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Abstract— Connected vehicles (CVs) can provide numerous
new data via vehicle-to-vehicle or vehicle-to-infrastructure com-
munication. These data can in turn be used to facilitate real-
time traffic state estimation. In this paper, we focus on ramp
queue length estimation in a connected vehicle environment,
which improves control design and implementation of ramp
metering algorithms. One major challenge of the estimation
problem is that the CV data only represent partial traffic
observations and could introduce new uncertainties if real-
time CV penetration rates are unknown. To address this, we
build our estimation approach on both traditional freeway
sensors and new CV data. We first formulate a ramp queue
model that considers i) variations in the penetration rate and
ii) noise in measurements. Then we develop a robust filter
that minimizes the impacts of these two kinds of uncertainties
on queue estimation. More importantly, we show that the
designed filter has guaranteed long-term estimation accuracy.
It allows us to quantify in a theoretical way the relationship
between estimation error and fluctuation of CV penetration
rates. We also provide a series of simulation results to verify
our approach.

I. INTRODUCTION

Ramp metering is one of the major freeway management
strategies that can be used to alleviate both recurrent and non-
recurrent traffic congestion. It typically regulates on-ramp
flows to improve mainline mobility, at the same time keeping
reasonable queue lengths at ramps [1]–[4]. Field evaluations
have demonstrated that well-designed ramp metering can
significantly improve traffic efficiency [5]. In current prac-
tice, ramp metering is implemented mainly with the aid of
induction loop detectors so that ramp controllers can adjusted
metered flows, based on real-time traffic volumes, speed and
occupancy [6].

It is also reported that the current control of ramp flows
can be refined, with smoothing metering rates and reduc-
ing traffic oscillation [7], [8], if on-ramp queue length is
available to controllers. But the ramp queue length is not
easily acquired from widely-used induction loop detectors;
it can only be estimated from these sensors rather than
be measured directly. The estimation methods are usually
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built on deliberate assumptions of vehicle characteristics and
sensor locations [9]–[11], and their applicability could be
restricted consequently.

The estimation problem could become more tractable,
thanks to the emergence of connected vehicles (CVs). In a
connected vehicle environment, vehicle-to-vehicle or vehicle-
to-infrastructure communication yields substantial new data,
such as basic safety messages (BSMs), that contain detailed
information including vehicle position, speed, acceleration
and so on [12]. Though these data are only from partial
observations of freeway traffic (mainly related to CVs), it is
still possible to convert them into traffic measurements [12],
[13] and enhance freeway state estimation [14], [15].

Ramp meter

Freeway

On-ramp

Legend

Induction loop detector

Connected vehicle

Non-connected vehicle

Road-side unit

Study area

Detector A 

Detector B 

Stop bar

Fig. 1: Problem setting: our target is to assess ramp queue
length based on induction loop detectors and Basic Safety
Messages (BSMs) [12]. We assume that induction loop
detectors are deployed at both ends of the on-ramp, which
is a minimum requirement by ramp metering [16]; we also
assume that road-side units are deployed to collect BSMs.
Note that BSMs contain information of vehicle positions,
and thus it is feasible to recognize those from CVs at the
on-ramp and to extract traffic data of the corresponding CVs
[12], [13].

In this paper, we aim at developing a robust queue length
estimation approach that utilizes both traditional sensors (e.g.
induction loop detectors) and emerging CV data (e.g. BSMs);
see Fig. 1. It should be pointed out that queue length at a
certain link may refer to i) distance from the first stopping
vehicle to the last one [17], [18] or ii) simply link-level
vehicle number. The latter suffices for ramp metering [9]–
[11], and following this convention, we focus on estimating
the vehicle number 1 between the stop bar and the on-ramp

1We use the terms queue length/vehicle number interchangeably in this
paper.



entrance as shown in Fig. 1. To this end, we first formulate
a ramp queue model, a dynamic system that considers
the fluctuating penetration rate of CVs and noisy traffic
measurements. Particularly, the variation in the penetration
rate induces model parameter uncertainty. Then we propose
a robust filter, based on the queue model, that produces
the estimation with performance guarantees, even under the
parameter uncertainty and the measurement noise.

