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Abstract

Parallel server systems in transportation, manufacturing, and computing heavily rely on dynamic routing using connected
cyber components for computation and communication. Yet, these components remain vulnerable to random malfunctions
and malicious attacks, motivating the need for resilient dynamic routing that is both traffic-stabilizing and cost-efficient. In
this paper, we consider a parallel server system with dynamic routing subject to reliability and stability failures. For the
reliability setting, we consider an infinite-horizon Markov decision process where the system operator strategically activates
a protection mechanism upon each job arrival based on traffic state observations. We prove that an optimal deterministic
threshold protecting policy exists based on the dynamic programming recursion of the Hamilton-Jacobi-Bellman equation. For
the security setting, we extend the model to an infinite-horizon stochastic game where the attacker strategically manipulates
routing assignments. We show that both players follow a threshold strategy at everyMarkov perfect equilibrium. For both failure
settings, we also analyze the stability of the traffic queues. Finally, we develop approximate dynamic programming algorithms
to compute the optimal/equilibrium policies and present numerical examples/experiments for validation and illustration.

Key words: Queuing systems, cyber-physical security, stochastic games, Markov decision processes, HJB equation, Lyapunov
function.

1 Introduction

The parallel server system is a classical model charac-
terizing a service system of multiple servers, each with a
waiting queue. Real-world instances include web server
farms (Gupta et al., 2007), production lines (Govil and
Fu, 1999), and transportation facilities (Jin and Amin,
2018). These systems use feedback from state observa-
tions to generate dynamic routing decisions, enhancing
stability and throughput. However, their reliance on con-
nected cyber components for data collection and trans-
mission emposes them to persistent threats from mal-
functions and manipulations (Cardenas et al., 2009).
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Malfunctions can arise from technical issues including
network congestion, server unresponsiveness, packet
loss, firewall restriction, signal interference, and authen-
tication errors (Alpcan and Başar, 2010), or malicious
attacks such as Denial-of-Service (DoS) (Wang et al.,
2007; Al-Kahtani, 2012) that overwhelm servers with
excessive traffic and cut off state observations. These
disruptions may lead to the system operator’s failure
to deliver correct instructions. To illustrate the cause
and impact of the malfunctions, consider two real-world
motivating examples:

(1) Transportation: Imagine a vehicle experiencing a
failure in receiving routing information from a navi-
gation app due to network connection issues. In this
situation, drivers often resort to independent rout-
ing decisions based on personal preferences, such as
route types, tolls, scenery, and familiarity.

(2) Manufacturing: Similarly, in a production line,
where production units are supposed to be routed to
the shortest queue based on real-time routing infor-
mation, a communication failure or breakdown can
trigger a fallback mechanism (Fraile et al., 2018),
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leading to a random assignment to a default queue.

The above examples demonstrate two consequences of
failures 1 : (i) routing based on individual preferences,
historical data, or random selection; (ii) joining a default
queue following a fallback mechanism. From the system
perspective, the routing choices in the former outcome
exhibit a random nature.

Manipulations, on the other hand, describe strategic at-
tacks from adversaries with selfish or malicious intent.
These include (i) spoofing attacks that directly send de-
ceptive routing instructions to arrivals by impersonat-
ing the system operator and (ii) falsification attacks that
inject misleading queue length data or create fictitious
traffic, indirectly influencing the system operator’s rout-
ing decisions (Feng et al., 2022; Al-Kahtani, 2012; Sakiz
and Sen, 2017). For instance, a simulated traffic jam
can cause motorists to deviate from their planned routes
(Gravé-Lazi, 2014). Transportation infrastructure infor-
mation (e.g., traffic sensors, traffic lights) and vehicle
communications can also be intruded and manipulated
(Feng et al., 2022; Sakiz and Sen, 2017; Al-Kahtani,
2012). Similar security risks also exist in production lines
(Barrère et al., 2020; Fraile et al., 2018) and communica-
tion systems (Alpcan and Başar, 2010; Manshaei et al.,
2013; De Persis and Tesi, 2015).

Real-world service systems will not be accepted by
authorities, industry, and the public unless security is-
sues are well addressed. However, cyber security risks
have not been sufficiently studied in conjunction with
the physical queuing dynamics. Furthermore, perfectly
avoiding cyber failures is economically infeasible and
technically unnecessary. Therefore, it is crucial to un-
derstand the impact of such threats and to design
practical defense mechanisms. In practice, these defense
mechanisms can be implemented with dynamic acti-
vation/deactivation of prevention/detection measures
such as robust data validation, instruction encryption,
and strict security protocol adherence (Cardenas et al.,
2009; Manshaei et al., 2013). Nonetheless, these actions,
while active, entail technological costs on computational
resources, network bandwidth, energy consumption,
maintenance efforts, etc.

In response to the above concerns, we aim to address the
following two research questions in this paper:

(i) How to model the security vulnerabilities and quan-
tify the security risks for parallel queuing systems?

(ii) How to design traffic-stabilizing, cost-efficient de-
fense strategies against failures?

For the first question, we consider two scenarios of fail-
ures, viz. reliability failures and security failures. We
formulate the security risks in terms of failure-induced
queuing delays and defending costs. For the second ques-
tion, we analyze the stability criteria of the failure-prone
system with defense and characterize the structure of

1 This paper does not consider scenarios in which arrivals
leave or get rejected, say packet loss in computer networks.

the cost-efficient strategies. We also develop algorithms
to compute such strategies and discuss how to incorpo-
rate the stability condition. Our results are also demon-
strated via numerical examples and simulations.

This paper is related to two lines of work: queuing con-
trol and game theory. On the queuing side, the majority
of the existing analysis and design are based on perfect
observation of the states (i.e., queue lengths) and perfect
implementation of the control (Ephremides et al., 1980;
Halfin, 1985; Eschenfeldt and Gamarnik, 2018; Knessl
et al., 1986). Besides, researchers have noted the im-
pact of delayed (Kuri and Kumar, 1995; Mehdian et al.,
2017), erroneous (Beutler and Teneketzis, 1989; Xie and
Jin, 2020), or decentralized (Ouyang and Teneketzis,
2015) information. Although these results provide hints
for our problem, they do not directly apply to the se-
curity setting with failures such as imperfect sensing
(state observation) and imperfect control implementa-
tion. On the game side, a variety of game-theoretic mod-
els have been applied to studying cyber-physical secu-
rity in transportation (Tang et al., 2020; Laszka et al.,
2019) and communication (Bohacek et al., 2007; Alpcan
and Başar, 2010; Manshaei et al., 2013). However, to the
best of our knowledge, the security risks of queuing sys-
tems have not been well studied from a combined game-
theoretic and queuing-control perspective, which is es-
sential for capturing the coupling between the queuing
dynamics and the attacker-defender interactions.

