = Ps; = Dsy =
ps; = 1/4.

In the following we specify network dynamics. The traffic
flows at the diverges are routed according to the classical logit
model:

logit eVt

qeoel

(Sv JC) = min{ e—VTer + o~ VTey (5,7) feo (57 :I:eo)7 Tey (I€1)}7

e~ VTey (s,x)

qla?,gelj(sv I) = min{ e—Ver 4 VT (5,7) feo (57 Ieo)? Tey (I&L)}v
. e VTey
qle?gels(svﬁﬁ) = min{mfel(sa Tey)sTey (Tey) ),
e VTez

logit _ :
Qeleg (87 1‘) - mln{ e_”xf‘«z 4 6_,/7563 fel (8, ‘rel )7 Te3 (xes)}'
In this example, we select v = 2 as the sensitivity coefficient.
At the merge, we assume that link ey is prioritized over link
e4. Such a priority can be realized by
logit :
q602g615 (5,2) = min{ fe, (8, Tey ), Tes (Tes) )

0% (5,0) = min{fe, (s, Te, ), Tes (Tes ) — aein (5,2)}-

TABLE II: Resiliency scores in various scenarios.

Infinite

Cyber Physical logit logit logit
space disruptions disruptions L1 N sim

yes no no 1 1 1
yes yes no 0.783 0.984 1
yes no yes 0.667 0.667 0.667
yes yes yes 0.602 0.623 0.637
no no no 1 1 1
no yes no 0.792 0.910 0.921
no no yes 0.741 0.848 0.860
no yes yes 0.493 0.708 0.722

Table II lists resiliency scores in various scenarios. The
column “Infinite space” indicates whether links eq, es,- -, €5
have infinite storage space. Clearly, we have the nominal MCC
equal to one, i.e. C'(Qs,;G) = 1. The lower bounds Qllogit
are derived from Theorem 1, while the bounds nlzogit are
obtained through Theorem 2. The details are available in the
supplementary material. We also used numerical simulation
to evaluate true resiliency scores, denoted by n;?gt. Our
findings are summarized below, where the finding (iii) is a
little surprising at the first glance:

(1) It is demonstrated that Theorem 2 yields tighter lower
bounds than Theorem 1. More importantly, the bounds
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logit logit - T
1, %" are close to 1., i.e. the resiliency scores revealed

by numerical simulation.

(i) Cyber-physical disruptions can significantly decrease the
network performance. For instance, the resiliency score
decreases to 0.860 when links ey, - - -, e5 only have finite
space and the network suffers the physical disruption. It
further declines to 0.722 when the network is also subject
to the cyber disruption.

(iii) Increasing link storage may not help improve resiliency
under inappropriate localized controls. As seen in Ta-
ble II, the disruptions have more significant impacts
given infinite link storage space. The reason lies in that
the congestion in link e5; does not affect the upstream
routing when link e5 has infinite storage.

C. Proof of Theorem 1

The proof consists of two steps. We first prove Proposi-
tion 1, and then show that under Assumption 3.3 we only need
to check over DY given by (25) instead of the unbounded set
f){; in Proposition 1.

Proposition 1. Consider an acyclic network satisfying As-
sumptions 3.1-3.2. Suppose that the network admits a demand
« and an invariant set X" C ], ¢[z#, ] under a control
law p: S x X — R7>)o~ Then the network is stable if

Zps max Ne(s,z) <0, Ve € Eng,
seS z€Dl

where D' .= {x € XF|x, > z*}.

€2y

We prove Proposition 1 by applying the following Foster-
Lyapunov criterion adapted from Theorem 4.3 (ii) in [35]:

Foster-Lyapunov criterion. Consider a non-explosive
piecewise-deterministic Markov process {(S(¢), X (¢));t > 0}
with a state space S x X, an infinitesimal generator .%, and a
Lyapunov function V' : § x X — R>. If there exist constants
¢ >0, d < oo and a function f : X — Rxg, with f(z) - oo

as |x|— oo, such that
ZLV(s,x) < —cf(x)+d, V(s,z) €S x X,

then, for each initial condition (s,z) € § x X,

%/TZOE[JC(X(T))‘S(O) = S,X(O) — Qf]dT < d/c

Consider a novel switched polynomial Lyapunov function:

lim sup
t—o0

1
V(s x):= Z aexe[ixe—i— Z T
e€Eins meA;
+ > / Q)¢ + b (32)
LeBt
where a, > 0 and by, > 0 for any s € S and e € &y The

design of (32) is motivated by network dynamics:
(i) For each e € &y, its upstream links, AZ, and down-
stream bottlenecks, Bj, are taken into account;
(i) The weight function (22) is introduced to better capture
bottleneck dynamics. If py; = 1, (32) is reduced to a
piecewise quadratic function.

