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Abstract

In this paper, we present a novel network-based approach for reconstructing signed distance functions from fluid particles.
The method uses a weighting kernel to transfer particles to a regular grid, which forms the input to a convolutional neural
network. We propose a regression-based regularization to reduce surface noise without penalizing high-curvature features.
The reconstruction exhibits improved spatial surface smoothness and temporal coherence compared with existing state of the
art surface reconstruction methods. The method is insensitive to particle sampling density and robustly handles thin features,

isolated particles, and sharp edges.
CCS Concepts

o Computing methodologies — Physical simulation; Point-based models;

1. Introduction

Fluid simulation techniques that utilize particles as the primary ma-
terial representation are ubiquitous in computer graphics. These
methods include the Lagrangian smoothed particle hydrodynam-
ics (SPH) method [MCGO03; KBST22], as well as the hybrid
Lagrangian-Eulerian particle-in-cell (PIC) method [Har64], fluid-
implicit-particle (FLIP) method [BR86; ZB05], and the material
point method (MPM) [SZS95; JSS*15].

Though meshless particle-based fluid simulation methods have
become increasingly popular due their strengths, including flexibil-
ity in handling topological changes and resolution of thin features,
they do not impose a well-defined surface, which is required for
tasks such as rendering and computation of normals and curvature.
Reconstruction of the fluid surface from the particle data remains a
challenge [YT13; SLW*23]. Specific challenges include generating
smooth surfaces without spurious bumps while retaining fine fea-
tures, accurately reconstructing geometric properties such as nor-
mals and curvature, used in the computation of surface tension, and
conserving volume. These issues are exacerbated by the irregular
distribution of particles that results from fluid deformation.

While previous approaches to fluid surface reconstruction in the
physics-based animation community have relied on classical geo-
metric processing, we take inspiration from the recent success of
data-driven approaches to surface reconstruction from noisy point
cloud data. We introduce a novel network-based approach for re-
constructing signed distance functions (SDFs) from fluid particles.
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First, a weighting kernel is used to transfer particle spatial infor-
mation onto a regular grid, which serves as input for a convolu-
tional neural network. To enhance surface quality, we propose a
regression-based regularization method that reduces surface noise
without penalizing high-curvature features. This polynomial sur-
face regularization is efficient, relying on a precomputed matrix
and avoiding the need for derivative computation as in other regu-
larization approaches.

Our reconstruction demonstrates excellent spatial surface
smoothness and temporal coherence compared to state-of-the-art
methods. Notably, our approach exhibits insensitivity to particle
sampling density and robustly handles thin features, isolated par-
ticles, and sharp edges. We validate our network on various test
cases encompassing both fluids and solids, showcasing its ability
to maintain temporal coherence, produce smooth surfaces, and rep-
resent visually plausible fluid features.

2. Related Work

There have been several approaches to surface reconstruction from
particle data. Here, we briefly review previous methods used for
particle-based fluid animation. We also review recent data-driven
approaches to the related problem of surface reconstruction from
noisy surface point cloud data.

Traditional scalar field reconstruction. Many approaches con-
struct an implicit scalar field representation of a surface from par-
ticle data, which can be rendered with ray casting or from which a
mesh can be constructed using Marching Cubes [LC98]. Motivated
by the problem of rendering molecular models, [Bli82] developed a
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Figure 1: Left: Grid values m. (®) are computed from fluid particles (s) within a 3Ax radius (red circle). Middle: Each node-centered vector

(®) is computed from the cell-centered features me (o) within a 83 box (

is used for polynomial regularization.

method for rendering blobby implicit surfaces defined by a collec-
tion of particles. Applied to fluid simulations, this approach yields
an undesirable bumpy appearance at flat surfaces. [DC98] applied
a tunable amount of surface tension to reduce the bumpiness of the
surface, though this also undesirably smooths finer flow features.
[MCGO3] used the continuous SPH color function to determine sur-
face particles and normals for use in a particle splatting approach
[ZPVBGO1] and to directly extract an isosurface using marching
cubes [LCI98; NY06], with both approaches exhibiting bumpiness
at flat surfaces. [CGB16] also used the SPH color function but ac-
counted for topological neighborhood information to reduce un-
wanted blending between unmerged surfaces. [PTB*03] advected
a signed distance function with forces computed from the particle
data to maintain consistency with the primary SPH particle repre-
sentation, leveraging the smoothing inherent to the level set advec-
tion. [SSO7] reconstructed an implicit surface from sparse particle
data by defining special reference particles and using backtracing
to improve temporal coherence.