Our model includes two parts: the physical part (parallel
servers) and the cyber part (dynamic routing with fail-
ures). Specifically, we investigate two failure scenarios:

(1) Reliability failures. A fault may occur with a
constant probability and the system operator can
choose to activate protection for each arrival. In
the event of a routing malfunction and the absence
of activated protection, the arrival joins a random
queue following certain probabilities; see Fig. 1a.

(2) Security failures. An adversary can launch an at-
tack on each arrival using a feedback strategy and
the system operator can choose to activate defense
for each arrival. In the event of an effective attack
and the absence of activated defense, the arrival
joins an adversary-desired queue, with the worst-
case scenario being the longest queue; see Fig. 1b.

To study the stability of a queuing system, previous
works typically relied on characterization or approxima-
tion of the steady-state distribution of queuing states
(Foley and McDonald, 2001). However, this approach is
hard to integrate with failure models. Additionally, the
steady-state distribution of queuing systems with state-
dependent transition rates is intricate. In response to
these challenges, we adopt a Lyapunov function-based
approach which has been applied to queuing systems in
no-failure scenarios (Kumar and Meyn, 1995; Dai and
Meyn, 1995; Eryilmaz and Srikant, 2007; Xie and Jin,
2022) and enables us to derive stability criteria for queu-
ing systems under control and to obtain upper bounds
for the long-term average number of jobs in the system
(Meyn and Tweedie, 1993).
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Fig. 1. An n-queue system with shortest-queue routing under
failures. See Section 2 for definitions of notations.

To analyze the optimal/equilibrium strategies, we ex-
tend the dynamic programming recursion technique in
(Bertsekas, 2012, Chapter 4) and (Hajek, 1984) from
two queues to n queues and failure-prone settings. This
approach allows us to prove the threshold properties
of the optimal protection under reliability failures and
the equilibria of the security game based on Hamilton-
Jacobi-Belmman (HJB) equations.

Our theoretical analysis provides practical insights for
cost-aware strategic defense design. A key finding is that
the operator has a higher incentive to protect/defend if
the queues are more “imbalanced”. In addition, numer-
ical analysis indicates that 1) the incentive to protect
grows with failure probability, declines with technolog-
ical cost, and grows with traffic intensity; 2) the opti-
mal protecting policy outperforms static policies such as
never protect and always protect. We also note that the
optimal policy is not always stabilizing, leading to the
proposal of a stability-constrained optimal policy.

Our contributions lie in the following three aspects:

(1) Modeling: We model the cyber-physical vulner-
abilities of parallel servers with dynamic routing
under reliability/security failures. We also formu-
late the trade-off between queuing and technolog-
ical costs in the two failure scenarios as a Markov
decision process and a stochastic game respectively.

(2) Analysis: We establish stability criteria for dy-
namic routing with failures using Lyapunov func-
tions. We also show the threshold properties of the

optimal protection and the game equilibria on mul-
tidimensional state space using DP recursion.

(3) Design: Our theoretical results offer insights into
the design of cost-aware defense mechanisms. We
also propose algorithms for estimating stability-
constrained optimal policies and game equilibria.

This paper is structured as follows. Section 2 presents
the cyber-physical model. Section 3 and 4 study protec-
tion under reliability failures and defense against secu-
rity failures, respectively. Section 5 gives a conclusion.

2 Parallel servers and failure models

2.1 Parallel server system

Consider a queuing system with n identical paral-
lel servers. Jobs (e.g., vehicles, customers, production
units) arrive according to a Poisson process of rate
λ > 0. Each server serves jobs at an exponential rate
of µ > 0. The number of jobs either waiting or be-
ing served in the n servers at time t is denoted by

X(t) =
[

X1(t) X2(t) · · · Xn(t)
]

∈ Z
n
≥0.

We use x + (−)ei to denote adding 1 to (subtracting 1
from) the i-th element xi. Since the queue lengths are
always non-negative, i.e., xi ≥ 0, we use (x − ei)

+ =
max(x−ei, 0) to avoid the case that subtracting 1 makes
the element negative. Let xmin = mini xi and xmax =
maxi xi. We use x−i to denote variables in x other than
xi, and we use the notation x + emin when adding 1 to
xmin while keeping x−i the same. We call x a diagonal
vector if x1 = x2 = · · · = xn and a non-diagonal vec-
tor otherwise. Denote the one-norm of the vector x as
||x||1:= x1 +x2 + · · ·+xn. Then ||X(t)||1 means the to-
tal number of jobs in the system at time t. We use x ≻ 0
to denote that x is not a zero vector, i.e., ||x||1> 0.

Without any failures, any arriving job should be allo-
cated to the shortest queue. If there are multiple short-
est queues, then the job is randomly allocated to one of
them with (not necessarily equal) probabilities.

2.2 Reliability failures

Suppose that upon the arrival of a job to the system, a
fault may occur with a constant probability a ∈ (0, 1]
and lead to a routing instruction malfunction. Conse-
quently, the job joins a random queue with respective
probabilities 2 p1, p2, · · · , pn ∈ [0, 1], where

∑n
i=1 pi = 1.

For convenience, we define pmax := max(p1, p2, · · · , pn).

The system operator can decide whether to protect
an arriving job to ensure its optimal routing, i.e., the
shortest-queue routing, as illustrated in Fig. 1a. How-
ever, such protection comes at the cost of a rate cb > 0.

2 The operator is assumed to know the values of random
routing probabilities p, which can be either estimated using
historical data and statistical techniques or predetermined
by a fallback mechanism, contingent upon specific contexts.
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In this scenario, the system operator faces a trade-off be-
tween queuing and protection costs. We formulate this
problem as an infinite-horizon continuous-time Markov
decision process with queue lengths as states. The oper-
ator adopts a Markovian policy, denoted as β : Zn

≥0 →

∆({NP,P}), with ∆({NP,P}) := {(1− b, b) : b ∈ [0, 1]}
representing the probability distribution over the action
set {not protect, protect}. For simplicity, when the pol-
icy is deterministic, we write the mapping as β : Zn

≥0 →

{NP,P}. The transition matrix PR : Zn
≥0 × {NP,P} 7→

∆
(

Z
n
≥0

)

capturing queuing dynamics under the protec-

tion against reliability failures is given by PR(x+ emin |
x, b) = (1− a1{b = NP})λ, PR(x+ ei | x, b) = a1{b ̸=
NP}piλ, and PR((x− ei)

+ | x, ·) = µ, ∀i ∈ [n], where b

represents the chosen action at state x.

