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ABSTRACT: Current neural networks for predictions of molec-
ular properties use quantum chemistry only as a source of train-
ing data. This paper explores models that use quantum chemistry
as an integral part of the prediction process. This is done by
implementing self-consistent-charge Density-Functional-Tight-
Binding (DFTB) theory as a layer for use in deep learning models.
The DFTB layer takes, as input, Hamiltonian matrix elements
generated from earlier layers and produces, as output, electronic
properties from self-consistent field solutions of the correspond-
ing DFTB Hamiltonian. Backpropagation enables efficient train-
ing of the model to target electronic properties. Two types of input to the DFTB layer are explored, splines and feed-forward
neural networks. Because overfitting can cause models trained on smaller molecules to perform poorly on larger molecules,
regularizations are applied that penalize nonmonotonic behavior and deviation of the Hamiltonian matrix elements from those
of the published DFTB model used to initialize the model. The approach is evaluated on 15 700 hydrocarbons by comparing
the root-mean-square error in energy and dipole moment, on test molecules with eight heavy atoms, to the error from the initial
DFTB model. When trained on molecules with up to seven heavy atoms, the spline model reduces the test error in energy
by 60% and in dipole moments by 42%. The neural network model performs somewhat better, with error reductions of 67% and
59%, respectively. Training on molecules with up to four heavy atoms reduces performance, with both the spline and neural net
models reducing the test error in energy by about 53% and in dipole by about 25%.

1. INTRODUCTION

Machine learning (ML) has the potential to predict molecular
properties at low computational cost, making it possible to
rapidly search chemical space for optimal systems.1−5 A power-
ful strategy for developing ML models begins by using quan-
tum chemistry (QC) to generate a set of data that spans the
chemical space of interest.6−8 The ML model is then trained to
reproduce the QC data with acceptable accuracy and with
substantially reduced computational cost.9 The ML models
explored to date use, as input, either features derived solely
from the structure of the molecular system,6,9−15 or, in the case
of Δ-machine-learning models,16−19 a combination of struc-
tural features and results from lower-cost quantum chemical
methods. While quantum mechanics is used to generate the
training data, the form of the ML model does not itself incor-
porate aspects of quantum mechanics. In the models explored
here, quantum chemistry is an integral part of the prediction
process. The approach may be viewed as an extension of
semiempiricial QC in which ML models are used to generate
the empirical parameters for the model Hamiltonian.
The models explored here are developed and tested on a

subset of the ANI-1 data set,20 which includes small organic
molecules distorted from their equilibrium positions. The ANI-
1 potential21 is a neural network that achieves high accuracy on
the entire ANI-1 data set. The network architecture is similar

to that introduced by Behler and Parrinello22 which obtains
high performance on a range of chemical systems.23−26 Incor-
porating QC into the neural network may be viewed as a way
to incorporate domain knowledge into the ML model.
Semiempirical QC models are able to describe a broad range
of chemical phenomena, including valency, bond formation,
and aromaticity. Semiempirical QC methods have also had
considerable quantitative success.27−31 Incorporating this domain
knowledge into the neural network may help lower the amount
of data needed to train the model and help improve transfer
between systems.32 However, we note that in domains such as
computer vision and natural language processing, such domain
knowledge has been pruned from the ML models as the amount
of training data and sophistication of the ML approaches have
increased.33−37

The QC portion of the model developed here is based on
self-consistent-charge Density-Functional Tight-Binding (DFTB)
theory.38−40 DFTB uses a minimal-basis, valence-electron only
Hamiltonian, with atomic point charges used to describe
Coulomb interactions between atoms. A unique characteristic
of DFTB is that the parameters for the electronic Hamiltonian
are obtained through a nonempirical approach.41 This approach
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begins by generating QC solutions for isolated atoms placed in
a simple electrostatic potential that constrains the radial spread
of the electron distribution. The resulting atomic wave func-
tions are then used to derive parameters for the electronic
Hamiltonian.42−46 DFTB typically also includes a repulsive
potential that is handled empirically by fitting to QC or
experimental results for molecules or periodic systems.47−50

Below, we implement DFTB as a layer for deep learning,
using the TensorFlow deep learning framework.51 The DFTB
layer takes, as input, values for the Hamiltonian matrix ele-
ments that define the DFTB model and generates, as output,
molecular properties that are self-consistent-field solutions of
the corresponding DFTB Hamiltonian. The DFTB layer
supports backpropagation, allowing the model parameters to
be updated efficiently. Below, training on 12 400 small organic
molecules, sampled from the ANI-1 data set,20 takes about 5 h
on six processor cores.52

