
Physics-Informed Machine Learning for Calibrating
Macroscopic Traffic Flow Models

Yu Tanga, Li Jinb, and Kaan Ozbaya

aC2SMARTER Center, Department of Civil & Urban engineering, Tandon School of Engineering, New
York University, 6 Metrotech Ctr. 4th Floor, Brooklyn, New York, 11201, USA

bUM Joint Institute and Department of Automation, Shanghai Jiao Tong University, 800 Dongchuan Lu,
Shanghai, 200240, China

Abstract

Well-calibrated traffic flow models are fundamental to understanding traffic phenomena and
designing control strategies. Traditional calibration has been developed base on optimization
methods. In this paper, we propose a novel physics-informed, learning-based calibration ap-
proach that achieves performances comparable to and even better than those of optimization-
based methods. To this end, we combine the classical deep autoencoder, an unsupervised
machine learning model consisting of one encoder and one decoder, with traffic flow models.
Our approach informs the decoder of the physical traffic flow models and thus induces the
encoder to yield reasonable traffic parameters given flow and speed measurements. We also
introduce the denoising autoencoder into our method so that it can handles not only with nor-
mal data but also with corrupted data with missing values. We verified our approach with a
case study of I-210 E in California. It turns out that our approach can achieve comparable per-
formance to the-state-of-the-art calibration methods given normal data, and outperform them
given corrupted data with missing values.

Keywords: Physics-informed machine learning, parameter identification, traffic flow models

1 Introduction

1.1 Motivation

Macroscopic traffic flow models have been shown to be capable of reproducing congestion propa-
gation and explaining complicated phenomena, such as capacity drops (Khoshyaran and Lebacque,
2015) and stop-and-go waves (Laval and Leclercq, 2010). They provide a solid foundation for the
performance analysis of traffic systems (Huang et al., 2020; Shi and Li, 2021) and control design
for freeway management (Gomes and Horowitz, 2006; Papamichail et al., 2010). However, be-
fore they are put into practice, these models should be carefully calibrated to accurately replicate
real-life complications briefly mentioned above.

1

Extensive studies have been devoted to the calibration of traffic flow models. They mainly
utilized optimization approaches to determine model parameters in specific days (Spiliopoulou
et al., 2014, 2017; Mohammadian et al., 2021; Wang et al., 2022). Unfortunately, the parameters,
such as capacity, reportedly vary significantly across multiple days (Dervisoglu et al., 2009), and
thus their transferability could be poor (Wang et al., 2022). This indicates that daily re-calibration
is necessary for quantifying parameter uncertainties and designing robust traffic control strategies.

Admittedly, one can apply optimization-based approaches to day-to-day calibration, but this
can be cumbersome in practice. First, these methods bring about heavy computation costs when
being adopted for long-term modeling. They typically involve non-convex and even non-smooth
problems, and it is hard to solve them, let alone to repeat the calibration procedures for several
months or years. The second problem arises from data quality. Traditional traffic sensors, such
as induction loops, are infamously unreliable. For instance, the proportion of malfunctioning de-
tectors in the California’s freeway system vary day by day, roughly around 36% (Caltrans, 2022).
Clearly, optimization methods are vulnerable to the fluctuation in data quality since they only con-
sider day-specific data for each calibration.

In response to the above challenges, we develop a novel physics-informed, learning-based ap-
proach of identifying traffic flow parameters across days, including capacity, free flow speed, jam
density and congestion wave speed. The proposed method belongs to the unsupervised machine
learning category since the actual values of parameters are unknown in advance. It is inspired
by the classical deep autoencoder shown in Figure 1a) (Hinton and Salakhutdinov, 2006) and the
denoising autoencoder shown in Figure 1b) (Vincent et al., 2008). Both of them comprise two
neural networks, one as an encoder and the other one as a decoder, but the classical deep au-
toencoder is usually used for dimension reduction while the denoising autoencoder, after being
well-trained, is mainly applied to restore corrupted data. We build our calibration methods based
on these two kinds of autoencoders by informing them of physics knowledge about traffic flows.
More concretely, the classical deep autoencoder-based approach handles model parameter estima-
tion given intact traffic measurements; the denoising autoencoder-based one resolves calibration
when partial traffic data are corrupted with missing values. A unified framework is illustrated in
Figure 1c). Specially, we use the neural network-based decoder to approximate the physics-based
model, which simultaneously induces the encoder to yield reasonable traffic flow parameters. The
major motivation of introducing the neural network-based decoder is because it is easy to differ-
entiate neural networks. Without it, we need to take the physics-based model as the decoder. In
that case, computing the gradients of model outputs with respect to model parameters could have
higher computational costs, especially when the outputs are obtained by iterating the physics-based
model with many steps.

1.2 Related work

Most of the previous work on calibrating macroscopic traffic flow models employed optimization
methods applied over specific days. One approach is to estimate the fundamental diagram (FD),
especially for first-order traffic flow models (Muñoz et al., 2004; Dervisoglu et al., 2009; Zhong
et al., 2016). It requires little computation, but may suffer from accuracy losses. First, fitting the
left part of FD, namely free-flow regime, is usually easy, but the same task can be hard for the

2

encoder
(NN)

decoder
(NN)

latent variables

original data

generated data

keep
close

a)

encoder
(NN)

decoder
(NN)

latent variables

original data

generated data

keep
close

corrupted data

b)

encoder
(NN)

decoder
(Physics
engine)

latent variables

original data

generated data

keep
close

c)

Figure 1: Current frameworks of autoencoders: a) classical deep autoencoder consisting of two
neural networks (NNs), b) denoising autoencoder, c) autoencoder for parameter identification.

right part since traffic data collected during congestion periods are sparse and scattered. Second,
individual calibration of FDs along a freeway corridor fails to capture flow interactions. More
studies formulated the calibration problem as mathematical programming that considered flow
dynamics specified by first- or high-order models (Lee and Ozbay, 2008; Spiliopoulou et al., 2014;
Mudigonda and Ozbay, 2015; Mohammadian et al., 2021). In this case, one needs to solve a non-
convex optimization problem with locally optimal solutions, and thus heuristic optimization/search
algorithms, such as simultaneous perturbation stochastic approximation, simulated annealing, etc,
can be used; please see Wang et al. (2022) for a comprehensive review.

Recently, some researchers discussed the idea of learning-based calibration in the context of
traffic state estimation (TSE). That is, they integrated traffic flow models into machine learning
methods to enhance TSE (Huang and Agarwal, 2020; Yuan et al., 2021a,b; Shi et al., 2021b,a; Di
et al., 2023), to incorporate simultaneous parameter identification and state estimation techniques.
Some work investigated uncertainty quantification for TSE as well (Mo et al., 2022a,b). It should
be pointed out that these studies are different from what is proposed in this paper. First, they put
emphasis on TSE that used partial observations to infer full states. Thus, they divided training
and testing data by sensor locations to evaluate transferability over space. By contrast, our method
takes in full observations and returns traffic parameters. We desire transferability over time periods
and thereby separate training and testing data by time. Second, although the current studies can
update traffic parameters, they still require relatively good initial values that are normally obtained
from classical calibration approaches (Yuan et al., 2020) because poor initial traffic parameters
do not guarantee convergence (Shi et al., 2021a). This kind of good initial parameter estimates,
however, is not necessarily required by our approach. Third, these approaches typically assume
homogeneous traffic parameters, which could be inappropriate for modeling large-scale freeway
networks, while our method is more flexible and can yield inhomogeneous parameters, e.g. various
capacities in different freeways segments.