[ZB05] partially mitigated the surface bumpiness by using local
weighted averages of the particle data in reconstructing a signed
distance function and applying a small amount of unidirectional
surface smoothing to avoid destruction of fine features. [SSPO7]
improved on this approach by detecting and correcting errors in
concave regions. [APKGO7] introduced a novel SPH method with
adaptively sampled particles, and extended the surface reconstruc-
tion algorithm of [ZB05] by tracking particle-to-surface distance to
alleviate temporal incoherence under particle resampling.

A widely used approach was developed in [YT13], which re-
places the spherical kernels at the heart of previous implicit surface
reconstruction approaches with elliptical kernels whose anisotropy
depends on the local particle distribution, resulting in improved
surface smoothness. Recently, researchers developing the Pahi wa-
ter simulation pipeline [SLW*23] proposed a modification to the
anisotropic transformation of [YT13], which instead uses the di-
mensionally consistent square roots of the singular values and fur-
ther reduces undesirable surface artifacts. In this work, we compare
against this state-of-the-art method developed for Pahi [SLW*23].

). Right: Numbering of O; within ®. The cluster of 27 ¢ values

Explicit mesh reconstruction. Other methods reconstruct an ex-
plicit surface mesh directly from the particle data, such as [Wil08§]
which devised a novel constrained optimization approach result-
ing in good surface properties ((BGB11] also formulated an im-
plicit surface reconstruction method inspired by this approach).
[YWTY12] tracks an explicit triangle mesh representing the liquid
surface of an SPH simulator, advecting mesh vertices with nearby
particle velocities and projecting the mesh surface onto the im-
plicit surface defined by [YT13] to maintain consistency. Surface
bumpiness has also been addressed by post-processing the bumpy
meshes with variants of Laplacian smoothing, such as in splash-
surf [LBJB23] which computes weights based on flow features to
avoid overly damping desired details. [Akil4] also proposed post-
processing of the surface mesh using decimation and subdivision
to improved surface quality.

Surface reconstruction speed. There has also been interest in im-
proving the speed of the surface reconstruction process. [AIAT12]
presented a generic method to parallelize Marching Cubes-based
isocontouring of scalar fields in a narrow band near the surface
and demonstrates their method on [SSPO7]. [WLS*17] further im-
proved efficiency with a two-level spatial uniform grid structure.
Recently, [QP22] presented a simple but fast approach for fluid
surface reconstruction based on filtering a scalar field defined as
the number of particles in each cell.

Neural implicit surfaces. Surface reconstruction from surface
point cloud data, such as acquired by 3D scanning or LiDAR, has
received a great deal of attention in the vision and graphics com-
munity. In contrast to particles from fluid simulation, which sample
the interior, the point cloud represents a noisy and incomplete sam-
pling of the object surface. [BTS*17] gives an overview of clas-
sical methods, including the popular screened Poisson surface re-
construction [KH13]. Recently, researchers have developed a wide
variety of data-driven approaches to address challenges in surface
reconstruction, object representation, shape generation, and object
completion [GWH*20; FGC*23]. DeepSDF [PFS*19] was one of
the first works to represent a signed distance field with a neural
network whose input is a query point and a global latent vector rep-
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Figure 2: Network structure for NN. com0, ..., conv3 are convolutional layers with 2 x 2 x 2 kernels and stride 1. The max pool layer
uses a 2 x 2 x 2 kernel and stride 2. ReLU activations are applied after conv0, max pool, conv2, and conv3. The layers linear0, ..., linear2
are fully connected layers with Tanh activations after linear0 and linearl.

resenting the point cloud. While resulting in a highly compressed
representation of a class of shapes, it does not generalize well to
other classes of shapes. Subsequent works improved generalizabil-
ity, such as [CLI*20] which uses a grid of local latent vectors.
To improve generalizability, [EGO*20] proposed inferring abso-
lute distance from local patches and using a sparse sampling of the
global point cloud to infer the sign. Similarly, we use only local
particle information to infer the SDF at a query point and do not
require any global information to infer sign since fluid particles are
always inside the volume.