The objective of the operator is to find an optimal pro-
tecting policy β that minimizes the expected cumulative
discounted cost J(x;β) given initial state X(0) = x:

J∗(x) :=min
β

J(x;β)

:= min
β

E

[

∫ ∞

0

e−γtC(X(t), B(t))dt
∣

∣

∣
X(0) = x,B(t)

∼ β(X(t)), X(t+ dt) ∼ PR(· | X(t), B(t))
]

, (1)

where γ ∈ (0, 1) is the discounted factor,B(t) ∈ {NP,P}
denotes the action chosen by the operator at time t, and
C : Zn

≥0×{NP,P} → R≥0 is the net cost rate defined as

C(ξ, b) := ||ξ||1+cb1{b = P}.

Denote the optimal protecting policy as β∗, then

β∗(x) := argmin
β

J(x;β), ∀x ∈ Z
n
≥0.

2.3 Security failures

When each job arrives, a malicious attacker can manip-
ulate the routing, directing the job to any desired queue.
For simplicity, we consider the attacker’s best action
(and thus the system operator’s worst case) – sending to
the longest queue, as shown in Fig. 1b. Attacking a job
also incurs a technological cost rate, denoted by ca > 0.
The operator’s action is akin to the reliability scenario.
The only difference is in this security scenario, the op-
erator is aware of a simultaneous strategic attacker.

We formulate the interaction between the attacker
and the operator (called defender in this scenario) as
an infinite-horizon stochastic game. The attacker se-
lects a (possibly mixed) Markov strategy α : Z

n
≥0 →

∆({NA,A}) with ∆({NA,A}) := {(1−a, a) : a ∈ [0, 1]}
representing the probability distribution over the ac-
tion set {not attack, attack}. The transition matrix
PS : Zn

≥0 × {NA,A} × {NP,P} 7→ ∆
(

Z
n
≥0

)

capturing
the queuing dynamics of the attacker-defender game is
given by PS(ξ + emax | ξ, a, b) = 1{a = A}1{b = NP}λ,
PS(ξ + emin | ξ, a, b) = 1{a ̸= A}1{b ̸= NP}λ,
PS((ξ − ei)

+ | ξ, ·, ·) = µ, ∀i ∈ [n].

In this security game, the objective of the attacker is
to maximize the expected cumulative discounted reward

V (x;α, β) given the operator’s Markov strategy β:

V ∗
A(x;β) :=max

α
V (x;α, β)

:=max
α

E

[

∫ ∞

0

e−γtR(X(t), A(t), B(t))dt
∣

∣

∣

X(0) = x, A(t) ∼ α(X(t)), B(t) ∼ β(X(t)),

X(t+ dt) ∼ PS(· | X(t), A(t), B(t))
]

,

where A(t) ∈ {NA,A} and B(t) ∈ {NP,P} denote the
actions chosen by the attacker and the defender respec-
tively at time t, and R : Zn

≥0×{NA,A}× {NP,P} → R

is the net reward rate defined as

R(ξ, a, b) := ||ξ||1+cb1{b = P} − ca1{a = A}.

Here we model the attacker-defender game as a zero-
sum game, which aligns with established security game
literature (Alpcan and Başar, 2010). The attacker’s re-
ward comprises queuing attacking costs, along with a
deduction for defending costs. This is motivated by the
attacker’s potential interest in maximizing the opera-
tor’s total operating cost, akin to competitive motives in
business contests. Similarly, the defender aims to mini-
mize the expected cumulative discounted loss given the
attacker’s Markov strategy α:

V ∗
B(x;α) := min

β
V (x;α, β).

In such an attacker-defender game, we define theMarkov
perfect equilibrium (α∗, β∗) as: for each state x ∈ Z

n
≥0,

α∗(x) = argmax
α

V (x;α, β∗), β∗(x) = argmin
β

V (x;α∗, β).

3 Protection against reliability failures

In this section, we consider the design of operator’s pro-
tecting policy from two aspects: stability and optimality.

It is well known that a parallel n-server system is sta-
bilizable if and only if the demand is less than the total
capacity, i.e., λ < nµ. In the following results, we will see
that even if this condition is met, in the absence of pro-
tection, reliability failures can still destabilize the queu-
ing system, especially when the probability of failures is
high and when the random faulty routing is highly het-
erogeneous; the following summarizes the above insights.

Proposition 1 The unprotected n-server system with
faulty probability a is stable if and only if

λ < nµ, (2a)

apmaxλ < µ. (2b)

Furthermore, when the system is stable, we have the fol-
lowing upper bound of the long-time average number of
jobs (denoted by X̄):

lim sup
t→∞

1

t

t
∫

τ=0

E[||X(τ)||1]dτ ≤
λ+ nµ

2
(

µ−max(apmax,
1
n
)λ
) .

The next result provides a stability criterion for an n-
server system with reliability failures and a given pro-
tecting policy. Its proof is presented in Section 3.1.
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Theorem 1 (Stability under reliability failures)
Consider an n-server system with reliability failure prob-
ability a > 0. Suppose the operator selects a Markovian
policy β : Zn

≥0 → ∆({NP,P}) with protection probability

b(x) := β(P | x) ∈ [0, 1] at state x ∈ Z
n
≥0. Then we have:

(i) The system is stable if, for every non-diagonal state
vector x, the protection probability b(x) satisfies

b(x) > 1−
µ||x||1−λxmin

aλ

(

n
∑

i=1

pixi − xmin

) . (3)

(ii) When (2a) holds, there must exist a policy satisfying
(3). When (2a)-(2b) hold, every policy satisfies (3).

(iii) If (3) holds, the long-time average number of jobs
in the system is upper-bounded by

X̄ ≤
λ+ nµ

2c
, (4)

where

c = min
x≻0

{

µ−λ
xmin

||x||1
− a(1− b(x))λ

∑n
i=1 pixi − xmin

||x||1

}

.

The next result implies a key finding: protection should
be activated when queue lengths are more “imbalanced”.