Our proposed method is also related to deep autoencoder-based system identification which
has emerged in recent years. Depending on identification goals, the latent variables, obtained from
the autoencoder, can be recognized as either states or parameters. If one wants to fit a neural
network approximating to the physical dynamic model, the encoder gives the states (Masti and

3

Bemporad, 2021; Beintema et al., 2021; Gedon et al., 2021). The encoder can also yield exact
parameters of physical models. In that case the decoder is a physical model rather than a NN (Nagel
and Huber, 2021; Yang et al., 2022); see the structure in Figure 1c). The successful application
of this framework requires gradient back-propagation from the physics engine to the encoder. For
linear time-invariant systems, this is easily achieved since it is possible to derive exact expression of
gradients (Nagel and Huber, 2021). For non-linear systems, it could be also achieved by applying
neural ODEs and automatic differentiation (Yang et al., 2022).

However, there is a fundamental problem behind the structure illustrated in Figure 1c). When
a dynamical model (no matter neural ODEs or recurrent networks) is too deep with too many iter-
ations, the gradient computation could fail because of the vanishing-explosion problem (Pascanu
et al., 2013; Choromanski et al., 2020; Nguyen et al., 2022). This problem could emerge in traffic
flow models. Due to the stability requirement, the traffic flow models, such as the CTM, typically
iterates with a small step size (e.g., 5 seconds Kontorinaki et al. (2017)). In practice, we only
have access to aggregated measurements (e.g., 5-min traffic data). It means that for reproducing
one observation, we need to iterate the CTM 60 times. Long observations, covering congestion
building-up and dissipation, are necessary for calibrating traffic flow models correctly. Given ob-
servations during a period of peak hours up to several hours, the traffic flow models need to iterate
more than one thousand times. In that case, gradient computation becomes unreliable due to the
vanishing-explosion problem and it is unlikely to use the framework shown in Fig. 1c) to train the
encoder to learn parameters of traffic flow models. Thus, we propose a framework of physics-
informed autoencoder shown in Fig. 3, where we introduce a neural network-based decoder as a
surrogate for the traffic flow model. Meanwhile, we keep the traffic flow model and train the de-
coder to learn from it. By doing so, we can train the encoder to yield reasonable physics parameters
by using gradient back-propagation from the decoder rather than from the physics model.

We summarize the existing work on learning-based traffic state estimation (TSE) and param-
eter identification (PI) in Table 1. It should be pointed out that our calibration method has the
capability of generalization over physics parameters. It means that given a series of observations
or measurements, our well-trained autoencoder-based model could yield associated physics pa-
rameters. This is different from physics-informed neural networks for TSE, which need retraining
once the physics models change. More importantly, by introducing a neural network-based en-
coder as the surrogate, our calibration method could handle long observations for nonlinear CTM,
which hasn’t been reported in the existing studies.

Table 1: Summary of related work on learning-based TSE and PI.

Reference Scope Physics model
Generalization over
physics parameters

Input of
neural networks

Handle long
observations

Huang and Agarwal (2020) TSE LWR model No time and coordinates -
Yuan et al. (2021a) TSE LWR model No time and coordinates -
Yuan et al. (2021b) TSE LWR model No time and coordinates -
Shi et al. (2021a) TSE & PI ARZ model No time and coordinates -
Shi et al. (2021b) TSE & PI LWR & ARZ models No time and coordinates -
Lu et al. (2023) TSE & PI Traffic flow & fluid queue models No time and coordinates -

Jaques et al. (2020) PI General dynamical systems Yes Observation trajectory No
Nagel and Huber (2021) PI Linear dynamical systems Yes Observation trajectory Yes

Yang et al. (2022) PI General dynamical systems Yes Observation trajectory No
This paper PI Nonlinear CTM Yes Observation trajectory Yes

4

1.3 Our contributions

We try to address two main questions:

(i) How can we train an encoder, given perfect freeway measurements, to yield appropriate
traffic parameters that are comparable to those calibrated by traditional methods?

(ii) How can we complete the task in (i), even given corrupted traffic data with missing values?

To resolve (i), we extend the deep autoencoder (Hinton and Salakhutdinov, 2006) that converts
high-dimensional data into latent variables, typically with lower dimensions, by minimizing the
error between encoder inputs and decoder outputs; see Figure 1a). Generally, the original low-
dimensional representations do not have significant physical meanings; they cannot be recognized
as parameters of traffic flow models. To address this problem, we also feed encoder outputs into
traffic flow models and inform our decoder of extra discrepancies between the simulation result and
its own output. Clearly, minimizing the new error encourages the decoder to learn physical laws
of traffic flows, and the total error decreases only when the encoder yields appropriate parameters
of traffic flow models. Besides, we introduce the concept of conditional generation. That is, the
decoder relies not only on latent variables (parameters), but also on boundary conditions, such
as upstream traffic volumes. This is a straightforward but indispensable extension since traffic
observations, mimicked by the decoder, are determined by these conditions.

To answer (ii), we integrate denoising autoencoder (Vincent et al., 2008), a simple but robust
variant of the original autoencoder, into the calibration approach. That is, we use unspoiled sensor
readings to generate new data with partially missing values, which mimics the pattern of real
unreliable data, and then apply this synthesized data to training. It allows to deploy the parameter
identification on real data with missing values after training.

2 Problem Statement

In this section, we generally state the calibration problem and then explicitly present the considered
freeway model. It consists of a dynamics model, the CTM incorporating capacity drop, and an
observation model.

2.1 Learning-based calibration problem

In this paper, we consider calibrating traffic in a certain period of peak hours during which recurrent
congestion builds up and dissipates. Following the definition (Dowling et al., 2004), recurrent
congestion here indicates the congestion occurring on a normal weekday without incidents, bad
weather or other random events. It implies that we do not consider non-recurrent congestion in this
paper. Non-recurrent congestion usually has more complicated patterns than recurrent congestion.
Thus we believe the first step should be aimed at calibrating recurrent congestion. We consider
addressing the calibration of non-current congestion in future research.

5

We also assume i) that the parameters keep the same within a certain period (e.g., morning
or evening peak hours) given a specific day but ii) that the parameters could vary from day to
day. These assumptions are reasonable and they have been supported by much practice (Muñoz
et al., 2004; Dervisoglu et al., 2009; Kontorinaki et al., 2017; Wang et al., 2022). It should be
pointed out that the assumptions do not imply the same traffic parameters for an entire day; they
allow different periods of peak hours (e.g., morning and evening peak hours) to have different
traffic flow parameters. Besides, our calibration method is aimed at a single period of peak hours.
The current practice shows it suffices to separately calibrate multiple periods of peak hours (e.g.,
morning and evening peak hours in (Wang et al., 2022)).

