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A B S T R A C T   

Longitudinal operating deflection shapes (ODSs) of a bar can be measured by three-dimensional laser scanning. 
The difference between slopes of ODSs (SODSs) under damaged and intact statuses of the bar can be used to 
indicate and locate the damage. This study inspects ODSs in a multiscale manner, whereby multiscale ODSs 
(MODSs) and multiscale SODSs (MSODSs) are produced. Noise interference can be eliminated by increasing scale 
parameters to their satisfying values. In addition, two schemes of local fitting are applied to measured MODSs to 
generate locally fitted MSODSs under virtual intact statuses of the bars. By relying on differences between 
measured and locally fitted MSODSs, two individual damage indices (DIs) are established, namely the type-I DI 
and the type-II DI, in which damage-induced peaks can indicate and locate the damage. The capability of the two 
schemes of local fitting is theoretically verified and experimentally validated by detecting two-sided notches in 
bars.   

1. Introduction 

Damage detection of bars, based on their longitudinal operating 
deflection shapes (ODSs) under harmonic excitations, has garnered 
increased attention in recent years [1–3]. In comparison to various 
methods for detecting damage in beams using flexural ODSs, measuring 
longitudinal ODSs poses a greater challenge. For instance, with the 
advanced non-contact laser scanning measurement technique, obtaining 
flexural ODSs of a beam only requires a one-dimensional (1D) scanning 
laser vibrometer (1D-SLV) with a single laser head. However, to measure 
three-dimensional (3D) motions of a bar and extract longitudinal ODSs, 
a 3D-SLV equipped with three laser heads is necessary. This enables 
extraction of longitudinal ODSs from 3D steady-state vibration re
sponses at all measurement points along the length of the bar. 

In the context of damage in a beam with reduced cross-sectional 
dimensions such as a notch, in the aspect of physical sense, it reduces 
the local bending stiffness of the beam, leading to discontinuities in the 
second-order derivatives of its flexural ODSs. Building upon this theory, 
the well-established curvature method was initially introduced by 
Pandey et al. [4] and further developed over subsequent three decades 
[5–14]. Similarly, when dealing with a bar exhibiting local damage 
leading to a reduction in its local axial stiffness, discontinuities in the 

first-order derivatives of longitudinal ODSs can be employed for damage 
detection of the bar [1–3]. This approach mirrors the concept of using 
curvatures of flexural ODSs. Consequently, curvatures of ODSs (CODSs) 
and slopes of ODSs (SODSs) contain damage features in a beam/bar 
subjected to transverse and axial vibrations, respectively. The difference 
between CODSs/SODSs under damaged and intact statuses of the beam/ 
bar can be utilized to indicate and locate the damage. 

Nonetheless, damage detection using CODSs/SODSs faces two sig
nificant challenges. First, the presence of noise components in a 
measured ODS can result in substantial interference, potentially mask
ing the discontinuities caused by damage. Second, ODSs of a beam/bar 
under its undamaged status are often unavailable for real-world struc
tures. To overcome these challenges, a plethora of methods for damage 
detection of beams/bars have been developed over the past two decades. 
These methods are designed to be robust against noise interference and 
operate independently of baseline ODSs in intact conditions. To mitigate 
noise interference in CODSs and SODSs, the wavelet transform has been 
employed for denoising measured ODSs [15–18]. More recently, this 
technique has been integrated into CODSs [7,11,12] and SODSs [1,2]. 
Introducing scale parameters into CODSs and SODSs enables a gradual 
elimination of noise interference as the scale increases, while preserving 
damage-induced discontinuities for effective damage detection. 
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Specifically, for a bar with local damage, two peaks in wavelet- 
transformed SODSs can be used to localize damage edges [1]. It is 
noteworthy that when the structure undergoes transverse vibration as a 
beam, wavelet-transformed CODSs can also be utilized to localize 
damage edges [2]. Recently, Fourier spectral-based CODSs were pro
posed, demonstrating an ability to suppress noise [14]. In the realm of 
reconstructing CODSs of a beam under its virtual intact status, global 
fitting has been applied either to measured ODSs [12] or to their CODSs 
[8,9]. However, the absence of baseline CODSs of intact beams poses a 
challenge for damage detection of real-world structures. Besides the 
fitting methods mentioned above, other baseline-free approaches have 
been proposed, which are capable of extracting damage-induced dis
continuities in CODSs and SODSs for damage detection of beams and 
bars, respectively. By selecting appropriate mother wavelets, such as 
Gaussian wavelets with different orders, vanishing moments of wavelets 
can make low-order global polynomials in CODSs and SODSs vanish. 
Consequently, only damage-induced discontinuities that resemble local 
polynomials of higher orders are retained [17]. From a perspective of 
energy, the Teager-Kaiser energy of flexural ODSs or CODSs represents 
point-wise energy for each element of a beam. Slight damage-induced 
discontinuities in a CODS can be significantly amplified, facilitating 
easy detection of damage [11]. The Teager-Kaiser energy of a flexural 
ODS can abruptly change at damage locations while remain constant at 
intact locations, except near boundaries of the beam [19]. Starting from 
the equation of motion of a beam element, the concept of the transverse 
pseudo-force was proposed, treating the damage-induced perturbation 
to the transverse equilibrium as a virtual force applied to the damage 
location in the transverse direction. This transverse pseudo-force solely 
generated by the damage vanishes at intact locations [20–27]. Recently, 
a similar concept of the axial pseudo-force was formulated from the axial 
equation of motion of a bar with local damage, offering a means to 
detect damage by localizing damage edges [3]. 