Our focus here is on the construction and characterization of
the DFTB layer itself, which is agnostic with respect to the
form of the layers used to generate the DFTB matrix elements.
To help characterize the DFTB layer, we consider two different
types of earlier layers. In the spline model, we use spline
functions to allow the matrix elements to be functions of the
interatomic distance, r. In the neural network model, we use
feed-forward neural networks (FFNN) to allow the matrix
elements to be more general functions of the molecular
geometry. We will refer to the combination of the input layers
and the DFTB layers as a DFTB-ML model.
Because DFTB-ML models are highly flexible, we begin by

initializing the input layers to the matrix elements from a
published DFTB parametrization.38 Training of the DFTB-ML
model may be viewed as refining this initial DFTB model.
Although performance on the molecules in the training set
improves as training progresses, performance on test molecules
may begin to degrade with continued training. Below, such
overfitting is especially prevalent when the model is trained on
smaller molecules and then applied to larger molecules. We
consider two different regularizations to reduce such over-
fitting. The first applies only in the spline model and constrains
the Hamiltonian matrix elements to have a monotonic depen-
dence on r. The second regularization, which is much more
effective and applies to both spline and FFNN models, penalizes
deviation from the initial DFTB parameters. This penalty is a
regularization that limits the model flexibility and helps in the
transfer of models from smaller to larger molecules.
One motivation for considering transfer from smaller to

larger molecules is that this relates to a potential advantage of
building quantum mechanics directly into the ML model form.
During training, we modify only matrix elements that describe
short-range interactions between atoms. The longer-range inter-
actions are described via Coulomb’s law. This transition from
empirical interactions at short-range to physics-based inter-
actions at long-range may improve the degree to which models
trained on small molecules are able to transfer to larger systems.

2. RELATED WORK
In current DFTB models, empirical fits are typically limited to
the repulsive potential, a classical potential whose energy is
added to the energy obtained from the DFTB electronic
Hamiltonian. A number of approaches have been developed to
help automate fits of the DFTB repulsive potential to energies
and forces obtained from ab initio QC.47−50 The repulsive
potential is typically written as a sum of interatomic potentials

that are nonzero over a limited range, typically just beyond the
range of a covalent bond. The functional forms are also often
restricted, for example, to sums of exponentials. More recently,
unsupervised learning has been used to develop repulsive poten-
tials with more general model forms.53 Because our focus here is
on the electronic Hamiltonian, we use spline functions to obtain
a flexible, but relatively simple, form for the repulsive potential.
A number of recent DFTB parametrizations have, in addi-

tion to fitting the repulsive potential, empirically adjusted param-
eters that define the electronic Hamiltonian during the fitting
process.54−58 Adjusted parameters include those that define the
constraining potential and electron density cutoffs in the
standard approach utilized to construct the DFTB electronic
Hamiltonian from QC solutions for isolated atoms.54,56,57

Empirical fits have also adjusted the atomic orbital energies,
and the Hubbard parameters that specify electron−electron
repulsion.54−57 Matrix elements between atoms have also been
adjusted by fitting analytic forms that describe the dependence
of these matrix elements on r and that involve 255 or between
12 and 1558 free parameters per matrix element type. This past
work suggests that adjusting the electronic Hamiltonian can
lead to significant improvements in model accuracy.
Empirical fits of the electronic Hamiltonian have used a

number of optimization schemes. In a dual loop approach,
optimization of the electronic Hamiltonian alternates with
optimization of the repulsive potential, using different objective
functions for each of these two optimization loops.56,57 Simulta-
neous optimization of all fitting parameters has also been done
using gradient free optimization methods such as swarm opti-
mization,54 simulated annealing,55 and pattern search.58 These
optimization methods do not require the gradients of the molec-
ular properties with respect to model parameters to be com-
puted. This has the advantage of allowing parameters to be
adjusted to fairly complex targets such as minimum-energy
structures, lattice parameters, and energy differences between
polymorphs. The approach developed here uses back-propagation
to efficiently compute gradients. This allows flexible models,
that involve a large number of parameters, to be trained on
large sets of molecular data. However, the targets are limited to
molecular properties such as energy and dipole that are func-
tions only of the input molecular geometries.
An alternative, ML-based approach, for optimizing param-

eters in the electronic Hamiltonian has been applied to the
OM2 semiempirical QC model.59,60 This iterative approach
considers one parameter at time. For each molecule in the data
set, the value of the parameter that minimizes the error for that
individual molecule is obtained. Kernel Ridge Regression (KRR)
is then used to predict this optimal value, using only the molec-
ular structure. This approach reduced mean absolute errors in
atomization energies on test molecules from 6.7 to 1.3 kcal/mol.

