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Abstract

Research spanning nearly a century has found that math
plays an important role in the learning of chemistry.
Here, we use a large dataset of student interactions
with online courseware to investigate the details of this
link between math and chemistry. The activities in the
courseware are labeled against a list of knowledge com-
ponents (KCs) covered by the content, and student in-
teractions are tracked over a full semester of general
chemistry at a range of institutions. Logistic regres-
sion is used to model student performance as a func-
tion of the number of opportunities a student has taken
to engage with a particular KC. This regression anal-
ysis generates estimates of both the initial knowledge
and the learning rate for each student and each KC.
Consistent with results from other domains, the initial
knowledge varies substantially across students, but the
learning rate is nearly the same for all students. The
role of math is investigated by labeling each KC with the
level of math involved. The overwhelming result from
regressions based on these labels is that only the initial
knowledge varies strongly across students and across the
level of math involved in a particular topic. The stu-
dent learning rate is nearly independent of both the level
of math involved in a KC and the prior mathematical
preparation of an individual student. The observation
that the primary challenge for students lies in initial
knowledge, rather than learning rate, may have impli-
cations for course and curriculum design.

1 Introduction

This work explores how large datasets gathered from
online learning environments can address long-standing
issues in chemical education research, such as the role
of math in the learning of chemistry explored here.
There is strong evidence from past studies that stu-
dents with lower preparation in math have lower suc-
cess rates in introductory college chemistry (Section 2).

Here, analysis of more than 612K student interactions
with the Open Learning Initiative (OLI) General Chem-
istry courseware1 at a variety of two-year colleges allows
us to decompose this link between math and chemistry
into two separate components: the initial knowledge of
individual students on topics involving a high level of
math, and the rate of learning on such topics. The
overwhelming result is that it is only the initial knowl-
edge that varies strongly across students and across the
level of math involved in a particular topic. The student
learning rate is nearly independent of both the level of
math involved in a topic and the prior mathematical
preparation of an individual student.
A significant feature of the current study is the use

of large volumes of data gathered as students learn the
content. This rich data has two potential advantages.
First, data collected throughout the learning process
provides more detail than studies that use pre- and post-
tests to assess learning at only two time points. Second,
data gathered through an entire semester enables anal-
yses that examine student learning across a broad range
of topics. Each practice opportunity in the courseware is
labeled with one or more knowledge components (KCs)
involved in the learning activity. KCs are an “acquired
unit of cognitive function or structure that can be in-
ferred from performance on a set of related tasks”.2 In
this manner, the data may be viewed as including a pre-
and post-test for each of the KCs in the first semester
General Chemistry Course, along with data gathered in
between.
A logistic regression is used to model student learning

as a function of the number of interactions an individ-
ual student has had with a particular KC. We use the
term “opportunities” — in the sense of “learning op-
portunities taken” rather than “learning opportunities
provided” — to represent these interactions. This re-
gression analysis generates estimates of both the initial
knowledge and the learning rate for each student and
each knowledge component. Here, the learning rate is
defined in terms of the log of the odds that a student will
complete a task without making an error or requesting
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a hint. The learning rate for a KC is the extent to which
the log-odds increase each time a student engages with
a task associated with that KC.
Another significant feature of this study is that the

practice opportunities in the course are highly scaf-
folded through hints and feedback. Hints provide sup-
port upon request by the student, and feedback provides
support when the student makes an error. The scaffold-
ing fades as students move through a topic and picks up
again with new topics. These scaffolds include support
for quantitative reasoning, allowing the course materials
to provide just-in-time support for math. This just-in-
time support likely has a strong influence on learning
rates.
The current study builds on a recent finding from

analysis of online practice data gathered within pri-
mary, secondary, and post-secondary math, science,
and language learning courses, which found that learn-
ing rates were “astonishingly similar” across students
within these courses.3 Students’ initial knowledge varies
widely, but their learning rate varies little. This study
adds to these results by considering more nuanced ques-
tions related to the degree to which math preparation
influences the learning of chemistry content.

2 Literature Background

Mathematics is crucial in learning chemistry; it pro-
vides the tools needed to comprehend and manipulate
the quantitative aspects of chemical reactions and phe-
nomena. A large and growing body of research span-
ning nearly 100 years4–6 has established correlations
between various measures of math preparation and suc-
cess in general chemistry. In 1958, Kunhart, Olsen,
and Gammons7 found high school chemistry and alge-
bra grades to have higher correlations with course suc-
cess (R=0.26 and 0.20 respectively) than other more
general measures of scholastic aptitude. In 1975, Pick-
ering8 found a strong trend line between Math SAT
scores and General Chemistry grades, and that a supple-
mental math/problem-solving course improved grades.
In 1979, Ozsogomonyan and Loftus9 found that Math
SAT scores had the highest correlation with course suc-
cess (R = 0.51) followed by a chemistry pre-test score
(R = 0.42), high school chemistry grade (R = 0.38),
and an algebra pre-test score (R = 0.21). Predictions
based on a combination of these factors showed strong
correlation (R = 0.87) with course success.
Attempts to identify students who are less likely