It is widely recognized that local damage can cause changes in 
bending stiffness and/or mass in beam and plate structures, with alter
ations in natural frequencies often employed for damage detection. 
However, this criterion is not applicable to a damaged bar, such as one 
with a notch or crack, as its natural frequencies remain unaffected by the 
damage, and are solely determined by its length, Young’s modulus, and 
density. In such cases, ODSs of the bar offer advantages over natural 
frequencies since damage can induce discontinuities at damage edges, 
allowing for indication and localization of the damage. While numerous 
studies have focused on extracting damage-induced discontinuities of 
CODSs/SODSs for damage detection of beams/bars, the majority has 
concentrated on flexural ODSs of beams, with less attention given to 
longitudinal ODSs of bars. It is noteworthy that, despite the greater 
difficulty in exciting and measuring longitudinal vibration compared to 
flexural vibration, a longitudinal ODS can be valuable for detecting 
damage in structures such as cables. This is the case because flexural 
vibration of a cable is primarily governed by the tension rather than the 
bending stiffness. Crucially, the challenge of reconstructing SODSs 
under virtual intact statuses still needs to be addressed. This study 
proposes two schemes of local fitting using longitudinal ODSs measured 
through 3D laser scanning, allowing for reconstruction of SODSs under 
virtual intact statuses to facilitate damage detection of bars. Before 
implementing these fitting schemes, noise components in measured 
ODSs must be filtered using denoising methods such as multiscale 
analysis, whereby noise-robust multiscale ODSs (MODSs) are produced. 

The rest of this paper is structured as follows. In Section 2, multiscale 
analysis is integrated into ODSs to effectively eliminate noise interfer
ence. Additionally, two schemes (type-I and type-II) of local fitting are 
introduced for the purpose of detecting damage in bars. Section 3 pro
vides an analytical verification of these two local fitting schemes by 
employing analytical longitudinal ODSs of bars with local damage. In 
Section 4, the applicability of the two local fitting schemes is experi
mentally validated by detecting a two-sided notch in a bar, whose lon
gitudinal ODSs are measured using a 3D-SLV. Finally, Section 5 presents 

some concluding remarks. 

2. Schemes of local fitting for damage detection of bars 

2.1. Damage-induced discontinuities in SODSs 

An axial force F(x, t) in a bar can be expressed as [28] 

F(x, t) = E(x)A(x)
∂u(x, t)

∂x
, (1)  

where u(x, t) is the longitudinal displacement and A(x) is the cross- 
sectional area of the bar, with x denoting the abscissa along the bar 
length and t denoting time. The continuity condition of the axial force at 
a position x = x0 can be written as 

E(x)A(x)
∂u(x, t)

∂x

⃒
⃒
⃒
⃒

x=x−
0

= E(x)A(x)
∂u(x, t)

∂x

⃒
⃒
⃒
⃒

x=x+
0

. (2)  

The time derivative of Eq. (2) is as follows: 

E(x)A(x)
∂vx(x, t)

∂x

⃒
⃒
⃒
⃒

x=x−
0

= E(x)A(x)
∂vx(x, t)