We consider a freeway corridor with K mainline cells, K on-ramp buffers, and K off-ramps,
as shown in Figure 2. The kth cell is characterized by traffic density, denoted by ρk(t). Note that
the first buffer is not an actual on-ramp; instead, it represents the upstream freeway section. The
kth buffer generates a time-varying demand αk(t) ∈ R≥0 for the kth cell. In addition, we apply
mainline ratio ηk(t) ∈ [0,1] to model off-ramp flows. This ratio denotes the fraction of traffic from
cell k entering cell k+ 1; the remaining traffic flow leaves the freeway at the kth off-ramp. We
also assume that the last cell K discharges outflows at a speed of ṽK(t), which can be measured
as the downstream boundary condition. Finally, we denote by fk(t) the flows from cell k to the
downstream cell.

cell 1 cell 2

buffer 2

Mainline

On-ramps

Off-ramps

buffer 1

buffer K

cell K

𝜌!(𝑡)𝜌"(𝑡)𝜌#(𝑡)

1 − 𝜂#(𝑡)

𝛼"(𝑡) 𝛼!(𝑡)

𝑓#(𝑡)𝛼#(𝑡)

𝑣+!(𝑡)

1 − 𝜂"(𝑡) 1 − 𝜂!(𝑡)

𝑓!(𝑡)

Figure 2: A freeway corridor with states ρ(t), traffic demands α(t), mainline ratio η(t) and down-
stream discharging speed ṽK(t), where ρ(t) := [ρ1(t), · · · ,ρK(t)]T, α(t) := [α1(t), · · · ,αK(t)]T and
η(t) := [η1(t), · · · ,ηK(t)]T.

Now we suppose that the following freeway model:

ρ(t +1) =F(ρ(t),q(t),α(t),η(t), ṽK(t);θ), (1a)
y(t) =H(ρ(t),q(t))+ ε(t), (1b)

where F in (1a) denotes the dynamical model parameterized by θ , H in (1b) denotes an observation
model, ε(t) represents measurement noise and y(t) is observed traffic measurement. As per the
convention (Schoukens and Ljung, 2019), we assume that the noise ε(t) is zero-mean with finite
variance.

For convenience of notation, we let θp, Mp := (y(0), · · · ,y(T))p, Ip := (ρ(0))p and Bp :=
(α(0), · · · ,α(T),η(0), · · · ,η(T), ṽK(0), · · · , ṽK(T))p denote the parameter, real measurements,
initial conditions and boundary conditions, respectively. The calibration problem is formulated
as follows. Suppose P train is a set of periods, each of them with T +1 time steps. Given observa-
tions {Mp}p∈P train , boundary conditions {Bp}p∈P train and initial conditions {Ip}p∈P train , we aim

6

at training a machine learning model so that it can yield suitable model parameters {θp}p∈P test

over the testing dataset P test, {Mp}p∈P test , {Ip}p∈P test and {Bp}p∈P test .

2.2 Freeway model

In the following, we first use the cell transmission model (CTM) to specify the dynamics functions
F and G, and the parameter θ in (1a) and then build the observation model H in (1b) that relies on
induction loops.

2.2.1 Dynamics model

The CTM is favored due to its simplicity and wide use, and it is not a necessary requirement of
our approach. Assuredly, high-order models (Payne, 1971; Whitham, 1974; Messner and Papa-
georgiou, 1990; Aw and Rascle, 2000; Zhang, 2002) can reproduce traffic phenomena with higher
accuracy, but they have more parameters that could complicate the training process. To the best
of our knowledge, this is the first attempt to estimate traffic flow parameters using unsupervised
training. It is thus worthwhile starting with a simple model. We leave identification of high-order
models as a future research task. Specially, it will be interesting to investigate whether we can ac-
celerate it via calibrating first-order models since first- and high-order models have common traffic
flow parameters.

By the CTM, the flows between cells, fk for k = 1,2, · · · ,K, are given by

fk(t) = ηk(t)min
{

vkρk(t),Qk(t),wk+1(ρ̄k+1 −ρk+1(t))−αk+1(t)
}
, 1 ≤ k ≤ K −1 (2a)

fK(t) = ṽK(t)ρK(t) (2b)

where δt denotes time step size, vk denotes free-flow speed of cell k, Qk(t) denotes capacity of cell
k. The flow functions (2a)-(2b) indicate higher merging priority of on-ramp flows and the first-in-
first-out rule for off-ramp flows (Ferrara et al., 2018). Besides, note that we consider time-varying
capacity Qk(t) which allows to model capacity drop as follows:

Qk(t) =

{
Q̄k, ρk(t)≤ ρc

k ,

(1−ζk)Q̄k, ρk(t)> ρc
k ,

(3)

where Q̄k is the capacity of cell k, ζk ∈ [0,1] represents capacity drop ratio, and ρc
k := Q̄k/vk denotes

critical density of cell k; see more discussions and modeling of capacity drop in (Kontorinaki et al.,
2017).

Then, by the conservation law of flows, the traffic dynamics is given by

qk(t +1) =qk(t)+δt(αk(t)− rk(t)), 1 ≤ k ≤ K, t = 0,1, · · · , (4a)

ρ1(t +1) =ρ1(t)+
δt

ℓ1
(r1(t)−

f1(t)
1−η1(t)

), t = 0,1, · · · , (4b)

ρk(t +1) =ρk(t)+
δt

ℓk
(rk(t)+ fk−1(t)−

fk(t)
1−ηk(t)

), 2 ≤ k ≤ K, t = 0,1, · · · , (4c)

7

where ℓk denotes the length of cell k.

Then the parameters to be calibrated are presented below:

θ = ({vk}K−1
k=1 ,{Q̄k}K−1

k=1 ,{ζk}K−1
k=1 {ρ̄k}K

k=2,{wk}K
k=2). (5)

2.2.2 Observation model

Now we consider widely-used induction loops for the observation function H and the sensor output
y(t) in (1b). In practice, induction loops update measurements of flow rates and speed at a certain
frequency ∆t that is larger than the time step size δt of the traffic model. We suppose ∆t = mδt with
a multiple m ∈ Z>0. We also denote by K the set of cells where sensors are deployed. Then the
sensor outputs are given by

f̄k(t) =
t

∑
i=t−m+1

fk(i)/m+ ε f (t), k ∈ K , t = m,2m, ..., (6a)

v̄k(t) =
t

∑
i=t−m+1

fk(i)vk(i)/
t

∑
i=t−m+1

fk(i)+ εv(t), k ∈ K , t = m,2m, ..., (6b)

where vk(t) := fk(t)/ρk(t) denotes traffic speed of cell k at time t, ε f (t) (resp. εv(t)) represents
zero-mean noise in flow (resp. speed) measurements. Clearly, (6a)-(6b) yield

y(t) = { f̄k(t), v̄k(t)}k∈K , t ∈ T = {m,2m, · · ·}. (7)

3 Proposed Method

In this section, we first introduce the framework of physics-informed autoencoder for parameter
identification. Then we present more details about inside structures of the autoencoder.

encoder
(NN)

decoder
(NN)

scaled model
parameters 𝜃!"#$%&

generated flow &
speed 𝐌#

traffic flow
model
(CTM)

simulated flows &
speed 𝐌$

initial condition 𝐼
boundary condition 𝐵

keep
close

keep close

intact measured flows
& speed 𝐌

operator of generating corrupted
measurements with missing values

initial condition 𝐼
boundary condition 𝐵

encoder E
parameterized by 𝑤'

decoder D
parameterized by 𝑤(

recovered model
parameters 𝜃)%"*+%)%&

possibly corrupted measured
flows & speed 𝐌∗

physics model C

Figure 3: A novel architecture of physics-informed autoencoders.