Previous studies have adopted Kalman filter for queue
length estimation, which mainly deals with measurement
noise. Given only induction loop detectors, Kalman filters
were built on the assumptions of uniform vehicle length
and headway, internal sensors in the middle of on-ramps,
and so on [10], [11], [19]. Though numerical examples
have demonstrated that those filters could still work given
heterogeneous vehicles, e.g. with various length, the internal
sensors are indispensable. Such sensors, however, may be
unavailable in practice [16], impeding application of those
estimation approaches. Kalman filters were also developed in
a connected vehicle environment [15], [18]. These methods
ignored the uncertainty of CV penetration rates, e.g. assum-
ing the rate estimated from other approaches [15], and thus
failed to quantify in a theoretical way how uncertain CV
penetrate rates influence estimation accuracy. To our best
knowledge, limited work has discussed this problem.

Our major contribution is to introduce a robust filter with
a performance guarantee (Theorem 1). Here the robust-
ness is two-fold: the filter minimizes the impacts of both
measurement noise and uncertain CV penetration rates on
queue length estimation. Moreover, Theorem 1 allows us to
quantify the relationship between estimation accuracy and
the uncertain penetration rates. We also demonstrate these
via a series of simulation results. It should be pointed out
that our approach is related to robust H∞ filters. Though
the general theories of H∞ filters have been well developed
[20] and H∞ control has found applications in traffic systems
[21]–[23], it is unclear how to apply them to queue length
estimation. As we will see, the typical design of H∞ filters
does not work in our problem; we need to consider one of
its extensions [24] and develop the filter based on our ramp
queue model.

The rest of the paper is organized as follows. Section II
introduces the ramp queue model. Section III presents our
robust filter design. Section IV provides a case study. Fi-
nally, Section V summarizes our work and discusses future
research.

II. MODELING AND FORMULATION

We present the ramp queue model and formally state the
estimation problem in this section.

Consider queuing vehicles at the on-ramp as shown in
Fig. 1. We denote by xall(t) (resp. xcv(t) ) the number
of total vehicles (resp. CVs) between the stop bar and the
detector A in Fig. 1. Besides, we let f in

all(t) (resp. fout
all (t))

denote the total flow passing the detector A (resp. detector
B) in Fig. 1. Among them, we denote by f in

cv(t) (resp.
fout
cv (t)) the inflow (resp. outflow) of CVs. Clearly, it follows

xall(t) ≥ xcv(t), f in
all(t) ≥ f in

cv(t) and fout
all (t) ≥ fout

cv (t) for
t = 0, 1, · · · . By the conservation law, we have[

xall(t+ 1)
xcv(t+ 1)

]
=

[
xall(t)
xcv(t)

]
+δt

[
f in
all(t)
f in
cv(t)

]
−δt

[
fout
all (t)
fout
cv (t)

]
, (1)

where δt is the cycle length of ramp metering, e.g. 30
seconds. That is, the queue length is updated after each
control cycle. It helps with determining metering rates in
the next cycle.

Though we do not explicitly model the relation between
the vehicle numbers and the flows (concrete models are
available in [25]), we consider the inflows and outflows
subject to the following constraints

0 ≤xall(t) + δt(f
in
all(t)− fout

all (t)) ≤ Q, t = 0, 1, · · · , (2a)

0 ≤xcv(t) + δt(f
in
cv(t)− fout

cv (t)) ≤ Q, t = 0, 1, · · · , (2b)

due to limited ramp space, where Q is the maximum queue
length. It indicates xall(t), xcv(t) ∈ [0, Q]. For the sake of
convenience, we also require the CV flows f in

cv(t) and fout
cv (t)

for t = 0, 1, · · · such that
T∑

t=1

xcv(t) → ∞, as T → ∞. (3)

If (3) does not hold, there exists T0 > 0 such that xcv(t) = 0
for all t ≥ T0. It means that there are none of queuing CVs
at the on-ramp after time T0, and our method will not apply
any more in that case. Note that (3) implies

T∑
t=1

xall(t) → ∞, as T → ∞. (4)

Obviously, there exists the following relationship between
xall(t) and xcv(t):

xcv(t) = (α+ θ(t))xall(t), (5)

where α+ θ(t) denotes the penetration rate of CVs at time
t. We use α to represent the market penetration rate and θ(t)
to denote the variation at the on-ramp. Besides, we make the
assumption below.