to successfully complete general chemistry continue to
find that measures of math preparation, often along
with measures of previous instruction in chemistry, are
important factors in statistical models of course suc-
cess.10–20 In 2021, Vyas, Kemp, and Reid21 found that
a combination of instruments could predict up to 80%
of the students who did not pass the course.
Instruments aimed at measuring automaticity of

arithmetical skills, such as the Math-Up Skills Test

(MUST), have also found significant correlations with
course success.22–26 For instance, Williamson et al.24

found that MUST scores correlated with course average
(R = 0.54, p < 0.001) and that a logistic regression
model that combined MUST with demographic vari-
ables could predict course success with 78% accuracy.
Such correlations prompted Sadler and Tai27 to sug-

gest that ”two pillars” underpinning college STEM suc-
cess are ”high school study in the same science subject
and more advanced study of mathematics”. Below, we
build on this by estimating students’ initial knowledge
in both pillars: chemistry initial knowledge and math
initial knowledge (Section 4.3).
One possible explanation for the observed correlations

between chemistry course outcomes and prior math
skills is that prior math knowledge aids the learning
of chemistry by reducing the student’s cognitive load in
processing chemistry instruction. Indeed empirical re-
sults and theory in cognitive science28 support the idea
that, to accurately solve problems in the sciences, stu-
dents should practice fundamental facts and procedures
in a variety of mathematical and scientific contexts until
they can be recalled and applied fluently and automat-
ically.29 An alternative explanation is that prior math
skill predicts course-relevant incoming knowledge and
that incoming knowledge is, in turn, highly predictive
of course outcomes. In other words, there is ambigu-
ity in explaining this link from prior basic math knowl-
edge to chemistry course outcomes as to whether or not
prior basic math predicts learning (i.e., the difference
between course-relevant incoming knowledge and out-
going knowledge) or predicts course inputs, which in
turn predict outcomes because students with stronger
incoming knowledge have less to learn.
The link between course preparation and course suc-

cess also relates to policies regarding pre- and co-
requisite courses. Remedial courses have been widely
recommended for students deemed to be underprepared
(at-risk) in math and/or chemistry, but evidence for
their effectiveness is mixed. Some studies have reported
increased success and retention with this approach, such
as Donovan and Wheland30 and Stone et al.19 Oth-
ers have found remediation efforts produced little to no
short-term benefits, and sometimes had negative long-
term consequences. For example, a six-year study by
Gellene and Bentley31 concluded that a “placement re-
mediation program [was] providing little or no signifi-
cant academic benefit,” while further analysis by Jones
and Gellene32 showed that this program increased at-
trition such that overall General Chemistry completion
rates decreased. Attewell et al.33 found that taking re-
medial courses slightly decreased the likelihood that a
four-year college student will complete a degree, but
did not affect completion rates for two-year college stu-
dents. A large-scale study by the U.S. Department
of Education34 concluded that remedial courses could
help or hinder, depending on students’ level of prepara-
tion, with only “weakly prepared students who success-
fully completed all remedial courses” benefitting over-

2
https://doi.org/10.26434/chemrxiv-2024-bms6x ORCID: https://orcid.org/0000-0001-8485-8685 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0



all. Shah et al.35 found that a parallel General Chem-
istry course with a corequisite support course improved
outcomes for at-risk students in the first semester, but
increased achievement gaps in the second semester.
Denaro et al.36 reported improved performance on the
final exam for students who took General Chemistry
with a concurrent preparatory course. Sevian et al.37

found that coenrollment in a course that used an asset-
based approach closed assymeteries when a nontradi-
tional curriculum was used but not when a traditional
curriculum was used. These mixed results provide fur-
ther reason to better understand the correlations be-
tween math preparation and chemistry outcomes.

3 Methods

3.1 Data Collection

We present analyses of datasets collected in Gen-
eral Chemistry I courses at multiple sites across two
semesters. We treat these two semesters as separate
studies as a form of replication. In the Spring of 2021
(Study 1), data was collected from 183 students at four
community colleges with four different instructors. In
the following semester, Fall 2021 (Study 2), data collec-
tion included 279 students, ten instructors (11 classes),
and seven community colleges. These hybrid courses
were delivered in a classroom format with lectures and
tests given by course instructors and interactive activi-
ties with hints and feedback implemented in the Open
Learning Initiative (OLI) platform.1 The analyses pre-
sented below are based on the log data collected from
the OLI portion of the course. The data and mod-
els used for analysis can be found in DataShop,38 a
repository for educational data (datasets are ds4856 and
ds5939 for Study 1 and 2, respectively). The experimen-
tal design and analyses were the same for both studies,
though some content improvements were made to the
Fall 2021 (Study 2) OLI course materials.
The OLI General Chemistry courseware is based on

the OpenStax textbook,39 and is intended to supplant
textbook reading and online homework with a single in-
tegrated online platform. The content consists of mod-
ules that are roughly equivalent to a single textbook
chapter. Modules include about 5 to 10 content pages,
each of which includes didactic instruction, similar to
the text and images in a textbook, “Learn by Doing”
activities that typically break problem solving into steps
and provide extensive hints and feedback to guide the
student to the correct answer, and “Did I Get This?”
activities that typically do not break the problem solv-
ing into steps and that provide less extensive scaffolding
through hints and feedback. “Checkpoints” at the end
of each module serve as homework quizzes, where feed-
back is given only at the end of the quiz. For all activity
types, the measure of performance used in the logistic
regressions is correct if students provided the correct
response without asking for a hint, and incorrect oth-
erwise. (Example activities are included in Supporting

Information.)