(iii) The parameters a. and b, are used to model the impact
of mode s on link e. We will show that such a design
saves finding explicit values of a. and bg..

In the following we show that if (31) holds, we must have
ae >0, bse >0, ¢ >0 and d < oo such that V (s, z) satisfies

LV (s,z) < —c Z Te+d, V(s,x) €S x XM,

e€Eins

(33)

To proceed, we apply the infinitesimal generator .Z to the
Lyapunov function V' (s, z). By (15), we have

LV (s,z)
= Z (aeme (Ne(&.%') + /\;F(be - bsel))
f’egmf
+a.G Sx( me+2/ d§+bse)>’
meAZ teBY
where 1 denotes the all-ones vector, As := [Agsyy " Assar] -
and be = [bsgea Ty bsMe]T
Noting
> ) ¥ mn= X Gloiali
e€Eins meEAT, ¢ sLGE%:f
= Z G S X I’p f(e)
e€&int Ao
ne€ins
=Y n Y Gl
e€Eins nE.Ae inf
we obtain
LV(s,2) = > (Dels,)ae +aGels,n) (D om
e€&int meEAT
T
. / i 1.)),
et e

where T 4(e) is an indicator function such that I4(e) = 1 if
e € A and I 4(e) = 0 otherwise, and

De(s,x)

= Q. (Ne(s,x) + /\;f(be — bsel)> + Z anGr (s, x).

neA’

e,inf

It follows LV (s,2) < > e De(s,2)xe+do with dy < oo.
The existence of dj is guaranteed by the boundedness of x,
for m € Ag,, of ¢ for £ € B} and of G.(s,z) for e € £.

Next, we show, if (31) holds, there exist a, > 0, bse > 0,
ce > 0 and d. < oo such that

D.(s,z)xe < —Ceetde, V(s,x) € SXXH Ve € Enr, (34)

which implies that (33) is satisfied with ¢ := min.c¢, , c. and

d:= EEESinf de + dO'
For any e € &n¢, we must have d. ; < oo such that

max

- De(svx)xe <de1.
(s,2)ESX (XH\DE)

(35)
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Besides, for any (s,z) € S x 135,

De(s,2) <ac[Nee + AL (be = boe )]+ G Y an

”GA:—,inf
<ae Z ps/Ns’e + G Z Qan, (36)
s'€S ”G-Ajinf
where N, := max, . pu Ne(s,z) and G denotes an upper

bound of G.(s,z) for e € £. The last step is derived from the
following lemma, which we prove in Appendix C.

Lemma 1. The system of equations

zs + Z Ass! (ys’ - ys) = Z Ps'Rs’y S € S (37)
s'eS s’esS
has a non-negative solution for y = [Ys,,"+,Ysy ) > Where

Ps, Assr and zg are given, and ps and \sg satisfy (12).

Given (31) and (36), Lemma 2 proved in Appendix D
tells that there exists a. for e € Epne such that D.(s,z) <
0, V(s,z) € S x ﬁg,Ve € Eint. Thus we must have ¢, > 0
for each e € &,¢ such that

D.(s,2)xe < —Cee, Y(s,x) €S X @S,Ve € &nt. (38)
Lemma 2. The system of equations
Tete +G Y an <0, Ve € Ein (39)

neAr

e,inf

has a positive solution for {a.|le € Ens} if e < 0 for any
ec ginf-

Combining (35) and (38) yields (34) with d, = d. 1 +ccxl".
It indicates that we finish the proof of Proposition 1.
Noting X* C []..¢[z#, 2], we must have

N(s,z) > max N(s,x).
xeDl

max
€[] celze 3C] e >

Then, the rest of the proof is devoted to showing that

max N.(s,z) =
xeDl 6(7 )

max
LIS | N A g

Ne(s,x) (40)

under Assumption 3.3. Using (40), we can derive (31) from
(24), which finishes the proof.
The definition of localized control laws indicates

max N (s, 2) = max Ge -, (s,2) + Geo,, (s,2), Ve' € €,
Tt

Tt

where G, - (s,z) and G, (s, ) denote the projections of
N, (s, ) onto nodes 7., and o/, respectively. The projection
onto an arbitrary node v € V is given by

Ge (s, )

- ¥

i€Ey j1eELL

-2

i1€EL L. JEET

dijy (37$> + Pjs (xj3)qij3 (873:)

2.

i€y j1€E2Y,

Z Pis (xiB)Qiﬂ(S’x)’

i3€E3 L JEET

Qilj(S,J)) -

where pj,(x;,) and p;,(x;,) are specified by (22), and the
link sets 17, £2F, €17 and £27 are illustrated in Fig. 4(a).