∂x

⃒
⃒
⃒
⃒

x=x+
0

, (3)  

where vx(x, t) denotes the longitudinal velocity of the bar. 
When the bar is subjected to a single-tone harmonic force, its 3D 

components of steady-state velocities v1 , v2 , and v3 at each measure
ment point can be measured using a 3D-SLV, as illustrated in the sche
matic in Fig. 1. Note that #1, #2, and #3 laser heads of the 3D-SLV 
measure v1 , v2 , and v3 in the directions of three incident laser beams, 
respectively. The longitudinal velocity vx and transverse velocities vy 

and vz can be obtained through the geometrical transformation [29]: 
⎧
⎨

⎩

vx
vy
vz

⎫
⎬

⎭
=

⎡

⎣
cosα1 cosβ1 cosγ1
cosα2 cosβ2 cosγ2
cosα3 cosβ3 cosγ3

⎤

⎦

⎧
⎨

⎩

v1
v2
v3

⎫
⎬

⎭
, (4)  

where αi, βi, and γi (i = 1,2,3) are angles between incident laser beams 
and x-, y-, and z-axes of the coordinate system for each laser head. The 
coordinates of each measurement point enable the automatic calculation 
of these angles in the 3D-SLV. 

It can be assumed that 

Fig. 1. Schematic of 3D vibration measurement of a bar using a 3D-SLV.  
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u(x, t) = U(x)sin(ωt), (5)  

where U(x) denotes a longitudinal ODS at an excitation frequency ω that 
is not an undamped longitudinal natural frequency [2,3]. As observed in 
Fig. 2(a), local damage can barely cause evident changes in a longitu
dinal ODS of the bar, where superscripts D and I of U(x) denote damaged 
and intact statuses of the bar, respectively. These two superscripts will 
continue to be used hereinafter in this study. Therefore, the local dam
age can be hardly detected directly by the ODS. Without loss of gener
ality, the ODSs in this study are normalized with their absolute 
maximum being unity. Substituting Eq. (5) into vx(x, t) =

du(x,t)
dt yields 

vx(x, t) = ωU(x)cos(ωt). (6)  

Substituting Eq. (6) into Eq. (3) yields 

E(x)A(x)
dU(x)

dx

⃒
⃒
⃒
⃒

x=x−
0

= E(x)A(x)
dU(x)

dx

⃒
⃒
⃒
⃒

x=x+
0

. (7)  

By considering a bar with local damage that spans from x1 to x2, Eq. (7) 
indicates that damage-caused changes in Young’s modulus E(x) and/or 
cross-sectional area A(x) can cause a discontinuity between x = x1 and 
x = x2 in the SODS S(x) =

dU(x)

dx , as depicted in Fig. 2(b). The physical 
interpretation of Eq. (7) reveals that the axial force is continuous along 
the bar regardless of damage. To maintain the balance dictated by Eq. 
(7), any damage-caused change in E(x)A(x) can lead to a discontinuity in 
S(x) at the damage location, as indicated by a red circle in Fig. 2(b). 
Consequently, SODSs can be employed to indicate and locate damage in 
the bar [1]. It is noteworthy that at locations where SODSs vanish, 
damage cannot be detected by SODSs because both sides of Eq. (7) are 
equal to zero regardless of the presence of damage. 

However, since noise components are inevitably involved in 
measured ODSs and can be amplified by differentiation operation [3], 
actual damage-induced discontinuities in S(x) can be masked by intense 
noise interference, as illustrated in Fig. 3(a). 

By addressing this problem, the measured longitudinal ODSs in this 
study are inspected in a “region-by-region” manner [3] instead of the 
conventional “point-by-point” manner: a scaled Gaussian windowing 
function gs(x) is used to average an ODS, whereby the MODS Us(x) is 
produced: 

U(v, s) =
1
̅̅
s

√ U ⊗ gs(v), (8)  

Us(x) = U(v, s)|v=x, (9)  

where gs(x) = 1̅̅
s

√ g(−x
s ) with the Gaussian function g(x) = (2/π)

1/4e−x2 

and the scale parameter s, and ⊗ denotes convolution operation. The 
Gaussian filter is known for its effectiveness and ease of implementation 
compared to other filters [30]. It proves useful in significantly reducing 
noise in an ODS while minimizing loss of damage features [3]. By 
gradually increasing the scale parameter, noise components in the ODS 
can be eliminated while the damage-induced discontinuity can be 
retained [31]. The discrete MSODS Ss[xk] (see Fig. 3(b)) for the kth 
measurement point is calculated using the finite difference method [2]: 

Ss[xk] =
Us[xk+1] − Us[xk−1]

2h
, (10)  

where k = 2, 3, ..., N −1 with N representing the number of the mea
surement points and h denoting the spatial sampling interval. As can be 
seen in Fig. 3(b), noise interference is eliminated in the MSODS and the 
noise-induced discontinuity arises at damage edges. 