Theorem 2 (Optimal protecting policy) Consider
an n-server system subject to reliability failures. An op-
timal deterministic protecting policy β∗ exists. This de-
terministic policy is also a threshold policy characterized
by n threshold functions fm (m = 1, 2, · · · , n) via

b∗(x) := β∗(P | x) = 1

{

∧n

m=1
(fm(x) > 0)

}

,

where for each m = 1, 2, · · · , n,

(i) the threshold function fm : Zn
≥0 → R partitions the

polyhedron Xm = {x ∈ Z
n
≥0 | xi ≥ xm, ∀1 ≤ i ≤

n} into two subsets: {x ∈ Xm | β
∗(x) = NP} and

{x ∈Xm | β
∗(x) = P} by means of

b∗(x) = 1{fm(x) > 0}, ∀x ∈Xm;

(ii) within the polyhedron Xm, the optimal protection
probability b∗(x) is monotonically non-decreasing
(resp. non-increasing) in xi (∀i ̸= m) (resp. xm)
while other variables x−i (resp. x−m) are fixed.

Here (ii) supplements (i), demonstrating that the thresh-
old functions characterize the degree of “imbalanced-
ness”. They partition the state space into n+1 subsets:
one “inner subset” with “balanced” states correspond-
ing to the action “not protect”, and the other n “outer
subsets” with “imbalanced” states for action “protect”.
See the white and black areas in Fig. 2a. The concept
“threshold function” has appeared in prior works (Bert-
sekas, 2012; Hajek, 1984; Stidham and Weber, 1993).

The rest of this section is devoted to the proofs, discus-
sions, and numerical analysis of Theorem 1-2.
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Fig. 2. The characterization of the optimal protecting pol-

icy β∗ and the stability-constrained optimal policy β̂∗ for a
two-server system (p1 = 0.1, p2 = 0.9, ρ = 0.5, a = 0.9).

3.1 Proof of Theorem 1

In this subsection, we provide a proof of the stability con-
dition under the protected case (Theorem 1) and leave
the proof of stability under the unprotected case (Propo-
sition 1) to Appendix A.1. Both proofs use the following
classical result (Meyn and Tweedie, 1993, Theorem 4.3):

Foster-Lyapunov drift criterion: Consider a
countable-state continuous-time Markov chain X with
state space S. LetW : S → R≥0 be a qualified Lyapunov
function, and let L denote the infinitesimal generator
for W , with the drift LW given by

LW (x) := lim
t→0

1

t
E[W (X(t)) | X(0) = x]−W (x).

For a non-negative function f : S → R≥0, if there exists
c > 0 and d < ∞ and a compact set C ⊂ S such that
for every x /∈ C, the following drift condition holds:

LW (x) ≤ −cf(x) + d,

then for any initial condition X(0) = x ∈ S, we have

lim sup
t→∞

1

t

t
∫

τ=0

E[f(X(τ))]dτ ≤ d/c.

In this paper, we care about mean boundedness, i.e., the
upper bound of the long-time average number of jobs.
Thus, when applying this theorem, we select S = Z

n
≥0,

f(x) = ||x||1, and the quadratic Lyapunov function

W (x) =
1

2

n
∑

i=1

x2
i . (5)

Proof of Theorem 1. (i) Apply the infinitesimal generator
to the countable-state continuous-time MDP {X(t)}t≥0

under the protecting policy β (denoted as Lβ) and the
Lyapunov function W given by (5), we have

LβW (x) =a(1− b(x))λ

n
∑

i=1

pi (W (x+ ei)−W (x))

+ (1− a(1− b(x)))λ (W (x+ emin)−W (x))

+ µ

n
∑

i=1

1{xi > 0} (W (x− ei)−W (x))

5



=a(1− b(x))
λ

2

n
∑

i=1

pi
(

(xi + 1)2 − x2
i

)

+ (1− a(1− b(x)))
λ

2

(

(xmin + 1)2 − x2
min

)

+
µ

2

n
∑

i=1

1{xi > 0}
(

(xi − 1)2 − x2
i

)

=a(1− b(x))λ

n
∑

i=1

pixi + (1− a(1− b(x)))λxmin

− µ

n
∑

i=1

xi +
1

2
λ+

1

2

n
∑

i=1

1{xi > 0}µ

≤a(1− b(x))λ

(

n
∑

i=1

pixi − xmin

)

+ (λxmin

− µ||x||1) +
1

2
(λ+ nµ).

By (3) there exists constants

c = min
x≻0

{

µ−λ
xmin

||x||1
−a(1−b(x))λ

∑n
i=1 pixi − xmin

||x||1

}

> 0

and d = 1
2 (λ+ nµ) such that

LβW (x) ≤ −c||x||1+d, ∀x ∈ Z
n
≥0. (6)

(ii) When λ < nµ, for every non-diagonal vector x, we

have µ||x||1−λxmin > µ||x||1−λ
||x||1
n

=
(

µ− λ
n

)

||x||1>

0 and
∑n

i=1 pixi − xmin > 0, then

1−
µ||x||1−λxmin

aλ

(

n
∑

i=1

pixi − xmin

) < 1.

Thus, b(x) ≡ 1 satisfies the stability condition (3) and
β(x) ≡ P is a stabilizing policy that exists.

When max(apmax, 1/n)λ < µ, for every non-diagonal
vector x, we have aλ

∑n
i=1 pixi + (1 − a)λxmin ≤

max(apmax, 1/n)λ||x||1< µ||x||1, and then

1−
µ||x||1−λxmin

aλ

(

n
∑

i=1

pixi − xmin

) < 0.

Thus, every policy satisfies the stability criterion (3).

(iii) By Foster-Lyapunov criterion, the drift condition
(6) implies the upper bound (4) and thus the stability.□

Theorem 1 provides a stability criterion for any protect-
ing policy. This implies that the operator needs to choose
a positive protection probability to stabilize the system
at certain states. We will use stabilizing threshold prob-
abilities given by (3) to obtain a stability-constrained
optimal policy. See Section 3.3 and Appendix A.4.

3.2 Proof of Theorem 2

A standard way to solve the discounted infinite-horizon
minimization problem (1) is to write down its HJB equa-

tion for optimality (Chang, 2004, Chapter 4):

0 = min
β
{||x||1+cbb(x)− γJ∗(x) + LβJ∗(x)}. (7)

We can rewrite it in the following recurrence form:

(γ+λ+ nµ)J∗(x) = min
β

{

||x||1+cbb(x)+

µ

n
∑

i=1

J∗((x− ei)
+) + λJ∗(x+ emin) + (1− b(x))a

λ
(

n
∑

i=1

piJ
∗(x+ ei)− J∗(x+ emin)

)

}

. (8)

The optimal protecting policy β∗ is essentially the solu-
tion to (8). By a standard result of discrete-state finite-
actionMDP (Puterman, 2014, Theorem 6.2.10), an opti-
mal deterministic stationary policy exists. Furthermore,
in the no-failure scenario (a = 0), the operator never
needs to protect (i.e., ∀x, β∗(x) = NP); and when all
queue lengths are equal, i.e., x1 = x2 = · · · = xn, the
operator deterministically deactivates the protection.