e, v “ews

Note that these sets could be empty. We also use the example

je&r

£, N (A7 U{e}) EFn Az u{e))
N N

ilesel,; ( jlegé,t
7\ (A U{e}uBh) : EF\ (AT Uy uBh
v e e) ===-= —-———-3 Cy e © e
ine€2, ' jpeel}
& nBr ‘ el
o 3— o3+
7'3658,1) J3€Ee,11

(b) ©

Fig. 4: Classification of incoming links £, and outgoing links £,
for e € & and v € V: (a) a general case, (b) classification for link
eo and node v1, given &, = {e1}, & = {e2,e3}, Az, = @ and
B;’; = {e1, e2}, (c) classification for link e5 and node v1, given
Ev, ={e1} :S'J1 = {e2,e3}, Ac; = {eo,e1,e2,e4} and Bef,) =@.

in Fig. 3 to present two specific cases in Figs. 4(b) and (c),
respectively.

The following first shows N, (s, z) is non-decreasing in x,,
for n € £\ (A; U {e} UBS) by proving Ge ., (s,x) +
Ge,5, (s, x) is non-decreasing in z,,. By Assumption 3.3, the
incoming flow Y=, .- ¢i;(s,z) into link j € E1FUEY is non-
decreasing in z,; the outgoing flow >, o+ ¢;;(s,x) from
link i € £, UEZ is non-increasing in xj,. Thus Ge (s, )
is non-decreasing in x;,. Similarly, it is easy to verify that
Gev(s,x) is non-decreasing in z,,. This implies that both
Ge,o, (s,z) and Ge r, (s, ) are non-decreasing in x,, for any
ne&\ (A, U{e}uBh).

Now we show N, (s,z) is non-increasing in x,, for m €
A- U {e} by proving Ger,, (s,z) + Ge,,, (s,2) is non-
increasing in ,,. Noting £l U &2, U EX, = & and

Eugziuedt =&l from Fig. 4, we rewrite Ge (s, ) as

Geo(s,)

)

- >

i2€E2 5 JEET

-

i€y j2€EXTY,

>

i€l jeET

>

i€y jzeElY

Qin(S,x) + (1 — Pis (xis.))qiw'(svx)

dij, (87 ‘r) - (1 — Pjs (xjs))qijs (87 x)

By Assumption 3.3, the incoming flow >, .- ¢;;(s,x) into
link j € £23UEZT is non-decreasing in z;, ; the outgoing flow
Y eer Gij(s,x) from link i € £2 U EY, is non-increasing
in xj,. Thus G ,(s,x) is non-increasing in x;, . Similarly,
we can show G ,(s,z) is non-increasing in wx;,. Thus we
conclude both G, 5, (s, x) and Ge -, (s, z) are non-increasing
in x,, for any m € A; U {e}.

Thus we conclude (40) by the monotonicity of N.(s,x),
which completes the proof. O
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D. Proof of Theorem 2

The proof is similar to that of Theorem 1. The major
difference lies in the following Lyapunov function:

Visa)i= 3 ar[geet Y

e€Eint meAZ e
+ €5 (27) Booki(7) | (1)
Applying the infinitesimal generator yields
LV*(s,x) < Z [Di(s,x)xe + do],
€€t
where D} (s, z) 1= a.N(s,x) +ZneAj_mf an,Gr (s, x). Then

we obtain the following result similar to Proposition 1:

Proposition 2. Consider an acyclic network satisfying As-
sumptions 3.1-3.2. Suppose that the network admits a demand
« and an invariant set X" C ], cc[z¥, 28] under a control
law p: S x X — R . Then the network is stable if

max NJ(s,x) <0, Ve € &, Vs €S, (42)
zeD¥
where D := {x € X¥|x, > 2}
Because of X" C [[..¢[z¥,7%], we must have
max N, > max N
o€l celzt ot o 2agr (%:2) zeD (5:2).
Next, we only need to prove
max N7 (s,z) = max NX(s,z). (43)
zeDL” €[] celze ze] @ >0
For N7 (s, x) given by (26), we notice
Geil (S? ‘/'E)
T . T G€i2 (87 x)
28 (w) Bselr(wg) = 265 (20) Bse Jg, () :

2, @02, @i, @) |G, (5,2)

Clearly, (27) indicates pg, (x) € [0,1] for h = 1,2,---, H.
We see p7, (r)asa generahzatlon of pe,, (Te;, ) given by (22).
Then we consider the link classification as shown in Fig. 5.

E, N (A;inf U {e})

jegt

&rn (AZ jnp U {ed)
———

D e e ——
i1€5é,7; ; { jlefé,t
£ \(AZ U{e} UBD) i gl -=-- s &5 \(AZ U{e}uB])
i2€5622 Jo€€e +
£ N(AZg, UBD) ‘ &5 N (A g, U B+)
- i€&; P
i3€€e7v j3€56,':

Fig. 5: Classification of incoming links £, and outgoing links &
e € &nr and v € V in Theorem 2.