3.2 Math Coding

Approximately 250 skills or knowledge components
(KCs)2 were initially identified in the OLI General
Chemistry 1 course. Each KC was categorized according
to its math demand on a scale from 0 to 3 (see Examples
of Math Coding in Supporting Information). Level 0 in-
volves no math. Low math (level 1) typically involves a
single calculation, such as converting between particles
and moles. Medium math (level 2) generally involves
several mathematical steps. For example, determining
the empirical formula for a compound involves multiple
gram-to-mole conversions, making a mole ratio (divid-
ing all mole amounts by the smallest mole amount),
then simplifying this to the smallest whole number ra-
tio (which may involve converting a decimal value to a
fraction). High math (level 3) usually involves algebra,
including logarithms.
Math levels were coded independently by three expe-

rienced general chemistry instructors, and the average
of their ratings was used as the math level for a given
KC. When a coder gave a KC more than one rating, the
average rating was used as their math level. For exam-
ple, one coder rated the KC Calculate the concentration
of ions in solutions as having both low (math level = 1)
and medium (math level = 2) math demand, resulting
in a combined math level = 1.5. The final math level
code for this KC, in which the other two coders rated
it as having a medium math demand (math level = 2),
is the average of the 3 coders’ ratings ((2+2+1.5)/3 =
1.833).
Since many of the learning activities in the OLI Gen-

eral Chemistry 1 course involve multiple KCs, the KC
model also contains about 100 concatenated KCs (i.e.,
combinations of 2 or more individual KCs). The math
level of concatenated KCs is the largest math code of
the individual KCs. For example, in a task labeled with
the concatenated KC Convert between mass and moles
+ Determine the empirical formula of a compound, the
former KC has a math level code = 1, and the latter
KC has a math level code = 2; thus the concatenated
KC is coded as math level code = 2 (i.e., medium math
demand).
Inter-rater reliability (IRR)40 was assessed using a

two-way mixed, consistency, average-measures intra-
class correlation coefficient (ICC)41 to assess the degree
to which coders provided consistency in their ratings of
math level across knowledge components. The result-
ing ICC of 0.934 was in the excellent range,42 indicating
that coders had a high degree of agreement, suggesting
that math level was rated similarly across coders. The
high ICC suggests that a minimal amount of measure-
ment error was introduced by the independent coders,
and therefore, statistical power for subsequent analyses
is not substantially reduced. Math level ratings were
therefore deemed to be suitable for use in the present
study.
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Approximately 10% of the knowledge components did
not require any math (0 rating in Table 1), and more
than three-fourths of the KCs involved low to medium
math knowledge (i.e., 0.01 - 2 in Table 1). Relatedly,
only 12% of the unique problem-steps involve no math,
and 6% have high math demand (i.e., greater than 2);
thus, the remaining 82% involve a low to medium math
demand (Table 1).

Table 1: Distribution of math-level ratings for Study
1. Similar distributions were obtained for Study 2 (see
Supporting Information).

Math rating 0 0.01-1 1.01-2 2.01-3

KCs (%)
33

(10%)
131

(38%)
132

(38%)
48

(14%)

Steps (%)
454

(12%)
1627
(43%)

1494
(39%)

250
(6%)

Opportunities
per student KC

5.8 4.8 4.2 2.0

Average
performance

0.77 0.72 0.65 0.49

Students 182 181 177 158

3.3 Research Design

To better understand how math influences the learning
of chemistry, we explore the following three research
questions:

RQ1 Does lower prior preparation prevent or slow stu-
dents in learning chemistry?

RQ2 Are Chemistry problems with high math content
harder for students a) to do or b) to learn?

RQ3 Does lower prior math preparation prevent or
slow students in learning chemistry?

To address these questions, we use variations on a lo-
gistic regression growth model3 that originated in the
Additive Factors Model (AFM).43 AFMmodels are gen-
eralizations of Item Response Theory44 that add both
a growth or learning element as well as a matrix encod-
ing of a cognitive model45 of the underlying knowledge
components (KCs) students need for successful task per-
formance.
The growth element included in the logistic regression

can be visually represented as a learning curve, shown
schematically in Figure 1. The y-axis is the probability
that a student will succeed on a practice task, expressed
as the log of the odds that the student will successfully
complete the task without requesting a hint or mak-
ing an error. The x-axis is opportunities, the number
of times a student has interacted with tasks related to
the associated knowledge component. For a student’s
first interaction with a KC, the opportunity count is
zero, to reflect past opportunities. Note that all stu-
dents have access to the full courseware. We refer to

Figure 1: Schematic representation of the learning
curves derived from regressions on student data. Pre-
dicted performance is on the y-axis, with labels that
indicate the probability, p, that a student will succeed
on a practice task without making an error or requesting
a hint. The scale of the y-axis is log-odds, ln(p/(p-1)),
with p shown in the label. The x-axis is the number of
practice opportunities to learn the KC the student has
engaged with in the past.