2.2. Type-I and type-II local fitting schemes for damage detection of bars 

Two schemes of local fitting are proposed in this study for damage 
detection of a bar. The common principle of the two schemes of local 
fitting is to fit the MSODS of the bar under the damaged status through 
interpolation, which can be regarded as the MSODS of the bar under the 
virtual intact status. In the aspect of physical sense, the difference be
tween the measured and reconstructed MSODSs represents damage- 
induced discontinuities at damage edges. The proposed methods 
enable detection of damage in bars without the need for baseline ODSs 
in intact conditions, thereby facilitating straightforward operation for 
real-world structural components. 

For the first scheme of local fitting shown in the flowchart in Fig. 4, 
local cubic interpolation is employed to reconstruct the value of the 
locally fitted MODS UF,L

s [xk] for the kth measurement point from the 
measured MODS UM

s [x]: 

UF,L
s [xk] =

∑3

r=0
ar,kxr

⃒
⃒
⃒
⃒
⃒

x=xk

, (11)  

where the coefficients ar,k (r = 0, 1, 2, 3) are determined by four 
neighboring points (xk−2, UM

s [xk−2]), (xk−1, UM
s [xk−1]), (xk+1, UM

s [xk+1]), 
and (xk+2, UM

s [xk+2]) of the curve UM
s [x]. By Eq. (10), the MSODSs SM

s [x]

and SF,L
sI [x] are produced from UM

s [x] and UF,L
s [x], respectively. Thereby, 

the type-I DI denoted as DII[x] is established, which relies on the dif
ference between SM

s [x] and SF,L
sI [x]: 

Fig. 2. (a) ODSs and (b) SODSs of a bar under damaged and intact statuses.  

W. Xu et al.                                                                                                                                                                                                                                      



Measurement 233 (2024) 114681

4

DII[xk] =

⃒
⃒SM

s [xk] − SF,L
sI [xk]

⃒
⃒

max
⃒
⃒SM

s [xi] − SF,L
sI [xi]

⃒
⃒

i=2,4,5,...,N - ​ 1
. (12) 

Likewise, the second scheme of local fitting shown in the flowchart in 
Fig. 5 is proposed by reconstructing the value of the locally fitted 
MSODS SF,L

sII [xk] for the kth measurement point from the measured 
MSODS SM

s [x] through cubic interpolation for local fitting: 

SF,L
sII [xk] =

∑3

r=0
br,kxr

⃒
⃒
⃒
⃒
⃒

x=xk

, (13)  

where the coefficients br,k (r = 0,1,2,3) are determined by four neigh
boring points (xk−2,SM

s [xk−2]), (xk−1,SM
s [xk−1]), (xk+1,SM

s [xk+1]), and (xk+2,

SM
s [xk+2]) of the curve SM

s [x]. Similar to the type-I DI, the type-II DI 
denoted as DIII[x] is established, which relies on the difference between 
SM

s [x] and SF,L
sII [x]: 

Fig. 3. (a) SODS and (b) MSODS of the damaged bar in a noisy condition.  

Fig. 4. Flowchart of damage detection of bars using type-I local fitting.  

Fig. 5. Flowchart of damage detection of bars using type-II local fitting.  
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DIII[xk] =

⃒
⃒SM

s [xk] − SF,L
sII [xk]

⃒
⃒

max
⃒
⃒SM

s [xi] − SF,L
sII [xi]

⃒
⃒

i=2,4,5,...,N - ​ 1
. (14)  

Note that both types of the aforementioned DIs range from 0 to 1. The 
locations of the peaks in the DIs can indicate damage edges. 

3. Theoretical verification 

Analytical solutions to longitudinal ODSs of bars with local damage 
are employed to theoretically validate the effectiveness of the two pro
posed schemes of local fitting in this study. Consider a specimen of an 
aluminum bar with 500 mm in length, 25 mm in width, and 6 mm in 
thickness, whose Young’s modulus is 70 GPa and density is 2700 kg/m3. 