Assumption 1. The market penetration rate α ∈ (0, 1] is
known, but the fluctuation θ(t) is unknown and bounded by

||θ(t)||ℓ∞ ≤ Θ ∈ [0, 1], (6)

where ||θ(t)||ℓ∞ := supt≥0 |θ(t)|.
Note that the upper bound Θ can be roughly calibrated

when we have access to measurements of CV flows and total
flows; see (7) below.

We consider the traffic data given by
f̃ in
all(t)

f̃out
all (t)

f̃ in
cv(t)

f̃out
cv (t)
x̃cv(t)

 =


f in
all(t)

fout
all (t)
f in
cv(t)

fout
cv (t)
xcv(t)

+ w(t), (7)

where w(t) ∈ R5 denotes unknown measurement noise,
f̃ in
all(t) and f̃out

all (t) are measured by induction loop detectors,



f̃ in
cv(t), f̃out

cv (t), x̃cv(t) are extracted from BSMs [13]. We
only know the measured values due to the noise w(t), and
we assume w(t) to satisfy:

Assumption 2. The noise w(t) satisfies ||w||ℓ2 < ∞, where

||w||ℓ2 :=
( ∞∑

t=0

||w(t)||22
)1/2

=
( ∞∑

t=0

wT(t)w(t)
)1/2

. (8)

Note that (8) implies that the noise has finite energy. It is
a common technique for modeling temporary noise [20].

Letting

x(t) :=

[
xall(t)
xcv(t)

]
and f̃(t) :=


f̃ in
all(t)

f̃out
all (t)

f̃ in
cv(t)

f̃out
cv (t)

 ,

we reformulate (1), (5) and (7) into a dynamic system as
follows:

x(t+ 1) =(A+∆A(t))x(t) +Bf̃(t) +Dw(t), (9a)
y(t) =Cx(t) + Ew(t) (9b)

with an unknown initial condition x(0) ∈ [0, Q]2, where

A =

[
1 0
α 0

]
,∆A(t) =

[
0 0

θ(t) 0

]
,

B = −D =

[
δt −δt 0 0 0
0 0 δt −δt 0

]
,

C =
[
0 1

]
, E =

[
0 0 0 0 1

]
.

Here x(t) denotes the model state, y(t) denotes the measured
output, and ∆A(t) represents the parameter uncertainty.
Since the observed flows f̃(t) do not equal to the real flows
f in
all(t), f

out
all (t), f

in
cv(t) and fout

cv (t), it is necessary to include
the measurement noise in the state equation (9a).

Given the queuing system (9a)-(9b), our goal is to design a
robust filter that estimates the state x(t) given y(t) and f̃(t)
but without knowing the initial condition x(0), the noise w(t)
and the parameter uncertainty ∆A(t).

III. FILTER DESIGN

We introduce the proposed filter design in this section.
Consider a filter given by

x̂(t+ 1) =Ax̂(t) +Bf̃(t) + L(y(t)− ŷ(t)), (10a)
ŷ(t) =Cx̂(t), (10b)

with an initial condition x̂(0) ∈ [0, Q]2, where L is the gain
to be designed. Note that we can manually specify the initial
condition x̂(0).

Define the estimation error

e(t) = x(t)− x̂(t). (11)

Plugging (9a)-(9b) and (10a)-(10b) into (11) gives

e(t+1) = (A−LC)e(t)+∆A(t)x(t)+(D−LE)w(t). (12)

We aim at designing the filter gain L so that the estimation
error e(t) satisfies the following criterion [24]. That is, there

exists µ1, µ2 > 0 and some positive definite function γ :
[0, Q]2 → R≥0 such that

T∑
t=0

||e(t)||22 ≤µ1

T∑
t=0

||x(t)||22 + µ2

T∑
t=0

||w(t)||22

+ γ(x(0), x̂(0)), T = 0, 1, · · · , (13)

given any initial condition x(0) and x̂(0), the noise w(t) and
the parameter uncertainty ∆A(t).

The criterion (13) is an extension of the typical objective
of designing H∞ filters [20]. We consider it because it
is not easy to implement the conventional design of H∞
filters in our problem. The major difficulty is that we need
to additionally assume f̃(t) = 0 when x(t) = 0, which
unreasonably indicates that the inflows equal zero when there
are no queuing vehicles at the on-ramp.