Let λ̃ = λ/(γ + λ + nµ), µ̃ = µ/(γ + λ + nµ), and

J̃∗(·) = (γ + λ+ nµ)J∗(·), then we can rewrite (8) as

J̃∗(x) = min
b∈{0,1}

{

||x||1+cbb+ µ̃

n
∑

i=1

J̃∗((x− ei)
+)

+ λ̃J̃∗(x+ emin) + (1− b)a

λ̃
(

n
∑

i=1

piJ̃
∗(x+ ei)− J̃∗(x+ emin)

)}

=: min
b∈{0,1}

{

c(x, b) +
∑

x′

p(x′|x, b)J̃∗(x′)
}

. (9)

By applying the DP recursion technique (Bertsekas,
2012, Chapter 4.6), we can demonstrate (i) the exis-
tence of threshold functions and (ii) the monotonicity
of the optimal protection probability, i.e., ∀x ∈ Z

n
≥0, if

we let m = argmini xi, then

b∗(x+ ei) ≥ b∗(x), ∀i ̸= m

b∗(x− em) ≥ b∗(x).
(10)

Now we prove (10). Let ∆∗(x) =
n
∑

i=1

piJ̃
∗(x + ei) −

J̃∗(x+ em). Note that by the definition of β∗ and The-
orem 2(i), b∗(x) = 1 if ∆∗(x) > cb

aλ̃
and b∗(x) = 0 if

∆∗(x) < cb
aλ̃

. Then the monotonicity of b∗ is essentially

the monotonicity of ∆∗. Thus, (10) is equivalent to

∆∗(x+ ei) ≥ ∆∗(x), ∀i ̸= m

∆∗(x− em) ≥ ∆∗(x).
(11)

We defer the proof of (11) to Appendix A.2. The high-
level idea is to use induction based on value iteration. □

3.3 Numerical Analysis and Discussions

The optimal policy can be estimated using an algorithm
called truncated policy iteration (TPI). See Algorithm 1
in Appendix A.4. It is adapted from the classic policy
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iteration algorithm (Sutton and Barto, 2018) and based
on the following recursion form of the HJB equation (9):

J̃k+1(x) = min
b

{

c(x, b) + γ
∑

x′

p(x′|x, b)J̃k(x′)
}

. (12)

Next, we conduct two numerical analysis. The first one is
about the relationship between the incentive to protect
and the system parameters. The second one compares
the optimal policy with two benchmark policies: always
protect and never protect.

In the first analysis, we explore the tipping points when
the system operator starts protecting “riskier” states un-
der the optimal policy β∗, i.e., ∃x s.t. β∗(x) = P, as fail-
ure probability a and technological cost cb vary. Fig. 3
illustrates that the incentive to protect is non-decreasing
in failure probability a, non-increasing in technological
cost cb and non-decreasing in traffic intensity (a.k.a. uti-
lization ratio) ρ = λ/(nµ). In short, the operator has a
higher incentive to protect when 1) the failure probabil-
ity is higher; 2) the technological cost is lower; and 3)
the traffic intensity is higher.
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Fig. 3. The tipping points when the system operator starts
to protect “riskier” states under the optimal policy as the
failure probability and the technological cost change.

The second analysis involves running aMonte Carlo sim-
ulation on the cumulative discounted cost of the optimal
policy and two benchmark policies under varying failure
probabilities. The results show that the optimal policy
β∗ can significantly reduce the security risk, compared
to two static policies: β(x) ≡ P (always protects) and
β(x) ≡ NP (never protects). See Fig. 4 where the yellow
curves are below the red and green curves. The cumula-
tive discounted cost is calculated as the sum of the queu-
ing costs and technological costs in the episode (50000s),
normalized within the range of [0,1]. Note that under
the policy β(x) ≡ P, the job always joins the shortest
queue regardless of the failure probability, rendering the
cumulative discounted cost as a constant (red curve).

Last, we address the integration of stability and optimal-
ity considerations. Notably, the optimal policy may not
always be stabilizing. For instance, the optimal policy
under the parameters p1 = 0.1, p2 = 0.9, ρ = 0.5, a =
0.9 fails to meet the stability condition (3). To address
this issue, we can select an optimal policy satisfying the
stability condition (3) by solving a stability-constrained
MDP (Zanon et al., 2022). This involves adding an addi-
tional constraint (3) to the optimal control problem (1).
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Fig. 4. Comparison of the normalized cumulative discounted
costs between the optimal policy and the static policies
(p1 = 0.1, p2 = 0.9, ρ = 0.8).

We call the solution stability-constrained optimal policy

and denote it as β̂∗. This policy, unlike the optimal one,
involves randomization over actions {P, NP} at some
states, see Fig. 2b. Appendix A.4 gives a correspond-
ing modification of the TPI algorithm. Additionally, we
can examine the existence of a stabilizing policy and the
stabilizability of the optimal policy using stability con-
ditions (2a)-(2b) as follows:

• When (2a)-(2b) hold, i.e., max(apmax, 1/n)λ < µ,
the optimal protecting policy is also stabilizing.
• When only (2a) holds, i.e., λ/n < µ ≤ apmaxλ, the
optimal protecting policy may not be stabilizing.
• When (2a) does not hold, i.e., λ ≥ µn, no stabilizing
protecting policy exists.

4 Defense against security failures

In this section, we analyze the attacker’s attacking strat-
egy and the system operator’s defending strategy from
two aspects: stability and game equilibrium.

The following criterion can be used for checking the sta-
bility of the n-server system under any state-dependent
attacking and defending strategies:

Theorem 3 (Stability under security failures)
Consider an n-server system facing security failures.
Suppose at each state x ∈ Z

n
≥0, the attacker (resp. sys-

tem operator) selects a state-dependent Markov strat-
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egy α (resp. β) with attack (resp. defense) probability
a(x) := α(A | x) (resp. b(x) := β(P | x)). Then we have:

(i) The system is stable when the attack and defense
probabilities a(x) and b(x) satisfy the following for
every non-diagonal state vector x,

a(x) (1− b(x)) <
µ||x||1−λxmin

λ(xmax − xmin)
. (13)

(ii) When λ < nµ, there must exist a Markov strategy
β with defense probability b(x) satisfying (13).

(iii) Furthermore, if (13) holds, then the long-time av-
erage number of jobs is upper-bounded by

X̄ ≤
λ+ nµ

2c
, (14)

where

c = min
x≻0

{

µ−λ
xmin

||x||1
−a(x)(1−b(x))λ

xmax − xmin

||x||1

}

.

