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Abstract— Routing control is one of important traffic man-
agement strategies against urban congestion. However, it could
be compromised by heterogeneous driver non-compliance with
routing instructions. In this article, we model the compliance
in a stochastic manner and investigate its impacts on routing
control. We consider traffic routing for two parallel links.
Particularly, we consider two scenarios: one ignores congestion
spillback while the other one considers it. We formulate the
problem as a Markov chain, given random drivers’ adherence.
Then, we propose the stability and instability conditions to
reveal when the routing is able or unable to stabilize the traffic.
We show that for links without congestion spillback there exists
a necessary and sufficient stability criterion. For links admiting
congestion propagation, we present one stability condition and
one instability condition. These stability conditions allow us to
quantify the impacts of driver non-compliance on the two-link
network in terms of throughput. Finally, we illustrate the results
with a set of numerical examples.

I. INTRODUCTION
A. Motivation

Dynamic traffic routing provides drivers with route recom-
mendations based on real-time road information. It has been
used as one of promising control policies for alleviating con-
gestion [1], [2], and is expected to find extensive applications
in a connected vehicle environment [3]. Nevertheless, it is
also reported that driver non-compliance with route guidance
could undermine the performance of dynamic routing [4],
especially social routing advice that deliberately detours part
of vehicles to achieve benefits in terms of road networks
[5]. Although more and more surveys have confirmed this
phenomenon [5], [6], limited studies have investigated in an
analytical way how drivers’ adherence influences the effect
of traffic routing control.

In this paper, we focus on routing advice released by traffic
system operators/agencies. We study the above problem by
considering a setting with random demand and random
driver non-compliance. We analyze the resulting stochastic
dynamical system under routing control. Specially, we focus
on a network comprised of two parallel links; see Fig. 1.
Though simple, the two-link network serves as a typical
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scenario for studying routing control [7], [8], [9]; it turns
out to be an appropriate abstraction of multiple parallel links:
one stands for arterials and the other denotes a set of local
streets [10]. Furthermore, we adopt a Markov chain to model
the compliance rate that possibly depends on traffic states.
It allows us to study stability and instability criteria that
determine whether the network is destabilized by the random
compliance rate. We also quantify the impacts of drivers’
disobedience in terms of throughput, namely the maximum
constant inflow under which the network can be stabilized.
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Fig. 1: The two-link network.

B. Related work

Previous work on evaluating impacts of the conformity
with routing advice typically applied static or dynamic
traffic assignment (STA or DTA). These methods are fa-
vored since they easily provide numerical assessment in
terms of efficiency, equity and so on [5], [11], [12] and
can be implemented even for large-scale networks. How-
ever, they also have disadvantages. STA finds equilibrium
by solving mathematical programming. It fails to capture
significant traffic dynamics, such as congestion spillback
and fluctuations of drivers’ compliance rate and thus could
induce unrealistic equilibrium. Though DTA can address
the shortcomings of STA to some extent, it introduces a
new problem. As we see later, low compliance rates could
make traffic networks unstable. In that case, it could be
problematic to apply DTA since we do not have guaranteed
convergence in advance. Noting this, we aim at developing
methods that allow stability and instability analysis, at least
in some conditions, before numerical evaluation. To our best
knowledge, limited studies discussed this topic for routing
control subject to random compliance.

Our model belongs to discrete-time nonlinear stochastic
systems. Although the general theories of stochastic stability
have been studied extensively [13], how to apply them in
our problem is still unclear. Typically, stability analysis
can be refined for specific nonlinear systems. Besides, it
is noteworthy that most of studies mainly discuss sufficient
stability conditions for general nonlinear stochastic systems,
while we also have interest in sufficient instability conditions.



C. Our contributions

In this paper, we address the following two questions:

1) How to determine whether the network can be sta-
bilized by routing control subject to driver non-
compliance?

2) How to evaluate efficiency losses of routing control
due to the non-compliance in an analytic way?

We answer the first question for two types of networks.
In the first one, the two parallel links have infinite space
and there are no congestion spillback, while in the second
one, the two parallel links only have finite space. We formu-
late discrete-time nonlinear stochastic systems for the two
networks, respectively. Then we apply the Foster-Lyapunov
criterion [13] to derive the stability condition and scruti-
nize transience of Markov chains [13] to obtain instability
conditions. For the first network, we successfully obtain a
sufficient and necessary stability condition (Theorem 1); for
the second one, we have one stability crietrion (Theorems 2)
and one instability criterion (Theorems 3).