3. METHODS

3.1. DFTB Hamiltonian. The DFTB model originates
from approximations applied to the Kohn−Sham equations of
density functional theory.38 Here, we use the model as an
empirical form for model fitting and so describe the model
from an empirical perspective. The single-electron wave
functions or molecular orbitals, Ψa, are expressed in a minimal
atomic basis, ϕi,

∑ ϕΨ = Ca
i

N

i a i,

basis

(1)
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where the Nbasis atomic basis functions include only valence
orbitals, for example, 1s on H and 2s,2p on second-row
elements.
The Kohn−Sham equations may be written as the following

eigensystem,

∑ [ + Δ − ϵ ] = ∀H H q S C a i( ) 0, ,
j

N

i j i j a i j j a, ,
(2)

, ,

basis

(2)

where Hi,j and Si,j are matrix elements of the one-electron
Hamiltonian operator and overlap operator, respectively,
between atomic orbitals i and j, and ϵa is the Kohn−Sham
orbital energies sorted from low to high. Hi,j

(2)(Δq) describes
the two-electron interactions as interactions between charge
fluctuations in the atomic shells, Δq,

∑ γ γΔ = + Δ
α

α α αH q S q( )
1
2

( )i j i j

N

i j,
(2)

, shell( ), shell( ),

shells

(3)

where α indexes over the Nshells atomic shells (e.g., 1s,2s,2p) in
the molecule, shell(i) is the shell of atomic orbital i, Δqα is the
charge fluctuation of shell α, and γβ,α is the Coulomb
interaction between shells β and α.
The charge fluctuations are obtained from the Mulliken

population of each atomic shell. These may be obtained from
the electronic density matrix,

∑ρ = n C Ci j
a

a i a j a, , ,
(4)

where i and j index atomic orbitals and na is the occupation of
the ath molecular orbital. The Mulliken charge of each atomic
shell is then

∑ ∑ ρ= −α
α∈

q S
i j

i j i j
shell( )

, ,
(5)

The charge fluctuation of the αth shell is then,

Δ = −α α αq q q (0)
(6)

where qα
(0) is the charge of atomic shell α in the isolated,

neutral, atom. The values of qα
(0) are constants that may be

taken as part of the model parametrization.
In section 3.3 below, we convert H(2)(Δq) from the

summation over atomic shells in eq 3 to a summation over
atomic orbitals. With each atomic orbital ϕi, we introduce a
charge

∑ ρ= −Q Si
j

i j i j, ,
(7)

and a charge fluctuation

Δ = −Q Q Qi i i
(0)

(8)

where the reference charge for the atomic orbitals, Q(0), is
obtained by distributing the reference charge for the shells, q(0)

of eq 6, equally across all atomic orbitals in the respective shell.
Hi,j

(2)(Δq) of eq 3 may then be written

∑Δ = + ΔH q S G G Q( )
1
2

( )i j i j
k

i k j k k,
(2)

, , ,
(9)

with

γ=Gi j i j, shell( ),shell( ) (10)

The total electronic energy is then

∑ ∑ρ= + Δ ΔE H Q G Q
1
2i j

i j i j
i j

i i j jelec
,

, ,
,

,
(11)

The total energy of the system also includes a classical poten-
tial energy term referred to as the repulsive potential because
it is intended to include the repulsive interaction between
the atomic cores that are not included in the electronic
Hamiltonian

∑= | − |
>

E R r r( )
A B

Z Z A Brep ,A B
(12)

where A and B label atoms, rA is the Cartesian position of the
Ath atom, and RZA,ZB

is a function that depends on the ele-
ments, indicated by atomic numbers ZA, of the atoms.
We also include a reference energy such that the total energy

is given by,

= + +E E E Etot elec rep ref (13)

DFTB parametrizations typical consider only the change in
energy due to geometric distortion.50 This can be done, for
example, by fitting to the energy differences between molecular
geometries or by fitting to atomic forces. Fitting to distortion
energies may be viewed as assigning a separate reference
energy to each isomer under consideration. Below, we instead
use a reference energy based on atom counts,

∑= +
=

E p N p
Z

Z Z cref
1,6,8 (14)

where the sum is over the elements (H,C,O), pZ is a parameter
associated with each element, NZ is the number of occurrences
of that element in the molecule, and pc is a single parameter
that sets the overall zero of energy. Equation 14 has the
advantage of allowing the model to predict energy differences
between any molecules composed of elements present in the
training data.