The next result characterizes the structure of Markov
perfect equilibria: the defense probability is higher when
queue lengths are more “imbalanced”.

Theorem 4 (Markov perfect equilibrium) The
Markov perfect equilibrium (MPE) of the attacker-
defender stochastic game exists, and the following holds:

(i) MPE (α∗, β∗) is qualitatively different over the fol-
lowing three subsets of the state space Z

n
≥0:

(a) S1 = {x ∈ Z
n
≥0 | (α

∗(x), β∗(x)) = (NA,NP)};

(“low risk”)
(b) S2 = {x ∈ Z

n
≥0 | (α

∗(x), β∗(x)) = (A,NP)};

(“medium risk”)
(c) S3 = {x ∈ Z

n
≥0 | (α∗(x), β∗(x)) is mixed}.

(“high risk”)
(ii) The boundaries between S1 and S2, as well as those

between S2 and S3 are characterized by threshold
functions gij , hij (1 ≤ i ̸= j ≤ n) as follows:

S1 =
{

x ∈ Z
n
≥0

∣

∣

∣

∧

1≤i ̸=j≤n
(gij(x) < 0)

}

,

S2 =
{

x ∈ Z
n
≥0

∣

∣

∣

∧

1≤i ̸=j≤n
(gij(x) > 0 ∧ hij(x) < 0)

}

,

S3 =
{

x ∈ Z
n
≥0

∣

∣

∣

∧

1≤i ̸=j≤n
(hij(x) > 0)

}

.

For each i, j = 1, 2, · · · , n (i ̸= j),
(a) gij , hij : Z

n
≥0 → R separate the polyhedron

Xij = {x ∈ Z
n
≥0 | xi = xmax, xj = xmin} into

three subsets: S1 ∩Xij, S2 ∩Xij and S3 ∩Xij;
(b) state x has a lower (resp. higher) or equal secu-

rity level than state x+ ei (resp. x+ ej).

The threshold functions here also characterize the de-
gree of “imbalancedness”. Intuitively, S1–S3 correspond
to different security risk levels, leading to varied defense
decisions: when queues are more “imbalanced”, the secu-
rity risk is higher, and the incentive to defend is higher.
See Fig. 5 for a visualization. For the relationship be-
tween the security levels and system parameters (e.g.,
technological costs, traffic intensity), see Section 4.2.
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Fig. 5. The equilibrium attacking and defending strategies
for a two-server system (ρ = 0.5, ca = 0.1, cb = 0.2).

The security game has four equilibrium regimes under
different combinations of attack cost ca and defense cost
cb; see Fig. 6. Each regime is labeled with corresponding
subsets of Markov perfect equilibria and security levels.

Fig. 6. Equilibrium regimes of the security game (ρ = 0.8).

The rest of this section is devoted to the proofs of Theo-
rem 3-4, as well as an additional discussion on the com-
putation and regimes of Markov perfect equilibria.

4.1 Proof of Theorem 3

(i) By applying the infinitesimal generator Lα,β to the
MDP {X(t)}t≥0 under the attacking strategy α and the
defending strategy β as well as the Lyapunov function
(5), we have

Lα,βW (x) = (1− a(x)(1− b(x)))
λ

2

(

(xmin + 1)2 − x2
min

)

+ a(x)(1− b(x))
λ

2

(

(xmax + 1)2 − x2
i

)

+
µ

2

n
∑

i=1

1{xi > 0}
(

(xi − 1)2 − x2
i

)

≤a(x)(1− b(x))λ(xmax − xmin)

+ λxmin − µ||x||1+
1

2
(λ+ nµ). (15)

Hence, by (13) there exists c = min
x≻0

{µ−λ xmin

||x||1
−a(x)(1−

b(x))λxmax−xmin

||x||1
)} > 0 and d = 1

2 (λ+ nµ) such that

Lα,βW (x) ≤ −c||x||1+d, ∀x ∈ Z
n
≥0.
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(ii) When λ < nµ, for every non-diagonal vector x, the
inequalities µ||x||1≥ nµxmin > λxmin and xmax > xmin

hold. This implies µ||x||1−λxmin

λ(xmax−xmin)
> 0. Consequently, re-

gardless of the attacking strategy, the defending strategy
with b(x) ≡ 1 satisfies the stability condition (13).

(iii) By the Foster-Lyapunov criterion, the drift condi-
tion (15) implies the upper bound (14) and thus the sta-
bility of the system. □

4.2 Proof of Theorem 4

For the attacker-defender stochastic game, we first show
the existence of Markov perfect equilibrium.

Proposition 2 Markov perfect equilibrium (α∗, β∗) of
the attacker-defender stochastic game always exists.

Proof. Note that the state space Z
n
≥0 is countable and

the action space {0, 1} is finite (and thus compact). By
(Federgruen, 1978, Theorem 1), a MPE exists. □

Next, we discuss the derivation of Markov perfect equi-
libria. According to Shapley’s extension on the mini-
max theorem for stochastic game (Shapley, 1953), the
attacker and the defender have the same minimax value:

V ∗
B(x;α

∗) = V ∗
A(x;β

∗) = V ∗(x).

Thus, we only need to compute the minimax value V ∗

of the stochastic game. Similar to the derivation of (9),
we obtain the following HJB equation of the minimax
problem (letting Ṽ ∗(·) = (γ + λ+ nµ)V ∗(·)):

Ṽ ∗(x) = max
α

min
β

{

||x||1+cbb(x)− caa(x)+

µ̃
∑

i

Ṽ ∗((x− ei)
+) + λ̃Ṽ ∗(x+ emin) + a(x)(1− b(x))

λ̃
(

Ṽ ∗(x+ emax)− Ṽ ∗(x+ emin)
)

}

. (16)

For each state x ∈ Z
n
≥0, let δ

∗(x) = λ̃(Ṽ ∗(x + emax) −

Ṽ ∗(x+ emin)) and build an auxiliary matrix game

M(x, Ṽ ∗) =
(

||x||1+µ̃

n
∑

i=1

Ṽ ∗((x− ei)
+) + λ̃Ṽ ∗(x+ emin)

)

[

1 1

1 1

]

+

[

0 cb

−ca + δ∗(x) −ca + cb

]

. (17)

Then δ∗(x) and (α∗(x), β∗(x)) can be obtained by
Shapley-Snow method (Shapley and Snow, 1952), a con-
venient algorithm for finding the minimax value and
equilibrium strategies of any two-player zero-sum game.