Even when the network is stable, we want to know to what
extent the network performance decrease. Thus, to answer
the second question, we take throughput as the metric to
measure efficiency losses. However, throughput is not always
available even for the two-link network. For the two links
with infinite buffer sizes, we indeed derive exact values of
throughput since we have a sufficient and necessary stability
condition. For the two links with finite buffer sizes, we use
the stability and instability conditions to yield lower and
upper bounds, respectively.

The rest of the paper is organized as follows. Section II
introduces our modeling framework. Section III presents the
results when the two parallel links have infinite storage space,
and Section IV provides the results in case of two links with
limited buffer sizes. Finally, Section V summarizes our work
and discusses future research.

II. MODELING AND FORMULATION

Consider the two-link network in Fig. 1: one is the major
link eq, typically with a higher free-flow speed or capacity,
and the other is the minor link eo. We suppose that the system
operator tries to route part of flows to the minor link ey to
reduce congestion in the major link e;.

We denote by X.(t) € Ry traffic density of link e €
{e1,e2} at time t. Each link e € {e;,ea} is associated with
a sending flow (demand function) f,(z.) : R>¢g — R>( and
a receiving flow (supply function) r.(z.) : R>g — R>q.

Assumption 1 (Sending & receiving flows).

1.1 Sending flows: For link e, f.(x.) is Lipschitz contin-
uous and df.(x.)/dx. > 0 almost everywhere (a.e.).
Moreover, f.(0) =0 and sup,, fe(x.) < oo.

1.2 Receiving flows: For link e with a finite buffer size
T < 00, Te(we) is Lipschitz continuous and

€

dre(z.)/dze < 0 a.e.. Moreover, ro.(z2**) = 0 and

sup, 7e(xe) < oo. For link e with an infinite buffer
size, T, = OQ.

The assumptions above follow the conventional modeling
of road traffic. We also define link capacity as

Qe = Supmill{fe(xe)are(xe)}v (D

Te

which denotes an upper bound of sustainable discharging
flow from link e.

Note that Assumption 1.2 implies that it is reasonable to
only consider X.(t) € [0,22*] for link e with limited
storage. Compared with supposing finite buffer sizes, the
assumption of infinite buffer sizes seems a little unrealistic,
but it helps understand and design routing control, even on
complex networks. In this paper, we discuss both of them.

For demand modeling, we consider an independent and
identically distributed (i.i.d.) stochastic process {D(t) : t >
0} with a distribution I'%, E[D(t)] = « and D(t) € D fort >
0, where D is a compact set. This is based on the observation
that during rush hours, of interest to traffic management,
traveling demands are relatively stationary and only fluctuate
within certain bounds. Obviously, we require

E[D(®)] = a < Qe + Qe,, 2)

otherwise the traffic densities must blow up.

Next, we introduce routing control. Let 8.(z) : RZ, —
[0,1] denote a proportion of traffic routed to link e. We
assume the routing policies to satisfy:

Assumption 2 (Routing control). The routing proportions
Be, (e, xe,) and Be, (X, , Te,) are continuous and have the
following monotonicity a.e.:

2.0 52 PBe (wey we,) < 0 and 52— Pe, (e, we;) = 0;
22 o Bea(ey,Tey) 2 0 and 52 Pe, (wey, we,) < 0.
ey °2

The assumption above implies that the routing proportion
Be(xe,, xe,) tends to decrease (resp. increase) as link e (resp.
the other link) becomes more congested. It holds true for
typical routing policies, such as logit routing [?].

Recalling that routing proportions could be compromised
due to heterogeneous drivers’ choice behavior, we denote by
C(t) € [0,1] the compliance rate of drivers’ routed to the
minor link e at time ¢. Then the compromised routing ratios,
denoted by Be(e,, Tey, ) : RE, x [0,1] — [0, 1], are given
by

Bey (Xe, (1), Xey (1), O(2))

= Bey (Xe, (1), Xey () + Bey (Xe, (1), Xe, (1)) (1 — C(2)),
(3a)

Bea(Xe, (8), Xy (8), C(2))
= Bes(Xe, (1), Xe, (1)) C (1)

Note that (3a)-(3b) imply the compliance rate of drivers
routed to the major link e; equals one. This is because in our
setting drivers are assumed to prefer the major link e; while
the system operator tries to route some of them to the minor
link e,. The assumption is not necessary, just for simplifying
the problem. In fact, we can introduce the second compliance
rate, and apply our method to obtain stability and instability
criteria, which are more complicated.