A two-sided notch with reduced cross-sectional dimensions is modeled 
by symmetrically reducing the thickness of the specimen by 0.75 mm 
from both its top and bottom surfaces through its width (as illustrated in 
Fig. 1). Note that boundary conditions at both ends of the bar are free, 
with an aim to maintain consistency with the experiment in this study. 
Without loss of generality, let ζ = x/500 be the dimensionless coordi
nate. Scenarios I, II, and III are considered with notch locations being 
[0.4, 0.6], [0.45 0.55], and [0.475 0.525] for ζ, respectively. It is 
important to note that the longitudinal ODSs of the bars are numerically 
evaluated using Matlab following the procedure of analytical solutions 
that can be found in the authors’ previous work [2], and the details are 
not included in this section for the sake of conciseness. 

Fig. 6. (a-c) MODSs, (d-f) MSODSs, and (g-i) type-I DIs for Scenarios I, II, and III using type-I local fitting; locations of the damage edges are marked by two red 
dashed lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.1. Damage detection by type-I local fitting 

In the authors’ previous work [3], the ultimate signal-to-noise ratio 
(SNR) of an analytical longitudinal ODS for damage detection was 
observed to be 60 dB. With this consideration, the same ultimate noise 
level is deliberately set by adding white Gaussian noise to the noise-free 
analytical longitudinal ODSs, resulting in noisy longitudinal ODSs with 
an SNR of 60 dB. For denoising purposes, measured ODSs for Scenarios I, 
II, and III are inspected in a “region-by-region” manner by Eqs. (8) and 
(9), whereby the corresponding MODSs UM

s [x] at a satisfying scale of 30 
are produced, as shown in solid lines in Fig. 6(a), (b), and (c), respec
tively. According to the theory of multiscale analysis of a signal, the 
criterion for selecting the optimal scale parameter is as follows: at a 
smaller scale, noise in MODSs can interfere with MSODSs, potentially 
masking damage-induced sudden changes in MSODSs, and at a larger 
scale, edges of those changes may be shifted from actual damage edges 
[31]. 

The type-I scheme of local fitting is applied to the measured MODSs 
UM

s [x] by Eq. (11), resulting in the locally fitted MODSs UF,L
s [x], also 

shown in dotted lines in Fig. 6(a), (b), and (c). Upon comparison, the 
curves UM

s [x] and UF,L
s [x] for each scenario are highly identical, demon

strating the validity of the scheme of local fitting. By Eq. (10), the 
MSODSs SM

s [x] and SF,L
sI [x] for Scenarios I, II, and III are obtained from the 

MODSs UM
s [x] and UF,L

s [x], as shown in Fig. 6(d), (e), and (f), respectively. 
The curves SM

s [x] and SF,L
sI [x] are almost identical except for the details at 

locations of the damage edges. Low-order global polynomials in 
measured and locally fitted MSODSs exhibit significant overlap. 
Conversely, local polynomials of higher orders at the edges of damage- 

induced discontinuities cannot be precisely fitted through local cubic 
fitting. As a result, differences between each pair of the original and 
fitted curves (refer to Fig. 6(d), for instance) remain at locations of the 
damage edges, facilitating localization of damage. By relying on the 
differences between SM

s [x] and SF,L
sI [x], type-I DIs DII[x] for Scenarios I, II, 

and III are obtained by Eq. (12) and shown in Fig. 6(g), (h), and (i), 
respectively. In each DII[x], owing to the differences between SM

s [x] and 
SF,L

sI [x], two sharply rising peaks evidently indicate the damage location 
that correspond to actual locations of the damage edges, which are 
marked by two red dashed lines; meanwhile, each DII[x] almost vanishes 
at intact locations. Therefore, DII[x] is an ideal index for indicating and 
locating damage in bars. 

3.2. Damage detection by type-II local fitting 

Type-II local fitting is applied to SM
s [x] by Eq. (13) for Scenarios I, II, 

and III, as shown in solid lines in Fig. 7(a), (b), and (c), respectively, 
whereby the corresponding locally fitted MSODSs SF,L

sII [x] are obtained 
and also shown in dotted lines in Fig. 7(a), (b), and (c), respectively. By 
relying on the differences between SM

s [x] and SF,L
sII [x], type-II DIs DIII[x] for 

Scenarios I, II, and III are obtained by Eq. (14) and shown in Fig. 7(d), 
(e), and (f), respectively. 