Proof of Theorem 4(i). Consider the matrix game

M(x, Ṽ ∗) defined as (17) where the attacker is the row
player and the system operator is the column player.
Based on the Shapley-Snow method, the equilibrium
strategies (α∗(x), β∗(x)) are in the following three cases
depending on the relationship between δ∗(x) and the
technological costs ca, cb > 0:

(a) When δ∗(x) ≤ ca, it is obvious that α∗(x) = NA
(i.e., a∗(x) = 0) is a dominant strategy. Then cb >
0 implies β∗(x) = NP (i.e., b∗(x) = 0). That is,
the attacker has no incentive to attack, and thus
the defender does not need to defend. At this pure
strategy equilibrium, the security risk is low.

(b) When the defending cost cb is higher then the at-
tacking cost ca, and ca < δ∗(x) ≤ cb, it is obvious
that β∗(x) = NP (i.e., b∗(x) = 0) is a dominant
strategy. Then cb > −ca + cb implies α∗(x) = A
(i.e., a∗(x) = 1). That is, the defender has no in-
centive to defend and consequently, the attacker
prefers to attack. At this pure strategy equilibrium,
the security risk is higher than in the first case but
tolerable.

(c) When δ∗(x) > max{ca, cb} > 0, no saddle point
exists. Then both players consider mixed strategies
with a∗(x) = cb

δ∗(x) , b
∗(x) = 1 − ca

δ∗(x) . Particu-

larly, the operator needs to select positive protect-
ing probability, and now the security risk is high.

The above three cases correspond to the three subsets of
states. Note that the subset S2 is empty when ca > cb.□

From the above proof, we observe that for fixed ca and cb,
the security risk level is higher when δ∗ is larger. Then as
in the proof of Theorem 2, we use the equivalence of the
monotonicity of security risk levels and the monotonicity
of δ∗ to show the threshold property of the equilibria.

Proof of Theorem 4(ii). For any x ∈ Z
n
≥0, let l =

argmaxi xi, m = argmini xi. Then δ∗(x) = λ̃(Ṽ ∗(x +

el)− Ṽ ∗(x+em)). Since the monotonicity of the security
risk levels of the states is equivalent to the monotonicity
of δ∗, and implies the existence of the threshold func-
tions, it is sufficient to show that δ∗ is monotonically
non-decreasing (resp. non-increasing) in the largest
variable xmax (resp. the smallest variable xmin) when
other variables are fixed; that is,

δ∗(x+ el) ≥ δ∗(x), δ∗(x− em) ≥ δ∗(x). (18)

The proof of (18) also uses induction based on value
iteration and can be found in Appendix A.3. □

4.3 Equilibrium analysis and discussions

First, we develop an adaptation of Shapley’s algorithm
(Shapley, 1953; Alpcan and Başar, 2010)to compute the
minimax value V ∗ and the equilibrium (α∗, β∗) based on
the DP recursion of HJB equation (16). See Algorithm

2 in Appendix 2. In each iteration, let δ(x) = λ̃(Ṽ (x +

emax)− Ṽ (x+emin)) and build an auxiliary matrix game

M(x, Ṽ ) as in (17); then update Ṽ (x) with the minimax
value val(M) given by the Shapley-Snow method:

• when δ(x) ≤ ca, val(M) = ||x||1+µ̃
∑n

i=1 Ṽ ((x −

ei)
+) + λ̃Ṽ (x+ emin);

• when ca < δ(x) ≤ cb, val(M) = ||x||1−ca +

µ̃
n
∑

i=1

Ṽ ((x− ei)
+) + λ̃Ṽ (x+ emax);
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• when δ(x) > max{ca, cb}, val(M) = ||x||1+cb +

µ̃
∑n

i=1 Ṽ ((x− ei)
+) + λ̃Ṽ (x+ emin)−

cacb
δ(x) .

When Ṽ (x) converges to Ṽ ∗(x), we again use Shapley-

Snow method to solve the matrix game M(x, Ṽ ∗) and
obtain the estimation of the equilibrium (α∗(x), β∗(x)).

Next, we discuss the existence of different security lev-
els under different combinations of ca and cb. We have
seen that no medium-risk state exists when ca > cb. In
Fig. 6, various regimes correspond to particular combi-
nations of security levels. Under large attacking costs,
the attacker has no incentive to attack, then only the
low-risk states exist (see regime IV). When the attack-
ing cost goes smaller but still greater than the defending
cost (ca > cb), not only the low-risk states but also the
high-risk states exist (see regime III) since the attacker
has less incentive to attack. As the defending cost in-
creases to be greater than the attacking cost (cb > ca),
the defender has less incentive to defend, and now all risk
levels including the medium risk exist (see regime II).

Last, we remark that deriving a stability-constrained
equilibrium is not reasonable as constraints can only be
imposed on the system operator, not the attacker. Nev-
ertheless, we can derive stability-constrained best re-
sponses for the operator, given the attacker’s strategy.

5 Concluding Remarks

In this work, we address reliability and security con-
cerns in dynamic routing and propose cost-efficient pro-
tection/defense advice for service system operators. Our
theoretical results can provide insights for real-world ap-
plications like vehicle navigation, signal-free intersection
control, flight dispatch, and data packet routing.

Future directions include 1) detailed analysis of stability-
constrained optimal policies/best responses; 2) exten-
sion to general queuing networks, note that stability for
renewal arrival processes and general service times can
be established using fluid model techniques (Dai and
Meyn, 1995); 3) design of practical near-optimal heuris-
tic policies and analysis of optimality gaps; and 4) design
of efficient algorithms for numerous parallel servers.
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A Appendices

A.1 Proof of Proposition 1

Here we provide the proof of the stability condition for
an unprotected system using standard results on Poisson

process subdivision and the generalized join the shortest
queue systems (Foley and McDonald, 2001, Theorem 1).

Stability of generalized JSQ: Let N = {1, 2, · · · , n}
be the set of n exponential servers. For each nonempty
subset S ⊂ N , define the traffic intensity on S as

ρS :=

∑

S′⊂S λS′

µS

=

∑

S′⊂S λS′

∑

i∈S µi

.

Let ρmax := maxS⊂N ρS be the traffic intensity of the
most heavily loaded subset. The generalized join the
shortest queue system is stable if and only if ρmax < 1.

Proof of proposition 1. The unprotected n-queue system
has n+1 classes of jobs. The i-th class enters server i as a
Poisson process of rate apiλ (1 ≤ i ≤ n). The (n+1)-th
class enters the n-queue system as a Poisson process of
rate (1−a)λ; when a job of this class arrives, the job joins
the shortest queue. According to the above theorem, the
(n+ 1)-class, n-server system is stable if and only if

ρmax = max

(

max
1≤i≤n

apiλ/µ, λ/(nµ)

)

< 1,

which is equivalent to (2a)-(2b).