To understand the criterion (13), we divide both sides by∑T
t=0 ||x(t)||22 and obtain∑T
t=0 ||e(t)||22∑T
t=0 ||x(t)||22

≤ µ1 + µ2

∑T
t=0 ||w(t)||22∑T
t=0 ||x(t)||22

+
γ(x(0), x̂(0))∑T

t=0 ||x(t)||22
.

(14)
Noting i) ||w||2ℓ2 < ∞ by Assumption 2, ii) γ(x(0), x̂(0)) <
∞ owing to x(0), x̂(0) ∈ [0, Q]2 and iii) ||x||2ℓ2 = ∞ by (4),
we let T → ∞ and reduce (14) to

||e||2ℓ2
||x||2ℓ2

≤ µ1. (15)

Thus, if (13) holds, the long-term relative error is bounded
by µ1, and an upper bound of the long-term error rate is
given by

√
µ1 (or a lower bound of the long-term estimation

accuracy is given by 1−√
µ1) [24]. It indicates that we can

minimize µ1 by designing the filter gain L. Now, we turn
to µ2. Recalling (14), we can conclude that µ2 is related to
convergence speed: smaller µ2 indicates faster convergence.

For the filter design, we have the following result:

Theorem 1. Consider the queuing system (9a)-(9b) with the
filter (10a)-(10b). If there exists a symmetric positive definite
matrix P ∈ S2+, a vector R ∈ R2 and positive scalars
µ1, µ2, µ3 > 0 such that

−µ3I2 ΘP 0 0 0
∗ −P PA−RC 0 PD −RE
∗ ∗ −P + I2 0 0
∗ ∗ ∗ (µ3 − µ1)I2 0
∗ ∗ ∗ ∗ −µ2I5

 ≺ 0,

(16)
where In denotes the identity matrix with dimension n, then
the filter gain is given by

L = P−1R, (17)

and the filter (10a)-(10b) satisfies (13).

Theorem 1 is proved based on the Lyapunov function
V (e(t)) = eTPe(t). The details are omitted in this paper
due to space limit. Note that X ≻ 0 (resp. X ≺ 0) denotes
that X is a positive (resp. negative) definite matrix, and
X ⪰ 0 (resp. X ⪯ 0) implies that X is a semi-positive (resp.



semi-negative) definite matrix. We also use “∗” to simplify
notations of symmetric matrices, e.g.[

X11 X12

∗ X22

]
:=

[
X11 X12

XT
12 X22

]
.

Recalling the elaboration of (13), we can first specify β
and then solve

(P1) min
µ1,µ2,µ3>0,P,R≻0

µ1 + βµ2 s.t. (16). (18)

Since µ1 is related to long-term estimation error, we can
quantify, by solving (P1), the relationship between the long-
term estimation accuracy and the uncertainty bound Θ. Note
that P1 belongs to convex programming, and hence it can
be easily solved by Mosek [26].

IV. CASE STUDY

We present a real-world case study, based on a model
developed using the microscopic traffic simulation software,
SUMO, to illustrate our robust filter design. We first present
a sensitivity analysis that reveals impact of the penetration
rates of CVs and measurement noise. Then we focus on
comparison of various estimation methods.

On-ramp location

(a) Selected on-ramp.

Sensor A

Sensor BRamp meter
Sensor M

(b) SUMO setting.

Fig. 2: Simulation model developed in SUMO.

We consider an on-ramp of Interstate 210 Eastbound (I-
210 E) in Los Angeles, California; see Fig. 2a. The ramp
meter, detectors A and B at the on-ramp are set based on
the real locations (see Fig. 2b), and we have the maximum
queue length Qmax = 32. We also deploy detector M at
the mainline to implement the following ramp metering
algorithm ALINEA [5]:

ri(t) =mid{R, ri(t− 1) +Ki(õM − oM(t)), R̄} (19a)

ro(t) =

{
R if oA(t) < õA

R̄ if oA(t) ≥ õA
(19b)

r(t) =max{ri(t), ro(t)} (19c)

where ri(t) denotes the metered flow at time t given by
integral control with gain Ki, ro(t) denotes the metered
flow at time t given by the queue-override strategy, r(t) is
the selected metered flow as control input. Briefly speaking,
(19a) determines the metered flow in order to keep the

