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Resilient Control of Dynamic Flow Networks Subject to Stochastic
Cyber-Physical Disruptions

Yu Tang and Li Jin

Abstract— Modern network systems, such as transporta-
tion and communication systems, are prone to cyber-
physical disruptions and thus suffer efficiency loss. This
paper studies network resiliency, in terms of throughput,
and develops resilient control to improve throughput. We
consider single-commodity networks that admit congestion
propagation. We also apply a Markov process to model
disruption switches. For throughput analysis, we first use
insights into congestion spillback to propose novel Lya-
punov functions and then exploit monotone network dy-
namics to reduce computational costs of verifying stability
conditions. For control design, we show that (i) for a net-
work with infinite link storage space, there exists an open-
loop control that attains the min-expected-cut capacity;
(ii) for a network with observable disruptions that restrict
maximum sending and/or receiving flows, there exists a
mode-dependent control that attains the expected-min-cut
capacity; (iii) for general networks, there exists a closed-
loop control with throughput guarantees. We also derive
lower bounds of resiliency scores for a set of numerical ex-
amples and verify resiliency improvement with our method.

Index Terms: Dynamic flow networks, cyber-physical dis-
ruptions, piecewise-deterministic Markov processes, monotone
dynamical systems.

I. INTRODUCTION

A. Motivation

Dynamic flow networks are widely used to model en-
gineering systems including transportation systems [1] and
communication networks [2]. These systems are susceptible to
disruptions both in physical and cyber parts. In the physical
part, link flows can be disrupted by capacity-reducing events
such as traffic incidents [3]. In the cyber part, unreliable state
observation or faulty feedback actuation may occur, which
degrades the effectiveness of feedback controllers and lead
to physical losses [4]. Typically, both types of disruptions
are hard to predict and thus need treatment in a stochastic
manner. For instance, probabilistic models were used to eval-
uate freeway capacity, which is supported by field studies [5].
This modeling technique is also applicable to sensing faults
[6]. Since network systems involve very large numbers of
cyber-physical components, it is neither economically feasible
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nor technically necessary to prevent all disruptions. Instead,
a practical solution is to integrate disruptions into modeling
control schemes [7]. However, limited studies have discussed
such method for dynamic flow networks subject to stochastic
disruptions.

In this paper, we first evaluate network throughput as a
measure of resiliency against stochastic cyber-physical disrup-
tions, arising from reliability failures 1, and then design control
strategies that mitigate throughput losses. To this end, we con-
sider single-commodity networks that have found applications
in real systems, such as freeway systems [1]. Although single-
commodity networks could simplify real-word cases, they
are worth studying since multi-commodity networks require
origin-destination (OD) demands that are hard to acquire in
practice. We use a finite-state Markov process to model the
occurrence and clearance of disruptions. Then we investigate
stability condition of networks, which allows for resiliency
quantification and resilient control configuration. Particularly,
our discussion on control design, inspired by the classical
max-flow min-cut theorem [8] for static flow networks, pro-
poses min-expected-cut capacity (MECC) and expected-min-
cut capacity (EMCC) and reveals their relation to throughput,
network storage space, disruptions and control laws. In case
of a general network whose throughput is not guaranteed with
these capacities, we present a closed-loop control with lower-
bounded throughput.

B. Related work

Previous work on dynamic flow networks typically consid-
ered a nominal or robust setting. In the disruption-free case, in-
depth stability analysis was provided for networks character-
ized by various flow structures including monotone dynamics,
nonlinear demand/supply constraints, and congestion spillback
[9]–[13]. Besides, optimal routing control has been extensively
investigated for dynamical flow networks. [9], [14]. Robust
control strategies, along with resiliency analysis, were devel-
oped in the face of physical disruptions [15]–[20]. However,
the above work assumes perfect sensing and actuation; the
resiliency against cyber disruptions remains unclear. Besides,
robust control handles disturbances with uncertainty sets [20];
it does not apply to recurrently switching disruptions.

1In this paper, reliability failures refer to temporary malfunction of com-
ponents of controlled dynamic flow networks, such as node/link breakdown
and sensing/actuation faults. They do not include communication delay or
malicious cyber attacks. Though this paper mainly considers sensing failures
for cyber disruptions, our approach can be applied to address actuation faults
with minor modifications.
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The model we consider belongs to a subclass of piecewise-
deterministic Markov processes (PDMP) [21], sometimes
known as Markov jump nonlinear systems (MJNS) [22], where
continuous states (traffic densities) evolve according to a set of
ordinary differential equations and a discrete state (disruption
mode) determines the mode of the continuous dynamics [23].
Such a formulation allows analysis of joint impacts of cyber
and physical disruptions on network resiliency. Although the
general theories of PDMPs [23]–[25] and MJNSs [26], [27]
have been extensively investigated, the implementation is still
challenging due to nonlinear flow dynamics. Typical Lyapunov
functions, such as piecewise quadratic functions [27], fail to
capture congestion dynamics and thus only lead to trivial
stability analysis; see our discussion in Section III. It is vital
to design appropriate Lyapunov functions for analyzing our
model.

Our work is also related to stochastic fluid models [28],
[29]. These models are applied to performance analysis or
admission/priority control for servers subject to demand or
service disruptions [30], [31]. Currently, limited results con-
sider congestion spillback over stochastic flow networks, let
alone the corresponding control design. Only a few results
were developed for networks with special structures, such as
parallel links [3], [32] and serial links [33], [34]. To our best
knowledge, the general stochastic flow networks are still not
well investigated.

C. Our contributions
This paper focuses on the two following questions:
(i) How to quantify resiliency against stochastic disruptions,

especially for networks with congestion propagation?
(ii) How to attain resiliency-by-design or improve resiliency?
We define resiliency score as a ratio of disrupted network

throughput to its nominal value. Here the disrupted (resp.
nominal) throughput means the maximal inflow under which
the network with (resp. without) disruptions can be stabilized,
i.e. traffic densities in all links being bounded on average. The
max-flow min-cut theorem states that the nominal throughput
equals min-cut capacity [8], but we can hardly resolve the dis-
rupted throughput in an analytical way. It is because our PDMP
model allows complicated disruptions, including the physical
ones creating new bottlenecks and the cyber ones inducing
mismatches between control instructions and actual inter-link
flows. Thus we address (i) by deriving and sharpening lower
bounds of throughput. The lower bounds are obtained from
a set of stability conditions built on the Foster-Lyapunov
criterion [35]. To formulate the stability conditions, we use the
insights into network-wide congestion propagation to propose
a set of novel Lyapunov functions. We also exploit monotone
network dynamics to simplify the condition verification from
over unbounded sets to over only compact sets, which saves
computational costs.

As indicated above, the max-flow min-cut theorem could
be compromised. Thus we consider its variants for resiliency-
by-design control. Meanwhile, a more practical concern is
that full observation of disruption modes and network states
(traffic densities) could not be available to control design.

To answer (ii), we first show that there exists an open-loop
control that attains the MECC if all links have infinite storage
space. Second, we show that there exists a mode-dependent
control that attains the EMCC if the disruptions restrict
maximum sending/receiving flows. The above results resemble
the classical max-flow min-cut theorem. Third, we propose
a density-dependent control, that is throughput-guaranteed,
for general networks disrupted stochastically. Finally, we use
numerical examples to demonstrate that our methods can
enhance network resiliency.

The rest of this paper is organized as follows. Section II
introduces our PDMP model for networks subject to stochastic
cyber-physical disruptions. Section III analyzes the resiliency
of this network. Section IV presents resilient control design.
Section V summarizes the main conclusions and discusses
future directions.

II. DYNAMIC FLOW NETWORK WITH CYBER-PHYSICAL
DISRUPTIONS

Consider a single-origin-single-destination directed network
G = (V, E), where V and E denote the node set and the
link set, respectively. Though single-commodity networks may
have multiple origins and destinations, we can introduce one
artificial origin and destination so that we obtain single-origin-
single-destination networks where demands are routed from
the artificial origin to real ones by proportions. For ease of
presentation, we assume that the network is acyclic. Note that
the proposed method can be applied to cyclic networks as well;
see our discussion in Appendix B. We denote the starting and
ending nodes of link e by σe and τe, respectively. We number
the origin node as vo and the destination node as vd. The
origin is subject to a constant inflow of α ∈ R≥0. Without loss
of generality, we assume that the flow enters the network via
link eo; see Fig. 1. Following the convention [18], we consider

eo

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

· · ·

e
vo σe τe vd

E−
e /E−

σe

E+
e /E+

τe

A−
e A+

e

Origin Destination

Fig. 1: A single-origin-single-destination network: we denote by
E−
e (resp. E−

σe ) the set of incoming links of link e (resp. node σe),
by E+

e (resp. E+
τe ) the set of outgoing links of link e (resp. node

τe), by A−
e the set of links upstream of link e, and by A+

e the set
of links downstream of link e.

traffic density (mass per unit) as the network state and denote
by Xe(t) the density of link e at time t. We also assume that all
links have the same unit length for convenience of computing
densities. For link e with finite storage space, Xe(t) can only
take values from a closed interval [0, xmax

e ], where xmax
e < ∞

is called the jam density. For link e with infinite storage space,
Xe(t) can take values from R≥0 and we let xmax

e = ∞. In
particular, we assume that link eo has infinite storage space;
this ensures that no traffic is rejected into eo. We use Xe to
denote the set of Xe(t), X =

∏
e∈E Xe ⊆ RE

≥0 to denote the
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set of the state vector X(t), where RE
≥0 stands for a set of non-

negative vectors whose components are indexed by elements
of E .

For a node v ∈ V , we let E−
v := {e ∈ E|τe = v} (resp.

E+
v := {e ∈ E|σe = v}) denote the set of its incoming (resp.

outgoing) links; for a link e ∈ E , we use E−
e := {i ∈ E|τi =

σe} (resp. E+
e := {j ∈ E|σj = τe}) to denote the set of its

upstream (resp. downstream) adjacent links. Clearly, we have
E−
v = E−

e if v = σe and E+
v = E+

e if v = τe. We also let
P := {(e, j)|e ∈ E , j ∈ E+

e } denote the set of ordered pairs
of adjacent links. It follows |P|=

∑
e∈E |E+

e |, where |·| denotes
the cardinality of a set. We say that link e is accessible from
link i, denoted by i → e, if there exists a directed path starts
with link i and ends at link e. For link e ∈ E , let A−

e := {i ∈
E|i → e} be the set of links from which link e is accessible,
and let A+

e := {j ∈ E|e → j} be the set of links that are
accessible from link e.

In the rest of this section, we first define flow functions,
control laws, and disruption modes (Section II-A), and then
specify the network’s dynamics as a piecewise-deterministic
Markov process (Section II-B). Finally, we define network
stability and resiliency score (Section II-C).

A. Flows, control laws and disruptions

Below we introduce the essential definitions and assump-
tions for our network model. The illustrative examples are
also provided.