Likewise, the curves SM
s [x] and SF,L

sII [x] are almost identical except for 
locations of the damage edges. Slight differences between SM

s [x] and 
SF,L

sII [x] due to fitting-caused smoothing occur at locations of the damage 
edges, leading to two abrupt peaks in each type-II DI DIII[x] (see Fig. 7 
(d)-(f)). The locations of the peaks in DIII[x] are in good agreement with 

Fig. 7. (a-c) MSODSs and (d-f) type-II DIs for Scenarios I, II, and III using type-II local fitting; locations of the damage edges are marked by two red dashed lines. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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actual locations of the damage edges, which are marked by two red 
dashed lines. Similar to DII[x], DIII[x] almost vanishes at intact locations. 
Therefore, DIII[x] exhibits almost the same capability as DII[x] for indi
cating and locating damage in bars. 

3.3. Comparison of local and global fitting schemes for damage detection 
of bars 

For comparison purposes, this section employs the existing schemes 
of global fitting [8,9,12] to reconstruct MSODSs of the bar under the 
virtual intact status. More specifically, type-I and type-II schemes of 

global fitting are introduced. 
For type-I global fitting, a global cubic polynomial is used to fit the 

entire measured MODS UM
s [x], allowing for reconstruction of the globally 

fitted MODS UF,G
s [xk] for the kth measurement point (see Fig. 8(a)-(c)): 

UF,G
s [xk] =

∑3

r=0
crxr

⃒
⃒
⃒
⃒
⃒

x=xk

, (15)  

where the coefficients cr (r = 0,1,2,3) are determined by all the points of 
UM

s [x] using the least-squares method: 

Fig. 8. (a-c) MODSs, (d-f) MSODSs, and (g-i) measured-fitting differences in MSODSs for Scenarios I, II, and III using type-I global fitting; locations of the damage 
edges are marked by two red dashed lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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min
∑N

i=1
(UM

s [xi] − UF,G
s [xi])

2
. (16)  

On the basis of MODSs UM
s [x] and UF,G

s [x], the MSODSs SM
s [x] and SF,G

sI [x]

are obtained by Eq. (10), respectively (see Fig. 8(d)-(f)). The absolute 
difference between SM

s [x] and SF,G
sI [x] is denoted as δI[x] (see Fig. 8(g)-(i)): 

δI[x] =
⃒
⃒SM

s [x] − SF,G
sI [x]

⃒
⃒. (17) 

It can be seen from Fig. 8(a)-(c) that differences between UM
s [x] and 

UF,G
s [x] increase with damage sizes, yet they are scarcely noticeable. In 

contrast, the noticeable differences between SM
s [x] and SF,G

sI [x] consider
ably increase, as shown in Fig. 8(d)-(f). It is important to note that when 
the damage size becomes small enough, the curve SF,G

sI [x] approaches 
SM

s [x] at intact locations of the bar. In that situation, type-I global fitting 
can effectively reconstruct SF,G

sI [x] from SM
s [x], and the major difference 

between them is localized at the damage location. As exemplified in 
Fig. 8(i), the peak in δI[x] exhibits a remarkable feature that is suitable 
for detecting small-sized damage in the bar. Nevertheless, when the 
damage size increases, the absolute differences δI[x] between SM

s [x] and 
SF,G

sI [x] (see Fig. 8(g)-(i)) at damage locations become less distinguishable 
due to the influence of global trends. 

For type-II global fitting, a global cubic polynomial is applied to fit 
the entire measured MSODS SM

s [x] through global fitting, enabling 
reconstruction of the MSODS SF,G

sII [x] for the kth measurement point (see 
Fig. 9(a)-(c)): 

SF,G
sII [xk] =

∑3

r=0
drxr

⃒
⃒
⃒
⃒
⃒

x=xk

, (18)  

where the least-squares method is also applied to determine the co
efficients dr (r = 0,1,2,3): 

min
∑N

i=1
(SM

s [xi] − SF,G
sII [xi])

2
. (19)  

The absolute difference δII[x] (see Fig. 9(d)-(f)) between SM
s [x] and SF,G

sII [x]

is defined as 

δII[x] =
⃒
⃒SM

s [x] − SF,G
sII [x]

⃒
⃒. (20) 

Similar to the situation encountered in type-I global fitting, type-II 
global fitting reveals increasing differences between SM

s [x] and SF,G
sII [x]

with increment of damage sizes (see Fig. 9(a)-(c)). Likewise, as the 
damage size decreases, the curve SF,G

sII [x] converges towards SM
s [x] at 

intact locations of the bar, whose primary distinction localizes at the 
damage location. Consequently, the absolute differences δII[x] between 
SM

s [x] and SF,G
sII [x] at damage locations are obscured by global trends for 

large-sized damage (see Fig. 9(d) and (e)); in contrast, the difference 
becomes more pronounced when detecting smaller-sized damage, as 
exemplified in Fig. 9(f). 