mainline occupancy oM(t), measured by detector M, close to
the critical occupancy õM, and it also clips the metered flow
with the minimum (resp. maximum) metered flow R (resp.
R̄) to avoid the well-known wind-up phenomenon [8], where
the mid operator takes the middle value of all the members.
(19b)-(19c) indicate that when the occupancy oA(t) at the
ramp entrance, measured by detector A, is higher than the
threshold õA, it is necessary to choose the maximum metered
flow to discharge queuing vehicles at the on-ramp as quickly
as possible. Since we adopt the one-car-per green policy [1],
we finally convert the metered flow r(t) into red time to
realize ramp metering in SUMO. It should be pointed out
that the algorithm above does not depend on ramp queue
length. The reason lies in that we focus on evaluating ramp
queue length estimation here, and this algorithm provides
the same benchmark when we compare different estimation
methods.

The traffic demands considered are illustrated in Fig 3.
For vehicle composition, we assume that 95% are passenger
vehicles, 3% are light-duty trucks and the remaining are
heavy-duty trucks. We consider the period 13:00-20:00 since
the peak hours of I-210 E are usually from 14:00-19:00. We
use the first half an hour as the warm-up period and start the
estimation at 13:30.
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(a) Upstream mainline demand.
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(b) On-ramp demand.

Fig. 3: Traffic demands.

A. Sensitivity analysis
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(b) Impacts on µ2.

Fig. 4: Sensitivity analysis of market penetration rate of CVs,
α and uncertainty bound Θ.



The following section presents sensitivity analysis of CV
penetration rates and measurement noise. We first solve the
problem P1 given different combinations of α and Θ. We
choose the weight β = 0.1 since we put priority to the error
rate. The results are presented in Fig. 4. We show

√
µ1 in

Fig. (4a) since it denotes an upper bound of long-term error
rate. It is reasonable to see that when the fluctuation is mild
with small Θ, the error upper bound is relatively low. We
also present logµ2 in Fig. (4b). We consider logµ2 for better
visualization since it could be large when α is small but Θ
is large. Recalling that µ2 is related to convergence speed,
we conclude that the convergence could be very slow, given
small α and large Θ, when the measurement noise occurs.

TABLE I: Sensitivity analysis of CV penetration rates.

Market penetration rate 0.1 0.3 0.5 0.7 0.9
√
µ1 1 0.4491 0.3164 0.2712 0.2537√
µ̂1 0.6540 0.3708 0.2701 0.1845 0.1288

RMSE 9.629 5.459 3.976 2.716 1.896

Then, we analyze the filter performance in the simulation.
Note that we only specify the CV market penetration rate
in advance and do not manipulate the variation bound Θ,
which requires us to estimate Θ. It turns out that θ(t) are
relatively scattered given any α ∈ {0.1, 0.3, · · · , 0.9} and
it is not easy to design the filter gain L if we consider
the bound Θ satisfying (6). Thus we consider Θ such that
|θ(t)| ≤ Θ for enough t. We find that Θ = 0.08 suffices
for α ∈ {0.1, 0.3, · · · , 0.9}, which is used to derive the
filter gain. To test our robust filter, we also assume that the
measurement noise happens from 15:00-17:00. Concretely,
we assume that fout

cv (t), f in
cv(t), f

out
all (t), f

out
all (t) (in unit of

veh/h) are subject to bounded noise uniformly distributed on
[−60 veh/h, 60 veh/h] and xcv(t) (in unit of veh) is subject
to bounded noises uniformly distributed on [−2 veh, 2 veh].
The result is summarized in Table I. We consider the upper
bound

√
µ1,

√
µ̂1 and the root mean square Error (RMSE),

where µ̂1 is obtained from the simulation, given by

µ̂1 =

T∑
t=0

||e(t)||22/||x(t)||22, (20)

and the RMSE is given by

RMSE =

√√√√ 1

T

T∑
t=0

(x(t)− x̂(t))2. (21)

Clearly,
√
µ1 denotes a theoretical upper bound and

√
µ̂1

denotes an empirical evaluation. It is reasonable to find that
given higher CV penetration rate, our robust filter yields
lower error.

TABLE II: Sensitivity analysis of measurement noise.