1) Sending/receiving flows: The sending flow of link e is
specified by fe : Xe → R≥0. It stands for the maximum
outflow from link e given a state xe The receiving flow of
link e is specified by re : Xe → R≥0. It is recognized as
the maximum inflow allowed into link e given a state xe. We
assume that these flows satisfy:

Assumption 1 (Sending/receiving flows).
1.1 Sending flows: For every e ∈ E , fe(xe) is Lipschitz con-

tinuous and non-decreasing in xe. Furthermore, fe(xe) =
0 if xe = 0 and supxe

fe(xe) < ∞.
1.2 Receiving flows: For every e ∈ E , re(xe) is Lipschitz

continuous and non-increasing in xe. Furthermore, for
link e with finite storage space, we assume re(xe) = 0
if xe = xmax

e ; for link e with infinite storage space, we
assume a constant receiving flow re independent of xe.

Note that receiving flows are not considered in some flow
networks. In that case we just let link e have infinite storage
space with re = ∞.

We define link capacity Qe and critical density xc
e as

Qe := sup
xe∈Xe

min{fe(xe), re(xe)}, (1a)

xc
e := inf{xe ∈ Xe|fe(xe) = Qe}. (1b)

Practically, the capacity Qe indicates an upper bound of
sustainable outflow from link e, and the critical density xc

e

denotes an threshold where the capacity flow Qe can be
maintained with a relatively high speed Qe/x

c
e. Link e is

considered as “congested” when its density xe exceeds the
critical value xc

e.

Here are two examples of sending and receiving flows. In
road network, as per the cell transmission model (CTM [36]),
the sending and receiving flows are given by:

fe(xe) = min{vfxe, Qe}, (2a)
re(xe) = min{Qe, wc(x

max
e − xe)}, (2b)

where xe represents vehicle density of road section e, and
traffic parameters vf , Qe, wc and xmax

e are typically assumed
to satisfy Qe/x

max
e ≤ vfwc/(vf + wc) [34]. It follows

xc
e = Qe/vf . In data networks, the sending flow can be

approximated as a fluid model [18] with

fe(xe) = Qe(1− e−ρexe), (3)

where xe stands for queue length on channel e, ρe is a positive
constant, and Qe is channel capacity. The receiving flow is
not explicitly modeled in data networks and thus we assume
re = ∞, which yields xc

e = ∞.

xce xmax
e

Qe

fe
re

(a) Road networks.

xe

Qe

fe

(b) Data networks.

Fig. 2: Examples of sending/receiving flows.

2) Control laws: We consider a control law µ : X → RP
≥0 to

be a concatenation of controllers µej : X → R≥0, (e, j) ∈ P ,
that regulate flows from link e to link j. In this paper we focus
on locally responsive control laws defined below.

Definition 1 (Locally responsive control laws). A control law
µ for a network G = (V, E) is locally responsive if µej(x),
for any (e, j) ∈ P , can depend on the states of the links in
E−
τe ∪ E+

τe only, where E−
τe ∪ E+

τe denotes the set of incoming
and outgoing links of node τe.

In general, actual inter-link flows qµ : X → RP
≥0 may

not equal the control inputs µ(x) if the control law violates
sending or receiving flows, e.g. under open-loop control. We
define it as follows:

qµej(x) := min{µej(x), f
µ
ej(x), r

µ
ej(x)}, (4)

where

fµ
ej(x) :=

µej(x)∑
j′∈E+

e
µej′(x)

fe(xe), (5a)

rµej(x) :=
µej(x)∑

e′∈E−
j
µe′j(x)

rj(xj). (5b)

This modelling approach enables us to study inappropri-
ate control instructions induced by cyber-physical disruption
introduced later. It is necessary since controllers may not
have accurate knowledge of sending/receiving flows due to
disruptions. The actual controlled flow qµej(x) represents how
the network responds to the control input µ. The sending and
receiving flows are allocated proportionally to µej(x), which
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is a typical modeling approach; for more discussion on this
and alternative models, see [37]. Obviously, these techniques,
with minor modifications, can be applied to flow allocations
in multi-commodity dynamical flow networks [38]. Note that
the superscript “µ” in (4) indicates the reliance of inter-links
flows on the control law. We typically omit it unless we want
to emphasize the dependence on a particular control law.

Assumption 2 (Controlled flows).
2.1 Continuity: The controlled flow q(x) is Lipschitz contin-

uous in xe for any e ∈ E .
2.2 Monotonicity: For any two different links e, e′ ∈ E ,

(i)
∑

i∈E−
e
qie(x) is non-decreasing in xe′ ;

(ii)
∑

j∈E+
e
qej(x) is non-increasing in xe′ .

Assumption 2.1 indicates that our approach is applicable
to non-smooth control laws. Assumption 2.2 implies that the
considered dynamic flow network is cooperative, which is
a special class of monotone systems [39]. The following
elaborates Assumption 2.2 (i) to reveal the cooperativity. If
link e′ locates upstream of link e and xe′ increases, As-
sumption 2.2 (i) implies that the link set E−

e tends to send
more flows to link e in order to avoid density accumulation
in the upstream. If e′ does not appear upstream of link e
and e′ ̸= e, the increase of xe′ implies that somewhere (at
least not link e) becomes congested and Assumption 2.2 (i)
indicates that the link set E−

e tends to send more flows to link
e, which benefits alleviating congestion somewhere. A similar
explanation applies to Assumption 2.2 (ii). Thus Assumption
2.2 indicates how the links reduce congestion cooperatively.

While dynamic flow networks are, in general, not monotone
[10], the rationale behind Assumption 2.2 lies in that the
monotonicity applies to a broad class of flow networks [19]
and provides a tractable structure that benefits analysis and
computation. The assumption of monotonicity can be relaxed
in our stability analysis, with a rise of computational costs;
see Propositions 1 and 2.

Below are the examples regarding routing and merging
strategies satisfying Assumption 2. Consider routing control
for a diverging junction with an upstream link e. The classical
logit routing policy [18] gives

qej(x) = min
{ e−θjxj∑

j′∈E+
e
e−θj′xj′

fe(xe), rj(xj)
}
, (6)

where θj quantifies the sensitivity of route choice to xj . Now
consider a merging junction with a minor upstream link ei1 ,
a major upstream link ei2 and a downstream link e. A typical
ramp metering policy, namely the occupancy strategy [40],
yields

qei1e(x) = min{u− κxei2
, fei1 (xei1

), re(xe)}, (7a)

qei2e(x) = min{re(xe)− qei1e(x), fei2 (xei2
)}, (7b)

where u, κ ≥ 0 are control parameters.
3) Disruption modes: We consider a set S of modes that

capture cyber and/or physical disruptions. With a slight abuse
of notation, we use fe : S ×Xe → R≥0, re : S ×Xe → R≥0,
µ : S × X → RP

≥0 and q : S × X → RP
≥0 to denote the

sending flow of link e, the receiving flow of link e, the control

law and the actual inter-link flows influenced by disruptions,
respectively.

Assumption 3 (Cyber-physical disruptions).
3.1 Nominal mode: There exists a nominal mode, denoted

by s0 ∈ S, under which the network is free from cyber-
physical disruptions and thus stable.

3.2 Disrupted sending/receiving flows: For every s ∈ S and
e ∈ E , fe(s, xe) and re(s, xe) satisfy Assumption 1.
Furthermore, fe(s, xe) ≤ fe(s0, xe) and re(s, xe) ≤
re(s0, xe).

3.3 Disrupted controlled flows: For every s ∈ S and e ∈ E ,
q(s, x) satisfies Assumption 2.

Assumption 3.1 ensures one stable mode. In this paper, our
primal interest is to study whether the network is destabilized
given the switched modes. Assumptions 3.2 and 3.3 imply that
disruptions will not fundamentally change the flow dynamics.
They hold for typical reliability failures2; see the examples
later. Then mode-specific link capacities and critical densities
are given by

Qse := sup
xe∈Xe

min{fe(s, xe), re(s, xe)}, (8a)

xc
se := inf{xe ∈ Xe|fe(s, xe) = Qse}. (8b)

Note that Assumption 3.2 also indicates Qse ≤ Qs0e for any
s ∈ S and e ∈ E . We denote by xc∗

e the maximum critical
density over disruption modes:

xc∗
e := max

s∈S
xc
se, e ∈ E . (9)

The following are examples of physical and cyber disrup-
tions. Consider logit routing for a diverging junction with an
upstream link e, and suppose that the outflow from link e may
decrease by a certain ratio. Thus we consider S = {s0, s1}
and fe(s1, xe) = χfe(s0, xe), where χ ∈ [0, 1). The actual
inter-link flows are given by

qej(s, x) = min
{ e−θjxj∑

j′∈E+
e
e−θj′xj′

fe(s, xe), rj(xj)
}
. (10)

Now suppose that the observation of link j∗ ∈ E+
e , denoted

by Tj∗(s, x), may be biased. Without loss of generality, we
let Tj∗(s1, x) := κxj∗ with some κ ≥ 0 and Tj′(s, x) = xj′

for any (s, j′) ̸= (s1, j
∗). The controlled flows are given by

qej(s, x) = min
{ e−θjTj(s,x)∑

j′∈E+
e
e−θj′Tj′ (s,x)

fe(xe), rj(xj)
}
.

(11)

B. PDMP model

Now we can define the piecewise-deterministic dynam-
ics of the controlled process {(S(t), X(t)); t ≥ 0}. The
discrete-state process {S(t); t ≥ 0} of the mode is a ho-
mogeneous finite-state Markov process that is independent
of the continuous-state process {X(t); t ≥ 0} of the traffic
densities. The state space of the discrete process is S :=

2Security failures, which are beyond the scope of this paper, however, may
violate this assumption.
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{s0, s1, · · · , sM}. The transition rate from mode s to mode
s′ is λss′ . Without loss of generality, we assume that λss = 0
for all s ∈ S. The discrete-state process evolves as follows:

Pr{S(t+ δ) = s′|S(t) = s} = λss′δ + o(δ), ∀s, s′ ∈ S,

where δ denotes an infinitesimal increment. We assume that
the discrete-state process is ergodic, which means that every
disruption will be resolved in finite time almost surely. It
follows that {S(t); t ≥ 0} admits a unique steady-state
probability vector p := [ps0 , ps1 , · · · , psM ]T ∈ RS

≥0 satisfying

ΛTp = 0, (12)

where 0 denotes the zero vector and Λ is the transition matrix
given by

Λ :=



−
∑
s′∈S

λs0s′ λs0s1 · · · λs0sM

λs1s0 −
∑
s′∈S

λs1s′ · · · λs2sM

...
...

. . .
...

λsMs0 λsMs1 · · · −
∑
s′∈S

λsMs′

 .