In comparison to the performance of damage detection using the 
schemes of local fitting (see Fig. 6(g)-(i) and Fig. 7(d)-(f)), the schemes 
of global fitting prove unsuitable for detecting large-sized damage. This 
limitation arises from deviations at intact locations, as global fitting 

Fig. 9. (a-c) MSODSs and (d-f) measured-fitting differences in MSODSs for Scenarios I, II, and III using type-II global fitting; locations of the damage edges are 
marked by two red dashed lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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struggles to fit discontinuities induced by large-sized damage. 
Conversely, local fitting excels in characterizing such discontinuities by 
leveraging its inherent localization property. Specifically, damage- 
induced peaks in δI[x] and δII[x] at damage locations may be obscured 
by global fitting, while local fitting perfectly captures these peaks at 
damage edges. Therefore, when it comes to detecting damage in bars 
using longitudinal ODSs, local fitting demonstrates a superiority to 
global fitting in adapting to varying damage sizes. 

4. Experimental validation 

The proposed schemes of local fitting are experimentally validated 
by detecting a two-sided notch in a bar, whose longitudinal ODSs are 
measured through 3D laser scanning using a 3D-SLV. 

4.1. Experimental specimen and setup 

The experimental specimen, an aluminum bar with a two-sided 
notch, is illustrated in Fig. 10, whose Young’s modulus, density, and 
dimensions are listed in Table 1. Through symmetrical milling, 1.25 mm 
in thickness is removed from both the top and bottom surfaces of the 
specimen through its width, creating a notch of 55 mm in length. The bar 
is suspended by four flexible strings that are glued to its four corners of 
the upper surface. For simplicity and repeatability, free boundary con
ditions are considered in this study. The bar is excited by an electro
magnetic shaker (MB Dynamics Modal 50A), which is attached to the 
end of the bar farther away from the notch, as shown in Fig. 10(a). The 
measurement line is situated on a lateral side of the bar along its length, 
marked by dots in Fig. 10(a) representing the laser spot moving along 
the bar length. The measurement line spans 450 mm, starting 2 mm 

away from the end of the bar without the shaker attached to it. The 
notch is positioned 145 through 200 mm away from the starting point of 
the measurement line, corresponding to the dimensionless coordinate 
ζ = 0.322 through 0.444. A zoomed-in view of the notch is presented in 
Fig. 10(b) to display the notch, whose edges are circled by two red 
ellipses. 

The theoretical undamped fundamental longitudinal natural fre
quency of the bar is 4968.6 Hz. However, due to the limitation of the 
shaker used in this study, with a maximum excitation frequency of only 
5000 Hz, the precise measurement of the exact fundamental longitudi
nal natural frequency of the bar is challenging. To address this limita
tion, the excitation frequency of the shaker is selected as 4900 Hz, which 
is close to the actual fundamental longitudinal natural frequency of the 
bar. The 3D-SLV (Polytec PSV-500-3D) is shown in Fig. 11, which 
measures steady-state velocity responses of the bar at 255 uniformly 
distributed measurement points along the measurement line. The lon
gitudinal ODS at 4900 Hz is extracted using the LMS Test.Lab 9b’s an
imation module by analyzing the averaged cross-power spectra of 
velocities at the measurement points. 

4.2. Experimental results 

As described in Section 2.1, the 3D components of steady-state ve
locities v1 , v2 , and v3 at each measurement point of the bar are 
measured by the 3D-SLV. After the geometrical transformation, the 
longitudinal velocity vx and transverse velocities vy and vz are obtained 
using v1 , v2 , and v3. The time histories of vx at all measurement points 
aligned in a line along the bar length are transformed to the frequency 
domain as v̂x by the fast Fourier transform, constituting a space- 
frequency matrix. This matrix enables the formation of the ODS at the 
excitation frequency. It is important to note that the measured ODS 
consists of real and imaginary parts due to damping. In this study, the 
real part of the measured ODS in Fig. 12 is used for damage detection as 
it has a larger magnitude, resulting in a higher SNR. The measured ODS 
is denoised by Eqs. (8) and (9) at a satisfying scale of 35 determined after 
trials, which yields the corresponding MODS UM

s [x], as shown in a solid 
line in Fig. 13. By applying type-I local fitting to the measured MODS by 
Eq. (11), a locally fitted MODS UF,L

s [x] is obtained and also shown in a 
dotted line in Fig. 13. It can be observed from Fig. 13 that the curves 
UM

s [x] and UF,L
s [x] almost completely overlap. Note that in Figs. 12 and 

13, locations of the damage edges are marked by two red dashed lines. 