We can show the monotonicity of N7 (s, x) with respect to 1)
Tn,n € E\ (A7 U{e}UBS), and ii) 2, m € A ;U{e}, in
a similar way to that in Section III-C, and thus prove (43). [

IV. RESILIENT CONTROL DESIGN

In this section, we study control design with guaranteed
throughput. We will extend the classical notion of MCC to
stochastic networks and present a series of results character-
izing the resiliency under various classes of control laws.

Two extensions of the MCC, i.e. the MECC and the EMCC,
are considered in the stochastic setting. The MECC is the
minimum cut capacity evaluated with the expected capacity
of each link, and the EMCC is the expected minimum cut
capacity over various modes. Noting that C'(Q; G) denotes the
MCC of network G with a set of link capacities Q, we have

MECC := C(Q;G), EMCC := Y p.C(Q4;0),

seS

where Q = {} sPsQscle € £} and Qs 1= {Qscle € £}
In general, the MECC and the EMCC are not equal. Noting
that the MCC is concave with respect to link capacities [18],
one can show that the MECC is never less than the EMCC
by Jensen’s inequality. For instance, consider the numerical
example in Section III-B; it is shown that the EMCC equals
0.75 and MECC equals 1 in Fig. 6.

//wx =05 Qoo =1 /TN Qse, =05
e | | \

=1 .
ue, =05 Q“—»(Qseﬂ 05:

€| -
|
\‘l/Q:%:O 0594_05\‘,/, "Gy = 05

(b) Min-cut with
C(QS; g) = 1’ C(stg) = 05»
s € {so,s2}. s € {s1,s3}.

Fig. 6: EMCC and MECGC; the link capacities are labeled, and the

min-cuts are highlighted with solid links: a cut is a subset of links

whose removal divides the node set into two disconnected subsets

and min-cuts are those with the minimum sum of link capacities,
i.e., the min-cut capacity.

Qe =1 /M Qm =05 Qse,

_ e | =1
ikt 1< Qsezl 05: e T

|
Qse, = 0.5 2 S Qses =1

(¢) Min-cut with

(a) Min-cut with i
C(Q;9) =1

A. Main results

The following investigates in which case there exist controls
that attain the EMCC/MECC. We start from the simplest open-
loop control. It is shown that if every link e € £ has infinite
storage space without restricted receiving flows, there exists
an open-loop control ;°' that guarantees the MECC. The
control design is inspired by the solution of the maximum flow
problem (P;). Before presenting it, we denote by u*(Q) :=
{uf;(Q)|(e, j) € P} the solution of (Py) given the set of link
capacities Q and define

U:](Q)
D jrees Uy (Q)
Clearly, 7.; denotes the proportion of the outflow of link e

routed to link j per the solution u*(Q).
Then the open-loop control is given by

:ug;' = vengﬂaxv (6,j) ePp,

where Q' := maxses Qse. The formal result of the open-
loop control is stated below:

(44)

» (e,)) €P.

’7€j =

(45)

Theorem 3 (Max-flow min-expected-cut). Consider an
acyclic dynamic flow network with £™** = oo and r.(s,x.) =
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oo for any link e € E. There exists an open-loop control p°!
given by (45) such that the network throughput equals the
min-expected-cut capacity.

However, few links in practice have infinite storage, which
indicates the MECC is generally unattainable. For net-
works possibly with finite storage space, we consider mode-
dependent control given observable disruption mode S(t).
Suppose a network with the following physical disruptions:

fe($7 xe) = Inin{fe(xe)a Fse}a (463)
re(s,xe) = min{re(z.), Rse} (46b)

These disruptions restrict maximal outflows or inflows, which
satisfy Assumption 3.2. For the sake of simplicity of analysis,
we also assume the critical density x¢ given by (9) is finite for
every e € £. If any disruption mode s € S can be correctly
observed, we design a mode-dependent control as follows:

p(s) = uk;(Qs), (e,4) € P, (47)

where uy;(Qs) is an optimal solution to the maximum flow
problem (P;) with the set of link capacities Q. Then we state
the following theorem:

Theorem 4 (Max-flow expected-min-cut). Consider an
acyclic dynamic flow network with a set of observable dis-
ruptions (46a)-(46b). There exists a mode-dependent control
umd given by (47) such that the network throughput equals
the expected-min-cut capacity.