the intercept of the regression line as the initial knowl-
edge; it is similar to a pretest. We refer to the slope of
the regression line as the learning rate, as it measures
the increase in log odds of success for each opportunity
taken. To aid interpretation of learning rate, we also
convert this slope to % gain from 50%, i.e. the increase
in performance that would be expected from this slope
when performance is at 50%. Note that the regressions
are performed on the population as a whole, which in
effect, averages over various cohorts of students and var-
ious groupings of knowledge components.
As we move through the above research questions, we

extend the logistic regression model of AFM to allow
both initial knowledge and learning rate to depend on
the level of math involved in a KC.
RQ1 investigates students’ initial knowledge and

learning rate across all knowledge components to in-
vestigate if lower initial knowledge is associated with
slower learning rates. This investigation is done us-
ing a modified AFM model called individual AFM or
iAFM.46 The iAFM model includes a factor for indi-
vidual student learning, δi of Eq. 1, that is not present
in an AFM model. The logistic regression formula for
iAFM is

Pi,j =

(

θ + θi +
∑

k

qj,kβk

)

+

(

∑

k

qj,k(δ + δi + γk)Ti,k

) (1)

where performance Pi,j is the log-odds, ln(p/(p − 1)),
of the probability, p, that student i is correct on task
j. The first term in parentheses models initial knowl-
edge, and the second models learning rate. For initial
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knowledge, θ is the mean across all students and KCs,
θi is the deviation from this mean for student i, and βk

is the deviation for the kth KC. The summation over
KCs is included because each task can, in general, be
associated with more than one KC through the matrix
qj,k, which is 1 if task j involves KC k and 0 otherwise.
However, here we instead treat tasks involving multiple
knowledge components by labeling them with a new KC
that concatenates the individual KCs (Section 3.2). The
learning rate is the slope of performance with respect to
Ti,k, where Ti,k is the number of past opportunities stu-
dent i has had to interact with a task involving KC k.
The learning rate is modeled with an overall mean, δ,
and deviations for an individual student, δi, and KC,
γk.
For research question 2 (RQ2), we explore the impact

of math difficulty on initial knowledge and learning rate.
Here, we add math level (based on the coding of KCs de-
scribed above) as an independent variable to the iAFM
model to estimate the dependence of initial knowledge
and learning rate on math level,

Pi,j =

(

θ + θi +
∑

k

qj,k (βk +MLk)

)

+

(

∑

k

qj,k(δ + δi + γk +NLk)Ti,k

) (2)

where Lk is a continuous variable, with a range of 0 to
3, describing the math level of the kth KC (Section 3.2),
while M and N describe, respectively, the dependence
of initial knowledge and learning rate on Lk.
In research question 3 (RQ3), we examine the effects

of prior math preparation on learning chemistry. To do
so, the dependence of initial knowledge on math level is
allowed to vary by student,

Pi,j =

(

θ + θi +
∑

k

qj,k (βk + (M +Mi)Lk)

)

+

(

∑

k

qj,k(δ + δi + γk +NLk)Ti,k

) (3)

where Mi describes the degree to which the initial
knowledge of student i depends on math level, Lk. We
take Mi as a measure of an individual student’s math
preparation because larger magnitudes indicate that the
ith student’s initial knowledge on a KC depends strongly
on the level of math associated with that KC. We re-
fer to θi from Eq. 3 as an individual student’s chem-
istry preparation, as it measures the ith student’s initial
knowledge extrapolated back to math level Lk = 0.
An additional investigation for RQ3 involves math

preparation and learning opportunities: Do students
with higher math preparation take greater advantage
of learning opportunities by doing more problem steps?
Or, conversely, do students with lower math prepara-
tion, who need more practice, do fewer problem steps?
The regressions are performed using the generalized

linear mixed-effect model (glmer) function in the R Sta-
tistical Software.47 The regression formulas and other
details are in the Supporting Information.

4 Results

We applied regression analyses as indicated by Eqs. 1-3
to the two datasets of Section 3.1. For each research
question, we first discuss the detailed results from the
Study 1 dataset. We then assess the extent to which
the analysis of the Study 2 dataset aligns with these
findings.

4.1 RQ1 Does lower prior preparation
prevent or slow students in learning
Chemistry?

To address RQ1, we use learning curves to visualize the
parameter estimates resulting from applying the logistic
regression of Eq. 1 to the dataset for Study 1. The re-
gression parameters can be used to generate a learning
curve for each student, with θ + θi for initial knowl-
edge and δ+δi for learning rate (left panel of Figure 2).
The large spread of intercepts on the y-axis indicates
wide variation in students’ initial knowledge (interquar-
tile range, IQR = 54%, 69%). In contrast, the nearly
parallel lines seen in the learning curves indicate only
small differences in student learning rates. Thus, the
less prepared students (lines that start lower on the y-
axis) are learning chemistry at a rate similar to that of
the better prepared students (lines that start higher on
the y-axis have about the same slope).
The right panel of Figure 2 shows learning curves for