(3b)



We consider that C'(¢t 4+ 1) depends on X, () = z., and
Xe, (t) = e, with a distribution I'; . For convenience
of analysis, we assume that the distributions I'y - (o),
for any z., and z.,, have lower semi-continuous densities
with the same support C C [0, 1]. We define E;, ., [C]:=
E[C(t + 1)|X,, (t) = Xe,, Xe, (t) = Te,] and assume it to
satisfy:

Assumption 3 (Drivers’ compliance). The expected compli-
ance rate has the following monotonicity a.e.:

0 0
Do ren e [C] >0, and BTPZE
Clearly, the assumption implies that more drivers follow
the routing advise to the minor link es if the major link e;
becomes more congested or the minor link es becomes less

congested.

The following specifies the inflows into links e; and es.
Given an upstream flow F(t), we denote by ¢i* : R3 ) x

[0,1] = R>¢ the inflow into link e € {e1, e2}: -

@ (F (1), X, (1), Xea (0, C()
— min{B. (Xe, (1), Xes (), COIF (@), (X (D)} (5)

Supposing r., = 7., = 0o, we have the following network
dynamics for any link e € {e1, ea}

[C]<0.

Teq s Tey

AX, (1) = (DO, X, (0. X, (0. C0) = L.LX.(0),
‘ (6)

where AX () := X (t + 1) — Xc(t), ¢ denotes the time
step size, and [. denotes length of link e.

Clearly, if links e; and e; have finite space, congestion
could block the inflows. For the sake of analysis, we consider
another link e upstream of links e; and es, satisfying )., >
Qe, + Qe, and 7., = 00, to accept inflows. It leads to the
network dynamics as follows:

AX,(0) = (D)

= Y (e (Xe (1), X (0, X (0,C()) (Ta)
ec{er,ea}

BX0) = (6 e (X (1) X (1), Xea (0, C(0)

~ [(Xe(1)s € € fer,ea} (7b)

For notional convenience, we assume 0/[. to be the same
for any link e and ignore them in the following analysis.
Then, (6) indicates that

Dy = A{(Xe, (1), Xe, (1), D(2), C(1)) : £ 2 0} (8)

is a Markov chain with a state space R>o X R>g x D x C,
and (7a)-(7b) indicate

Dy 1= {(Xey (1), Xe, (1), Xy (1), D(1),C(2)) : £t 2 0} (9)

is also a Markov chain with a state space R>q x X, x X, X

D x C. Note that X, C [0,2%**] and X,, C [0,222%*] are
bounded sets.

We make the last assumption as follows:

Assumption 4.
4.1 For the system (6), there exists ¢ € C and d € D such
that lim;_, Xe(t) = xF < oo, e € {e1,ea}, given
C(t) =cand D(t) = d;
4.2 For the system (7a)-(7b), there exists c € C and d € D
such that lim;_, oo X (t) = x5 < 00, e € {eg, e1,€2},
given C(t) = ¢ and D(t) = d. Moreover,

ﬁ:el (e, 28,)s ) feo (w,) <re, ((,),
Bes (e, e, )s €) feo (Tey) <re, (2C,)-

The above assumption essentially states that there exists
c and d such that the systems (6) and (7a)-(7b) are stable.
Note that (10a)-(10b) are mild technical assumptions. The
system (6) does not require them due to 7., = 7., = 00.
The equations (10a)-(10b) imply that the inflows into links
e; and ey are strictly fewer than the corresponding receiving
flows. That is, the inflow can smoothly pass links e; and es
when there is no congestion. By noting (2), (10a)-(10b) are
easy to achieve for appropriate routing polices.

We have the following lemma by Proposition 7.1.4 and
Theorem 7.2.6 in [13]:

(10a)
(10b)

Lemma 1. Given Assumption 4.1, the Markov chain (8) is
@-irreducible; and given Assumption 4.2, the Markov chain
(9) is p-irreducible.

Here ¢ is a certain measure. The ¢-irreducibility means
that any set with positive measure can be reached by the
Markov chain given any initial state. It implies that any
large set can be reached from any initial condition and thus
the state space is indecomposable. It is a prerequisite of
discussing stability of Markov chains.

Finally, we define the stability of interest below:

Definition 1 (Stability & Instability). A stochastic process
{Y(t) : t > 0} with a state space ) is stable if there exists
a scalar Z < oo such that for any initial condition y € )

t
limsup+ SOEIV(AIV(©O) =gl <27, (1)
7=0

t—o0 t

where |Y(7)| denotes 1-norm of Y (7). The network is
unstable if there does not exist Z < oo such that (11) holds
for any initial condition y € ).