Note that EMCC is less than the MECC in general. Hence
the mode-dependent control above may appear conservative,
provided a gap between the EMCC and the MECC. Besides,
the mode-dependent control requires quick detection of disrup-
tions and informs local controllers of disruption occurrences.
If some of controllers are unaware of changes of disruption
modes, Theorem 4 does not hold and the EMCC may not be
guaranteed. In that case, we can apply Theorems 1 and 2 to
the throughput analysis by modeling actuation faults.

By contrast, it is more practical to measure the network state
X (t). Thus we consider density-dependent control using the
network state feedback. For a general network (with possibly
incorrect sensing or with finite link storage spaces), one can
apply the results of our resiliency analysis to design closed-
loop controls. Suppose the control law is parameterized by 6.
Then the parameter 6 is designed by solving the following
programming problem:

(P3)

max «

1. (24).
a>0,0e0 5 ( )

Let 6* and o* denote optimal solutions of the program-
ming problem Ps. Then it follows from Theorem 1 that the
throughput under the control law parameterized by 6* is lower
bounded by a*:

Corollary 1 (Throughput-guaranteed control). Consider an
acyclic dynamic flow network with a density-dependent control
4 deriving from Ps. Then, pd can attain a throughput
lower-bounded by the optimal o*.

To facilitate the control design, we can restrict the control
structure € € O so that &y and {B|e € &Eng} are fixed.

In practice, the determination of these sets may depend on
infrastructure capability or control preferences, e.g., whether
link e has sufficient storage space, or whether link e is allowed
to be a bottleneck.

The rest of this section first illustrates the above results with
a numerical example (Section IV-B) and then proves them
respectively (Sections IV-C-IV-D).

B. Numerical example

Again, consider the network in Fig. 3. We use Theorems
3, 4 and Corollary 1 to design open-loop control £°', mode-
dependent control x™¢ and density-dependent control 44
respectively. Table IIT lists the resiliency scores in various
scenarios. Note the nominal MCC equals one. Our discussions
are as follows:

(1) It is demonstrated that the open-loop control can attain
the MECC when the links have infinite storage space.
Besides, the results also show that the MECC is not
guaranteed when the link storage space becomes finite.

(i1) It is verified that the mode-dependent control can attain
the EMCC. Although this control seems conservative, it
is still able to outperform the logit routing in case of
links with infinite storage space; see Table II.

(iii) Compared with the open-loop control, density-dependent
control can achieve higher resiliency scores when dealing
with physical disruptions. However, it is vulnerable to
cyber disruptions.

(iv) The results indicate that we can improve network re-
siliency by designing control laws with higher lower
bounds of the resiliency scores.

Next, we present the design of three controls.
1) Open-loop control: Solving the maximum flow problem

(P1) with the expected link capacities gives v’ ., =u’ .. =

€p€1 €1€3

ueoe4 = ue4es 0. ? and u61162 = 0. Accordlng to (45) (44),
we have ,u(,OPl = Ueyes = Moge, = ILL€4€ =0.5 and Uelez 0.

2) Mode-dependent control: The control p™¢ is obtained
from solving the maximum flow problem (P1) for each
dlsruptlon mode s. Then we have ,ue ey = ug“;; = 0.5,
,uelez =0 and

0.5, if s € {sp,s2}
md md _ ’ ) )
1u6064 (S) /"L€4e5 (S) - { O7 lf s € {817 83}

3) Density-dependent control: We consider the density-
dependent routing at node v,, namely pd9, (s, x) = we(u; —
x1) and pdY (s,x) = we(ug — T.,(s,x)), where the gains
are set as the congestion wave speed w,., the parameters u;
and wuy are to be designed, and T, (s, z) is the fault mapping
given in Table I. We interpret u; (resp. u4) as the maximum
density allowed by the control for link e; (resp. e4). We also
let Meleg( z) = fe, (s, m61) and /J’elez( z) = 0.

When all links e,,e;,---,es have infinite storage space,
solving P3 gives u; = ug = oo. It means that the density-
dependent control is reduced to an open-loop control that
routes flows into links e; and e4 with the same proportion.
For links ey, - - -, e5 only with finite storage space, our method
yields u; = uq4 = 1.5 for the network subject to either the
cyber or physical disruption and u; = 2.3,u4 = 1.5 in case
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TABLE IlI: Comparison of resiliency scores of different control laws.

Open-loop Mode-dependent Density-dependent
Infinite space Cyber disruptions Physical disruptions ﬂ(l)l le n;)ilm H nrlnd n;nd ng‘r?l H ﬂ(lid ngd ngl‘rin
yes no no 1 1 1 1 1 1 1 1 1
yes yes no 1 1 1 1 1 1 1 1 1
yes no yes 1 1 1 0.750 0.750 0.750 1 1 1
yes yes yes 1 1 1 0.750 0.750 0.750 1 1 1
no no no 1 1 1 1 1 1 1 1 1
no yes no 1 1 1 1 1 1 1 1 1
no no yes 0.747 0.850 0.859 0.750 0.750 0.750 0.746 0.867 0.873
no yes yes 0.747 0.850 0.859 0.750 0.750 0.750 0.739 0.851 0.863

of both the cyber and physical disruptions. More details can
be found in the supplementary material.