Direct learning on point clouds. Several methods have ex-
plored learning features directly on point clouds [QSMGI17;
QYSG17] and point cloud convolutions [LBS*18; HTY1S;
AMLI18; TQD*19; UPTK19; BPM20], and these architectures
have been used in surface reconstruction from point cloud
data [GFK*18; EGO*20; AL20; BM22]. Deep marching cubes
[LDG18] developed an end-to-end trainable model that predicts
explicit surface meshes from point cloud data. Inspired by neural
marching cubes [CZ21], which used a neural approach to generate
high quality smooth surfaces from discrete SDFs, neural dual con-
touring [CTFZ22] applied a deep learning approach to dual con-
touring to generate surface meshes directly from various inputs in-
cluding point cloud data.

Grid-based convolutional neural networks. Though we exper-
imented with point encodings and point cloud convolutions, we
found improved results by constructing features from particle data
on a regular grid. Many works have converted point cloud data to a
grid representation to facilitate processing with convolutional neu-
ral networks (CNNs), which exhibit translational invariance and by
learning local spatial filters, can capture local spatial relationships
and patterns inherent in the data. Architectures utilizing regular
grids as in VoxNet [MS15] and adaptive octree grids as in Oct-
Net [ROUG17] have been demonstrated to be effective for tasks
such as object classification and segmentation, orientation estima-
tion, and point cloud labeling. CNNs have been used in surface
reconstruction from point cloud data to generate multiscale fea-
tures [CAPM20; CPM*20], while [UK21] proposes aggregating
point cloud data into an adaptive grid, such as an octree, and then
processing with multiscale convolutional kernels. [YFM*22] also
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makes use of octrees to improve the scalability of the surface re-
construction process. [LGL*24] uses an attention mechanism to
enhance the construction of grid data from the point cloud.

Regularization. To avoid overfitting and improve the smooth-
ness and accuracy of the results, several methods have incorpo-
rated regularization terms that impose desirable surface properties
or properties of the unsigned or signed distance function. RegSDF
[ZYL*22] improves the robustness of surface reconstruction to
noisy or incomplete data using Hessian regularization and mini-
mal surface regularization. [MHLZ20] formulated a pulling loss
that pulls query locations to their closest surface points using the
predicted signed distance and gradient. This was used in PCPNet
[MLZH22] and in [CLH23] which also incorporated total varia-
tion, surface, and gradient loss terms. Several methods have made
use of the Eikonal equation satisfied by the signed distance field for
regularization. [GYH*20] proposed an unsupervised approach with
their loss driving the implicit function to vanish on the point cloud
and the function gradient to have unit norm. [YPN*22] also em-
ployed a regularizing Eikonal term in their loss. Recently, [JWZ23]
devised a novel self-loop loss for regularization.

3. Approach

Our general strategy is to construct a network that is able to pre-
dict the signed distance of a query point given the particles in the
local neighborhood. We can then use this to populate a level set on
a regular grid. After experimentation, we found that it was most
effective to first transfer the particle data onto a regular grid and
use the data on the regular grid as features for the network. Al-
though this requires the use of a separate preprocessing step, this
allows us to utilize convolutional neural networks in our network.
The regular grid conveniently encodes spatial information about the
location and density of particles. This also avoids complications re-
lating to neighborhood size and particle coverage since the network
only sees normalized grid data. An outline of our approach is shown
in Figure 1. The network is trained to predict a narrow-band signed
distance function with the surface as the zero level set. The training
data consists of analytical implicit surfaces sampled with interior
particles, and the loss function includes a polynomial regulariza-
tion term to enhance the smoothness of the resulting surface.
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Figure 3: Reconstruction of a blobby sphere sampled with 1, 2, 4, 8, and 16 particles per cell. The reconstruction is noisy when particles are
sparse, since insufficient data coverage is available to infer a smooth surface. At higher sampling densities, a smooth surface is reconstructed,

and this reconstruction is insensitive to particle sampling density.