each knowledge component in the course. These curves
are generated from the parameter estimates from Eq. 1
using θ+βk for initial knowledge and δ+γk for learning
rate. Here, the regression essentially averages over all
students to generate a learning curve for each knowl-
edge component. As seen above for students, there is
a large variation in the difficulty of knowledge compo-
nents as indicated by the wide range of initial knowledge
(IQR = 48%, 70%). However, unlike students, there is
also substantial variation in learning rates, as indicated
by the non-parallel lines in the right panel of Figure 2.
Some initially hard KCs are learned more quickly and
others are learned more slowly. For example, the KC
Predict differences in melting points of ionic substances
has an initial starting point (i.e., intercept) of 34%, thus
quite difficult. It improves at 0.11 log odds (about 2.6%
from 50%) per opportunity. However, the (also) hard
KC Calculate changes in vapor pressure based on con-
centration of solution, with an intercept of 37%, only
improves 0.036 log odds (about 0.90% from 50%) per
opportunity. In other words, both KCs are hard, but
Predict differences in melting points of ionic substances
is learned more quickly than Calculate changes in vapor
pressure based on concentration of solution. Similarly,
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Figure 2: Student learning curves (left panel) show a large variation in initial knowledge, as indicated by the wide
range of intercepts, but small differences in learning rate, as indicated by the mostly parallel slopes. The range of
intercepts on the KC learning curves (right panel) shows a large variance in initial knowledge, and the slope variance
suggests some KCs are learned faster than others. The axes are as in Figure 1.

some initially easier KCs are learned more quickly and
others are learned more slowly.
Similar results are found when this analysis is ap-

plied to the data set for Study 2 (see Supporting In-
formation). The learning curves for individual students
show large variation in initial knowledge (IQR = 54%,
71%) with nearly parallel lines indicating small varia-
tions in learning rates. The learning curves for individ-
ual KCs shows large variations in both initial knowledge
and learning rates.
The results from both studies suggest that lower prior

preparation does not hinder or slow students’ ability to
learn chemistry. Instead, all students tend to learn at
nearly the same rate. However, there are significant dif-
ferences in the rates at which different KCs are learned.

4.2 RQ2 Are chemistry problems with
high math content harder for stu-
dents a) to do or b) to learn?

Having established that initial knowledge varies sig-
nificantly among students while learning rates remain
largely consistent, we now turn our attention to exam-
ining how the mathematical complexity of a knowledge
component (KC) impacts both initial knowledge and
learning rate. To address this, we extend the logistic
regression to that of Eq. 2, which adds a dependence on
the level of math involved in a particular KC when esti-
mating both initial knowledge (M of Eq. 2) and learn-
ing rate (N of Eq. 2). The results in Table 2 for the
Study 1 dataset indicate a statistically significant de-
pendence of initial knowledge on math level (M ; p <
0.001). The dependence of learning rate on math level
is only marginally significant (N ; p = 0.083), but it is
notable that the trend is for content with a high math
level to be learned faster than content with a low math

level.

Table 2: Results of the impact of math on initial knowl-
edge and learning rate from the regression analysis of
Eq. 2.

Estimate
(Std Error)

P value

Study 1
Initial knowledge (θ) 1.172 ( 0.11) <2e-16 ***
Learning rate (δ) 0.041 (0.02) 0.01 *
Initial knowledge
by math level (M)

-0.582 (0.07) <2e-16 ***

Learning rate
by math level (N)

0.021 (0.01) 0.083

Study 2
Initial knowledge (θ) 1.198 ( 0.10) <2e-16 ***
Learning Rate (δ) 0.081 (0.02) 6.39e-05 ***
Initial knowledge
by math level (M)

-0.574 (0.07) 3.61e-16 ***

Learning rate
by math level (N)

0.011 (0.01) 0.446

(Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1)

Table 3 uses the regression parameters of Table 2 to
summarize the impact of math level (column 1) on ini-
tial knowledge (column 2) and learning rate (columns 3
and 4). Initial knowledge has a strong and statistically
significant dependence on math level, with initial knowl-
edge for the typical student being about 76% correct for
chemistry KCs with no math (math level = 0), drop-
ping to 36% correct for KCs with the highest math level
(math level = 3). The overall learning rate of δ = 0.041
log odds gain per opportunity is statistically significant
(p = 0.011). Table 3 also shows a marginally significant
increase in learning rate with math level, reaching 0.105
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log odds per opportunity for a math level of 3.
Figure 3 provides a complementary visualization by

using the regression parameters to generate learning
curves for math levels 0 through 3. As illustrated, per-
formance on KCs with higher math levels starts off lower
but the learning rate is somewhat faster than for lower
math levels (marginally significant, p = 0.083). Thus,
students are learning chemistry skills and concepts in-
volving harder mathematics (levels 2 and 3) at least as
readily, if not more, than they are learning skills and
concepts involving little or no math.

Table 3: Impact of the math-level of knowledge com-
ponents on student initial knowledge and learning rate.
Note that the statistical significance of the increase in
learning rate with math level is marginal (p = 0.083 in
Study 1 and 0.446 in Study 2).