C. Proof of Theorem 3

1) Sufficiency: The proof is similar to that of Theorem 1.
Noting 7¢(s,x.) = oo for any e € £, we obtain B = & for
e € &yt. Consider the following Lyapunov function:

> aauJ%xe4f D Amem + bacl,

e€&int meA,

Vol(s,x) ==

where 7, is recursively defined by

Z :YnLi’%e

ic AL NES

Yme = (48)

with 7;. given by (44). Noting the physical meaning of e,
we interpret 7,,. as the proportion of the outflow of link m

routed to link e per the solution u*(Q). Specially, for link e,
with a demand o = C'(Q; G), we have

:Ye(,eC(Q;g) = Z ure<Q)

(S

(49)

The above equation holds because, as specified by the solution
u*(Q), the optimal demand o* equals C(Q;G) and the flow
routed from link e, to link e equals Y, - ul,(Q).

The Lyapunov function indicates that we only need to show

Zps m%x Ne(s,z) <0, Va < C(Q;G),Ve € Enr, (50)
€ g‘

where DO! {r € Xz, > z£*} and N.(s,x)

ZmGA 'YmPG (5 I)JFG ( )
The open-loop control yields ¢, (s ) = Ymjfm (s, Tm).
Thus, for any link m € AZ, we have

- Z ﬁmeq;)rij(&x) + Z

W.j'quvluj’(sv x)

jEER JEERNAT
= - Z ﬁ/me:ymjfm(sa xm) + Z ’Vj’eﬁmj’fm(sa xm)
JjeES JEERNAL

@

- ,Ymefm<s7xm) + :Ymefm(sal‘m) =0.

So we obtain N, (s,z) = e e — fe(s,z.) and

Zps max N (8,2) = Fe,ex — Zpste, Ve € Ent. (51)
z€D

seS SES

Q) <> peQuc

seS

Recalling (49), we arrive at

’VeueC(Q;g) = Z u

i€ES

(52)

where the last inequality holds because of the constraint in
the maximum flow problem. Combining (51) and (52), we
complete the proof of (50). O

2) Necessity: We prove the necessity by definition. Con-
sider the cut-set C with the min-cut capacity C(Q;G), where C
is a set of links that divide the network into two disjoint parts
containing the origin v, and the destination vy respectively.
Let £, denote the set of links upstream of the cut-set. By the
open-loop control, the outflow from £; U C does not exceed
C(Q;G). If the inflow « is not less than C(Q;G) and Z < oo
is given, there must exist some initial condition such that (16)
fails to hold. It concludes the proof. O

D. Proof of Theorem 4

1) Sufficiency: The proof is based on Theorem 1. Noting
Lemma 3 proved in Appendix E, we only need to show

> b a= Y q2(s,7)) <0, Va <) p,C(Qy; ).

seS jGS sES

max
IeDmd

(53)

Lemma 3. The mode-dependent control y™9 admits an in-

variant set
a 00) X H [ggldajfznd] = [a, 00) x H [0, 2],

de _
eF#e, e#e,
which leads to Eing = {eo} and B} = @.

Then it follows

E ps max (a — E e,
zeDmd
seS je&S,
=2 pelo = 3 ui(s
seS jeed

where the equality is due to 1) B’+ =2, 1i) fe,(8,2e,) > Qse,
for x., > z¢* and iii) the constraint (19d). By the constraint
(193') we Obtaln Z €€, :u’eoj( ) (Qsag) (stg)9
which completes the proof of (53). O

2) Necessity: We consider the set {e, }. Then the remaining
proof is similar to that for the necessity of Theorem 3. O

V. CONCLUDING REMARKS

This paper investigates resiliency and control design of
dynamic flow networks suffering cyber-physical disruptions.
First, we apply piecewise-deterministic Markov process to
modeling disruptions and their impacts on networks. Then, a
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set of stability criteria are proposed with the physical insights
into flow networks. We also simplify these criteria with the
monotone network dynamics. The stability conditions enable
the measurement of resiliency in terms of throughput. They
also contribute to two specific resiliency-by-design controls.
The first one attains the min-expected-cut capacity if every link
has infinite storage space; the second one attains the expected-
min-cut capacity if the disruptions decrease maximum sending
and/or receiving flows. In the general case, we propose a
density-dependent control with a lower-bounded throughput.
Our numerical examples show that the stability condition can
yield tight lower bounds of resiliency scores and enhance
resiliency by designing control laws that raise the lower
bounds.