By applying the infinitesimal generator to the same Lya-
punov function (5) we have

LW (x) =a
λ

2

n
∑

i=1

pi
(

(xi + 1)2 − x2
i

)

+ (1− a)
λ

2

(

(xmin + 1)2 − x2
min

)

+
µ

2

n
∑

i=1

1{xi > 0}
(

(xi − 1)2 − x2
i

)

=aλ

n
∑

i=1

pixi + (1− a)λxmin − µ

n
∑

i=1

xi

+
λ

2
+

µ

2

n
∑

i=1

1{xi > 0}

≤ (max(apmax, 1/n)λ− µ) ||x||1+
1

2
(λ+ nµ).

Hence, by (2a)–(2b) there exists a constant c = µ −
max(apmax, 1/n)λ > 0 and d = 1

2 (λ+ nµ) such that

LW (x) ≤ −c||x||1+d, ∀x ∈ Z
n
≥0.

By the Foster-Lyapunov drift criterion, this drift condi-
tion implies the upper bound and thus the stability. □

A.2 Induction part of Theorem 2

In this subsection, we continue the proof of Theorem 2
by showing (11) using the DP recursion technique.

Let ∆k(x) =
∑n

i=1 piJ̃
k(x+ ei)− J̃k(x+ em), it is suf-

ficient to show for all k ∈ N,

∆k(x+ ei) ≥ ∆k(x), ∀i ̸= m

∆k(x− em) ≥ ∆k(x).
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One can verify that the above hold for k = 0, 1, 2. Here
we consider multiple base cases to avoid reaching trivial
conclusions, say all inequalities are just equalities.

Now we show the inductive step. Let fk(x) =
∑n

i=1 pi min{cb, aλ̃∆
k(x+ei)}−min{cb, aλ̃∆

k(x+em)}.
Then according to the recursion (12), we have ∀j ̸= m,

∆k+1(x+ ej)−∆k+1(x)

=µ̃

n
∑

i=1

[∆k((x+ ej − ei)
+)−∆k((x− ei)

+)] (A.1)

+ λ̃[∆k(x+ ej + em)−∆k(x+ em)] (A.2)

+ fk(x+ ej)− fk(x), (A.3)

∆k+1(x− em)−∆k+1(x)

=µ̃
n
∑

i=1

[∆k((x− em − ei)
+)−∆k((x− ei)

+)] (A.4)

+ λ̃[∆k(x)−∆k(x+ em)] (A.5)

+ fk(x− em)− fk(x). (A.6)

Based on the induction hypothesis, we have ∀j ̸= m,

∆k((x+ ej − ei)
+) ≥ ∆k((x− ei)

+), (A.7)

∆k(x+ ej + em) ≥ ∆k(x+ em), (A.8)

∆k(x+ ej + ei) ≥ ∆k(x+ ei), (A.9)

∆k((x− em − ei)
+) ≥ ∆k((x− ei)

+), (A.10)

∆k(x) ≥ ∆k(x+ em), (A.11)

∆k(x− em + ei) ≥ ∆k(x+ ei). (A.12)

Then (A.7) and (A.10) naturally give rise to (A.1) ≥ 0
and (A.4) ≥ 0 respectively. We can also use (A.8)-(A.9)
to discuss the possibilities of (A.3) under the min op-
erations and establish (A.2) + (A.3) ≥ 0. For exam-
ple, when ∆k(x + ej + ei) ≥ ∆k(x + ei) ≥

cb
aλ̃

and

∆k(x + ej + em) ≥ ∆k(x + em) ≥ cb
aλ̃

, we have (A.2) +

(A.3) = aλ̃
∑

i pi
(

∆k(x+ ej + ei)−∆k(x+ ei)
)

+(1−

a)λ̃
(

∆k(x+ ej + em)−∆k(x+ em)
)

≥ 0. Similarly, we
can derive (A.5) + (A.6) ≥ 0 using (A.11)-(A.12).

Thus, we can conclude that (A.1) + (A.2) + (A.3) ≥ 0
and (A.4) + (A.5) + (A.6) ≥ 0, which yield

∆k+1(x+ ej) ≥ ∆k+1(x), ∀j ̸= m

∆k+1(x− em) ≥ ∆k+1(x).

A.3 Induction part of Theorem 4

In this subsection, we continue the proof of Theorem 4
by showing (18) using the DP recursion technique.

Let δk(x) = λ̃(Ṽ k(x+ el)− Ṽ k(x+ em)), it is sufficient
to show for all k ∈ N,

δk(x+ el) ≥ δk(x), δk(x− em) ≥ δk(x).

For the base cases, one can verify that the above inequal-
ities hold for k = 0, 1, 2.

Now we show the inductive step. According to the value
iteration form of formula (16),

δk+1(x+ el)− δk+1(x)

=µ̃[δk(x)− δk((x− el)
+)]

+µ̃[δk((x+ el − em)+)− δk((x− em)+)]

+λ̃[δk(x+ el + em)− δk(x+ em)] + gk(x+ 2el)

−gk(x+ el + em)− gk(x+ el) + gk(x+ em),

where

gk(x) = max
{

0,min
{

δk(x)− ca, cb −
cacb
δk(x)

}}

.

Note that based on the induction hypothesis, we have

δk((x+el−em)+) ≥ δk((x−em)+) ≥ δk(x) ≥ δk((x−el)
+),

δk(x+2el) ≥ δk(x+el) ≥ δk(x+el+em) ≥ δk(x+em).

Then we can conclude that δk+1(x+ el) ≥ δk+1(x) and
prove δk+1(x− em) ≥ δk+1(x) in a similar way.

A.4 Truncated policy iteration

In this subsection, we present the truncated policy iter-
ation algorithm (Algorithm 1) for estimating stability-
constrained optimal policy. This algorithm is adapted
from the classic policy iteration algorithm (Sutton and
Barto, 2018) by combining the stability condition (3).
Since the original state space is countably infinite, here
we set a boundary to make the state space finite so that
the algorithm can terminate in finite steps.

A.5 Adapted Shapley’s algorithm

In this subsection, we present the adapted Shapley’s
algorithm (Algorithm 2) for computing the minimax
value and equilibrium strategies of the attacker-defender
stochastic game. In each iteration, it builds an auxiliary
matrix game and obtains the minimax value using the
Shapley-Snow method (Shapley and Snow, 1952).
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