8

3.1 Physics-informed autoencoder for parameter identification

Figure 3 illustrates the novel architecture of our proposed physics-informed autoencoder. The
encoder first feeds traffic measurements, boundary conditions and initial conditions and outputs
model parameters scaled between zero and one. The decoder takes the concatenation of the en-
coder output, boundary conditions and initial conditions as its input; it attempts to generate flow
and speed measurements. Meanwhile, the model parameters, boundary conditions and initial con-
ditions are passed into the CTM to obtain simulated flows and speed. Note that if we need to
train the autoencoder for calibration over corrupted measurements with missing values, we feed
synthesized data M∗, with the same missing pattern, to the encoder, as shown in Figure 3. Clearly,
if there is no such a need, we just let M∗ = M.

Formally, we denote by E the encoder parameterized by wE , by D the decoder parameterized
by wD and by C the physics model CTM. The workflow is given by

θ
scaled
p =E(M∗

p,Bp,Ip;wE), (8a)

θ
recovered
p =(θ max −θ

min)⊙θ
scaled
p +θ

min (8b)

M̂p =D(θ scaled
p ,Bp,Ip;wD), (8c)

M̃p =C(θ recovered
p ,Bp,Ip), (8d)

where we use the subscript p to indicate the dependence on period p, and ⊙ denotes element-
wise product. θ scaled

p is a vector whose elements are scaled between zero and one. This can be
achieved by applying the sigmoid function to the last layer of the encoder. θ min (resp. θ max) is
a predetermined lower bound (resp. upper bound) of traffic parameters. By (8b), the recovered
parameter θ recovered

p could have suitable physical meanings and thus can be admitted into the traffic
flow model. Once our machine leaning model is well trained, we recognize θ recovered

p as calibrated
traffic model parameters for period p.

As for training, we consider three kinds of loss functions below:

L1 = ∑
p∈P train

||M̂p −M̃p||22, (9a)

L2 = ∑
p∈P train

||Mp −M̂p||22, (9b)

L3 = ∑
p∈P train

(K−2

∑
k=1

(vscaled
k+1,p − vscaled

k,p)2 +
K−2

∑
k=1

(Q̄scaled
k+1,p − Q̄scaled

k,p)2 +
K−2

∑
k=1

(ζ scaled
k+1,p −ζ

scaled
k,p)2

+
K−1

∑
k=2

(ρ̄scaled
k+1,p − ρ̄

scaled
k,p)2 +

K−1

∑
k=2

(wscaled
k+1,p −wscaled

k,p)2
)
, (9c)

where vscaled
k,p , Q̄scaled

k,p , ζ scaled
k,p , ρ̄scaled

k,p and wscaled
k,p are components of θ scaled

p by recalling (5). The first
loss function quantifies error between the decoder outputs and simulation results. Minimizing it
ensures that the decoder learns the physical laws of the CTM. The second one gives error between
the decoder outputs and original inputs. Minimizing it together with L1 induces the encoder to yield
appropriate traffic flow parameters. The last loss function measures discrepancies of traffic model

9

parameters of two consecutive cells. It usually acts as a regularization term against overfitting
(Engl et al., 1996). The final loss function is given by

min
wE ,wD

L = min
wE ,wD

L1 +βL2 + γL3 (10)

where β and γ denote weights of the loss functions L2 and L3. Clearly, if β is too small or too
large, the encoder fails to yield appropriate traffic model parameters. Besides, large γ reduces
inhomogeneity of traffic model parameters.

3.2 Encoder and decoder structures

The following introduces the structures inside the encoder and the decoder. It should be pointed
out that our major novelty in this paper lies in the proposed architecture. To demonstrate its ef-
fectiveness, we prefer not to consider advanced structures of the encoder or decoder. Clearly, the
structures inside the encoder and decoder are not unique. We consider the classical convolutional
neural network-based (CNN-based) structure (Masci et al., 2011). Indeed, other advanced models,
such as neural operator with the advantage of discretization- invariance (Kovachki et al., 2021),
could be used to refine the structures considered in this paper and even to extend our calibration
method for PDE-based traffic flow models. We leave it in the future research.

The encoder and decoder structures are illustrated in Figure 4. As for the encoder, we first
apply convolution operators to the measurements, initial conditions and the boundary conditions.
Then we flatten and concatenate the results. After that, the concatenation is passed into dense
layers to yield physics parameters. As for the decoder, we first flatten boundary conditions and
concatenate them with physics parameters and initial condition. Then the results are fed into dense
layers. Finally, we exploit deconvolution operators to generate measurements. It should be pointed
out that the boundary conditions include temporal information.

Initial conditions

Measured flows &
speeds

Boundary inflows &
mainline ratios

Conv layers

Conv layers

Conv layers

Flatten

Flatten

Flatten

Concatenate

Dense layers
Sigmoid

Scaled
Physics

parameters

(a)

Boundary flows

Initial conditions

Flatten

Concatenate

Recovered flows &
speeds

Dense layers Deconv
layers

Scaled
Physics

parameters

(b)

Figure 4: The structure of (a) encoder and (b) decoder.

10

4 Case Study

We test our method on a segment of Interstate 210 Eastbound (I210 E) from Allen Avenue to
Barranca Avenue, up to 22.15 kilometers, shown in Figure 5a). This segment is considered since
it encompasses a full process of congestion build-up and dissipation; see Figure 5a). It has 18
on-ramps, 17 off-ramps, all of them equipped with induction loops expect for the off-ramps of
cells 14 and 18. There are also 25 mainline induction loops. We divide it into 28 cells based on
locations of on-ramps, off-ramps and mainline sensors; see Figure 5b). Clearly, we have all of the
cells equipped with mainline sensors, except for cells 1, 3, 14 and 27, namely

K = {1,2, · · · ,28}\{1,3,14,27}. (11)

Allen avenue

Barranca avenue

(a) A segment of I210 E from Allen Avenue to Barranca Avenue.

buffer 1
cell 1

cell 2
cell 3 cell 5

cell 4 cell 6
cell 7 cell 9

cell 10 cell 12
cell 13

cell 14
cell 15

cell 16

(27.63)
(27.98)

(28.28)
(28.68)

(29.28)
(29.44)

(30.03)
(30.30) (31.24)

(30.69) (32.35)
(32.79) (33.38)

(34.44)
(35.2)

(35.41)
(35.65)

(33.15)

cell 8
cell 11

(36.09)
(36.62)

(36.89)
(37.39)

(38.30)
(38.79)

(39.34)
(40.00) (41.39)

cell 17
cell 18

cell 19
cell 20

cell 21
cell 22

cell 23
cell 24

cell 25
cell 26

cell 27

(40.85)
(40.99)

cell 28

(40.19)

Legend

with mainline sensors

without mainline sensors

off-ramp
on-ramp

(number) milepost

(b) Cell division.

Figure 5: Modeling I210 E.

4.1 Experiment design

4.1.1 Data preparation

We collected three types of data in 2019 from the PeMS (Caltrans, 2022), namely i) sensor mea-
surements, ii) sensor quality data and iii) incident records. The first data provide 5-min flows
through the mainline, on-ramps and off-ramps and also 5-min speed at the mainline. Note that
we inferred the off-ramp flow of cells 14 and 18 based on the conservation law since there are
none of sensors deployed at these two off-ramps. The second data indicate whether each 5-min

11

measurement is from a normal or malfunctioning sensor. The last data give location and duration
of incidents.