This work can serve as a basis for multiple future stud-
ies. First, our sufficient stability conditions only yield lower
bounds of throughput. It is tempting to derive upper bounds
by investigating the necessary conditions. Besides, this paper
exploits the property of monotone flow networks to reduce
the computation costs of verifying our stability conditions.
However, monotone dynamics could be unavailable in multi-
commodity networks [38]. It is worthwhile considering net-
works with weaker properties, such as mixed monotonicity
[19]. Finally, this paper formulates the control design problem
for the whole network. Solving it for large-scale networks
could not be easy. Thus how to design control laws with
guaranteed performances but only using a part of links/nodes
is worth investigating.

APPENDIX
A. Open-loop control in the nominal case

We consider an open-loop control policy as follows:

/jL(e); = ﬁ/estoev (54)
where . (Q)
u .
Yeij 1= €j 2 =% , (e,j) e P. (55)
Vej Z]‘ e£+u (Qso) ( )

: 1
Qlearly, it has the same structure as the open-loop control /i¢;
given by (45).
Before we state the lemma, we define
Z :Ymi;}/ie-
i€eAfNES

Noting (48) and (52), for any o < C(Qs,;G), we obtain in a
similar way

Z U:E(QSO) S QSUE' (57)

1€E;

ﬁ/eoea < ’?eoeC(Qso; g) -

Lemma 4. Consider an acyclic network satisfying Assump-
tion 3 and only admitting the nominal mode so. Given any
demand o < C(Qs,;G) and the open-loop control given by
(54), there exists a stable equilibrium such that fe(so,&e) =
e e for any e € E. Moreover, if there exists a neighborhood
U(z) of & such that f.(so,x.) is strictly increasing in x. for
every e € &, the equilibrium T is also globally asymptotically
stable.

Obviously, the global asymptotic stability stated in Lemma 4
implies that the open-loop control (54) can enable the through-
put to achieve the nominal min-cut capacity. Note that the
required condition is really mild. As we will see in the proof,
all of the link densities are fewer than their corresponding
critical densities. It means that none of the links are congested.
In that case, the sending flow f.(so,x.) is typically sensitive
to density changes, i.e., strictly increasing in .

Below we give the proof of Lemma 4.

Proof. We first show the existence of Z. For any demand

a < C(Qs,;9), we conclude & € Heeg[ x5 ] by using

Assumptions 3.1-3.2 and fe(s0,Ze) = Fe,e < Qspe, Where
T, 1s given by (3b).

Next, we prove that Z is a stable equilibrium. Again noting
(54) and (57), we conclude that there exists a neighbourhood
W (&) of & such that gc;(s0,2) = Jej fe(s0,ze). Then Z is an
equilibrium by (56). The stability of & is directly implied by
Theorem 6 (iii) in [19].

Note that & is globally asymptotically stable if and only
if it is locally asymptotically stable; see Theorem 6 (iv) in
[19]. Below we show that the network is locally asymptotically
stable over the neighborhood W (Z)NU (). We first notice link
Ze, converges to Z., by using the monotonicity and Lipschtiz
continuity of f._(sg, ., ). Then we consider links from the
upstream to the downstream. We can show xz. converges by
using the convergence of its upstream links. O

B. Extension for cyclic networks

We present stability analysis for cyclic networks. One major
difference between cyclic and acyclic networks is A, NAY #
@ for some e € £ in a cyclic network. It induces that Lemma 2
may not hold because of A_; ;N Ae int 7 2. We address this
problem by considering a partltlon of En.

We denote by {£,}Z_, a partition of &y such that given
any 21,22 € {1,2,---, Z} with 21 # 2o,

6Hj) ve?j GEZl7e#j7
erj,Vee L., ,jeL,,,

(58a)
(58b)

where e <+ j represents that the two links are reachable
from each other, and e ¢ j denotes that at least one link is
unreachable from the other. For a cyclic network, a partition
can be obtained by merging the sets above whose elements are
accessible from each other, and we can prove by contradiction
the uniqueness of the partition.

Then we show by the partition {£,}Z_; that Theorem 1
holds for acyclic networks. It implies that the other stability
results in Section III also apply to acyclic networks.