Math
Level

Initial %
correct

Log odds gain
per opportunity

% gain
from 50%*

Study 1
0 76% 0.041 1.0%
1 64% 0.062 1.6%
2 50% 0.084 2.1%
3 36% 0.105 2.6%

Study 2
0 77% 0.081 2.1%
1 65% 0.092 2.2%
2 51% 0.104 2.6%
3 37% 0.115 2.9%

* We convert log odds gain to percent correct from. 50% (e.g.,

0.041 to 51.0% in row one) and then subtract 50%

The lower sections of Tables 2 and 3 present the re-
sults from applying this analysis to the Study 2 dataset.
Consistent with Study 1, initial knowledge shows a
strong and statistically significant dependence on math
level (M ; p < 0.001). Similarly, the learning rate is esti-
mated to increase with math level, as observed in Study
1. However, in Study 2, this increase in learning rate
with math level is not statistically significant (N ; p =
0.446), whereas it was marginally significant in Study 1
(N ; p = 0.083). In both studies, we found no evidence
that the increased math level of a KC slows the learn-
ing rate when averaged across all students. Next, we
explore how individual differences in math preparation
might influence student learning rates.

4.3 RQ3 Does lower prior math prepa-
ration prevent or slow students in
learning Chemistry?

In addressing RQ2, the logistic regression included a
dependence of initial knowledge on the level of math in-
volved in a particular KC through the term M of Eq. 2.
This M was an average over all students. To address
RQ3, we extend this to allow dependence on individ-
ual students via the term Mi of Eq. 3. This additional
factor allows us to extrapolate initial knowledge back

Figure 3: Learning curves generated from the regression
parameters for study 1 in Table 3. Initial knowledge
decreases dramatically with math level. The learning
curves are steeper for higher math level but this in-
crease in learning rate is only marginally statistically
significant (see Table 3). The results do however indi-
cate that students are learning high math content at
least as readily as they are learning low math content.
The axes are as in Figure 1.

to math level zero, Lk = 0 in Eq. 3, obtaining an esti-
mate, θ + θi, for initial knowledge of the ith student on
knowledge components that involve no math. We refer
to this extrapolated value, θ+θi, as the chemistry initial
knowledge of that student. The dependence of the ith

student’s initial knowledge on math level is estimated
in Eq. 3 as M + Mi, which we refer to as math ini-
tial knowledge. Chemistry and math initial knowledge
are strikingly uncorrelated, R = 0.063 for the Study 1
dataset (Figure 4). Next, we separately examine cor-
relations of math and chemistry initial knowledge with
learning rates and other factors.
To determine whether lower math preparation pre-

vents or slows student learning in chemistry, we com-
puted the correlation between individual student learn-
ing rate, δ + δi of Eq. 3, and math initial knowledge,
M+Mi of Eq. 3. We found no correlation, R = −0.034,
p = 0.65 (Figure 5 left panel). In other words, students
with lower prior math preparation learn chemistry at a
rate equivalent to students with higher math prepara-
tion.
We also investigated whether chemistry initial knowl-

edge is associated with individual student learning rates,
δ + δi of Eq. 3. Here, we found a statistically signif-
icant positive correlation, R = 0.30, p < 0.0001 (Fig-
ure 5 right panel). Students with lower chemistry ini-
tial knowledge (below median) do learn at a somewhat
slower rate (slope = 0.062 log odds or about 1.5% gain
per opportunity) than students with higher incoming
chemistry knowledge (above median: slope = 0.070 log
odds or about 1.9% gain per opportunity). This signif-
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Figure 4: Study 1 estimates of students’ Math Initial
Knowledge (M + Mi of Eq. 3) and Chemistry Initial
Knowledge (θ + θi of Eq. 3) are quite independent of
each other (R = 0.06) in contrast to the expectation
that students with more math preparation are likely to
have more chemistry preparation.

icant correlation helps confirm that individual learning
rates are picking up true student-level variability, not
random noise. Thus, it lends confidence to the infer-
ence that a lack of prior math knowledge does not slow
chemistry learning (i.e., the lack of correlation between
math initial knowledge and learning rate cannot be at-
tributed to a lack of variability in learning rate). The
faster learning rate observed in students with higher
initial chemistry knowledge may be attributed to their
familiarity with closely related content from previous
chemistry courses, allowing them to relearn the mate-
rial, whereas students with lower initial knowledge may
be encountering this content for the first time.
We give a sense of the practical significance of the cor-

relation between chemistry initial knowledge and learn-
ing rate by inspecting differences between the typical
less prepared student (i.e., the first quartile) and the
typical more prepared student (i.e., the third quartile).
A typical less prepared student is estimated to start at
about 57% correct on math level 1 tasks and has a learn-
ing rate (based on the correlation in Figure 5) of 0.063
log odds (about 1.5% gain from 50%) per opportunity.
At this learning rate, they need about 17 opportunities
to reach a reasonable mastery level of 80%. If these stu-
dents had the slightly higher learning rate of the typical
more prepared student, namely, 0.068 log odds (about
1.7% gain from 50%), they would need about 16 oppor-
tunities, that is, only about one less opportunity. Thus,
the challenge for less prepared students is not the rate
at which they are learning but the fact that they have
more to learn.
We next examine the relation between initial knowl-