(13)
The continuous-state process {X(t); t ≥ 0} is defined as

follows. We let Ge(s, x) := (d/dt)Xe(t). The conservation
law associated with flows implies

Ge(S(t), X(t)) =

α−
∑
j∈E+

e

qej(S(t), X(t)), if τe = vo (14a)

∑
i∈E−

e

qie(S(t), X(t))

−
∑
j∈E+

e

qej(S(t), X(t)), if τe /∈ {vo, vd} (14b)

∑
i∈E−

e

qie(S(t), X(t))

−fe(S(t), X(t)), if τe = vd. (14c)

Note Ge is bounded. So is G(s, x) := (d/dt)X(t).
The joint evolution of S(t) and X(t) is a PDMP and can

be described compactly using an infinitesimal generator [35]

L V (s, x) =

G(s, x)T∇xV (s, x) +
∑
s′∈S

λss′(V (s′, x)− V (s, x)) (15)

for any differentiable function V : S × X → R≥0, where
∇xV (s, x) is the gradient of V with respect to x. The bounded
dynamics G(s, x) indicates that {(S(t), X(t)); t ≥ 0} is a
non-explosive Markov process, which is a prerequisite for
discussing stability [35].

C. Stability and resiliency

In this subsection, we define network stability and resiliency,
which are the focus of the subsequent analysis.

1) Stability and invariant set: Below we present several
concepts regarding stability.

Definition 2 (Stability & Instability). The network is stable if
there exists a scalar Z < ∞ such that for any initial condition
(s, x) ∈ S × X

lim sup
t→∞

1

t

∫ t

τ=0

E[|X(τ)||S(0) = s,X(0) = x]dτ ≤ Z, (16)

where |X(t)| denotes 1-norm of X(t), namely |X(t)|=∑
e∈E |Xe(t)|. The network is unstable if there does not exist

Z < ∞ such that for any initial condition (s, x) ∈ S×X such
that the inequality (16) holds.

The notion of stability follows a classical definition [28],
which is closely related to “first-moment stable” [22]. Prac-
tically, if the time-average traffic densities in all links are
bounded, the network is stable; otherwise, it is unstable.

Verifying the stability requires to check (16) for all initial
conditions (s, x) ∈ S × X . This can be simplified by con-
sidering an invariant set X µ ⊆ X [24], which is defined as
follows:

Definition 3 (Invariant set). For the PDMP {(S(t), X(t)); t ≥
0}, a subset X µ ⊆ X is an invariant set if it is (i) globally
attracting and (ii) positively invariant:

(i) ∀(S(0), X(0)) ∈ S × X ,

lim
t→∞

Pr{X(t) ∈ X µ|(S(0), X(0))} = 1;

(ii) ∀(S(0), X(0)) ∈ S × X µ,∀t ≥ 0, X(t) ∈ X µ.

The definition above indicates that i) for any initial condition
X(0) ∈ X , the state X(t) enters X µ almost surely, and that ii)
given any initial condition X(0) ∈ X µ, the state X(t) never
leaves X µ. Note that one trivial candidate set is X itself, but a
tight invariant set depends on the control law µ and disruption
modes S. It is assumed that X µ is unbounded; otherwise, the
network is naturally stable. Besides, we define

xµ
e := inf

x∈Xµ
xe, x̄µ

e := sup
x∈Xµ

xe, e ∈ E .

If xe does not have an invariant upper bound, we let x̄µ
e = ∞.

Clearly, we have X µ ⊆
∏

e∈E [x
µ
e , x̄

µ
e ].

The following sets of links are induced by the invariant set
X µ. Clearly they also depend on the control law µ, but we
omit the superscript “µ” for notational convenience without
causing confusion. We denote by Einf := {e ∈ E|x̄µ

e = ∞} the
set of density-unbounded links. For any e ∈ Einf , let A−

e,inf :=

A−
e ∩Einf (resp. A+

e,inf := A+
e ∩Einf ) denote its upstream (resp.

downstream) density-unbounded links. We also define the set
of density-bounded links that are upstream (resp. downstream)
of link e ∈ Einf , denoted by A−

e,fin := A−
e \ A−

e,inf (resp.
A+

e,fin := A+
e \ A+

e,inf ). Particularly, we let

B+
e := {n ∈ A+

e |∀ℓ ∈ {n} ∪ (A+
e ∩ A−

n ),

(i) ℓ ∈ A+
e,fin,

(ii) ∃(s, x) ∈ S × X µ,∃i ∈ E−
ℓ ,

min{µiℓ(s, x), f
µ
iℓ(s, x)} > rµiℓ(s, x)}

(17)
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denote the set of links downstream of link e ∈ Einf such that
(i) link n ∈ B+

e is density-bounded, (ii) link n ∈ B+
e can block

the flows from its upstream link i, and (iii) any link ℓ between
e and n, namely ℓ ∈ A+

e ∩ A−
n satisfies (i) and (ii), where

fµ
iℓ(s, x) (resp. rµiℓ(s, x)), similar to (5a) (resp. (5b)), denotes

allocated sending (resp. receiving) flow between links i and
ℓ. Intuitively, B+

e is the set of connected bottlenecks, between
link e and its downstream density-unbounded links, that induce
congestion spillback and block the discharging flow of link e.

We use the classical Wheatstone bridge [41] to illustrate
the definitions above; see Fig. 3. Suppose that only links eo
and e5 have infinite storage and that the flows out of links e2
and e5 are decreased randomly by physical disruptions. Then
the congestion builds up at links e2 and e5. Due to the infinite
storage, the traffic density at link e5 may blow up. Meanwhile,
link eo could be blocked as well once the jam at link e2 spills
back to link eo via link e1. It indicates Einf = {eo, e5} with
B+
eo = {e1, e2} and B+

e5 = ∅.

eo

e1
e2

e3

e4 e5

vo

v1

v2

vd

A+
eo,fin

B+
eo

A+
eo,inf

(a) A+
eo,inf

, A+
eo,fin

and B+
eo .

eo

e1
e2

e3

e4 e5

vo

v1

v2

vd

A−
e5,fin

A−
e5,inf

(b) A−
e5,inf

and A−
e5,fin

.

Fig. 3: Wheatstone bridge with Einf = {eo, e5} denoted by dotted
lines: B+

eo = {e1, e2}, A+
eo,inf

= {e5}, A+
eo,fin

= {e1, e2, e3, e4},
A−

e5,inf
= {eo} and A−

e5,fin
= {e1, e2, e4}.

2) Resiliency, throughput and min-cut capacities: The
throughput αµ of a network with control µ is defined as the
maximal demand that the network can accept while maintain-
ing stability, i.e. traffic densities in all links being bounded on
average:

αµ := supα s.t. network is stable. (18)

For a network G = (E ,V) with link capacities Q :=
{Qe|e ∈ E}, we denote by C(Q;G) its min-cut capacity
(MCC). The min-cut max-flow theorem states that the nominal
throughput equals the MCC [8], which is obtained by solving
the maximum flow problem:

(P1) max
α≥0,u∈RP

≥0

α

s.t. α =
∑
j∈E+

e

uej , τe = vo, (19a)

∑
i∈E−

e

uie =
∑
j∈E+

e

uej , τe ∈ V \ {vo, vd}, (19b)

∑
i∈E−

e

uie ≤ Qe, τe ∈ V \ {vo}, (19c)

∑
j∈E+

e

uej ≤ Qe, τe ∈ V \ {vd}, (19d)

where the optimal α∗ is equal to C(Q;G). Then we define
resiliency score as

ηµ := αµ/C(Qs0 ;G), (20)

where C(Qs0 ;G) denotes the MCC in the nominal mode s0.
Assumption 3.2 indicates ηµ ∈ [0, 1]. If ηµ = 1, we say
that the control law µ is strongly resilient against disruptions.
The motivation for the resiliency score lies in that min-cut
capacity is an important measurement of network capability.
Meanwhile, for monotone dynamical flow networks, it is easily
attainable with an open-loop control in the nominal case; see
Appendix A. Thus the ratio can capture throughput losses due
to disruptions.

III. RESILIENCY ANALYSIS

In this section, we analyze a network’s stability under a
given control law µ. The main results allow quantification of
the resiliency score ηµ given by (20).

To state the results, we define

Ie(s, x) :=
∑

m∈A−
e

Gm(s, x) +
∑
i∈E−

e

qie(s, x), (21a)

Oe(s, x) :=
∑
j∈E+

e

qej(s, x)−
∑
ℓ∈B+

e

ρℓ(xℓ)Gℓ(s, x), (21b)

where ρℓ : R≥0 → R≥0 is a weight function:

ρℓ(xℓ) =


0 xℓ < xµ

ℓ ,
xℓ−xµ

ℓ

x̄µ
ℓ −xµ

ℓ
xµ
ℓ ≤ xℓ < x̄µ

ℓ ,

1 xℓ ≥ x̄µ
ℓ .

(22)

The weight function indicates that Gℓ, the dynamics of link ℓ,
has more impacts on (21b) as the traffic density xℓ increases.
We interpret (21a) as the inflow from the origin vo to link e,
by considering the flow conservation but not the dynamics on
the intermediate links. To see that, we first notice by (14a)-
(14c) that Gm(s, x) is the net flow only considering neighbor
links of link m, and then recognize

∑
m∈A−

e
Gm(s, x) as the

net flow of the upstream network whose inflow is the demand
α and whose outflows comprise of i) those passing link e and
ii) those never passing link e. Since the former outflows are
canceled by

∑
i∈E−

e
qie(s, x) in (21a), it is easy to understand

that (21a) denotes the demand α minus the flows never passing
link e. In a similar way, we interpret (21b) as a weighted
outflow of link e including those traversing the downstream
bottlenecks and those not. Aware of the physical meanings of
(21a)-(21b), we let

Ne(s, x) := Ie(s, x)−Oe(s, x) (23)

denote the net flow of link e considered in a larger scope, from
the location of demand generation to the sites of bottleneck
dissipation. It captures necessary networkwide dynamics and
thus helps investigate the network stability conditions.

We use the Wheatstone bridge in Fig. 3 to enhance the
understandings of (21a)-(21b). First, we have Ie5(s, x) =
α − qe1e3(s, x), where the flow qe1e3 never enters link e5.
If we plug ρℓ ≡ 1 into (21b), we obtain Oeo(s, x) =
qeoe4(s, x)+qe1e3(s, x)+qe2e5(s, x), where qe2e5 denotes the
outflow of link eo through the bottleneck and qeoe4 + qe1e3
represents the flows never entering the bottleneck. Although
the physical meaning is clear given ρℓ ≡ 1, it leads to
trivial stability analysis. This is because congestion spillback
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is oversimplified. For example, the flows qeoe1 and qe1e2 are
omitted in Oeo(s, x). This will happen if piecewise quadratic
Lyapunov functions with ρℓ ≡ 1 are used.