The notion of stability follows a classical definition [14]
and is widely used in studying traffic control [15].

III. STABILITY ANALYSIS OF THE NETWORK WITHOUT
CONGESTION PROPAGATION

We state the main result as follows:

Theorem 1. The Markov chain (8) with the state space

R>o X R>g x D x C is stable if and only if there exists
a vector 0 := [0.,,0.,]" € RS such that

(821 (0) + B (OEa[L = CT)a = £, (6.,) < 0, (120)

Be, (O)Eg[Clae — fe,(0e,) < 0.  (12b)



In the following sections, we first present a numerical
example and then prove Theorem 1.

A. Numerical example

First, we set = 0.1 and [, = l., = 1. We consider the
sending flows fe(z.) = min{vez.,Q.} for e € {e1, ez},
with ve, = 1, v, = 0.8, Q,, = 0.6, Q., = 0.4. Besides,
we adopt the classical logit routing as follows:

Be(x) =

where v, =1 and v,, = 2 are routing parameters.

We assume the demands D(t) € [d,1.2], t > 0, are in-
dependent and identically distributed (i.i.d.) uniform random
variables. It follows E[D(t)] = d/2 + 0.6. We also assume
the routing compliance rates C(¢) € [0,¢], ¢ > 0, are i.i.d.
uniform random variables, along with E[C(t)] = &/2. Tt
indicates that in our numerical example the compliance rates
are independent of traffic states. It should be noted that this
independence is not necessary for our approach. Here we
assume it just for simplification. However, we still have non-
trivial observations in this case.

We first analyze the stability and instability of scenarios
with different d and compliance rate ¢. Fig. 2a shows the
time-average traffic densities after 5 x 10° steps and reveals
the stability and instability regions. We observe a non-linear
boundary: given moderate traffic demands, improvements of
compliance rates can stabilize the network; but given a high
demand close to the network capacity, we hardly see the
effect of improving compliance rate.

Then we compute the throughput, the maximum expected
demand under which the network can be stabilized. It is
interesting to find that we can achieve a relatively high
throughput (around 0.987) when E[C(t)] = 0.395. Further
improvement is marginal when E[C(t)] exceed 0.395.

e VeTe

, €€ {61762}7 (13)

e VerTey + e VeaTea

1.00
pooessss
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(a) Stability region. (b) Throughput.

Fig. 2: Analysis given links e; and es with infinite buffer
sizes.

B. Proof of Theorem 1

We first prove the sufficiency by the Foster-Lyapunov
criterion [13]:

Foster-Lyapunov criterion. Consider a -irreducible
Markov chain {Y (t);t > 0} with a state space Y, an
infinitesimal generator £, and a Lyapunov function V
Y — Ryq. If there exist constants m > 0, n < oo, a function
g:Y — R>q and a compact set € such that for any y € Y

EV(Y (E+ 1))V () =yl = V(y) < —mg(z) +nle(y),

where 1¢(y) is an indicator function, then, for each initial
condition y(0) € ),

liiriigp % ZE[g(Y(T))] <m/n.

To proceed, we consider the following Lyapunov function

0 r e Xt
Vi) = ] 2(e —0e)3 v € X%,
%(erz - 662)3— T € XB,
%((’Iel - 061)4- + (Iez - 062)4—)2 T € X4’
(14)

where (+)1 := max{-,0}, X, :=[0,0¢,] X [0,0c,], X, :=
(0cy,00) X [0,0c,], Xey :=[0,0¢,] X (be,,00) and X, =
(0e,;00) X (e, ,00).

The rest is devoted to show that there exist constants m’ >
0 and n’ < oo such that for every z € R%

E[V(X({t+1)|X () =] —V(x)

< - m'((zel = Oey)+ + (we, — 982)+) +n. (15)

If (15) holds, we must have 0 < m < m/, n < oo, and a
compact set & = [0, M] x [0, M] such that

E[V (X (t+ D)X () = 2] = V()
< —m((@e = b)4 + (@es = 0s)4 ) +nle(e), (16)

which indicates that X, (¢) and X,,(¢) and thus concludes
the stability.

To show (15), we need to discuss whether X, (¢) is larger
than 6., and whether X, (¢) is larger than 6.,, up to four
cases. Here we present the proofs for the typical cases and
the remaining can be proved in a similar way.