3.2. Matrix Element Models. The parameters of a DFTB
model are used to construct the matrices H, S, and G of eqs 2
and 9, and the repulsive potentials, RZA,ZB

of eq 12. In practice,
a DFTB parametrization is specified through a set of files that
list constants for the on-atom terms and provide the between-
atom terms as either a parametric or tabulated function of the
interatomic separation, r. Our goal is to provide an efficient
means to learn more flexible forms for these parameters.
Below, we use either splines or feed-forward neural networks as
examples of such flexible forms. However, our intent is to
support any model form that can be implemented efficiently in
a deep-learning framework such as Tensorflow. We therefore
divide the responsibilities between “models” that generate
information on the type currently extracted from the files that
define a DFTB parametrization, and a “DFTB layer” that uses
this information to predict molecular properties. The models
are implemented as layers that provide input to the DFTB
layer. The DFTB layer is agnostic with regards to the form of
these previous layers, requiring only that these earlier layers
produce the information in the order specified in section 3.3.
Although our implementation allows deep learning to be

used to construct S, we currently fix S to values from an
existing DFTB parametrization38 and so do not explore the
potential benefits and challenges associated with empirically
fitting S. Also, because our focus is on the electronic Hamiltonian,

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00873
J. Chem. Theory Comput. 2018, 14, 5764−5776

5766

http://dx.doi.org/10.1021/acs.jctc.8b00873


we restrict the repulsive potentials, RZA,ZB
of eq 12, to one-

dimensional spline functions.
Table 1 lists the models needed to construct the matrices H

and G for molecules composed of the elements H, C and O.

These matrices are assembled from “blocks”, with diagonal
blocks being between orbitals on a single atom and off-
diagonal blocks being between orbitals on two different atoms.
For diagonal blocks of H, the models generate the energy of
the s and p atomic orbitals. We allow these orbital energies to
depend on the environment of the atom,61 but assume that all
orbitals of a given shell on a given atom have the same energy.
For off-diagonal blocks of H, the models generate the matrix
elements between atomic orbitals that are aligned along the
axis connecting the two atoms. We will refer to these as “aligned”
matrix elements. For first-row elements, the unique aligned
elements are ss, sp, ppσ, and ppπ. These aligned matrix elements
may depend on the environments of the associated atoms. Slater-
Koster (SK) rotations are linear transformations that rotate these
aligned elements into blocks of H between atoms. The DFTB
layer described below carries out the SK rotations, with the
input layers generating only the aligned matrix elements. For
both diagonal and off-diagonal blocks, the models for G generate
the Coulomb interaction, γ of eq 3, between the various shells, ss,
sp, and pp. Because Coulomb interactions between atoms in
DFTB are between point charges associated with each atomic
shell, eq 3, SK rotations are not necessary for G.
3.3. Expressing DFTB as Tensor Operations. Training

of the DFTB model requires a large number of gradient
descent updates to the model parameters. To make these
updates efficient, we implement DFTB as a series of tensor
operations in the Tensorflow deep learning framework.51 Each
update to the parameters is based on a set of molecules that we
will refer to as a minibatch. In Tensorflow, a computational
graph is first constructed that specifies the series of tensor
operations required to make predictions for a single minibatch.
Data that depends on the particular molecules in the minibatch
are then fed into this graph. In a forward pass through the
graph, the molecular properties are predicted based on the
current model parameters, and the difference between
predicted and target properties is used to compute a loss.
In a backward pass, the gradient of the loss with respect to
model parameters is computed and used to update the model
parameters. Here, we use Tensorflow’s ADAM optimizer62 to
update the parameters based on the computed gradients, with
a learning rate of 10−5, first moment exponential decay rate of
β1 = 0.9, second moment exponential decay rate of β2 = 0.999,
and numerical stability constant ϵ = 10−8.

An epoch of training corresponds to a forward and backward
pass performed on each minibatch in the training data. The
form of the computational graph depends only on the empir-
ical formulas of the molecules included in the minibatch. To
allow us to use a single graph during model training, the mole-
cules in each minibatch have identical empirical formulas, and
the atoms in each molecule are sorted to have identical orders
of elements. (This restriction on the empirical formulas of the
minibatches could be relaxed by sharing model parameters
between multiple computational graphs.)
As discussed in section 3.2, the input to the DFTB layer