04:00 08:00 12:00 16:00 20:00
27.63

41.39

M
ile

Po
st

Study area

15

30

45

60

75

90

105

120

135

Sp
ee

d
(m

ph
)

(a) (b)

Figure 6: Congestion a) without significant incidents on 2019/04/16, b) with significant incidents
on 2019/10/28. We exclude the latter from our training and testing dataset.

Preliminary analysis showed there is recurrent congestion between 12:00 and 21:00 in the
selected freeway segment. Based on the three types of data above, we classified the days in 2019
into four types: i) congested without significant incidents, ii) congested with significant incidents,
iii) uncongested (typically on weekends) and iv) unknown (due to breakdown of all sensors). Fig-
ures 5a) and 5b) illustrate congestion with and without significant incidents, respectively. Clearly,
incidents can temporarily change traffic parameters, such as capacity, and induce new bottlenecks.

As discussed in Section 2.1, we only consider the first type of days in this paper. It turns out
there are 182 such days in 2019. Among them, only 73 days have high-quality traffic measurements
for all sensors; in the remaining days, the sensors at milepost 28.68, 30.03, 32.79, 34.44, 35.65,
37.39 and 40.85 malfunctioned. We randomly divided these 73 days, around 70% for training
dataset denoted by {Mp}p∈P train , 15% for testing dataset denoted by {Mp}p∈P test and 15% for
validation dataset denoted by {Mp}p∈Pval .

We also synthesized training (resp. testing) data from real-world training (resp. testing)
data. The procedure is elaborate below. We first use the fundamental diagram-based approach to
obtain rough estimation of traffic model parameters. Then we add noises into these parameters,
boundary conditions and initial conditions. Finally, we use the CTM to generate the simulation data
which is recognized as traffic measurements. Clearly, we known the ground truths of the traffic
parameters behind these measurements. We denote by {Ms

p}p∈P train , {Ms
p}p∈P test and {Ms

p}p∈Pval

synthesized training, testing and validation dataset, respectively. Data synthesis is considered for
two reasons. First, we know the ground truths of traffic parameters behind the synthesized training
and testing dataset. Thus, we can better evaluate the calibration results. Second, data synthesis
provides substantial data for pretraining our machine learning model before we deploying it on
real-world data.

12

4.1.2 Settings of our proposed method

Here we introduce basic settings of our autoencoder-based calibration method. In the encoder,
each convolution module in Figure 3 consists of two convolution layers, with 4× 4 and 2× 2
filters respectively. Besides, there are two dense layers with 512 and 256 hidden neurons. In the
decoder, there are also two dense layers, with 256 and 512 hidden neurons respectively, and two
deconvolution layers, with 2×2 and 4×4 filters respectively. This architecture is inspired by the
classical neural network LeNet (LeCun et al., 1998).

We also specify the maximum and minimum values of traffic parameters for θ max and θ min

in (8b); see Table 2. These values are set based on existing calibration results (Dervisoglu et al.,
2009).

Table 2: Minimum and maximum values of traffic parameters.

Parameters Min value Max value
Free-flow speed v (km/h) 100 120
Capacity Q̄ (veh/(hour·lane)) 1400 2200
Capacity drop ratio ζ 0 0.15
Jam density ρ̄ (veh/(km·lane)) 67 167
Congestion wave speed w (km/h) 10 32

4.1.3 Benchmarks and metrics

We consider another three calibration approaches as benchmarks:

• the first is to calibrate the fundamental diagram (Dervisoglu et al., 2009). Note that not
every cell can be calibrated by this approach due to lack of mainline sensors. For these cells,
we computed traffic model parameter by interpolating upstream and downstream parameters
(Muñoz et al., 2004);

• the second is to formulate nonlinear programming and to solve it with the Nelder-Mead
algorithm (Kontorinaki et al., 2017);

As for performance metrics, we consider mean absolute percentage error (MAPE) of flows,
speeds and traffic model parameters:

eflow =
1

|P||T ||K | ∑
p∈P

∑
t∈T

∑
k∈K

| f̄k,p(t)− f̃k,p(t)|
f̄k,p(t)

, (12a)

espeed =
1

|P||T ||K | ∑
p∈P

∑
t∈T

∑
k∈K

|v̄k,p(t)− ṽk,p(t)|
v̄k,p(t)

, (12b)

eparam =
1

5K|P| ∑
p∈P

(K−1

∑
k=1

|vk,p − v̂k,p|
vk,p

+
K−1

∑
k=1

|Q̄k,p − Q̂k,p|
Q̄k,p

+
K−1

∑
k=1

|ζk,p − ζ̂k,p|
ζk,p

13

+
K

∑
k=2

|ρ̄k,p − ρ̂k,p|
ρ̄k,p

+
K

∑
k=2

|wk,p − ŵk,p|
wk,p

)
(12c)

where T is given by (7), K is given by (11), P is a set of days, f̄k,p(t) and v̄k,p(t) are traffic
measurements of cell k at time t on day p, f̂k,p(t) and v̂k,p(t) are simulation results from the
calibrated models, (vk,p, Q̄k,p,ζk,p, ρ̄k,p,wk,p) are ground truths of traffic parameters of synthesized
data, and (v̂k,p, Q̂k,p, ζ̂k,p, ρ̂k,p, ŵk,p) denote calibrated traffic flow parameters. Clearly, eflow and
espeed can be used to evaluate calibration both on synthesized and real-world dataset, while eparam
can be applied to assess calibration on synthesized dataset.

4.2 Calibration on data without missing values

This section focuses on evaluation the calibration over dataset without missing values. We first
compare the proposed method with the two benchmarks introduced in the previous section and
then conduct an ablation study on the neural network-based decoder.

4.2.1 Method comparison

To apply the proposed method, we first conduct sensitivity analysis of the impacts of the weight
β and γ on our calibration approach; see Figure 7. It should be pointed out we should select the
best combination (β ,γ) based on only etrain

flow and etrain
speed since in general we do not know the ground

truths of traffic parameters in practice. But as shown in Figure 7, we can minimize etrain
param by

selecting appropriate β and γ that minimizes etrain
flow and etrain

speed. The result is reasonable. Too large β

forces the decoder to fit the original traffic measurements and to ignore the physics from the CTM,
while too small β makes the decoder learn the dynamics without awareness of the original traffic
measurements. Besides, too large γ restricts the inhomogeneity of traffic parameters and too small
γ may lead to overfitting.

0.03 0.1 0.3 1 3 10

0.03
0.1
0.3
1
3

10 2.5
3.0
3.5
4.0
4.5
5.0

et
ra
in

flo
w
(%

)

(a)

0.030.1 0.3 1 3 10

0.03
0.1
0.3
1
3

10 3.0
3.5
4.0
4.5
5.0
5.5

et
ra
in

sp
ee

d(
%
)

(b)

0.030.1 0.3 1 3 10

0.03
0.1
0.3
1
3

10
1.5

2.0

2.5

et
ra
in

pa
ra
m
(%

)

(c)

Figure 7: Sensitivity analysis of weights β and γ on a) etrain
flow , b) etrain

speed, c) etrain
param.

Based on Figure 7, we chose the weight β = 0.3 and γ = 1. Then we compared our approach

14

with the benchmarks. The results on the synthesized data are summarized in Table 5. Clearly,
our approach outperforms the fundamental diagram-based (FD-based) calibration, and achieves
performance comparable to the nonlinear programming-based (NP-based). It should be pointed
out our encoder and decoder directly takes the testing data and yields calibration, while the NP-
based approach still requires to solve the optimization problem over the testing dataset. It indicates
that our approach could be favored given massive calibration requests.