Fig. 10. (a) Aluminum bar with a two-sided notch and (b) the zoomed-in view 
of the notch. 

Table 1 
Material and geometrical parameters of the experimental specimen.  

Material parameters Geometrical parameters 

Young’s modulus Density Length Width Thickness 

70.5 GPa 2680 kg/m3 475 mm 25.4 mm 6.35 mm  

Fig. 11. 3D-SLV with three laser heads and its controller.  
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By applying type-I and type-II local fitting schemes, the corre
sponding MSODSs SF,L

sI [x] and SF,L
sII [x] are obtained, as shown in Fig. 14(a) 

and (b), respectively. Note that in Fig. 14, locations of the damage edges 
are marked by two red dashed lines. Accordingly, the type-I and type-II 
DIs (DII[x] and DIII[x]) are obtained by Eqs. (12) and (14), as shown in 
Fig. 15(a) and (b), respectively. As can be seen from the type-I DI in 

Fig. 15(a), two peaks clearly indicate the presence of damage and its 
location that spans from about ζ = 0.32 through 0.45. However, some 
fake peaks appear at intact locations of the bar. In contrast, such influ
ence of fake peaks becomes less pronounced in the type-II DI (see Fig. 15 
(b)). Two peaks in DIII[x] sharply rise to evidently pinpoint the notch that 
spans from about ζ = 0.32 through 0.45. The two red dashed lines in 
Fig. 15 at ζ = 0.322 and ζ = 0.444 that correspond to the actual loca
tions of the damage edges validate that the notch is accurately localized. 
However, it is noticed that three fake peaks with subtle amplitudes still 
can be found in DIII[x]. To deal with this problem, more than one ODS 
associated with different excitation frequencies should be comprehen
sively considered in some future research. 

5. Conclusions 

In this study, two schemes (type-I and type-II) of local fitting are 
proposed for damage detection of bars. The analytical solutions to lon
gitudinal ODSs of bars with local damage are employed to verify the 
capability of the two local fitting schemes. Additionally, the superiority 
of local fitting to global fitting in self-adaption to damage sizes is 
demonstrated through case comparison. An experiment involving the 
measurement of longitudinal ODSs of a bar is conducted using 3D laser 
scanning, and the proposed schemes are experimentally validated by 
detecting a two-sided notch in the bar. The theoretical and experimental 
results reveal that damage can be accurately pinpointed by locating its 
two edges. Some conclusions are as follows.  

(1) As noise components are inevitably involved in measured ODSs 
and can be amplified by differentiation operation, actual damage- 
induced discontinuities in SODSs can be masked by intense noise 
interference. To solve this problem, the multiscale analysis is 
introduced into ODSs: measured longitudinal ODSs in this study 
are inspected in a “region-by-region” manner instead of the 
conventional “point-by-point” manner. By gradually increasing 
scale parameters, noise components in ODSs can be eliminated 
while damage-induced discontinuities can be retained.  

(2) In the first scheme, type-I local fitting is proposed to fit measured 
MODSs through local cubic interpolation, allowing for recon
struction of locally fitted MODSs. By taking derivatives of 
MODSs, both measured and locally fitted MSODSs can be ob
tained, relying on the difference of which the type-I DI is estab
lished. Peaks that sharply arise in the type-I DI can evidently 
indicate locations of the damage edges. 

Fig. 12. Real part of the ODS measured by the 3D-SLV.  

Fig. 13. MODS and the locally fitted MODS.  

Fig. 14. Measured MSODSs and locally fitted MSODSs using (a) type-I and (b) type-II local fitting schemes.  
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(3) In the second scheme, type-II local fitting is proposed to fit 
measured MSODSs through local cubic interpolation, enabling 
reconstruction of locally fitted MSODSs. The type-II DI is estab
lished relying on the difference between measured and locally 
fitted MSODSs. Compared to the type-I DI, the type-II DI dem
onstrates almost the same capability of indicating the presence of 
damage and locating damage edges.  

(4) In cases of damage detection of bars using longitudinal ODSs, 
local fitting exhibits a superiority to global fitting in self-adaption 
to damage sizes. Discontinuities induced by large-sized damage 
cannot be perfectly fitted by global fitting. In contrast, such dis
continuities can be characterized by local fitting due to its 
localization property. 
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