When X, (t) < 0., and X,,(t) < 0.,, the proof is trivial
by noting that X, (¢t + 1) and X, (¢ + 1) must be bounded
a sufficiently large number.

Now we assume X, (t) > 0., and X, (t) < 6,,. It
follows

EV(X(t+1))X(t) =] —V(x)
<((8er @) + Bea (@B L = O ) = foy () ey + .

where n is a sufficiently large number. Note that we omit
0/l.,. By Assumptions 1-3,

(Ber (Ters Tea) + B ey e )Ea[L = € ) = £y (3e,)

is non-increasing in z., and non-decreasing in x.,. Thus
(12a) indicates there exists m} > 0 such that for any z., >
Oc, s %e, < 0e,, we have

EV(X(t+1)|X () =z] — V(z) < —mjze, +n.

Finally, we consider X, (t) > 6., and X,,(t) > 6,,. It
turns out that we obtain

E[V(X(t+1)|X(t) =2]—V(z)
S(O{ - fel (xel) - f52(5352)> (xel +x€2) +n.



Note the a— fe, (Te, )— fe, (Ze, ) is non-increasing in both .,
and z.,. Combing (12a)-(12b) indicates there exists mj > 0
such that for any ., > 0.,, %, > 0,, we have

E[V(X(t+1)|X(t) = 2] — V(z) < —mb(ze, + Te,) + n.

Thus we finish proving the sufficient condition.

The following proves the necessary condition. We prove
it by showing the Markov chain (8) is transient [13]. We
consider the following transience criterion [13]:

Transience criterion. Consider a -irreducible Markov
chain {Y (t) : t > 0} with a state space ). Then {Y (¢) :
t > 0} is transient if there exists a bounded function
V : Y — Rxq and a sublevel set of V, denoted by S, such
that

@ ©(S)>0and p(Y\S) >0;
(i) EV(Y(E+1)Y () =yl -V(y) 20, Yy e Y\ S.

Note that our Markov chain (8) is -irreducible, stated by
Lemma 1. To proceed, we first assume that for any 6 € RZzo

(Ber (0) + Bea(OEalt = €))a = £, (60) = 0. (17)

We consider a bounded test function W : R>g — R>q:

1

W(we,) =& — m

(18)
where £, and & are sufficiently large numbers. It turns out
that given (17), we obtain

E[W(X€1 (t + 1>)|X€1 (t) = xe1] - f€1 ($€1) > 0.

Note that the above inequality holds over R% . It indicates

that the conditions (i)-(ii) above are satisfied. Thus we

conclude the Markov chain (8) is transient given (17).
Then we assume that for any 6 € R%,

Bey (0)E[Cla — fe, (Be,) > 0.

We can prove in a similar way that the Markov chain (8)
is transient in this case. Finally, we conclude that if there
does not exist a vector § satisfying (12a)-(12b), the system
is unstable.

19)

IV. STABILITY ANALYSIS OF THE NETWORK WITH
CONGESTION PROPAGATION

We state the main results as follows:

Theorem 2. Given Assumptions 1-4, the Markov chain (9)
with the state space R>g X X¢, X X, X D x C is stable if
there exists a vector 0 := [0,,,0.,]T € [0,1] and a positive
scalar v > 0 such that

o — Z (1 - ee)Eazel ey [qien(feo (x20)7 TeyyLey, C)]_

ec{er,ea}

- Z QEfe(xe) <=7 v(xeuxez) € Xel X Xezv
ec{er,ea}

(20)

where ¢ = inf{ze,|fe,(Te,) = Qe, } and

Eﬂfel Leg [qien(feo (Ieo)v Leys Ley, C)]

= /q;n(fm(w%%xewxew C))erl,EQ (de). (21
c

Theorem 3. Given Assumptions 1-4, the Markov chain (9)

with the state space R>qg X Xg, X X, X D x C is unstable

if there exists a vector 0 := [0.,,0.,]* € [0,1]? and a non-

negative scalar v > 0 such that

a— Z (1- ae)Exel Tey [qien(feo (Zeg)s Tey s Tey s O)]—

ec{er,ea}

- Z eefe(’re) Z 77 v(’relvxtm) € Xel X X€27 (22)

e€fer ez}
where Z., := 00.

Note that z¢  defined in Theorem 2 is usually interpreted
as critical density since link eg with z., > x¢ is considered
as “congested” in practice. Theorem 2 indicates that though
link eg could be congested with extremely high traffic
densities, we only need to check the critical density. Besides,
Theorem 3 says that we need to check z., = co, namely to
consider sup fe,.