3.1. Feature construction

The first step of our algorithm is constructing features m. on the
cell centers ¢ of a uniform grid with grid spacing Ax. We do this
using a kernel-based transfer of particle location information to the
grid, normalized by the local particle density
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Figure 4: Quantitative analysis on 3d vortex deforming sphere,
comparing Houdini (left), ours (middle), and Pahi (right). Top: Ini-
tial reconstructed sphere at frame 0. Middle: Deformed shape at
frame 150. Bottom: Error over all frames, measured at the surface
particle locations.
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where X, is the location of grid cell ¢, N¢ is the set of all particles p
within radius R of X,, Xp is the position of the particle p, W is the
smoothing kernel, and p,, is the density of particle p where N}, is the
set of particles within radius R, including the particle p itself. We
use the Poly6 kernel with R = 3Ax as our kernel support radius.

315 , 2 23
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The choice of grid Ax is discussed in Section 3.5.
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3.2. Network architecture

Next, we construct a convolutional neural network ¢; <— NN (M;)
that predicts the signed distance value ¢; for the grid node i from
the features M; surrounding it, as illustrated in Figure 1. The fea-
ture vector M; consists of the 83 cell-centered features me (blue)
surrounding the grid node i (red). The structure of our network is
illustrated in Figure 2. It consists of two convolutional layers, a
max pooling layer, two more convolutional layers, and three fully
connected layers.

3.3. Loss

During training, we construct feature blocks of size 10°. Since a 8°
block is required to compute one value of ¢;, each 10 block gives
us 3% values of ¢;. We assemble these into a vector ® of size 27
in the order shown in the right of Figure 1. Let &' represent the
corresponding ground truth & values. Our loss function takes the
form

L=~ |5 +ALy(®), 2)

where the first loss term is the sum of squares error of the predicted
signed distance values and L, () is a regularization term that we
describe in the next section.

3.3.1. Polynomial regularization

Using signed distance errors as the only loss term leads to bumpy
surfaces. There are many possible ways to regularize ¢. Penaliz-
ing ||V¢|| would be problematic, since this quantity should not
be zero even for flat surfaces. Instead we could add a term like
(|[V4|| — 1)%, which would enforce the Eikonal equation and pre-
vent wild variations in the derivatives of ¢ [GYH*20; YPN*22].

(© 2024 The Authors.
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Figure 5: Training and validation loss versus epoch for our model.
The training loss converges within five epochs without signs of
overfitting.

Alternatively, one might consider a term that penalizes the Hes-
sian or curvature of ¢ [ZYL*22], but this is also undesirable. Fluid
surfaces contain small features like droplets that should have sig-
nificant curvature, and we want our network to be able to accurately
learn these features. We also note that derivatives in ¢ would require
derivatives of our network’s features with respect to a uniform shift
to all of the input particles, which would increase the size of the
training data by a factor of four. We found this to be impractical.
Instead, we consider a strategy for encouraging smoothness with-
out using derivatives.