A. Main results
This subsection presents two main results of stability analy-

sis. The first stability condition emphasizes a physical intuition
that any dynamic flow network is stable if the long-term net
flow is negative for each density-unbounded link; the second
is stronger but more abstract.

The first main result is as follows:

Theorem 1. Consider an acyclic network satisfying Assump-
tions 3.1-3.3. Suppose that the network admits a demand α
and an invariant set X µ ⊆

∏
e∈E [x

µ
e , x̄

µ
e ] under a control law

µ : S × X → RP
≥0. Then, the network is stable if∑

s∈S
ps max

x∈Dµ
e

Ne(s, x) < 0, ∀e ∈ Einf , (24)

where {ps|s ∈ S} is the steady-state probability distribution
of disruption modes and Dµ

e is given by

Dµ
e := {x|xe = xc∗

e , xm = xµ
m, ∀m ∈ A−

e ,

xn = x̄µ
n, ∀n ∈ E \ (A−

e ∪ {e} ∪ B+
e ),

xℓ ∈ [xµ
ℓ , x̄

µ
ℓ ], ∀ℓ ∈ B+

e }. (25)

Theorem 1 essentially states that the network is stable if the
expectation of the maximum Ne(s, x) over Dµ

e is negative for
every link e ∈ Einf , where Dµ

e is a refinement of
∏

e∈E [x
µ
e , x̄

µ
e ]

by using monotone network dynamics. Recalling the defini-
tion of Ne(s, x) and the physical meanings of Ie(s, x) and
Oe(s, x), we see that the lower bounds xµ

m and the upper
bounds x̄µ

n in Dµ
e make our stability verification consider as

many flows as possible from the origin into link e to act
as the inflow of link e. Note that xn will take the infinite
value if x̄µ

n = ∞; we conclude the limit exists as xn → ∞
by noting that Ne(s, x) is non-decreasing in xn for n ∈
E \ {A−

e ∪ {e} ∪ B+
e } (see the proof in Section III-C) and

that Ne(s, x) is bounded.
Another observation on Theorem 1 is that we use a

rectangle-like set
∏

e∈E [x
µ
e , x̄

µ
e ], instead of X µ, to simplify

the computation. Though simple, such kind of set suffices to
yield interesting results; see Theorems 3 and 4. In general,
the invariant set X µ could be in other shapes; the stability
condition can be further refined given a specific invariant set.

One can obtain a lower bound of the resiliency score by
finding the supremum of those demands α that satisfy the
criterion (24). It involves solving a set of maximization prob-
lems only over compact sets

∏
ℓ∈B+

e
[xµ

ℓ , x̄
µ
ℓ ]. Thus we are able

to find the global optimal solution efficiently with searching
algorithms. This is a significant refinement with respect to the
general stability criteria, which essentially require search over
unbounded sets [24]. Note that though the criterion (24) is a
sufficient condition, it is also necessary in particular settings;
see Theorems 3 and 4.

Theorem 1 is proved based on a novel Lyapunov function
(32) relying on the weight function (22). We enhance it by
considering more general weights for links from the sets

A−
e,fin and B+

e , which is achieved by a more sophisticated
Lyapunov function (41). Weighting link dynamics Gℓ(s, x),
ℓ ∈ A−

e,fin, can enhance the stability analysis if there are
upstream bottlenecks with congestion spillback. Note that
by appropriately restricting the weights for A−

e,fin and B+
e ,

we only need to consider xm = xµ
m, m ∈ A−

e,inf , when
checking the stability, just like Theorem 1. We do not consider
weighting Gm(s, x), m ∈ A−

e,inf for two reasons. First, link
m ∈ A−

e,inf has infinite storage and does not block its inflow.
Second, weighting Gm(s, x), m ∈ A−

e,inf , will destroy the
monotonicity with respect to xm, which incurs additional
computational costs of the stability verification.

For A−
e,fin ∪ B+

e = {ei1 , ei2 , · · · , eiH}, we define its state
vector by

x∗
e := [xei1

, xei2
, · · · , xeiH

]T ∈
H∏

h=1

X µ
eih

.

Along with the advanced Lyapunov function (41), we let

N∗
e (s, x) :=

∑
m∈A−

e,inf∪{e}

Gm(s, x) + 2ξTk (x
∗
e)Bseξ̇k(x

∗
e)

+
∑
s′∈S

λss′ξ
T
k (x

∗
e)(Bs′e −Bse)ξk(x

∗
e) (26)

denote a generalization of Ne(s, x), where

ξk(x
∗
e) := [1, xei1

, · · · , xeiH
, · · · , xk

ei1
, · · · , xk

eiH
]T ∈ RkH+1

≥0

is a monomial basis of degree k for x∗
e ,

ξ̇k(x
∗
e) :=

d

dt
ξk(x

∗
e(t))

is the derivative of ξk(x
∗
e) with respect to time t, and Bse ∈

SkH+1
+ is a symmetric positive definite matrix for s ∈ S and

e ∈ Einf .
The second main result of this section is as follows:

Theorem 2. Consider an acyclic network satisfying Assump-
tions 3.1-3.3. Suppose that the network admits a demand α
and an invariant set X µ ⊆

∏
e∈E [x

µ
e , x̄

µ
e ] under a control

µ : S × X → RP
≥0. Besides, there exist a set of symmetric

positive definite matrices Bse ∈ SkH+1
+ , e ∈ Einf , s ∈ S, such

that

0 ≤ 2JT
ξk
(x∗

e)Bseξk(x
∗
e) ≤ 1, ∀x∗

e ∈
H∏

h=1

X µ
eih

, (27)

where
Jξk(x

∗
e) :=

d

dx∗
e

ξk(x
∗
e) ∈ R(kH+1)×H

is a Jacobian matrix. Then, the network is stable if

max
x∈Dµ∗

e

N∗
e (s, x) < 0, ∀e ∈ Einf , s ∈ S, (28)

where Dµ∗
e is given by

Dµ∗
e := {x|xe = xc∗

e , xm = xµ
m, ∀m ∈ A−

e,inf ,

xn = x̄µ
n, ∀n ∈ E \ (A−

e ∪ {e} ∪ B+
e ),

xℓ ∈ [xµ
ℓ , x̄

µ
ℓ ], ∀ℓ ∈ A−

e,fin ∪ B+
e }. (29)
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The weight constraint (27) induces each weight function of
the link dynamics Geih

(s, x) to have a range [0, 1]. The non-
negativity endows the weighted Geih

(s, x) with the correct
physical meaning of net flows, and less than one makes xm,
m ∈ A−

e,inf ⊆ A−
e , attain the minimum value by monotone

network dynamics, like Theorem 1.
The proof of Theorem 2 is based on the generalized

Lyapunov function (41). Note that the extension is not unique.
For example, we can further adapt the Lyapunov function if
the control law is specified; see our proof of Theorem 3 in
Section IV-C.

In general, Theorem 2 yields stronger criteria than Theo-
rem 1. The throughput bounds derived from Theorem 2 can
be further sharpened by increasing the degree k of the basis
ξk(x

∗
e), but it requires more computational costs. We check the

stability by solving the following semi-infinite programming
(SIP [42]) with finite decision variables but infinite constraints:

(P2) min
γ,Bse

γ

s.t. (27),
γ ≥ N∗

e (s, x), ∀(s, x) ∈ S × Dµ∗
e ,∀e ∈ Einf . (30)

The programming problem has infinite constraints because
(27) and (30) should hold for infinitely many states x. If the
optimal γ∗ < 0, we say the network is stable. Since link
ℓ ∈ A−

e,fin ∪ B+
e is density-bounded, the constraint (27) is

required to hold over the compact set
∏H

h=1 X µ
eih

as well.
Thus we can solve P2 efficiently with the solution algorithms
for SIPs, such as adaptive convexification [42].

The rest of this section is devoted to a numerical example
for resiliency analysis based on the above results (Section III-
B) and the proof of Theorem 1 (Section III-C) and Theorem 2
(Section III-D).

B. Numerical example
Consider the network in Fig. 3. The sending flow function of

link e is given by fe(s, xe) = min{vfxe, Qse}, where vf > 0
is a coefficient of free-flow speed [36] and Qse is the mode-
specific capacity of link e. The receiving flow functions are
given by

re(xe) =

{
min{wc(x

max
e − xe), Qe}, if xmax

e < ∞,

∞, if xmax
e = ∞,

where wc > 0 is a coefficient of congestion-wave speed [36]
and Qe is the nominal capacity. In this example, we set vf = 1,
wc = 1/2, Qeo = Qe1 = Qe5 = 1, and Qe2 = Qe3 =
Qe4 = 1/2. If links e1, · · · , e5 have finite storage space, we
let xmax

e1 = xmax
e5 = 3, and xmax

e2 = xmax
e3 = xmax

e4 = 3/2.
The network is subject to cyber-physical disruptions as fol-

lows. On link e4, the traffic state xe4 may temporarily appear
to be zero to the controller. On link e5, the sending capacity
can be temporarily reduced to zero. Table I characterizes the
fault mapping Te4(s, x) for cyber disruptions and the mode-
specific capacity Qse5 for physical disruptions. The other links
are not subject to disruptions; i.e. Te(s, x) = xe for all s and
all e ̸= e4, and Qse = Qe for all s and all e ̸= e5. Hence, the
network has at most four modes.

TABLE I: Modes of network in Figure 3.

Mode s0 s1 s2 s3

Te4(s, x) xe4 xe4 0 0
Qse5 1 0 1 0

If the network suffers the cyber and physical disruption
simultaneously, the mode transition rate matrix is

Λ =


−0.2 0.1 0.1 0
0.1 −0.2 0 0.1
0.1 0 −0.2 0.1
0 0.1 0.1 −0.2

 .

The corresponding steady-state probabilities ps can be com-
puted for the mode s ∈ {s0, s1, s2, s3}: ps0 = ps1 = ps2 =
ps3 = 1/4.

In the following we specify network dynamics. The traffic
flows at the diverges are routed according to the classical logit
model:

qlogiteoe1 (s, x) = min{ e−νxe1

e−νxe1 + e−νTe4
(s,x)

feo(s, xeo), re1(xe1)},

qlogiteoe4 (s, x) = min{ e−νTe4 (s,x)

e−νxe1 + e−νTe4
(s,x)

feo(s, xeo), re4(xe4)},

qlogite1e2 (s, x) = min{ e−νxe2

e−νxe2 + e−νxe3
fe1(s, xe1), re2(xe2)},

qlogite1e3 (s, x) = min{ e−νxe3

e−νxe2 + e−νxe3
fe1(s, xe1), re3(xe3)}.

In this example, we select ν = 2 as the sensitivity coefficient.
At the merge, we assume that link e2 is prioritized over link
e4. Such a priority can be realized by

qlogite2e5 (s, x) = min{fe2(s, xe2), re5(xe5)},
qlogite4e5 (s, x) = min{fe4(s, xe4), re5(xe5)− qlogite2e5 (s, x)}.