One can implement Theorem 2 by solving the following
semi-infinite programming (SIP [16]):

(P1) min -y s.t. (20), (23)
01,02,y
and Theorem 3 by solving the SIP:
(P2) max ~ s.t. (22). (24)

01,02,y

The programmings P; and P» belong to SIPs because they
have infinite constraints over the continuous set &, x X.,.
But noting X., and X., are bounded, we have efficient
algorithms to solve P; and P» [16].

Note that Theorem 2 is proved based on the Lyapunov
function V : R, — Rq:

1
V(xemxeuxefz) = x€0(§x€0 + eelxel + 9621762)' (25)

and Theorem 3 is based on the test function W : RE, —
R>02 -

- 1

w egrLeysLey) = - s 26
(Teg Ters Tes) = & Teg + Oy Tey + OcyTey + &2 (26)

where &; and & are sufficiently large numbers. Clearly,
we can improve the stability and instability conditions by
considering more sophisticated Lyapunov/test functions, but
with more computational costs.

The following section presents a numerical example. The
proofs of Theorems 2 and 3 are omitted since they are similar
to those of Theorem 1, except for different Lyapunov/test
functions.



A. Numerical example

Besides the setting in Section III-A, we introduce the
receiving flows r.(z.) = R — wexe, With R., = 1.2,
Re, = 0.8, we, = 0.5 and we, = 0.4. It follows xg** = 2.4
and xg, ™ = 2. For the upstream link ey, we suppose that its
sending flow with v, = 1 and @), = 1, which indicates the
critical density zg = 1.

Analyzing the Markov chain (9) is more difficult since
traffic dynamics involving congestion spillback is more com-
plicated. We consider the technique of invariant sets [17] and
focus on our analysis of the Markov chain (9) on the state
space

[d,00) X [z,,,Te,] X [0, Ze,] x [d,1.2] x [0,4], 27
where the boundaries Ty Tey and Z., satisfy

ﬁel (gel? )7eld+ 562( ela )(1 - E)d :fel (gel)a (283)

Tel (jel) :fel (j:el)? (28b)

B2 (Teys Tey) feo (T, )C =fey (Tey).  (28¢)

Note that restricting analysis on the state space (27) does
not lose any generality. In fact, we can prove that the set
X = [d,00) x [T.,,Te,] X [0,Z,] is positively invariant
and globally attracting. That is, for any initial condition
(Xeo (0), Xe (0), Xy (0)) € Xy (X (£), Xy (£), Xy (1)) €
X for t > 0 given any (D(t),C(¢ )) €ld1 2] [ c. Be-
sides, for any initial condition (X,,(0), X, (0), X 2(O)) €
R0 x [0, 2g;] x [0, 28], (Xeo (1), Xe, (t), Xe, (¢)) enters
X almost surely.

8
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775 = 5
= 6 3
= ’5/ Bom Lower bound e
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2 155 3085 o®
= = = '..o’
0.925 2 E080 3
PR .
2 e
1.000 075748
0.200 0.275 0.350 0.425 0.500 0200 0275 0350 0425 0.500
E[C()] E[C]

(a) Stability region. (b) Throughput.

Fig. 3: Analysis given links e; and ep with finite buffer sizes.

Fig. 3a presents the time-average of traffic densities after
5 x 10° steps and discloses the stability and instability re-
gions. We have two observations. First, there exists a gap be-
tween the stability and instability regions. This is because our
stability and instability criteria are only sufficient. Second,
the stability region in Fig. 3a shrinks significantly, compared
with that in Fig. 2a. It indicates that congestion spillback
may not be neglected in analyzing real-world scenarios.

Fig. 3b shows upper and lower bounds of throughput. We
note that the gap tends to be enlarged as the compliance
rate increases. Per our discussion on Theorems 2 and 3, it
is possible to narrow down the gap by considering more
advanced Lyapunov/test functions.

V. CONCLUDING REMARKS

This paper considered the traffic stability and throughput
of a parallel-link network subject to non-compliant traffic

flows. We formulated a Markov chain that captures the traffic
evolution under a dynamic routing strategy and in the face of
a state-dependent non-compliance rate of drivers. Using Lya-
punov methods, we derived stability conditions for typical
settings with or without congestion spillback. We also used
the results to analytically quantify the impact of driver non-
compliance on network throughput. Possible future directions
include extension of the results to general networks with
cyclic structures and multi-commodity scenarios.
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