An alternative to derivatives is to compute ¢ at several nearby
nodes. Although we could use these to approximate derivatives us-
ing finite differences, we pursue an alternative strategy. We want to
penalize noise, that is, irregularity, not curvature. To do this, we fit
a quadratic polynomial to the 33 neighborhood using least squares
and construct a loss from the fitting error. This fitting can be done
very efficiently. Let (x;,y;,z;) with x;,y;,z; € {—1,0,1} be the lo-
cations of the 27 entries in ®. Given the Vandermonde matrix

2 2 2
X Xx1yr X1zt Y1 oyiar oz X1t Y1 2
2 2 2

X3 Xy2 M2 Yi N2 B o x y2 2 1

2 2 2
Xy7 X27Y271 X27227 Va7 V27227 Z37 X271 Y21 227 1

we wish to choose coefficients C for our polynomial so that
|AC — ®|3 is minimized. These coefficients are given by C =
(ATA)~'AT®. Then, the error is L, (®) = |A(ATA)~'AT®d — 3.
Defining the projection operator K = I —A(AT A)~'AT the polyno-
mial fit error is simply

Ly(®) = |[KD|3 = & kK. 3)

Note that A is constant, so that K is a fixed 27 x 27 matrix. We
provide the full (x;,y;,7;), A, and K in the accompanying technical
document. We note that a quadratic fit here is ideal, since a lin-
ear polynomial would penalize curvature and a cubic polynomial
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Figure 6: Quantitative analysis on 3D vortex deforming bumpy
sphere comparing Houdini (left), ours (middle), and Pahi (right).

would be ineffective since it has almost as many coefficients (20)
as degrees of freedom (27).

3.4. Training data and training process

We train our network using only analytic shapes. For volumetric
shapes, we use four basic shapes: sphere, cone, torus, and cylin-
der. We generate these shapes using random position, orientation,
and shape parameters. For each shape, we seed particles using three
sampling strategies: inside the object, outside the object (but within
a slightly enlarged bounding box), or within a small delta from the
boundary (to mimic thin sheets). We also add isolated particles to
our training set, which are basically single points whose analytic
signed distance value we choose to define as a small sphere with
radius of Ax so that it can be resolved on the grid and be visually
pleasing. Particle seeding is performed using Poisson disk sampling
[Bri07]. We seed objects at three different particle separation dis-
tances to help the network generalize across particle sampling den-
sity. Since particles sampled in this way have distinctive statistical
properties that fluid particles will not, we jitter the particles after
sampling while making sure all particles remain inside. We also
leave a small gap (0.25Ax) between the outermost particles and the
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Figure 7: Translating and rotating particles using Houdini (left), our Pahi’s method (right), and ours (middle). Observe that Houdini’s
reconstruction is noisy, and Pahi’s reconstruction artificially shrinks the surface.

analytical zero level set surface to avoid teaching the network to
generate extremely thin shapes that cannot be resolved by grid. The
training set consists of pairs (M;,®;) of feature blocks and associ-
ated analytic signed distance values.

We use a data set composed of 1.3M training data samples and
80K validation data samples uniformly split into the four basic
shapes and the three sampling strategies. Among them, 2/3 of the
regular and inverted shapes are sampled with 1ppc and 1/3 with
2ppc, while 2/3 of the thin sheets are sampled with 0.5ppc and 1/3
with 1ppc. We adopted the Adam optimizer with the initial learn-
ing rate set as 0.0002. The weight on the polynomial term in the
loss function is set as 1. The model was trained for 5 epochs with
a batch size of 256. The training time for the model was 40 min-
utes on an NVIDIA GeForce RTX 4090. The loss plot is given in
Figure 5.

During the training process, for each shape, we first find grid
nodes j whose ¢ values range from [—2Ax,2Ax]. For each j, we
compute the input features for a neighboring group of 27 nodes i
centered at j. We store this 10° block of features and the corre-
sponding 33 values of 0; for training. A set of 256 blocks corre-
sponds to a batch during training and allows us to compute the ¢
fitting error term and the polynomial regularization term for the loss
function in Equation (2).