TABLE II: Resiliency scores in various scenarios.

Infinite
space

Cyber
disruptions

Physical
disruptions ηlogit

1
ηlogit
2

η
logit
sim

yes no no 1 1 1
yes yes no 0.783 0.984 1
yes no yes 0.667 0.667 0.667
yes yes yes 0.602 0.623 0.637
no no no 1 1 1
no yes no 0.792 0.910 0.921
no no yes 0.741 0.848 0.860
no yes yes 0.493 0.708 0.722

Table II lists resiliency scores in various scenarios. The
column “Infinite space” indicates whether links e1, e2, · · · , e5
have infinite storage space. Clearly, we have the nominal MCC
equal to one, i.e. C(Qs0 ;G) = 1. The lower bounds ηlogit

1
are derived from Theorem 1, while the bounds ηlogit

2
are

obtained through Theorem 2. The details are available in the
supplementary material. We also used numerical simulation
to evaluate true resiliency scores, denoted by ηlogitsim . Our
findings are summarized below, where the finding (iii) is a
little surprising at the first glance:

(i) It is demonstrated that Theorem 2 yields tighter lower
bounds than Theorem 1. More importantly, the bounds
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ηlogit
2

are close to ηlogitsim , i.e. the resiliency scores revealed
by numerical simulation.

(ii) Cyber-physical disruptions can significantly decrease the
network performance. For instance, the resiliency score
decreases to 0.860 when links e1, · · · , e5 only have finite
space and the network suffers the physical disruption. It
further declines to 0.722 when the network is also subject
to the cyber disruption.

(iii) Increasing link storage may not help improve resiliency
under inappropriate localized controls. As seen in Ta-
ble II, the disruptions have more significant impacts
given infinite link storage space. The reason lies in that
the congestion in link e5 does not affect the upstream
routing when link e5 has infinite storage.

C. Proof of Theorem 1
The proof consists of two steps. We first prove Proposi-

tion 1, and then show that under Assumption 3.3 we only need
to check over Dµ

e given by (25) instead of the unbounded set
D̃µ

e in Proposition 1.

Proposition 1. Consider an acyclic network satisfying As-
sumptions 3.1-3.2. Suppose that the network admits a demand
α and an invariant set X µ ⊆

∏
e∈E [x

µ
e , x̄

µ
e ] under a control

law µ : S × X → RP
≥0. Then the network is stable if∑

s∈S
ps max

x∈D̃µ
e

Ne(s, x) < 0, ∀e ∈ Einf , (31)

where D̃µ
e := {x ∈ X µ|xe ≥ xc∗

e }.

We prove Proposition 1 by applying the following Foster-
Lyapunov criterion adapted from Theorem 4.3 (ii) in [35]:

Foster-Lyapunov criterion. Consider a non-explosive
piecewise-deterministic Markov process {(S(t), X(t)); t ≥ 0}
with a state space S ×X , an infinitesimal generator L , and a
Lyapunov function V : S×X → R≥0. If there exist constants
c > 0, d < ∞ and a function f : X → R≥0, with f(x) → ∞
as |x|→ ∞, such that

L V (s, x) ≤ −cf(x) + d, ∀(s, x) ∈ S × X ,

then, for each initial condition (s, x) ∈ S × X ,

lim sup
t→∞

1

t

∫ t

τ=0

E[f(X(τ))|S(0) = s,X(0) = x]dτ ≤ d/c.

Consider a novel switched polynomial Lyapunov function:

V (s, x) :=
∑

e∈Einf

aexe

[1
2
xe +

∑
m∈A−

e

xm

+
∑
ℓ∈B+

e

∫ xℓ

xℓ

ρℓ(ζ)dζ + bse

]
(32)

where ae > 0 and bse ≥ 0 for any s ∈ S and e ∈ Einf . The
design of (32) is motivated by network dynamics:

(i) For each e ∈ Einf , its upstream links, A−
e , and down-

stream bottlenecks, B+
e , are taken into account;

(ii) The weight function (22) is introduced to better capture
bottleneck dynamics. If ρℓ ≡ 1, (32) is reduced to a
piecewise quadratic function.

(iii) The parameters ae and bse are used to model the impact
of mode s on link e. We will show that such a design
saves finding explicit values of ae and bse.

In the following we show that if (31) holds, we must have
ae > 0, bse ≥ 0, c > 0 and d < ∞ such that V (s, x) satisfies

L V (s, x) ≤ −c
∑

e∈Einf

xe + d, ∀(s, x) ∈ S × X µ. (33)

To proceed, we apply the infinitesimal generator L to the
Lyapunov function V (s, x). By (15), we have

L V (s, x)

=
∑

e∈Einf

(
aexe

(
Ne(s, x) + λT

s (be − bse1)
)

+ aeGe(s, x)
( ∑

m∈A−
e

xm +
∑
ℓ∈B+

e

∫ xℓ

xℓ

ρ(ζ)dζ + bse

))
,

where 1 denotes the all-ones vector, λs := [λss0 , · · · , λssM ]T

and be := [bs0e, · · · , bsMe]
T.

Noting∑
e∈Einf

Ge(s, x)
∑

m∈A−
e,inf

xm =
∑

e∈Einf
m∈Einf

Ge(s, x)xmIA−
e,inf

(m)

=
∑

e∈Einf
n∈Einf

Gn(s, x)xeIA+
n,inf

(e)

=
∑

e∈Einf

xe

∑
n∈A+

e,inf

Gn(s, x),

we obtain

L V (s, x) =
∑

e∈Einf

(
De(s, x)xe + aeGe(s, x)

( ∑
m∈A−

e,fin

xm

+
∑
ℓ∈B+

e

∫ xℓ

xℓ

ρℓ(ζ)dζ + bse

))
,

where IA(e) is an indicator function such that IA(e) = 1 if
e ∈ A and IA(e) = 0 otherwise, and

De(s, x)

:= ae

(
Ne(s, x) + λT

s (be − bse1)
)
+

∑
n∈A+

e,inf

anGn(s, x).

It follows L V (s, x) ≤
∑

e∈Einf
De(s, x)xe+d0 with d0 < ∞.

The existence of d0 is guaranteed by the boundedness of xm

for m ∈ A−
e,fin, of xℓ for ℓ ∈ B+

e and of Ge(s, x) for e ∈ E .
Next, we show, if (31) holds, there exist ae > 0, bse ≥ 0,

ce > 0 and de < ∞ such that

De(s, x)xe ≤ −cexe+de, ∀(s, x) ∈ S×X µ,∀e ∈ Einf , (34)

which implies that (33) is satisfied with c := mine∈Einf
ce and

d :=
∑

e∈Einf
de + d0.

For any e ∈ Einf , we must have de,1 < ∞ such that

max
(s,x)∈S×(Xµ\D̃µ

e )
De(s, x)xe ≤ de,1. (35)
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Besides, for any (s, x) ∈ S × D̃µ
e ,

De(s, x) ≤ae[N̄se + λT
s (be − bse1)] + Ḡ

∑
n∈A+

e,inf

an

≤ae
∑
s′∈S

ps′N̄s′e + Ḡ
∑

n∈A+
e,inf

an (36)

where N̄se := maxx∈D̃µ
e
Ne(s, x) and Ḡ denotes an upper

bound of Ge(s, x) for e ∈ E . The last step is derived from the
following lemma, which we prove in Appendix C.

Lemma 1. The system of equations

zs +
∑
s′∈S

λss′(ys′ − ys) =
∑
s′∈S

ps′zs′ , s ∈ S (37)

has a non-negative solution for y = [ys0 , · · · , ysM ]T, where
ps, λss′ and zs are given, and ps and λss′ satisfy (12).

Given (31) and (36), Lemma 2 proved in Appendix D
tells that there exists ae for e ∈ Einf such that De(s, x) <
0, ∀(s, x) ∈ S × D̃µ

e ,∀e ∈ Einf . Thus we must have ce > 0
for each e ∈ Einf such that

De(s, x)xe ≤ −cexe, ∀(s, x) ∈ S × D̃µ
e ,∀e ∈ Einf . (38)

Lemma 2. The system of equations

πeae + Ḡ
∑

n∈A+
e,inf

an < 0, ∀e ∈ Einf (39)

has a positive solution for {ae|e ∈ Einf} if πe < 0 for any
e ∈ Einf .

Combining (35) and (38) yields (34) with de = de,1+cex
c∗
e .

It indicates that we finish the proof of Proposition 1.
Noting X µ ⊆

∏
e∈E [x

µ
e , x̄

µ
e ], we must have

max
x∈

∏
e∈E [x

µ
e ,x̄

µ
e ],xe≥xc∗

e

Ne(s, x) ≥ max
x∈D̃µ

e

Ne(s, x).

Then, the rest of the proof is devoted to showing that

max
x∈Dµ

e

Ne(s, x) = max
x∈

∏
e∈E [x

µ
e ,x̄

µ
e ],xe≥xc∗

e

Ne(s, x) (40)

under Assumption 3.3. Using (40), we can derive (31) from
(24), which finishes the proof.

The definition of localized control laws indicates

max
xe′

Ne(s, x) = max
xe′

Ge,τe′ (s, x) +Ge,σe′ (s, x), ∀e′ ∈ E ,

where Ge,τe′ (s, x) and Ge,σe′ (s, x) denote the projections of
Ne(s, x) onto nodes τe′ and σe′ , respectively. The projection
onto an arbitrary node v ∈ V is given by

Ge,v(s, x)

:=
∑

i∈E−
v ,j1∈E1+

e,v

qij1(s, x) +
∑

i∈E−
v ,j1∈E3+

e,v

ρj3(xj3)qij3(s, x)

−
∑

i1∈E1−
e,v,j∈E+

v

qi1j(s, x)−
∑

i3∈E3−
e,v,j∈E+

v

ρi3(xi3)qi3j(s, x),

where ρj3(xj3) and ρi3(xi3) are specified by (22), and the
link sets E1+

e,v , E3+
e,v , E1−

e,v and E3−
e,v are illustrated in Fig. 4(a).

Note that these sets could be empty. We also use the example

v

E−
v ∩ (A−

e ∪ {e})︸ ︷︷ ︸
i1∈E1−

e,v

E−
v \ (A−

e ∪ {e} ∪ B+
e )︸ ︷︷ ︸

i2∈E2−
e,v

E−
v ∩ B+

e︸ ︷︷ ︸
i3∈E3−

e,v

E+
v ∩ (A−

e ∪ {e})︸ ︷︷ ︸
j1∈E1+

e,v

E+
v \ (A−

e ∪ {e} ∪ B+
e )︸ ︷︷ ︸

j2∈E2+
e,v

E+
v ∩ B+

e︸ ︷︷ ︸
j3∈E3+

e,v

j ∈ E+
v

i ∈ E−
v

(a)

eo

E3−
eo,v1

E3+
eo,v1

E2+
eo,v1

e4 e5

vo

v1

v2

vd

(b)

eo

E1−
e5,v1

E1+
e5,v1

E2+
e5,v1

e4 e5

vo

v1

v2

vd

(c)

Fig. 4: Classification of incoming links E−
v and outgoing links E+

v
for e ∈ Einf and v ∈ V: (a) a general case, (b) classification for link
eo and node v1, given E−

v1 = {e1}, E+
v1 = {e2, e3}, A−

eo = ∅ and
B+
eo = {e1, e2}, (c) classification for link e5 and node v1, given

E−
v1 = {e1}, E+

v1 = {e2, e3}, A−
e5 = {eo, e1, e2, e4} and B+

e5 = ∅.

in Fig. 3 to present two specific cases in Figs. 4(b) and (c),
respectively.