Table 3: Performances of calibration over synthesized data without missing values.

etrain
flow etest

flow eval
flow etrain

speed etest
speed eval

speed etrain
param etest

param eval
param

FD-based 2.48% 2.44% 2.53% 2.80% 2.90% 3.05% 2.27% 2.05% 2.18%
NP-based 2.28% 2.28% 2.25% 2.18% 2.42% 2.43% 1.00% 1.01% 1.05%
Proposed 2.26% 2.30% 2.30% 2.34% 2.44% 2.50% 1.09% 1.00% 1.06%

The performances of calibration over real-word dataset are summarized in Table 4. In this
case, we do not know the ground truths of traffic parameters, and thus we mainly compare cali-
bration approaches in terms of eflow and espeed. It is not surprising to see that all of the calibration
approaches achieves worse performance on the real-world dataset that on the synthesized data.
However, the findings from the synthesized data still hold. We can conclude that our approach can
outperform the FD-based approach, achieve performance comparable to the NP-based approach. It
should be pointed out that each call of the NP-based approach takes around 15 minutes. Thus the
calibration of all days need 18 hours if we apply the optimization-based approach. Although our
calibration method requires two-hour training, the computational costs of calibration after training
are marginal. From this point of view, our calibration is more efficient.

Table 4: Performances of calibration over real-world data without missing values.

etrain
flow etest

flow eval
flow etrain

speed etest
speed eval

speed
FD-based 4.89% 4.62% 4.80% 11.31% 10.82% 11.08%
NP-based 4.28% 4.14% 4.14% 4.13% 4.01% 4.08%
Proposed 4.27% 4.28% 4.32% 4.09% 4.13% 4.13%

We provide a typical speed heatmap in the latest manuscript, as shown in Figure 8 below.
It shows spatial-temporal speed distribution on 2019-12-03 from the testing data. Due to strong
fitting capability, the decoder can yield outputs similar to the true values; see Figs. 8a) and d).
Besides, given well-calibrated parameters, the physical model can also reproduce the congestion
occurrences and clearances; see Figs. 8c) and e).

We also presented the traffic parameters calibrated by our method, as shown in Figure 9.
Note that the dash lines divide the dates according to the training, validation and testing date. The
results are reasonable. For example, we find the capacity around cell 26 is smaller than that of the
upstream cells, which indicates the existence of a bottleneck. Besides, the capacity around cell 14
is relatively small. This is because cell 14 locates at an interchange of two freeway corridors where
the weaving flows reduce the capacity. Overall, the capacity drop is not significant in our case
study. It only happens around the two bottlenecks aforementioned. We also find that around cell
14, congestion wave speed is relatively large and the jam density is relatively small. This indicates
that the congestion happening at around cell 14 will propagates to the upstream more easily.

15

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

Cell 2
Cell 4

Cell 6

Cell 8
Cell 10

Cell 12
Cell 14
Cell 16
Cell 18

Cell 20
Cell 22
Cell 24
Cell 26

0

15

30

45

60

75

90

105

120

Sp
ee

d
(k

m
/h

)

(a)

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

Cell 2
Cell 4

Cell 6

Cell 8
Cell 10

Cell 12
Cell 14
Cell 16
Cell 18

Cell 20
Cell 22
Cell 24
Cell 26

0

15

30

45

60

75

90

105

120

Sp
ee

d
(k

m
/h

)

(b)

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

Cell 2
Cell 4

Cell 6

Cell 8
Cell 10

Cell 12
Cell 14
Cell 16
Cell 18

Cell 20
Cell 22
Cell 24
Cell 26

0

15

30

45

60

75

90

105

120

Sp
ee

d
(k

m
/h

)

(c)

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

Cell 2
Cell 4

Cell 6

Cell 8
Cell 10

Cell 12
Cell 14
Cell 16
Cell 18

Cell 20
Cell 22
Cell 24
Cell 26

0

15

30

45

60

75

90

105

120

Sp
ee

d
(k

m
/h

)

(d)

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

Cell 2
Cell 4

Cell 6

Cell 8
Cell 10

Cell 12
Cell 14
Cell 16
Cell 18

Cell 20
Cell 22
Cell 24
Cell 26

0

15

30

45

60

75

90

105

120

Sp
ee

d
(k

m
/h

)

(e)

Figure 8: Speed heatmaps on 2019-12-03: a) true values, b) calibrated by the fundamental diagram,
c) calibrated by nonlinear programming optimization, d) decoder output, e) calibrated by proposed
method.

0 25 50
Date index

Cell 2
Cell 4

Cell 6

Cell 8
Cell 10

Cell 12
Cell 14
Cell 16
Cell 18

Cell 20
Cell 22
Cell 24
Cell 26

1440

1500

1560

1620

1680

1740

1800

1860

Ca
pa

cit
y

(v
eh

/(h
*la

ne
))

(a)

0 25 50
Date index

Cell 2
Cell 4

Cell 6

Cell 8
Cell 10

Cell 12
Cell 14
Cell 16
Cell 18

Cell 20
Cell 22
Cell 24
Cell 26

60

70

80

90

100

110

120

Fr
ee

-fl
ow

 sp
ee

d
(k

m
/h

)

(b)

0 25 50
Date index

Cell 2
Cell 4

Cell 6

Cell 8
Cell 10

Cell 12
Cell 14
Cell 16
Cell 18

Cell 20
Cell 22
Cell 24
Cell 26

0.00

0.02

0.04

0.06

0.08

0.10

Ca
pa

cit
y

dr
op

 ra
te

(c)

0 25 50
Date index

Cell 2
Cell 4

Cell 6

Cell 8
Cell 10

Cell 12
Cell 14
Cell 16
Cell 18

Cell 20
Cell 22
Cell 24
Cell 26

12

14

18

22

Co
ng

es
tio

n
wa

ve
 sp

ee
d(

km
/h

)

(d)

0 25 50
Date index

Cell 2
Cell 4

Cell 6

Cell 8
Cell 10

Cell 12
Cell 14
Cell 16
Cell 18

Cell 20
Cell 22
Cell 24
Cell 26

100

105

110

120

125

Ja
m

 d
en

sit
y(

ve
h/

(k
m

*la
ne

))

(e)

Figure 9: Traffic parameters calibrated by the proposed method: a) capacity per lane, b) free-flow
speed, c) capacity-drop rate, d) congestion wave speed, e) jam density.

16

4.2.2 Ablation study

Now we conduct the ablation study on the neural network-based decoder. Without the decoder, the
proposed architecture, illustrated in Figure 3, is reduced to the one shown in Figure 1c). In that
case, we consider two approaches of training the encoder. The first one is to estimate the gradients
numerically. For example, suppose θ̂p = [θ̂ 1

p , θ̂
2
p , · · · , θ̂ n

p] and we can have the gradient with respect
to θ̂ 1

p by

∂

∂ θ̂ 1
p
||Mp −M̃p||22 ≈

1
2δ

(||Mp −C(θ̂ ′
p,Bp,Ip)||22 −||Mp −C(θ̂ ′′

p ,Bp,Ip)||22), (13)

where θ̂ ′
p = [θ̂ 1

p + δ , θ̂ 2
p , · · · , θ̂ n

p], θ̂ ′′
p = [θ̂ 1

p − δ , θ̂ 2
p , · · · , θ̂ n

p], and the function C is given by (8d).
The second one is to implement the CTM by neural ODEs (Yang et al., 2022) and to compute the
gradient directly.