Proposition 3. Consider a cyclic network satisfying Assump-
tions 3.1-3.3. Suppose that the network admits a demand o
and an invariant set X* C [[ c¢lxt, 2] under a control law

p:SXX— Rzo The network is stable if (24) holds.
Proof. Consider the following Lyapunov function:

N 1
Vs, z) = Z @, Te [5 Z x; + Z

e€€int €L, meA\L,,

Tm
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¢)d¢ + bse |, (59

DI

et e

where .. denotes the set index such that e € £,_. The rest of
the proof is similar to that of Theorem 1, except Lemma 2.
We instead use the following lemma:

Lemma 5. The system of equations

>

neAt L.,

mea,, + G a,, <0, Ve € Ent (60)

has a positive solution for {a, e € Ent} if e < 0 for any
ec ginf~

Note that (58a)-(58b) reveals an acyclic structure of the
partition. Thus we can prove Lemma 5 in a similar way to
Lemma 2. O

C. Proof of Lemma 1

To show the existence of a solution, note that (37) is
equivalent to Ay = pTz — 2 where z = [z, -, 25,,] - Since
the discrete state process is ergodic, the rank of the matrix
A is M. Scaling row i + 1 with pg, for i =0,1,---, M and
adding the scaled rows 1,2,---, M to row M + 1, we obtain

—DPso Z )\susl psu)\ﬁusM
i£0
: : y==z
D PsiXsiso — Pso 2 Asoss D0 PsiXsisar — Psar 2 Asars:
i#0 i#0 i#Em i#EM
(61)
5 _ T M T T 1T
where Z = [ps, (" 2—2s0), -, (D¢ Ps; )P 2—p 2] . Not-

ing ATp = 0, we know that D i0 Psi Asis; —Ds; Z#j Asjsp =
0 for any j = 0,---, M. Also note that (Zt oPs)PTz —
pTz = 0. Hence, the rank of the augmented coefficient matrix
of the system of linear equations (61) is also M, equal to the
rank of the coefficient matrix. Therefore, (61) must have a
particular solution yP. Noting that rank(A) = M and that
y = wl is a solution to Ay = 0 for any w € R, we
can conclude that the general solution of (37) is given by
y®& = yP 4 wl. Clearly, a non-negative solution is available by
letting w be a sufficiently large number. O

D. Proof of Lemma 2

If G < 0, the lemma is trivial. Now we consider G >
0 and construct {acle € &nr} satisfying (39). Let 7 :=
maxeeg,, Te < 0 and K := |&iy¢|. Since this lemma focuses
on acyclic networks, we can iteratively consider the links in
Eins backwards in some sense.

We first assume G > —7. The construction starts with
initializing N0 := & and 7 := 1. In the i-th step, we
consider MU~ = {e € N7V |vi € NC=D\ {e},i 4 e},
where ¢ /> e implies that there are no directed paths from link
i to link e. Intuitively, MU=1) denotes the collection of the
far downstream links among A"~ For any e € M~1 we
let a. = (—GK/7)"~! > 0 and then obtain
Tele + G Z an < W(—G—K) GK(—G—K

Y ™
neA¥

e,inf

)i72 =0.

The i-th step ends up with N = D\ MO, The
iteration stops when N = &, Wthh indicates that all the
links of &;,¢ are considered.
If G < —7, the same iteration is conducted except letting
—(GK'1)/7 > 0 in the i-th step. O

E. Proof of Lemma 3
First, we note that the disruptions (46a)-(46b) imply

Qse < 1e(s,xe), Vs € S,Va, < al™.
Qse < fe(s,xe), Vs € S§,Va, >z,

(62a)
(62b)

where " is given by (9). Besides, for any x € & with z; <
x§*, we obtain

(19d),(62a)

md
md o /’[’Pj ( ) > ug}d(S).

Tej (57 l’) -
Zieg; Nij (5)
To show that XY™ is an positively invariant set, we prove

that on the boundary of X™d, the vector field G(s, x) points
towards the interior regardless of s € S. That is, for any e #

(63)

ri(s, x;

eo € € and (s,7) € S x X™4 with ., = z¢*, we have
(4) © . md md
Gols,2) S 3 ui(s) = 3 min{uni(s), £, )}
ieEr jeer
(Sa) (62b)
Z Mmd mln{ Z ,U/ Qse}
€€ je&s

(19b),(19d)

To show that X™d is global attracting, we perform an
induction on links. We first consider link e reaching the
destination, i.e. 7. = vq, since it does not have downstream
bottlenecks. We see Ge(s,x) < 0 for any (s,z) € {(s,z) €
S x Xz, > 2¢"}. In addition, given a < ) s psC(Qs;G),
there exists some mode s € S under which x. converges to a
value strictly less than x¢*. Since the process {S(¢);¢ > 0} is
ergodic, it is concluded that x. enters [0, z5*] almost surely.
Then, as indicated by (63), link e is not a bottleneck for its
upstream links under the mode-dependent control. The similar
proof can be iteratively applied to links upstream of link e until
all links are considered.

The invariant set X™¢ immediately gives Enr = {e,}; by
noting (63), we also obtain B = @. O
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