3.5. Higher resolution level sets

The reconstruction algorithm presented has two critical length
scales: the characteristic separation distance & between particles
and the grid cell size Ax used to compute features m.. The relation-
ship between these can be expressed in terms of the average number
of particles per cell (ppc) of the reconstruction grid. To encourage
our network to be insensitive to this parameter, we included sam-
ples in the training set with 1, 2, and 4 particles per cell. As can
be seen in Figure 3, the reconstruction is relatively bumpy at 1 ppc.
Since the particles do not sample the surface but are rather ran-
domly distributed in the interior, accurate surface determination is
only possible through particle positioning statistics. At 1 ppc, there

are not enough particles to reconstruct a smooth surface. The re-
construction is much smoother at 2 ppc and has visually converged
by 4 ppc, after which the reconstruction is insensitive to particle
density. This is important since particle density often varies con-
siderably within a fluid simulation.

The need to retain a sufficient number of particles per cell
limits how small Ax can be, which in turn limits the geometric
length scale that can be represented in the reconstructed level set.

Figure 8: A line of particles moves closer together to observe the
transition from a string of isolated particles to a solid line using
Houdini (top), ours (middle), and Pahi (bottom). Houdini’s merg-
ing is not monotonic, and the final shape has artifacts. Pahi’s final
surface has bulges at the ends.

(© 2024 The Authors.
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Figure 9: Rendering of rings falling into a pile, with surfaces reconstructed using Houdini (left), ours (middle), and Pahi (right). The Houdini
reconstruction is bumpy. The Pahi reconstruction exhibits a bulge along the sharp edge. Our method is smooth and without edge artifacts.

Therefore, to achieve a higher resolution level set reconstruction,
rather than reduce Ax, we do multiple, staggered reconstructions.
In particular, consider a double fine grid with resolution Ax/2.
We can label its nodes as (2i +a,2j + b,2k + ¢)
for a,b,c € [0,1]. Each of the eight combinations
of a,b,c gives a separate grid of resolution Ax. We
reconstruct level set values on each of these eight
grids independently, so that we can maintain the cell size Ax while
achieving a double sampling of the reconstructed level set. This is
illustrated analogously for two dimensions in the inset figure. For
example, the red nodes comprise a grid of the original resolution
Ax, while the union of all the nodes comprise a grid of resolution
Ax/2. In contrast to using a double fine grid directly, this approach
maintains the cell size for computing features and hence the num-
ber of particles per cell, resulting in a smoother surface. We perform
this resolution doubling on all of our reconstructions.

3.6. Pruning nodes

To make the surface reconstruction process efficient, we avoid do-
ing network-based inference on grid nodes far from the surface. In-
stead, these nodes are assigned a fixed negative or positive ¢ value.
For a given grid node, we count the number of neighboring cells
that contain particles. If the number is greater than an empirically
predetermined threshold (2000 of 4096 double-fine cells within the
feature radius), the node is labeled as inside and assigned the fixed
negative ¢ value. If no neighboring grid cells contain particles, the
node is labeled as outside and assigned the fixed positive ¢ value.
Using this strategy, the majority of the grid nodes are pruned and
only a relatively small number of ¢; values will be inferred by the
network. Counting the number of neighboring cells with particles
can be done efficiently using dynamic programming.

4. Results

Throughout this section we compare our surface reconstruction
method with the Pahi method [SLW#*23], based on [YT13], and
with the surface reconstruction tool available in Houdini [Sid].
The domain size of the double dam break example in Figure 15
is Im x 1m x 1.5m and the sphere drop example in Figure 16
is 1m x 1m x 3m. The other examples have a domain size of
1m x 1m x 1m. We perform resolution doubling on a grid of 100
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cells per meter for our method while we apply other methods on a
grid of 200 cells per meter for fair comparison.