The following first shows Ne(s, x) is non-decreasing in xn

for n ∈ E \ (A−
e ∪ {e} ∪ B+

e ) by proving Ge,τn(s, x) +
Ge,σn

(s, x) is non-decreasing in xn. By Assumption 3.3, the
incoming flow

∑
i∈E−

v
qij(s, x) into link j ∈ E1+

e,v∪E3+
e,v is non-

decreasing in xj2 ; the outgoing flow
∑

j∈E+
v
qij(s, x) from

link i ∈ E1−
e,v ∪ E3−

e,v is non-increasing in xj2 . Thus Ge,v(s, x)
is non-decreasing in xj2 . Similarly, it is easy to verify that
Ge,v(s, x) is non-decreasing in xi2 . This implies that both
Ge,σn(s, x) and Ge,τn(s, x) are non-decreasing in xn for any
n ∈ E \ (A−

e ∪ {e} ∪ B+
e ).

Now we show Ne(s, x) is non-increasing in xm for m ∈
A−

e ∪ {e} by proving Ge,τm(s, x) + Ge,σm
(s, x) is non-

increasing in xm. Noting E1−
e,v ∪ E2−

e,v ∪ E3−
e,v = E−

v and
E1+
e,v ∪E2+

e,v ∪E3+
e,v = E+

v from Fig. 4, we rewrite Ge,v(s, x) as

Ge,v(s, x)

=
∑

i2∈E2−
e,v,j∈E+

v

qi2j(s, x) +
∑

i3∈E3−
e,v,j∈E+

v

(1− ρi3(xi3))qi3j(s, x)

−
∑

i∈E−
v ,j2∈E2+

e,v

qij2(s, x)−
∑

i∈E−
v ,j3∈E3+

e,v

(1− ρj3(xj3))qij3(s, x).

By Assumption 3.3, the incoming flow
∑

i∈E−
v
qij(s, x) into

link j ∈ E2+
e,v∪E3+

e,v is non-decreasing in xj1 ; the outgoing flow∑
j∈E+

v
qij(s, x) from link i ∈ E2−

e,v ∪ E3−
e,v is non-increasing

in xj1 . Thus Ge,v(s, x) is non-increasing in xj1 . Similarly,
we can show Ge,v(s, x) is non-increasing in xi1 . Thus we
conclude both Ge,σm(s, x) and Ge,τm(s, x) are non-increasing
in xm for any m ∈ A−

e ∪ {e}.
Thus we conclude (40) by the monotonicity of Ne(s, x),

which completes the proof.
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D. Proof of Theorem 2

The proof is similar to that of Theorem 1. The major
difference lies in the following Lyapunov function:

V ∗(s, x) :=
∑

e∈Einf

aexe

[1
2
xe +

∑
m∈A−

e,inf

xm

+ ξTk (x
∗
e)Bseξk(x

∗
e)
]
. (41)

Applying the infinitesimal generator yields

L V ∗(s, x) ≤
∑

e∈Einf

[D∗
e(s, x)xe + d0],

where D∗
e(s, x) := aeN

∗
e (s, x)+

∑
n∈A+

e,inf
anGn(s, x). Then

we obtain the following result similar to Proposition 1:

Proposition 2. Consider an acyclic network satisfying As-
sumptions 3.1-3.2. Suppose that the network admits a demand
α and an invariant set X µ ⊆

∏
e∈E [x

µ
e , x̄

µ
e ] under a control

law µ : S × X → RP
≥0. Then the network is stable if

max
x∈D̃µ

e

N∗
e (s, x) < 0, ∀e ∈ Einf , ∀s ∈ S, (42)

where D̃µ
e := {x ∈ X µ|xe ≥ xc∗

e }.

Because of X µ ⊆
∏

e∈E [x
µ
e , x̄

µ
e ], we must have

max
x∈

∏
e∈E [x

µ
e ,x̄

µ
e ],xe≥xc∗

e

N∗
e (s, x) ≥ max

x∈D̃µ
e

N∗
e (s, x).

Next, we only need to prove

max
x∈Dµ∗

e

N∗
e (s, x) = max

x∈
∏

e∈E [x
µ
e ,x̄

µ
e ],xe≥xc∗

e

N∗
e (s, x). (43)

For N∗
e (s, x) given by (26), we notice

2ξTk (x
∗
e)Bseξ̇k(x

∗
e) = 2ξTk (x

∗
e)BseJξk(x

∗
e)︸ ︷︷ ︸

[ρ∗
ei1

(x),ρ∗
ei2

(x),···,ρ∗
eiH

(x)]


Gei1

(s, x)
Gei2

(s, x)
...

GeiH
(s, x)

 .

Clearly, (27) indicates ρ∗eih
(x) ∈ [0, 1] for h = 1, 2, · · · , H .

We see ρ∗eih (x) as a generalization of ρeih (xeih
) given by (22).

Then we consider the link classification as shown in Fig. 5.

v

E−
v ∩ (A−

e,inf ∪ {e})︸ ︷︷ ︸
i1∈E1−

e,v

E−
v \ (A−

e ∪ {e} ∪ B+
e )︸ ︷︷ ︸

i2∈E2−
e,v

E−
v ∩ (A−

e,fin ∪ B+
e )︸ ︷︷ ︸

i3∈E3−
e,v

E+
v ∩ (A−

e,inf ∪ {e})︸ ︷︷ ︸
j1∈E1+

e,v

E+
v \ (A−

e ∪ {e} ∪ B+
e )︸ ︷︷ ︸

j2∈E2+
e,v

E+
v ∩ (A−

e,fin ∪ B+
e )︸ ︷︷ ︸

j3∈E3+
e,v

j ∈ E+
v

i ∈ E−
v

Fig. 5: Classification of incoming links E−
v and outgoing links E+

v
e ∈ Einf and v ∈ V in Theorem 2.

We can show the monotonicity of N∗
e (s, x) with respect to i)

xn, n ∈ E \(A−
e ∪{e}∪B+

e ), and ii) xm, m ∈ A−
e,inf ∪{e}, in

a similar way to that in Section III-C, and thus prove (43).

IV. RESILIENT CONTROL DESIGN

In this section, we study control design with guaranteed
throughput. We will extend the classical notion of MCC to
stochastic networks and present a series of results character-
izing the resiliency under various classes of control laws.

Two extensions of the MCC, i.e. the MECC and the EMCC,
are considered in the stochastic setting. The MECC is the
minimum cut capacity evaluated with the expected capacity
of each link, and the EMCC is the expected minimum cut
capacity over various modes. Noting that C(Q;G) denotes the
MCC of network G with a set of link capacities Q, we have

MECC := C(Q̄;G), EMCC :=
∑
s∈S

psC(Qs;G),

where Q̄ := {
∑

s∈S psQse|e ∈ E} and Qs := {Qse|e ∈ E}.
In general, the MECC and the EMCC are not equal. Noting
that the MCC is concave with respect to link capacities [18],
one can show that the MECC is never less than the EMCC
by Jensen’s inequality. For instance, consider the numerical
example in Section III-B; it is shown that the EMCC equals
0.75 and MECC equals 1 in Fig. 6.

𝑄!"! = 1
𝑄!"" = 1 𝑄!"# = 0.5

𝑄!"$ = 0.5

𝑄!"% = 1𝑄!"& = 0.5

(a) Min-cut with
C(Qs;G) = 1,
s ∈ {s0, s2}.

𝑄!"! = 1
𝑄!"" = 1 𝑄!"# = 0.5

𝑄!"$ = 0.5

𝑄!"% = 0𝑄!"& = 0.5

(b) Min-cut with
C(Qs;G) = 0.5,
s ∈ {s1, s3}.

𝑄"!"! = 1
𝑄"!"" = 1 𝑄"!"# = 0.5

𝑄"!"$ = 0.5

𝑄"!"% = 0.5𝑄"!"& = 0.5

(c) Min-cut with
C(Q̄;G) = 1.

Fig. 6: EMCC and MECC; the link capacities are labeled, and the
min-cuts are highlighted with solid links: a cut is a subset of links
whose removal divides the node set into two disconnected subsets
and min-cuts are those with the minimum sum of link capacities,

i.e., the min-cut capacity.

A. Main results
The following investigates in which case there exist controls

that attain the EMCC/MECC. We start from the simplest open-
loop control. It is shown that if every link e ∈ E has infinite
storage space without restricted receiving flows, there exists
an open-loop control µol that guarantees the MECC. The
control design is inspired by the solution of the maximum flow
problem (P1). Before presenting it, we denote by u∗(Q̄) :=
{u∗

ej(Q̄)|(e, j) ∈ P} the solution of (P1) given the set of link
capacities Q̄ and define

γ̄ej :=
u∗
ej(Q̄)∑

j′∈E+
e
u∗
ej′(Q̄)

, (e, j) ∈ P. (44)

Clearly, γ̄ej denotes the proportion of the outflow of link e
routed to link j per the solution u∗(Q̄).

Then the open-loop control is given by

µol
ej = γ̄ejQ

max
e , (e, j) ∈ P, (45)

where Qmax
e := maxs∈S Qse. The formal result of the open-

loop control is stated below:

Theorem 3 (Max-flow min-expected-cut). Consider an
acyclic dynamic flow network with xmax

e = ∞ and re(s, xe) =
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∞ for any link e ∈ E . There exists an open-loop control µol

given by (45) such that the network throughput equals the
min-expected-cut capacity.

However, few links in practice have infinite storage, which
indicates the MECC is generally unattainable. For net-
works possibly with finite storage space, we consider mode-
dependent control given observable disruption mode S(t).
Suppose a network with the following physical disruptions:

fe(s, xe) = min{fe(xe), Fse}, (46a)
re(s, xe) = min{re(xe), Rse}. (46b)

These disruptions restrict maximal outflows or inflows, which
satisfy Assumption 3.2. For the sake of simplicity of analysis,
we also assume the critical density xc

e given by (9) is finite for
every e ∈ E . If any disruption mode s ∈ S can be correctly
observed, we design a mode-dependent control as follows:

µmd
ej (s) := u∗

ej(Qs), (e, j) ∈ P, (47)

where u∗
ej(Qs) is an optimal solution to the maximum flow

problem (P1) with the set of link capacities Qs. Then we state
the following theorem:

Theorem 4 (Max-flow expected-min-cut). Consider an
acyclic dynamic flow network with a set of observable dis-
ruptions (46a)-(46b). There exists a mode-dependent control
µmd given by (47) such that the network throughput equals
the expected-min-cut capacity.