comes from models that produce the aligned matrix elements
of Table 1 in a specific order. This order is specified during
construction of the computational graph and depends only on
the sequence of empirical formulas in a minibatch. The
specification consists of a list of tuples that specify the type of
aligned matrix element (as in Table 1), the index of the molec-
ule within the minibatch, and the indices of the respective
atoms within that molecule. The layers that provide input to
the DFTB layer may use these specifications to implement a
wide variety of models. The list is ordered by type of aligned
matrix element so that the input layers may produce all matrix
elements of a given type with a single set of tensor operations.
Consider, for example, the use of a separate feed-forward
neural network for each of the matrix elements types, or models,
in Table 1. From the molecular geometries in a particular
minibatch, a list of feature vectors may be created that, when
fed into the neural network for a model, produces the aligned
matrix elements in the specified order. For diagonal elements,
the feature vectors may describe the environment of the atom
associated with that matrix element. For off-diagonal elements,
the feature vectors may describe the environment of the pair of
atoms associated with that matrix element.
The initial operations in the DFTB layer carry out the

Slater−Koster (SK) rotations (Figure 1b). The rotations are

written as batch matrix multiples, which can be handled
efficiently in Tensorflow or other deep-learning framework,

Table 1. Types of Aligned DFTB Matrix Elementsa

operator block type elements shell type models for C,H,O

H diagonal Z s, p 5
H off-diagonal Z1, Z2 ss, sp, ppσ, ppπ 18
G diagonal Z ss, pp, sp 7
G off-diagonal Z1, Z2 ss, pp, sp 15

aBlock type refers to blocks of the operator on a single atom
(diagonal) or between two atoms (off-diagonal). Shell type refers to
the orbitals involved in the aligned matrix elements. Blocks of the
operators on or between atoms can be generated from these aligned
matrix elements through Slater−Koster rotations. The last column
lists the number of models of each type needed for molecules
containing the elements C, H, and O.

Figure 1. Schematic representation of the DFTB layer. (a) The
aligned matrix elements are input from previous layers, ordered as
specified during construction of the computational graph.
(b) Tensorflow gather and reshape operations are used to rearrange
the input matrix elements and to carry out Slater−Koster rotations.
(c) The resulting operator blocks are assembled into operators for
each molecule. (d) Fock operators are constructed using atomic
charges fed into the graph, and molecular properties are predicted and
output from the layer.
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∑=Hblock R vb i
j

b i j b j,
shp

, ,
shp

,
shp

(15)

The superscript shp refers to the shape of the individual SK
rotation matrices, that is, the dimensions of indices i and j in
eq 15. For example, shp = 3 × 1 arises when rotating the single
aligned element of orbital type sp to the three matrix elements
in the operator block between s and p orbitals. shp = 9 × 2 arises
when rotating the two aligned elements ppσ and ppπ to the 3 × 3
operator block between p orbitals. The index b in eq 15 labels
blocks of the H operator. For computational efficiency, a single
evaluation of eq 15 carries out all required SK rotations of a
given shape, that is, b in eq 15 runs over all blocks in the
minibatch requiring SK rotations with shape shp. This requires
substantial rearrangements of the values input to the DFTB
layer. These are done using Tensorflow’s gather and reshape
operators. Given a vector x and a list of integers I, gather
returns yj = xIj. Reshape transforms a N-dimensional tensor into
a flattened 1-dimensional form and vice versa. For each shape,
shp in eq 15, a flattened view of vb,j

shp is gathered from the input
and reshaped into a 2-dimensional tensor. The batch matrix
multiply of eq 15 then generates flattened views of the operator
blocks, Hblockb,i

shp, ordered by a block index b.
An analogous approach is used to assemble blocks of G.

However, because SK rotations are not needed for G, the
values are only gathered and reshaped into Gblockb,i

shp.
The next operations in the DFTB layer assemble the

operator blocks into matrices for the operators H and G of
each molecule in the minibatch (Figure 1c). For computational
efficiency, all operators of a given dimension, Nbasis, are
assembled through a single gather operation. The operator
blocks, Hblockb,i

shp of eq 15, are first flattened and concatenated
into a single vector that holds results for all shapes, shp. For
each Nbasis, a flattened version of all operators with dimension
Nbasis are then gathered and reshaped into Omol,i,j

Nbasis , where mol
indexes molecules and O includes both H and G.
At this point, we have transformed the aligned matrix

elements input to the DFTB layer into the operator matrices
needed for the Kohn−Sham equations of eq 2.
We next compute the two-electron contributions to the

Kohn−Sham equations, H(2) of eq 2, with a tensor operation
for each value of Nbasis,

∑ Δ= +H S G G Q
1
2

( )i j
N

i j
N

k
i k

N
j k

N
kmol, ,

(2)
mol, , mol, , mol, , mol,

basis basis basis basis

(16)