Reconstruction error. To give a quantitative analysis of the
accuracy of the three methods, we perform the Enright test
[EFFMO02]. Rather than advecting a level set as in the original
test, we seed the initial sphere with particles, advect the particles
through the velocity field using third order Runge-Kutta, and re-
construct the surface from the particles at each step. To track the
actual interface, we seed particles on the sphere’s surface at the be-
ginning of the test and advect them through the velocity field. We
then evaluate each of the reconstructed surfaces ¢(x) at the loca-
tions of the advected surface particles x;. We compute the error as
E = %):l- % where the gradient is computed with finite dif-
ferences. Note that this choice of error does not assume that the re-
construction should be a signed distance field, and instead captures
the error in ¢ relative to the change in ¢ over a single grid cell.
Since surface construction algorithms tend to construct the surface
at some user-chosen offset, we move the surface particles to the iso-
contour that minimizes the error E in the initial state to account for
this. The results are shown in Figure 4. We repeat the same test but
with a bumpy sphere as the initial state (which is not in our training
data); the results of this test are shown in Figure 6. Note that the cal-
ibration of the surface particles causes the reconstruction errors at
the initial state to be similar. While the errors in Houdini’s and our
reconstructions are similar, the errors in Pahi’s reconstruction grow
rapidly. Note also that Pahi tends to shrink the surface quite signif-
icantly. We observe that our reconstruction is generally smoother
than the others, which is especially noticeable at the edges.

Rigid body motion. To demonstrate the temporal coherence
of our approach, we reconstruct a translating and rotating bumpy
sphere. We observe Houdini’s reconstruction to be bumpier (as seen
in Figure 7) with moderate temporal fluctuations (as seen in the
supplementary video). Our reconstruction is smooth in both time
and space.

Merging line of particles. We take a line of equally spaced parti-
cles and slowly move them closer together to observe the transition
from isolated particles to a unified structure, as shown in Figure 8.
In Houdini’s reconstruction, the particles merge, separate, and then
merge again as particles move closer. The final reconstructed sur-
face is uniform in diameter but has occasional bumps along it.
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Figure 10: Dam break simulation, comparing Houdini (left), ours (middle), and Pahi (right). Bottom row figures are zoomed in version with

particles shown.

Pahi’s reconstruction shows a regular and clean merge, though the
final shape has bulges at the ends. As in many of the tests, the thick-
ness of Pahi’s reconstruction tends to vary quite significantly from
the others. Our method’s merging behavior is monotonic, and the
final shape is smooth with a uniform diameter.

Merging plane of particles. We take a plane of randomly spaced
particles and slowly move them closer together to observe the tran-
sition from isolated particles to a plane, as shown in Figure 11.
Houdini’s reconstruction creates random holes in the plane as the
particles merge which loses time coherence. Pahi’s reconstruction
shows a regular and clean merge, though it gives a blobby plane in
the end. Our method’s merging behavior exhibits better time coher-
ence and a smooth final plane.

Ring drop. Figure 9 depicts the surface reconstruction of a
particle-based solid simulation of three deformable rings dropped
into a pile. The rings have sharp edges, which allows us to com-
pare the behavior of the reconstruction methods on sharp features.
We observe Houdini’s reconstruction to be rather bumpy. Pahi’s
reconstruction is smooth, but it creates a noticeable bulge along
the sharp edges. Our reconstruction is smooth and does not intro-
duce artifacts at sharp edges. Dam break. We reconstruct the fluid
surface from a dam break test as shown in Figure 10. We observe
that Houdini’s fluid surface is not as smooth as the others. We also
observe Houdini’s tendency to create filaments from isolated parti-
cles. Pahi’s reconstruction is similar to our own on this example. As
can be observed in the supplementary video, along with Houdini,
our method better reconstructs the sharp edges of the box than Pahi.

Bunny. Figure 12 depicts an example where chocolate is poured
over a bunny. We observe that Houdini tends to fill in large gaps
between particles, and its reconstruction of the fluid surface on the

Figure 11: A plane of particles moves closer together to observe
the transition from randomly sampled isolated particles to a solid
plane using Houdini (top), ours (middle), and Pahi (bottom). Hou-
dini’s merging is not time consistent and Pahi’s final plane is
bumpy.
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Figure 12: Chocolate is poured over a bunny. The surfaces are
reconstructed with Houdini (left), ours (middle), and Pahi (right).

floor is bumpier. Pahi’s reconstruction is better, but it smooths out
relatively large features on the floor. Our reconstruction produces
a smooth fluid surface without losing larger scale surface features.
Pour on box. In this test, water is poured onto a box, causing it
to flatten out into a sheet (see the accompanying video). Houdini
tends to merge the chaotic splashes along the wall into a solid sur-
face (See Figure 14). We also observe that Pahi’s reconstruction of
the source column is much thinner than it should be.