Note that EMCC is less than the MECC in general. Hence
the mode-dependent control above may appear conservative,
provided a gap between the EMCC and the MECC. Besides,
the mode-dependent control requires quick detection of disrup-
tions and informs local controllers of disruption occurrences.
If some of controllers are unaware of changes of disruption
modes, Theorem 4 does not hold and the EMCC may not be
guaranteed. In that case, we can apply Theorems 1 and 2 to
the throughput analysis by modeling actuation faults.

By contrast, it is more practical to measure the network state
X(t). Thus we consider density-dependent control using the
network state feedback. For a general network (with possibly
incorrect sensing or with finite link storage spaces), one can
apply the results of our resiliency analysis to design closed-
loop controls. Suppose the control law is parameterized by θ.
Then the parameter θ is designed by solving the following
programming problem:

(P3) max
α≥0,θ∈Θ

α s.t. (24).

Let θ∗ and α∗ denote optimal solutions of the program-
ming problem P3. Then it follows from Theorem 1 that the
throughput under the control law parameterized by θ∗ is lower
bounded by α∗:

Corollary 1 (Throughput-guaranteed control). Consider an
acyclic dynamic flow network with a density-dependent control
µdd deriving from P3. Then, µdd can attain a throughput
lower-bounded by the optimal α∗.

To facilitate the control design, we can restrict the control
structure θ ∈ Θ so that Einf and {B+

e |e ∈ Einf} are fixed.

In practice, the determination of these sets may depend on
infrastructure capability or control preferences, e.g., whether
link e has sufficient storage space, or whether link e is allowed
to be a bottleneck.

The rest of this section first illustrates the above results with
a numerical example (Section IV-B) and then proves them
respectively (Sections IV-C-IV-D).

B. Numerical example
Again, consider the network in Fig. 3. We use Theorems

3, 4 and Corollary 1 to design open-loop control µol, mode-
dependent control µmd and density-dependent control µdd,
respectively. Table III lists the resiliency scores in various
scenarios. Note the nominal MCC equals one. Our discussions
are as follows:

(i) It is demonstrated that the open-loop control can attain
the MECC when the links have infinite storage space.
Besides, the results also show that the MECC is not
guaranteed when the link storage space becomes finite.

(ii) It is verified that the mode-dependent control can attain
the EMCC. Although this control seems conservative, it
is still able to outperform the logit routing in case of
links with infinite storage space; see Table II.

(iii) Compared with the open-loop control, density-dependent
control can achieve higher resiliency scores when dealing
with physical disruptions. However, it is vulnerable to
cyber disruptions.

(iv) The results indicate that we can improve network re-
siliency by designing control laws with higher lower
bounds of the resiliency scores.

Next, we present the design of three controls.
1) Open-loop control: Solving the maximum flow problem

(P1) with the expected link capacities gives u∗
eoe1 = u∗

e1e3 =
u∗
eoe4 = u∗

e4e5 = 0.5 and u∗
e1e2 = 0. According to (45)-(44),

we have µol
eoe1 = µol

e1e3 = µol
eoe4 = µol

e4e5 = 0.5 and µol
e1e2 = 0.

2) Mode-dependent control: The control µmd is obtained
from solving the maximum flow problem (P1) for each
disruption mode s. Then we have µmd

eoe1 = µmd
e1e3 = 0.5,

µmd
e1e2 = 0 and

µmd
eoe4(s) = µmd

e4e5(s) =

{
0.5, if s ∈ {s0, s2},
0, if s ∈ {s1, s3}.

3) Density-dependent control: We consider the density-
dependent routing at node vo, namely µdd

eoe1(s, x) = wc(u1 −
x1) and µdd

eoe4(s, x) = wc(u4 − Te4(s, x)), where the gains
are set as the congestion wave speed wc, the parameters u1

and u4 are to be designed, and Te4(s, x) is the fault mapping
given in Table I. We interpret u1 (resp. u4) as the maximum
density allowed by the control for link e1 (resp. e4). We also
let µdd

e1e3(s, x) = fe1(s, xe1) and µdd
e1e2(s, x) = 0.

When all links eo, e1, · · · , e5 have infinite storage space,
solving P3 gives u1 = u4 = ∞. It means that the density-
dependent control is reduced to an open-loop control that
routes flows into links e1 and e4 with the same proportion.
For links e1, · · · , e5 only with finite storage space, our method
yields u1 = u4 = 1.5 for the network subject to either the
cyber or physical disruption and u1 = 2.3, u4 = 1.5 in case
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TABLE III: Comparison of resiliency scores of different control laws.

Open-loop Mode-dependent Density-dependent

Infinite space Cyber disruptions Physical disruptions ηol
1

ηol
2 ηolsim ηmd

1
ηmd
2 ηmd

sim ηdd
1

ηdd
2 ηddsim

yes no no 1 1 1 1 1 1 1 1 1
yes yes no 1 1 1 1 1 1 1 1 1
yes no yes 1 1 1 0.750 0.750 0.750 1 1 1
yes yes yes 1 1 1 0.750 0.750 0.750 1 1 1
no no no 1 1 1 1 1 1 1 1 1
no yes no 1 1 1 1 1 1 1 1 1
no no yes 0.747 0.850 0.859 0.750 0.750 0.750 0.746 0.867 0.873
no yes yes 0.747 0.850 0.859 0.750 0.750 0.750 0.739 0.851 0.863

of both the cyber and physical disruptions. More details can
be found in the supplementary material.

C. Proof of Theorem 3
1) Sufficiency: The proof is similar to that of Theorem 1.

Noting re(s, xe) = ∞ for any e ∈ E , we obtain B+
e = ∅ for

e ∈ Einf . Consider the following Lyapunov function:

V ol(s, x) :=
∑

e∈Einf

aexe[
1

2
xe +

∑
m∈A−

e

γ̄mexm + bse],

where γ̄me is recursively defined by

γ̄me =
∑

i∈A+
m∩E−

e

γ̄miγ̄ie (48)

with γ̄ie given by (44). Noting the physical meaning of γ̄ie,
we interpret γ̄me as the proportion of the outflow of link m
routed to link e per the solution u∗(Q̄). Specially, for link eo
with a demand α = C(Q̄;G), we have

γ̄eoeC(Q̄;G) =
∑
i∈E−

j

u∗
ie(Q̄). (49)

The above equation holds because, as specified by the solution
u∗(Q̄), the optimal demand α∗ equals C(Q̄;G) and the flow
routed from link eo to link e equals

∑
i∈E−

j
u∗
ie(Q̄).

The Lyapunov function indicates that we only need to show∑
s∈S

ps max
x∈Dol

e

Ne(s, x) < 0, ∀α < C(Q̄;G),∀e ∈ Einf , (50)

where Dol
e = {x ∈ X |xe ≥ xc∗

e } and Ne(s, x) =∑
m∈A−

e
γ̄meGm(s, x) +Ge(s, x).

The open-loop control yields qolmj(s, x) = γ̄mjfm(s, xm).
Thus, for any link m ∈ A−

e , we have

−
∑
j∈E+

m

γ̄meq
ol
mj(s, x) +

∑
j′∈E+

m∩A−
e

γ̄j′eq
ol
mj′(s, x)

=−
∑
j∈E+

m

γ̄meγ̄mjfm(s, xm) +
∑

j′∈E+
m∩A−

e

γ̄j′eγ̄mj′fm(s, xm)

(44)
= − γ̄mefm(s, xm) + γ̄mefm(s, xm) = 0.

So we obtain Ne(s, x) = γ̄eoeα− fe(s, xe) and∑
s∈S

ps max
x∈Dol

e

Ne(s, x) = γ̄eoeα−
∑
s∈S

psQse, ∀e ∈ Einf . (51)

Recalling (49), we arrive at

γ̄eoeC(Q̄;G) =
∑
i∈E−

e

u∗
ie(Q̄) ≤

∑
s∈S

psQse (52)

where the last inequality holds because of the constraint in
the maximum flow problem. Combining (51) and (52), we
complete the proof of (50).

2) Necessity: We prove the necessity by definition. Con-
sider the cut-set C with the min-cut capacity C(Q̄;G), where C
is a set of links that divide the network into two disjoint parts
containing the origin vo and the destination vd respectively.
Let E−

C denote the set of links upstream of the cut-set. By the
open-loop control, the outflow from E−

C ∪ C does not exceed
C(Q̄;G). If the inflow α is not less than C(Q̄;G) and Z < ∞
is given, there must exist some initial condition such that (16)
fails to hold. It concludes the proof.

D. Proof of Theorem 4
1) Sufficiency: The proof is based on Theorem 1. Noting

Lemma 3 proved in Appendix E, we only need to show∑
s∈S

ps max
x∈Dmd

eo

(α−
∑
j∈E+

eo

qmd
eoj(s, x)) < 0, ∀α <

∑
s∈S

psC(Qs;G).

(53)

Lemma 3. The mode-dependent control µmd admits an in-
variant set

Xmd = [xmd
eo

,∞)×
∏
e ̸=eo

[xmd
e , x̄md

e ] = [α,∞)×
∏
e ̸=eo

[0, xc∗
e ],

which leads to Einf = {eo} and B+
eo = ∅.

Then it follows∑
s∈S

ps max
x∈Dmd

eo

(α−
∑
j∈E+

eo

qmd
eoj(s, x))

=
∑
s∈S

ps(α−
∑
j∈E+

eo

µmd
eoj(s)),

where the equality is due to i) B+
eo = ∅, ii) feo(s, xeo) ≥ Qseo

for xeo ≥ xc∗
eo and iii) the constraint (19d). By the constraint

(19a), we obtain
∑

j∈E−
eo

µmd
eoj

(s) = α∗(Qs;G) = C(Qs;G),
which completes the proof of (53).

2) Necessity: We consider the set {eo}. Then the remaining
proof is similar to that for the necessity of Theorem 3.

V. CONCLUDING REMARKS

This paper investigates resiliency and control design of
dynamic flow networks suffering cyber-physical disruptions.
First, we apply piecewise-deterministic Markov process to
modeling disruptions and their impacts on networks. Then, a
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set of stability criteria are proposed with the physical insights
into flow networks. We also simplify these criteria with the
monotone network dynamics. The stability conditions enable
the measurement of resiliency in terms of throughput. They
also contribute to two specific resiliency-by-design controls.
The first one attains the min-expected-cut capacity if every link
has infinite storage space; the second one attains the expected-
min-cut capacity if the disruptions decrease maximum sending
and/or receiving flows. In the general case, we propose a
density-dependent control with a lower-bounded throughput.
Our numerical examples show that the stability condition can
yield tight lower bounds of resiliency scores and enhance
resiliency by designing control laws that raise the lower
bounds.