The charge fluctuations, ΔQmol,k, are initialized from the starting
model parameters and updated to obtain self-consistency,
as discussed below.
The generalized eigenvalue problem of eq 2 is converted to a

self-adjoint eigenvalue problem. The overlap matrices are first
diagonalized

∑ Λ=S U Ui j
N

k
i k

N
k

N
j k

N
mol, , mol, , mol, mol, ,

basis basis basis basis

(17)

and the results are used to form,

Φ Λ= −U ( )i j
N

i j
N

j
N

mol, , mol, , mol,
1basis basis basis

(18)

A Fock operator for the self-adjoint eigensystem is then
formed,

∑ Φ Φ= +F H H( )i j
N

k l
k i

N
k l

N
k l

N
l j

N
mol, ,

,
mol, , mol, , mol, ,

(2)
mol, ,

basis basis basis basis basis

(19)

and diagonalized

∑ ϵ= ′ ′F C Ci j
N

k
i k

N
k

N
j k

N
mol, , mol, , mol, mol, ,

basis basis basis basis

(20)

The tensors ϵmol,k
Nbasis hold the orbital energies, ϵ of eq 2, and the

orbital expansion coefficients, C of eq 1, are given by

∑ Φ= ′C Ci j
N

k
i k

N
k j

N
mol, , mol, , mol, ,

basis basis basis

(21)

The density matrix is obtained by first masking out the unoc-
cupied orbitals,

=Cocc Mask Ci j
N

i j
N

i j
N

mol, , mol, , mol, ,
basis basis basis

(22)

where Maskmol,i,k
Nbasis is 1 for occupied orbitals j, and 0 otherwise.

The density matrices are then

∑ρ = Cocc Cocc2i j
N

k
i k

N
j k

N
mol, , mol, , mol, ,

basis basis basis

(23)

The mask of eq 22 allows tensor operations to be used
despite molecules with the same Nbasis having potentially differ-
ent numbers of occupied molecular orbitals. The charge fluctu-
ations, per atomic orbital, are then obtained from

∑ ρΔ = − −Q S Qi
N

k
i k

N
i k

N
i

N
mol, mol, , mol, , mol,

(0)basis basis basis basis

(24)

where Q(0)Nbasis holds the references charges, Q(0) of eq 8. The
electronic energy is then,

∑

∑

ρ

Δ Δ

=

+

E H

Q G Q

(25)

1
2

(26)

N

i j
i j

N
i j

N

i j
i

N
i j

N
j

N

elecmol
,

mol, , mol, ,

,
mol, mol, , mol,

basis basis basis

basis basis basis

The molecular dipoles are obtained from ΔQNbasis and the
Cartesian positions of the atoms.
Because the overlap matrices are not altered during model

training, ΦNbasis may be computed once at the start of training
and used throughout. However, because the overlap matrices
depend on molecular geometry, ΦNbasis must be computed
separately for each minibatch.
Given the computational graph for a forward pass through

the DFTB layer, Tensorflow computes the gradients needed to
train the model parameters. If the molecular orbitals become
degenerate, the gradients associated with the eigensystem
diverge. Any values in the gradient evaluation that are returned
as undefined are set to zero. In assigning molecular geometries
of a given isomer to train and test sets, we also sort such that
train molecules are less likely to encounter degeneracies (see
Supporting Information). Because of this, undefined values for
the gradients occur very rarely.

3.4. Self-Consistent Field. The two-electron portion of
the Hamiltonian depends on the current estimates for the
atomic charge fluctuations, ΔQ of eq 16. In application of
DFTB to a new molecule, these charges are obtained through
an iterative procedure that locates a fixed point, in which the
charges used to construct H(2) in eq 16 agree with those gener-
ated from the use of H(2), that is, those predicted by eq 24.
In the DFTB layer of section 3.3, the charge distributions used
to construct H(2) are fed into the computational graph. Updating
of the charges is therefore handled outside of the Tensorflow
computational graph.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00873
J. Chem. Theory Comput. 2018, 14, 5764−5776

5768

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00873/suppl_file/ct8b00873_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.8b00873