Noise bound U (veh/h) 60 90 120 150 180
√
µ̂1 (α = 0.1) 0.6540 0.6542 0.6546 0.6550 0.6554√
µ̂1 (α = 0.5) 0.2701 0.2708 0.2717 0.2728 0.2742√
µ̂1 (α = 0.9) 0.1288 0.1307 0.1330 0.1357 0.1389

We also test our filter given different uniformly bounded
noise. We consider the flows fout

cv (t), f in
cv(t), f

out
all (t), f

out
all (t)

are subjected to bounded noise [−U,U ] from 15:00-17:00.
The result is given in Table II. Noting the on-ramp flow
shown in Fig. 3b, we conclude that our filter is robust even
when the noise is relatively large, e.g. U = 180 veh/h.

B. Estimation comparison

We consider another two estimation methods as our base-
lines. The first one is given by

x̂all(t) =
2x̃cv(t)

f̃ in
cv(t)/f̃

in
all(t) + f̃out

cv (t)/f̃out
all (t)

. (22)

It evaluates the CV penetration rate at the on-ramp based on
the inflows and outflows and converts the observed x̃cv(t) to
x̂all(t). The second one was proposed based on the Kalman
filter [10], given by

x̂all(t) =x̂all(t− 1) + δt(f̃
in
all(t)− f̃out

all (t))

+Kf (Qbb
L̄veh

L̄veh + Ld
oA(t− 1)− x̂all(t− 1)),

(23)

where Kf is the filter gain, L̄veh is average physical length
of vehicles and Ld denotes sensor length, Qbb is bumper-
to-bumper storage of ramps. In the simulation, we set Kf =
0.1 [10]. It should be pointed out that (23) typically relies
on internal detectors, e.g. induction loop sensors between
detectors A and B in Fig. 2b. However, we assume that such
kind of sensors is not available and use detector A instead
to provide the occupancy measurement oA(t− 1).

We propose five scenarios for the purpose of comparison.
The first and the second scenarios adopt the estimator (22),
but are given CV penetration rates α = 0.25 and α = 0.5,
respectively. In scenario 3, the Kalman filter (23) is consid-
ered. We apply our robust filter in the last two scenarios, also
given different CV penetration rates, α = 0.25 and α = 0.5,
respectively. For each scenario, we also add measurement
noise between 15:00-17:00 in the simulation.

The results are shown in Fig. 5. Clearly, the estimator (22)
is sort of open-loop and thus produces noisier estimation than
our robust filter does, given the same CV market penetration
rate (see Fig. 5a vs. Fig. 5d, and Fig. 5b vs. Fig. 5e). Besides,
it is not surprising to see that higher CV penetration rates
benefit the estimation (see Fig. 5a vs. Fig. 5b, and Fig. 5d
vs. Fig. 5e). When there are none of internal sensors, the
Kalman filter (23) could yield really poor performance. As
indicated in Table III, it achieves relatively large

√
µ̂1 and

RMSE.

TABLE III: Performance summary.
√
µ̂1 RMSE

Scenario 1 0.5767 8.490
Scenario 2 0.3526 5.191
Scenario 3 0.8205 12.079
Scenario 4 0.4248 6.253
Scenario 5 0.2701 3.976



13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00
0

16

32

48

64
V

eh
ic

le
co

u
n
t

Ground Truth

Estimation

(a) Scenario 1: estimator (22) when α = 0.25.

13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00
0

16

32

48

64

V
eh

ic
le

co
u

n
t

Ground Truth

Estimation

(b) Scenario 2: estimator (22) when α = 0.50.
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(c) Scenario 3: Kalman filter (23) with gain Kf = 0.1[10].
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(d) Scenario 4: proposed robust filter when α = 0.25.
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(e) Scenario 5: proposed robust filter when α = 0.50.

Fig. 5: Comparison of different estimation methods.

V. CONCLUDING REMARKS

In this paper, we investigated ramp queue estimation that
combines information from traditional infrastructure sensors
and emerging CV data. We first presented a ramp queue
model that takes measurement noise and uncertain CV
penetration rates into account. Then we used the theory of
extended H∞ filters to propose a robust filter for our ramp
queue model and to show the performance guarantee of our
filter (Theorem 1). It turns out that Theorem 1 can be used
to reveal how the uncertainty of penetration rates influences
long-term estimation accuracy. Possible future directions
include integrating our filters into localized/coordinated ramp
control and analyzing their control performance.
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