Ablation study In this test, we reconstruct the surface of a
blobby sphere using neural networks with different model setups,
as shown in Figure 17 (best viewed under magnification). From
left to right are models with (1) feature size 8 and kernel radius 3
(ours), (2) same as (1) except without polynomial loss, (3) feature
size 8 and kernel radius 2, (4) feature size 4 and kernel radius 3,
(5) feature size 6 and kernel radius 3 (6) feature size 8 and kernel
radius 4. The reconstruction looks most smooth in (1) and (6); we
choose (1) since a larger radius tends to incorrectly close holes in
fluid surfaces.

Fluid simulations. We finish with three dynamic fluid simula-
tions to show the quality of our reconstruction in different scenar-
ios. Figure 15 shows a double dam break, where two columns of
fluid collapse into a pool. Figure 13 shows two fluid sources collid-
ing with each other. Figure 16 is a classical sphere drop. Our surface
reconstruction is able to consistently produce smooth thin sheets
and splashes. In calm water, our method can produce almost glassy

(© 2024 The Authors.
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Figure 13: Two fluid sources collide, producing dynamic water fea-
tures. The surface is reconstructed using our method.

smooth fluid surfaces. Our method reconstructs the sharp edges and
corners of the initial fluid shape without undesirable bulging edge
artifacts and with only mild smoothing of corners.

Timing information. Timing information for each of the simu-
lation reconstructions is shown in Figure 18. We run our method
on the CPU, with only network evaluation computed on the GPU.
Houdini is overall fastest, Pahi’s reconstruction is slowest, and ours
is in between. For Pahi and our method, the Linux t ime command
was used for timing, which includes all steps used to generate the
signed distance field from particles. For Houdini, we used the time
stamps of the dumped signed distance files to estimate timings.

5. Conclusion and Limitations

In this paper, we presented a network-based scheme for recon-
structing fluid surfaces from particles. The reconstruction exhibits
improved spatial surface smoothness and temporal coherence com-
pared with existing state of the art surface reconstruction methods.
The method is insensitive to particle sampling density and robustly
handles thin features, isolated particles, and sharp edges. Although
artifacts are significantly less than existing methods, the reconstruc-
tion does still have artifacts. Some of these artifacts, such as the
surface smoothness at low particle sampling density, are related to
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Figure 14: Water is poured on a box, showing thin sheets and dynamic splashes. The surfaces are reconstructed with Houdini (left), ours
(middle), and Pahi (right). Houdini merges the splashes at the boundary, and Pahi thins the spout.

the statistical nature of the reconstruction problem. The proposed
reconstruction is independent per time step; improved temporal co-
herence may be possible by using information from particles at ad-
jacent time steps. Although the reconstruction is time competitive
with Pahi, it is slower than Houdini’s reconstruction. Our imple-
mentation of the feature computation is single threaded for simplic-
ity; we exploit parallelism by performing reconstructions in multi-
ple frames in parallel. Threading or GPU implementation may be
used to accelerate the surface reconstruction. In this work, the re-
constructed surface has been used for the sole purpose of rendering.
An interesting avenue for future work is to devise a network-based
surface reconstruction that yields good accuracy in surface tension
computations, where errors in curvature estimation are a significant
source of spurious currents. For example, our approach could be
combined with recent machine learning algorithms for estimating
curvature from level set values [LCG22; LCG23].

We have not observed the model to fail in practice, in the sense
that it has always given us a reconstructed surface that is reason-
able. As is generally the case with network-based approaches, we
cannot prove that the model will not do unexpected things in un-
usual circumstances. We have tested the model on anticipated fail-
ure cases such as failing to put a surface around isolated or small
groups of particles, but we have not observed it to fail such tests.
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Figure 16: A sphere drops into a standing pool. Our reconstruction produces a smooth, glassy surface when the fluid is calm.
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