edge and the number of opportunities taken. Recall

that the opportunity variable refers to the number of
interactive learning opportunities students engage in,
not the total available (which is the same for all stu-
dents). There is a small and significant correlation be-
tween math initial knowledge and learning opportuni-
ties (R = 0.21, p = 0.005). A similar small and signifi-
cant correlation exists between chemistry initial knowl-
edge and opportunities (R = 0.24, p = 0.001). This ef-
fect of initial knowledge on opportunities is larger than
the effect of initial knowledge on learning rate. Simi-
lar to the above, we inspect differences in opportunities
taken between the typical less prepared student (i.e.,
the first quartile) and the typical more prepared stu-
dent (i.e., the third quartile). A student at the first
quartile in math initial knowledge (M + Mi = −0.65
log odds; 34%) engages in about 1300 practice opportu-
nities, whereas a student at the third quartile (-0.44 log
odds; 39%) in math initial knowledge engages in about
1570 opportunities. In other words, the top half of stu-
dents in math initial knowledge do about 270 (21%)
more opportunities than the bottom half of students in
math initial knowledge.
Likewise, a student at the first quartile in chem-

istry initial knowledge (0.84 log odds; 69.9% for level
0 math content) is estimated to take 1280 opportuni-
ties, whereas a student at the third quartile (1.41 log
odds; 80.4% for level 0 math content) in chemistry ini-
tial knowledge does about 1560 opportunities. Thus,
the top half of students in chemistry initial knowledge
complete about 280 (22%) more opportunities than the
bottom half of students in chemistry initial knowledge.
In a follow-up regression analysis (see Supporting In-

formation) we found that students’ chemistry and math
initial knowledge both have a significant and indepen-
dent association with students’ total practice opportuni-
ties. This result is consistent with the idea that students
coming into the course less well-prepared in either math
or general chemistry end up pursuing fewer opportuni-
ties. This result is perplexing given the high similar-
ity in learning rates: Lower initial knowledge students
pursue fewer opportunities even though they are making
progress at about the same rate as students with higher
prior chemistry and math preparation.
Similar results are obtained when the analyses for

RQ3 are applied to the Study 2 dataset. As in Study
1, chemistry initial knowledge and math initial knowl-
edge show only a weak and insignificant correlation
(R=0.079, p=0.19). Also as in Study 1, we find
math initial knowledge is not associated with learning
rate (R=0.045, p=0.46), but chemistry initial knowl-
edge is positively correlated with learning rate (R=0.40,
p=4.2e-12). The difference in learning rate for students
in the lower half of chemistry initial knowledge versus
their counterparts in the upper half are 0.089 versus
0.099 log odds gain per opportunity. These learning
rates in more intuitive terms are 2.2% gain versus 2.5%
gain from 50%, respectively.
Also as in Study 1, Study 2 finds a small and sig-

nificant correlation between math initial knowledge and
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Figure 5: The left scatterplot shows that math initial knowledge is not associated with student learning rate (flat
slope), while the right scatterplot indicates that chemistry initial knowledge is associated with student learning rate
(upward slope).

the number of learning opportunities students chose to
engage with (R = 0.171, p = 0.004). We make these re-
lationships more concrete as follows. A typical student
at the first quartile in prior math (M + Mi, which is -.66
log odds; 34.1%) is estimated to engage in about 1180
opportunities whereas a student at the third quartile in
prior math (-.47 log odds; 39.6%) engages in about 1401
opportunities. In other words, the top half of students
in math preparation do 221 (18.7%) more opportunities
than the bottom half of students in math preparation.
In Study 1, the correlation between chemistry initial

knowledge and opportunities taken was similar to that
of math initial knowledge. In Study 2, we instead find
that the correlation between chemistry initial knowledge
and opportunities taken is not significant (R = 0.003, p
= 0.97). A typical student at the first quartile in prior
chemistry (θ + θi which is 0.86 log odds; 70.4% for
level 0 math content) takes an estimated 1276 oppor-
tunities whereas a typical student at the third quartile
(1.52 log odds; 82.0% for level 0 math content) takes
an estimated 1280 opportunities. Consistent with the
lack of correlation, there is no meaningful difference (at
4 opportunities and 0.3%) in opportunities taken.
From both studies, we find the challenge for less pre-

pared students is not that they have trouble learning
chemistry – they are learning at essentially the same
rate as better prepared students. The challenge is that
they need more learning opportunities to reach a given
performance level. Both studies also find a small but
statistically significant correlation between math initial
knowledge and number of opportunities taken, while
only Study 1 finds a significant correlation of chemistry
initial knowledge with opportunities taken.

5 Discussion

Unquestionably, student prior math preparation has a
substantial influence on their final success in introduc-
tory college chemistry courses. Here, we use data gath-
ered as students engage with online learning materials
to first examine initial knowledge and learning rates
for both students and knowledge components (RQ1)
and then decompose this link between preparation and
course success into five components: initial knowledge in
math and chemistry, learning rate for math and chem-
istry, and learning opportunities taken. We first sum-
marize our findings and then consider possible implica-
tions for course and curriculum design.