We tested these two methods over the real-word dataset. The training losses are presented
in Figure 10. Note that in our case study the CTM iterates with a time step size of five seconds
and that the simulation considers 9-hour traffic operation. This implies that the CTM iterates 6480
times in each simulation. Clearly, given so many iterations, the neural ODE-based method hardly
trained the encoder.

Besides, the gradient estimation also requires huge computation costs. As indicated by (13),
each gradient estimation needs to call the simulation twice and the estimation number depends on
the number of parameters to be calibrated. In our case study, updating neural network one time
typically takes fewer than 0.2 seconds, however running the simulation one time requires around 2
seconds. In terms of efficiency, it is necessary to reduce the times of running the CTM. From this
point of view, our calibration method is more efficient. This is because for each training, the times
of simulation required by our method only depends on the batch size and has nothing to with the
number of parameters to be calibrated.

0 1000 2000 3000 4000
Iteration

0.06

0.08

0.10

0.12

0.14

0.16

Tr
ai

ni
ng

 e
rro

r

Proposed
Gradient estimation
Neural ODE-based

Figure 10: Training curves.

17

4.3 Calibration on data with missing values

Recall that our data analysis indicates that sensors at milepost 28.68, 30.03, 32.79, 34.44, 35.65,
37.39 and 40.85 malfunctioned could breakdown. Thus we generate the corrupted dataset by
wiping out the traffic measurements at those locations.

Again, we considered the weight β = 0.3 and γ = 1. Then we compared our approach with the
two benchmarks with the results are summarized in Table 5. We mainly focus on the comparison
over the testing dataset since our learning-based approach does not have access this data during
the training. Clearly, our approach achieves the best performance and even outperform the NP-
based approach. The result is understandable. The NP-based approach lacks of the capability
of generalization and thus they cannot use the data from other days to improve the calibration.
By contrast, our learning-based approach can achieve stable calibration performance even given
corrupted data with missing values.

Table 5: Performances of calibration on synthesized data with missing values.

etrain
flow etest

flow eval
flow etrain

speed etest
speed eval

speed etrain
param etest

param eval
param

FD-based 3.86% 3.69% 3.81% 6.78% 6.47% 6.58% 6.16% 6.00% 6.12%
NP-based 3.26% 3.10% 3.20% 4.63% 4.48% 4.55% 4.30% 4.22% 4.23%
Proposed 3.29% 3.37% 3.42% 3.20% 3.29% 3.34% 1.93% 1.94% 1.99%

Finally, we verified our approach over the real-world data with missing values. We still chose
the weight β = 0.3 and γ = 1. The performances of various calibration methods are summarized
in Table 6. Comparing Table 6 with Table 4, we find that the performances of the three benchmark
approaches degrade significantly. By contrast, our approach can still achieve stable error and thus
perform better than the three benchmarks.

Table 6: Performances of calibration over real-world data with missing values.

etrain
flow etest

flow eval
flow etrain

speed etest
speed eval

speed
FD-based 5.08% 4.95% 4.98% 13.26% 13.63% 13.68%
NP-based 4.59% 4.70% 4.87% 7.86% 7.78% 7.96%
Proposed 4.46% 4.54% 4.68% 4.58% 4.55% 4.74%

5 Conclusion

In this paper, we propose a physics-informed, learning-based calibration approach, inspired by au-
toencoders. We consider calibrating the CTM, a widely-used traffic flow model. In our approach,
the encoder takes as input traffic measurements and boundary conditions, and yields parameters
required by CTM; the decoder recovers the measurements from the encoder output and the bound-
ary conditions. Specially, we feed the decoder input to CTM and inform the autoencoder of a novel
error between the decoder output and the simulation results besides the conventional error between
the traffic measurements and the decoder output. This encourages the encoder to produce reason-
able parameters so that the new error is minimized. We also introduce the denoising autoencoder

18

into our calibration method so that it can handles with corrupted data. Our case study of I210 E
demonstrated that our approach can achieve comparable performance to the current optimization-
based calibration approaches given normal traffic measurements and outperform them given cor-
rupted traffic measurements. Possible future research includes calibrating high-order traffic models
and online calibration.

Acknowledgement

This study was partially supported by US NSF Award CMMI-1949710, the C2SMART research
center, a Tier 1 University Transportation Center, and Tandon School of Engineering of New York
University. The contents of this paper only reflect views of the authors who are responsible for the
facts and do not represent any official views of any sponsoring organizations or agencies.

References
Aw, A. and Rascle, M. (2000). Resurrection of” second order” models of traffic flow. SIAM journal

on applied mathematics, 60(3):916–938.

Beintema, G., Toth, R., and Schoukens, M. (2021). Nonlinear state-space identification using deep
encoder networks. In Learning for Dynamics and Control, pages 241–250. PMLR.

Caltrans (2022). Caltrans Performance Measurement System. https://pems.dot.ca.gov/

?logout=1.

Choromanski, K. M., Davis, J. Q., Likhosherstov, V., Song, X., Slotine, J.-J., Varley, J., Lee,
H., Weller, A., and Sindhwani, V. (2020). Ode to an ode. Advances in Neural Information
Processing Systems, 33:3338–3350.

Dervisoglu, G., Gomes, G., Kwon, J., Horowitz, R., and Varaiya, P. (2009). Automatic calibration
of the fundamental diagram and empirical observations on capacity. In Transportation Research
Board 88th Annual Meeting, volume 15, pages 31–59. Citeseer.

Di, X., Shi, R., Mo, Z., and Fu, Y. (2023). Physics-informed deep learning for traffic state estima-
tion: A survey and the outlook. Algorithms, 16(6):305.

Dowling, R., Skabardonis, A., Carroll, M., and Wang, Z. (2004). Methodology for measuring
recurrent and nonrecurrent traffic congestion. Transportation Research Record, 1867(1):60–68.

Engl, H. W., Hanke, M., and Neubauer, A. (1996). Regularization of inverse problems, volume
375. Springer Science & Business Media.

Ferrara, A., Sacone, S., and Siri, S. (2018). Freeway traffic modelling and control. Springer.

Gedon, D., Wahlström, N., Schön, T. B., and Ljung, L. (2021). Deep state space models for
nonlinear system identification. IFAC-PapersOnLine, 54(7):481–486.

19

https://pems.dot.ca.gov/?logout=1
https://pems.dot.ca.gov/?logout=1

Gomes, G. and Horowitz, R. (2006). Optimal freeway ramp metering using the asymmetric cell
transmission model. Transportation Research Part C: Emerging Technologies, 14(4):244–262.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507.

Huang, J. and Agarwal, S. (2020). Physics informed deep learning for traffic state estimation. In
2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pages
1–6. IEEE.

Huang, K., Di, X., Du, Q., and Chen, X. (2020). Scalable traffic stability analysis in mixed-
autonomy using continuum models. Transportation research part C: emerging technologies,
111:616–630.

Jaques, M., Burke, M., and Hospedales, T. (2020). Physics-as-inverse-graphics: Unsupervised
physical parameter estimation from video. In Eighth International Conference on Learning
Representations, pages 1–16.

Khoshyaran, M. M. and Lebacque, J. P. (2015). Capacity drop and traffic hysteresis as a conse-
quence of bounded acceleration. IFAC-PapersOnLine, 48(1):766–771.