Roothaan−Hall is a simple iterative approach in which each
iteration uses the charges generated by the previous iteration
to update H(2). Although such an approach is simple to
implement, our experience is that this approach often fails to
converge. We instead use the direct inverse of the iterative
subspace (DIIS) method.63 Periodically during training, the
current H and G operator matrices are exported to a module
that uses DIIS iterations to obtain the SCF charge distribution.
The resulting charges are then fed into the computational graph,
for use in constructing H(2). Figure 2 shows a representative

training example in which the charges are updated every 10
epochs. Between charge updates, training brings the pre-
dictions closer into agreement with the target values, but this
training ignores the impact that changes to the parameters
have on the charges used to construct H(2). When the charges
are updated, the agreement between predicted and target
values degrades as shown by the spike in the loss at 10 and 20
epochs in Figure 2. As training continues and the model
parameters begin to stabilize, updates to charges have smaller
impacts on the loss. For the remainder of this paper, we

perform charge updates every 10 epochs and show only results
obtained immediately following a charge update. These are the
results that would be obtained if the current model parameters
were used to obtain SCF solutions and so are an accurate
reflection of model performance. Charge updates account for
roughly half of the total computation time.
In our initial exploration of model forms, DIIS occasionally

failed to converge. In such cases, we did not update the feed to
the DFTB computational graph. The charges fed into the
computational graph for such molecules were then those from
the most recent converged DIIS procedure. While this approach
allowed us to explore a wide variety of model forms, for the
results presented here, DIIS converged in all cases.

4. DATA SET

The results presented here are for molecules composed of the
elements H, C, and O from the ANI-1 data set.21 The molec-
ular structures in this data set were obtained by the Normal
Mode Sampling (NMS) method21 and reflect the types of
structures that may arise in a room temperature simulation.
Because the ANI-1 data set does not contain atomic charges,
we used the GAUSSIAN program64 to generate data for each
of the included molecules using the same quantum chemical
method as used in ANI-1, that is, Density Functional Theory
with the ωB97X functional and 6-31g(d) basis set. Electro-
static potential, ESP, charges were obtained using the
technique of Hu et al., which gives charges that vary smoothly
with changes in molecular geometry and basis set.65

As discussed in section 3.3, the computational graph
depends on the empirical formulas of the molecules in each
minibatch. We use a single computational graph corresponding
to the 66 empirical formulas of Table 2. The formulas are
sorted by number of heavy atoms, with 10 molecules each for
heavy atom counts of 1 to 5. For larger systems, the number of
molecules in the minibatch drops roughly as the square of the
number of heavy atoms. Because the number of aligned matrix
elements in a molecule scales roughly quadratically with the
number of heavy atoms, this choice distributes the aligned
matrix elements computed for molecules with five or more
heavy atoms roughly equally among different size molecules.
The Supporting Information provides additional details on the
selection of molecular geometries to include in the data set.

Figure 2. Training error as a function of number of epochs. Every 10
epochs, the SCF solution for the current Hamiltonian parameters is
used to update the charges fed into the DFTB layer. (Results are for a
spline model with no regularization trained on molecules with up to
seven heavy atoms.).

Table 2. Data Used to Train the Model Consists of 200 Train and 50 Test Minibatchesa

no. of molecules

no. of heavy atoms empirical formulas minibatch train set test set

1 H O CH H O CH H O CH H O CH H O CH2 4 2 4 2 4 2 4 2 4 10 2000 500

2 H O CH O CH O C H C H C H H O CH O CH O C H2 2 4 2 2 2 2 6 2 4 2 2 4 2 2 2 10 2000 500

3 C H O C H O C H H O CO CH O C H C H C H O C H O2 4 2 6 3 6 2 3 2 2 2 3 4 3 8 2 4 2 6 10 2000 500

4
C H O C H C H O C H O C H O C H CH O C H O C H O

C H O
3 6 4 8 2 4 2 3 8 3 4 4 6 2 3 2 2 2 2 6 2

3 2

10 2000 500

5 C H O C H O C H O C H C H O C H C H O C H C H O C H O4 8 4 6 3 6 2 5 10 3 4 2 5 8 4 10 5 6 3 8 2 4 4 10 2000 350

6 C H O C H O C H O C H O C H O C H C H5 10 5 8 4 8 2 4 6 2 5 6 6 10 6 8 7 1400 350

7 * *C H O C H O C H O C H O C H O6 10 5 8 2 6 8 6 2 5 10 2 5 1000 250

8 * * * *C H O C H O C H1 O C H O6 10 2 7 10 7 2 6 8 2 4 200

Total: 66 12400 3300
aEach minibatch has 66 molecules with the indicated empirical formulas. For empirical formulas with greater than 250 isomers, indicated with an
asterisk (∗), the isomers in the test set are distinct from those in the training set.
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5. LOSS BEING MINIMIZED
The model parameters are updated to minimize a weighted
sum of the root-mean-square (RMS) error in the target molec-
ular properties,