This work can serve as a basis for multiple future stud-
ies. First, our sufficient stability conditions only yield lower
bounds of throughput. It is tempting to derive upper bounds
by investigating the necessary conditions. Besides, this paper
exploits the property of monotone flow networks to reduce
the computation costs of verifying our stability conditions.
However, monotone dynamics could be unavailable in multi-
commodity networks [38]. It is worthwhile considering net-
works with weaker properties, such as mixed monotonicity
[19]. Finally, this paper formulates the control design problem
for the whole network. Solving it for large-scale networks
could not be easy. Thus how to design control laws with
guaranteed performances but only using a part of links/nodes
is worth investigating.

APPENDIX

A. Open-loop control in the nominal case
We consider an open-loop control policy as follows:

µ̂ol
ej = γ̂ejQs0e, (54)

where

γ̂ej :=
u∗
ej(Qs0)∑

j′∈E+
e
u∗
ej′(Qs0)

, (e, j) ∈ P. (55)

Clearly, it has the same structure as the open-loop control µol
ej

given by (45).
Before we state the lemma, we define

γ̂me =
∑

i∈A+
m∩E−

e

γ̂miγ̂ie. (56)

Noting (48) and (52), for any α < C(Qs0 ;G), we obtain in a
similar way

γ̂eoeα < γ̂eoeC(Qs0 ;G) =
∑
i∈E−

j

u∗
ie(Qs0) ≤ Qs0e. (57)

Lemma 4. Consider an acyclic network satisfying Assump-
tion 3 and only admitting the nominal mode s0. Given any
demand α < C(Qs0 ;G) and the open-loop control given by
(54), there exists a stable equilibrium such that fe(s0, x̂e) =
γ̂eoeα for any e ∈ E . Moreover, if there exists a neighborhood
U(x̂) of x̂ such that fe(s0, xe) is strictly increasing in xe for
every e ∈ E , the equilibrium x̂ is also globally asymptotically
stable.

Obviously, the global asymptotic stability stated in Lemma 4
implies that the open-loop control (54) can enable the through-
put to achieve the nominal min-cut capacity. Note that the
required condition is really mild. As we will see in the proof,
all of the link densities are fewer than their corresponding
critical densities. It means that none of the links are congested.
In that case, the sending flow fe(s0, xe) is typically sensitive
to density changes, i.e., strictly increasing in xe.

Below we give the proof of Lemma 4.

Proof. We first show the existence of x̂. For any demand
α < C(Qs0 ;G), we conclude x̂ ∈

∏
e∈E [0, x

c
s0e] by using

Assumptions 3.1-3.2 and fe(s0, x̂e) = γ̂eoeα < Qs0e, where
xc
s0e is given by (8b).
Next, we prove that x̂ is a stable equilibrium. Again noting

(54) and (57), we conclude that there exists a neighbourhood
W (x̂) of x̂ such that qej(s0, x) = γ̂ejfe(s0, xe). Then x̂ is an
equilibrium by (56). The stability of x̂ is directly implied by
Theorem 6 (iii) in [19].

Note that x̂ is globally asymptotically stable if and only
if it is locally asymptotically stable; see Theorem 6 (iv) in
[19]. Below we show that the network is locally asymptotically
stable over the neighborhood W (x̂)∩U(x̂). We first notice link
xeo converges to x̂eo by using the monotonicity and Lipschtiz
continuity of feo(s0, xeo). Then we consider links from the
upstream to the downstream. We can show xe converges by
using the convergence of its upstream links.

B. Extension for cyclic networks

We present stability analysis for cyclic networks. One major
difference between cyclic and acyclic networks is A−

e ∩A+
e ̸=

∅ for some e ∈ E in a cyclic network. It induces that Lemma 2
may not hold because of A−

e,inf ∩A+
e,inf ̸= ∅. We address this

problem by considering a partition of Einf .
We denote by {Lz}Zz=1 a partition of Einf such that given

any z1, z2 ∈ {1, 2, · · · , Z} with z1 ̸= z2,

e ↔ j, ∀e, j ∈ Lz1 , e ̸= j, (58a)
e ̸↔ j, ∀e ∈ Lz1 , j ∈ Lz2 , (58b)

where e ↔ j represents that the two links are reachable
from each other, and e ̸↔ j denotes that at least one link is
unreachable from the other. For a cyclic network, a partition
can be obtained by merging the sets above whose elements are
accessible from each other, and we can prove by contradiction
the uniqueness of the partition.

Then we show by the partition {Lz}Zz=1 that Theorem 1
holds for acyclic networks. It implies that the other stability
results in Section III also apply to acyclic networks.

Proposition 3. Consider a cyclic network satisfying Assump-
tions 3.1-3.3. Suppose that the network admits a demand α
and an invariant set X µ ⊆

∏
e∈E [x

µ
e , x̄

µ
e ] under a control law

µ : S × X → RP
≥0. The network is stable if (24) holds.

Proof. Consider the following Lyapunov function:

V̂ (s, x) :=
∑

e∈Einf

aιexe

[1
2

∑
i∈Lιe

xi +
∑

m∈A−
e \Lιe

xm
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+
∑
ℓ∈B+

e

∫ xℓ

xℓ

ρℓ(ζ)dζ + bse

]
, (59)

where ιe denotes the set index such that e ∈ Lιe . The rest of
the proof is similar to that of Theorem 1, except Lemma 2.
We instead use the following lemma:

Lemma 5. The system of equations

πeaιe + Ḡ
∑

n∈A+
e,inf\Lιe

aιn < 0, ∀e ∈ Einf (60)

has a positive solution for {aιe |e ∈ Einf} if πe < 0 for any
e ∈ Einf .

Note that (58a)-(58b) reveals an acyclic structure of the
partition. Thus we can prove Lemma 5 in a similar way to
Lemma 2.

C. Proof of Lemma 1
To show the existence of a solution, note that (37) is

equivalent to Λy = pTz−z where z = [zs0 , · · · , zsM ]T. Since
the discrete state process is ergodic, the rank of the matrix
Λ is M . Scaling row i + 1 with psi for i = 0, 1, · · · ,M and
adding the scaled rows 1, 2, · · · ,M to row M + 1, we obtain

−ps0
∑
i ̸=0

λs0si · · · ps0λs0sM

...
. . .

...∑
i̸=0

psiλsis0 − ps0
∑
i ̸=0

λs0si · · ·
∑
i ̸=m

psiλsisM − psM
∑
i ̸=M

λsMsi

 y = z̃

(61)
where z̃ = [ps0(p

Tz−zs0), · · · , (
∑M

i=0 psi)p
Tz−pTz]T. Not-

ing ΛTp = 0, we know that
∑

i ̸=0 psiλsisj−psj
∑

i ̸=j λsjsi =

0 for any j = 0, · · · ,M . Also note that (
∑M

i=0 psi)p
Tz −

pTz = 0. Hence, the rank of the augmented coefficient matrix
of the system of linear equations (61) is also M , equal to the
rank of the coefficient matrix. Therefore, (61) must have a
particular solution yp. Noting that rank(Λ) = M and that
y = ω1 is a solution to Λy = 0 for any ω ∈ R, we
can conclude that the general solution of (37) is given by
yg = yp+ω1. Clearly, a non-negative solution is available by
letting ω be a sufficiently large number.

D. Proof of Lemma 2
If Ḡ ≤ 0, the lemma is trivial. Now we consider Ḡ >

0 and construct {ae|e ∈ Einf} satisfying (39). Let π̄ :=
maxe∈Einf

πe < 0 and K := |Einf |. Since this lemma focuses
on acyclic networks, we can iteratively consider the links in
Einf backwards in some sense.

We first assume Ḡ ≥ −π̄. The construction starts with
initializing N (0) := Einf and i := 1. In the i-th step, we
consider M(i−1) := {e ∈ N (i−1)|∀i ∈ N (i−1) \ {e}, i ̸→ e},
where i ̸→ e implies that there are no directed paths from link
i to link e. Intuitively, M(i−1) denotes the collection of the
far downstream links among N (i−1). For any e ∈ M(i−1), we
let ae = (−ḠK/π̄)i−1 > 0 and then obtain

πeae + Ḡ
∑

n∈A+
e,inf

an < π̄(− ḠK

π̄
)i−1 + ḠK(− ḠK

π̄
)i−2 = 0.

The i-th step ends up with N (i) = N (i−1) \ M(i−1). The
iteration stops when N (i) = ∅, which indicates that all the
links of Einf are considered.

If Ḡ < −π̄, the same iteration is conducted except letting
ae = −(ḠKi−1)/π̄ > 0 in the i-th step.

E. Proof of Lemma 3

First, we note that the disruptions (46a)-(46b) imply

Qse ≤ re(s, xe), ∀s ∈ S,∀xe ≤ xc∗
e . (62a)

Qse ≤ fe(s, xe), ∀s ∈ S,∀xe ≥ xc∗
e , (62b)

where xc∗
e is given by (9). Besides, for any x ∈ X with xj ≤

xc∗
j , we obtain

rmd
ej (s, x) =

µmd
ej (s)∑

i∈E−
j
µmd
ij (s)

rj(s, xj)
(19d),(62a)

≥ µmd
ej (s). (63)

To show that Xmd is an positively invariant set, we prove
that on the boundary of Xmd, the vector field G(s, x) points
towards the interior regardless of s ∈ S. That is, for any e ̸=
eo ∈ E and (s, x) ∈ S × Xmd with xe = xc∗

e , we have

Ge(s, x)
(4),(63)

≤
∑
i∈E−

e

µmd
ie (s)−

∑
j∈E+

e

min{µmd
ej (s), fmd

ej (s, x)}

(5a),(62b)

≤
∑
i∈E−

e

µmd
ie (s)−min{

∑
j∈E+

e

µmd
ej (s), Qse}

(19b),(19d)
= 0.

To show that Xmd is global attracting, we perform an
induction on links. We first consider link e reaching the
destination, i.e. τe = vd, since it does not have downstream
bottlenecks. We see Ge(s, x) ≤ 0 for any (s, x) ∈ {(s, x) ∈
S ×X|xe > xc∗

e }. In addition, given α <
∑

s∈S psC(Qs;G),
there exists some mode s ∈ S under which xe converges to a
value strictly less than xc∗

e . Since the process {S(t); t ≥ 0} is
ergodic, it is concluded that xe enters [0, xc∗

e ] almost surely.
Then, as indicated by (63), link e is not a bottleneck for its
upstream links under the mode-dependent control. The similar
proof can be iteratively applied to links upstream of link e until
all links are considered.

The invariant set Xmd immediately gives Einf = {eo}; by
noting (63), we also obtain B+

eo = ∅.
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