5.1 Summary

Our results suggest that the challenge for less prepared
students is not the rate at which they are learning,
but rather the fact that they come in with less initial
knowledge (Section 4.1). The analysis shows that initial
knowledge, averaged over the various knowledge compo-
nents (KCs) of the course, varies substantially among
students. The learning rates are, however, surprisingly
similar across students. These results are consistent
with findings in 27 other datasets of student learning in
course-embedded use of online practice in science, math,
and language courses where student learning rates were
found to be surprisingly similar.3 As we observed here,
this similarity in learning rate is particularly striking
in comparison to the high variability in student initial
knowledge.
The similarity in learning rate across students is also

striking in comparison to the high variability in learning
rate across knowledge components (KCs). Because stu-
dent learning rate is relatively constant, the difference
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in learning rates among KCs is not a result of better pre-
pared students learning harder KCs more quickly and
less prepared students learning them more slowly. The
differences are likely due to either: differences in the
complexity of the KC that impact its acquisition (e.g.,
the Clausius-Clapeyron equation is a more complex for-
mula than Boyle’s law) or imperfections of the labeling
of tasks with KCs (e.g., some of the tasks labeled with
the same KC may have other knowledge requirements
that have not been considered and when these tasks are
in later opportunities they flatten the learning curve).
In either case, identifying KCs with slow learning pro-
vides a direct means to guide iterative improvement in
the learning resources.46,48

We also investigated whether Chemistry problems
with high math content are harder for students to do
or to learn (RQ2). Our results suggest the level of chal-
lenge for students increases substantially with the level
of math involved in a particular KC, which is consistent
with past studies showing a link between math prepa-
ration and course success. However, we again find that
this challenge is related to initial knowledge not learn-
ing rate. Initial success is estimated at about 75% accu-
racy on no-math tasks and at about 36% on the highest
math level tasks. Surprisingly, higher math level does
not seem to inhibit learning rate. If anything, students
may learn chemistry content involving harder math at
a slightly higher rate (marginally significant in Study 1
but not statistically significant in Study 2).
Finally, we explored whether lower prior math or

chemistry preparation prevents or slows student learn-
ing (RQ3). Our results suggest that students’ math
initial knowledge also has little influence on their learn-
ing rate. This investigation was done by decomposing
initial knowledge into math initial knowledge, as mea-
sured by the dependence of a students’ initial knowledge
on the level of math involved in a particular KC, and
chemistry initial knowledge, as measured by estimating
initial knowledge on KCs with math difficulty factored
out. It is interesting that these two components of ini-
tial knowledge show little correlation with one another.
It is also interesting that student learning rate shows a
statistically significant correlation with chemistry initial
knowledge but not math initial knowledge. This posi-
tive correlation of learning rate with initial chemistry
knowledge is, however, quite small, with initial knowl-
edge remaining the primary source of challenge for less
well-prepared students.
Small correlations were found between the number of

opportunities taken and initial math knowledge (p =
0.005 for Study 1 and p = 0.004 for Study 2) and the
number of opportunities and chemistry initial knowl-
edge (only Study 1 was significant with p= 0.001).
Even though less prepared students make progress at

almost the same rate, they tend to engage with some-
what fewer learning opportunities. Although students
with lower initial knowledge can and do succeed, some
may believe they cannot and therefore participate less.

5.2 Implications

The observation that the student challenge lies primar-
ily in initial knowledge, as opposed to learning rate, may
have implications for course and curriculum design. If
low math preparation slowed learning, then it would
seem advisable to have less well-prepared students take
a math preparation course before enrolling in chemistry.
However if, as observed here, low math preparation does
not slow learning, then providing math support before
entering chemistry may not be necessary. Rather, pro-
viding support through math-specific instructional feed-
back and hints on tasks involving math, as is done in
the courseware employed in this study, appears a highly
viable alternative.
Although no link is observed here between initial

knowledge and learning rate, this does not imply that
students with lower preparation do not need additional
support to achieve course success. Even if learning rates
are the same, less well-prepared students will require
substantially more opportunities, and thus time, to suc-
ceed. A systemic approach to providing this time is
not consistent with most current curricula, which assign
credit hours based on content and without consideration
of student needs. The need for educational systems that
include support for this extra learning time is further
supported by the results reported here: Students with
less preparation tend to take somewhat fewer oppor-
tunities to engage with the material. The reasons for
this remain to be investigated. We suggest exploration
of three candidate hypotheses. First, individual oppor-
tunities may take less well-prepared students longer to
complete, because the scaffolding provided in the oppor-
tunities takes time to engage with. Second, the life cir-
cumstances that lead some students to enter the course
with lower initial knowledge may also lead to less avail-
able time to engage with learning materials during the
course. Third, some students may find it discourag-
ing to experience errors, even if they are learning from
them49 and thus decide to disengage. This third reason
suggests putting more attention to supporting student
motivation and perhaps more explicit statements that
every learner makes errors and it is a natural part of
the learning process.
In general, we advocate efforts to free up time for

students by making their learning more efficient. The
observation that learning rates are similar across all stu-
dents does not imply that improvements in instruction
cannot speed learning. Learning rate does vary sub-
stantially across KCs (Figures 2 and 6), with many KCs
showing slow learning. We recommend applying meth-
ods for identifying KCs with slow learning and modify-
ing the relevant instruction (e.g., by tailoring new prac-
tice tasks and instruction that directly address cognitive
challenges) to improve learning efficiency and effective-
ness.46,48

More generally, this effort illustrates the potential
for analysis of fine-grained longitudinal data, gathered
in authentic educational settings, to address century-
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old research questions in the learning of chemistry. A
large and expanding collection of such data is available
through LearnLab’s DataShop along with tools to sup-
port analysis.50
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