Kontorinaki, M., Spiliopoulou, A., Roncoli, C., and Papageorgiou, M. (2017). First-order traffic
flow models incorporating capacity drop: Overview and real-data validation. Transportation
Research Part B: Methodological, 106:52–75.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anandku-
mar, A. (2021). Neural operator: Learning maps between function spaces. arXiv preprint
arXiv:2108.08481.

Laval, J. A. and Leclercq, L. (2010). A mechanism to describe the formation and propagation of
stop-and-go waves in congested freeway traffic. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 368(1928):4519–4541.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lee, J.-B. and Ozbay, K. (2008). Calibration of a macroscopic traffic simulation model using
enhanced simultaneous perturbation stochastic approximation methodology. Technical report.

Lu, J., Li, C., Wu, X. B., and Zhou, X. S. (2023). Physics-informed neural networks for integrated
traffic state and queue profile estimation: A differentiable programming approach on layered
computational graphs. Transportation Research Part C: Emerging Technologies, 153:104224.

Masci, J., Meier, U., Cireşan, D., and Schmidhuber, J. (2011). Stacked convolutional auto-encoders
for hierarchical feature extraction. In Artificial Neural Networks and Machine Learning–ICANN
2011: 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17,
2011, Proceedings, Part I 21, pages 52–59. Springer.

20

Masti, D. and Bemporad, A. (2021). Learning nonlinear state–space models using autoencoders.
Automatica, 129:109666.

Messner, A. and Papageorgiou, M. (1990). Metanet: A macroscopic simulation program for mo-
torway networks. Traffic engineering & control, 31(8-9):466–470.

Mo, Z., Fu, Y., and Di, X. (2022a). Quantifying uncertainty in traffic state estimation using gen-
erative adversarial networks. In 2022 IEEE 25th International Conference on Intelligent Trans-
portation Systems (ITSC), pages 2769–2774. IEEE.

Mo, Z., Fu, Y., Xu, D., and Di, X. (2022b). Trafficflowgan: Physics-informed flow based generative
adversarial network for uncertainty quantification. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 323–339. Springer.

Mohammadian, S., Zheng, Z., Haque, M. M., and Bhaskar, A. (2021). Performance of continuum
models for realworld traffic flows: Comprehensive benchmarking. Transportation Research Part
B: Methodological, 147:132–167.

Mudigonda, S. and Ozbay, K. (2015). Robust calibration of macroscopic traffic simulation models
using stochastic collocation. Transportation Research Part C: Emerging Technologies, 59:358–
374.

Muñoz, L., Sun, X., Sun, D., Gomes, G., and Horowitz, R. (2004). Methodological calibration
of the cell transmission model. In Proceedings of the 2004 American Control Conference, vol-
ume 1, pages 798–803. IEEE.

Nagel, T. and Huber, M. F. (2021). Autoencoder-inspired identification of lti systems. In 2021
European Control Conference (ECC), pages 2352–2357. IEEE.

Nguyen, H. H. N., Nguyen, T., Vo, H., Osher, S., and Vo, T. (2022). Improving neural ordinary
differential equations with nesterov’s accelerated gradient method. Advances in Neural Infor-
mation Processing Systems, 35:7712–7726.

Papamichail, I., Kotsialos, A., Margonis, I., and Papageorgiou, M. (2010). Coordinated ramp me-
tering for freeway networks–a model-predictive hierarchical control approach. Transportation
Research Part C: Emerging Technologies, 18(3):311–331.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent neural
networks. In International conference on machine learning, pages 1310–1318. Pmlr.

Payne, H. (1971). Models of freeway traffic and control. mathematical models of public systems.
simulation councils. Inc., Vista, CA, USA.

Schoukens, J. and Ljung, L. (2019). Nonlinear system identification: A user-oriented road map.
IEEE Control Systems Magazine, 39(6):28–99.

Shi, R., Mo, Z., and Di, X. (2021a). Physics-informed deep learning for traffic state estimation: A
hybrid paradigm informed by second-order traffic models. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pages 540–547.

21

Shi, R., Mo, Z., Huang, K., Di, X., and Du, Q. (2021b). A physics-informed deep learning
paradigm for traffic state and fundamental diagram estimation. IEEE Transactions on Intelligent
Transportation Systems.

Shi, X. and Li, X. (2021). Constructing a fundamental diagram for traffic flow with automated
vehicles: Methodology and demonstration. Transportation Research Part B: Methodological,
150:279–292.

Spiliopoulou, A., Kontorinaki, M., Papageorgiou, M., and Kopelias, P. (2014). Macroscopic traffic
flow model validation at congested freeway off-ramp areas. Transportation Research Part C:
Emerging Technologies, 41:18–29.

Spiliopoulou, A., Papamichail, I., Papageorgiou, M., Tyrinopoulos, Y., and Chrysoulakis, J. (2017).
Macroscopic traffic flow model calibration using different optimization algorithms. Operational
Research, 17(1):145–164.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and composing
robust features with denoising autoencoders. In Proceedings of the 25th international conference
on Machine learning, pages 1096–1103.

Wang, Y., Yu, X., Guo, J., Papamichail, I., Papageorgiou, M., Zhang, L., Hu, S., Li, Y., and Sun,
J. (2022). Macroscopic traffic flow modelling of large-scale freeway networks with field data
verification: State-of-the-art review, benchmarking framework, and case studies using metanet.
Transportation Research Part C: Emerging Technologies, 145:103904.

Whitham, G. B. (1974). Linear and nonlinear waves(book). New York, Wiley-Interscience, 1974.
651 p.

Yang, T.-Y., Rosca, J., Narasimhan, K., and Ramadge, P. J. (2022). Learning physics constrained
dynamics using autoencoders. Advances in Neural Information Processing Systems, 35:17157–
17172.

Yuan, Y., Wang, Q., and Yang, X. T. (2021a). Traffic flow modeling with gradual physics regular-
ized learning. IEEE Transactions on Intelligent Transportation Systems.

Yuan, Y., Zhang, Z., and Yang, X. T. (2020). Highway traffic state estimation using physics
regularized gaussian process: Discretized formulation. arXiv preprint arXiv:2007.07762.

Yuan, Y., Zhang, Z., Yang, X. T., and Zhe, S. (2021b). Macroscopic traffic flow modeling with
physics regularized gaussian process: A new insight into machine learning applications in trans-
portation. Transportation Research Part B: Methodological, 146:88–110.

Zhang, H. M. (2002). A non-equilibrium traffic model devoid of gas-like behavior. Transportation
Research Part B: Methodological, 36(3):275–290.

Zhong, R., Chen, C., Chow, A. H., Pan, T., Yuan, F., and He, Z. (2016). Automatic calibration of
fundamental diagram for first-order macroscopic freeway traffic models. Journal of Advanced
Transportation, 50(3):363–385.

22

	Introduction
	Motivation
	Related work
	Our contributions

	Problem Statement
	Learning-based calibration problem
	Freeway model
	Dynamics model
	Observation model

	Proposed Method
	Physics-informed autoencoder for parameter identification
	Encoder and decoder structures

	Case Study
	Experiment design
	Data preparation
	Settings of our proposed method
	Benchmarks and metrics

	Calibration on data without missing values
	Method comparison
	Ablation study

	Calibration on data with missing values

	Conclusion