∑ ∑= −w
N

Loss
1

Pred Target
i

N

i i
prop

prop
prop

2
prop

(27)

where wprop is the weight for property prop, Nprop is the number
of predicted quantities, Predi is the value predicted from the
current DFTB parameters and Targeti is the target value from
the DFT computations of section 4.
The optimization begins with the DFTB parameters of ref 38,

which we will refer to as mio-0-1. The mio-0-1 parameter set is
the first freely available DFTB parameter set developed for
organic molecules including O, N, C, H.38,66 The initial errors
are shown in Table 3. The error in energy depends on how the

parameters for the reference energy of eq 13 are obtained.
In evaluating models below, we will fit either to molecules with
up to four heavy atoms, or up to seven heavy atoms. The initial
errors for these are labeled “up to 4” and “up to 7” in Table 3.
In addition, the reference energy can be fit to either the total
molecular energy, Emol, or the energy per heavy atom, Eatom.
The initial error in Emol increases substantially with molecular
size while that in Eatom is less dependent on size. In the fits
shown below, we therefore use Eatom in the loss function. It is
also worth noting that, even when Eref is the only aspect of the
model that is trained, performance for the energy is sub-
stantially enhanced by including molecules with up to seven
heavy atoms.
The target properties include the ESP charges and the

Cartesian components of the dipole moment computed from
these ESP charges. Fitting to the ESP dipoles prevents com-
petition between the dipole loss and the atomic charge loss.
The DFTB Hamiltonian is also based on point charges and
using the ESP dipole prevents the fitting process from con-
sidering aspects of the dipole moment that cannot be
accounted for within DFTB. Use of the ESP dipole has only
minor effects, as indicated by the close agreement between
initial error of the ESP dipole and actual dipole in Table 3.

For all fits reported here, wprop is 1/(0.1 kcal/mol) for Eatom,
1/(0.01) for charges, and 1/(0.01 D) for dipole components.
These values were chosen based on the relative magnitudes of
the initial errors in Table 3.

6. SPLINE MODEL
The DFTB layer of section 3.3 may be used to develop an
semiempirical Hamiltonian in which the matrix elements
depend only on the atomic elements and the distance between
the atoms. The resulting model is then directly compatible
with current implements of DFTB.67 In this approach, the
diagonal matrix elements of Table 1 depend only on the atomic
element and orbital type while the off-diagonal elements add a
dependence on interatomic distance, r. The dependence on r is
handled through two cubic splines that meet at rc, a cutoff
distance that varies with element types. During training of the
model, only the region below rc is varied. Each of the two
joined splines has 20 knots, with parameters initialized by a
least-squares fit to the parameters of mio-0-1.38 The boundary
conditions at rc force a continuous zeroth and first derivative,
with natural boundary conditions used at the outside extremes.
The values for rc were selected based on the distribution of

interatomic distances in the data set of section 4 (Figure 3).

For the repulsive potential, R, we use cutoffs just beyond the
first peak in the distributions, such that the repulsive potential
is varied only within distances corresponding to a covalent
bond. This is consistent with the use of R to model repulsive
interactions between atomic cores. For the electronic matrix
elements, H and G, we choose rc just beyond the second peak
in the distributions of Figure 3. This allows the training of the
model to modify next-nearest-neighbor electronic interactions
between atoms. The model parameters are initialized to the
matrix elements of mio-0-1.38,41,68 For R, the mio-0-1 matrix
elements drop to near zero at rc and so the boundary con-
ditions at rc constrain both the repulsive potential and its
derivative to zero at rc. For H and G, the constraints at rc
ensures a smooth transition to mio-0-1 values. For G, the mio-
0-1 matrix elements tend toward Coulomb’s law at long
distances. The use of a constrained spline for G, initialized to
mio-0-1 values beyond rc, ensures that charge−charge inter-
actions follow Coulomb’s law at long distances. Transitioning

Table 3. RMS Errors Using Initial DFTB Parametersa

Emol Eatom

no. of
heavy
atoms up to 4 up to 7 up to 4 up to 7

atomic
charges

actual
dipole

ESP
dipole

1 3.51 4.16 1.95 2.30 0.20 0.228 0.244
2 4.90 4.97 2.63 2.56 0.09 0.208 0.216
3 6.99 7.12 2.57 2.62 0.14 0.154 0.152
4 5.87 5.64 1.82 1.69 0.13 0.257 0.255
5 7.86 7.38 1.99 1.67 0.15 0.233 0.233
6 9.33 8.50 2.03 1.62 0.15 0.252 0.254
7 12.22 10.79 2.18 1.71 0.17 0.313 0.312
8 14.73 12.94 2.27 1.80 0.17 0.341 0.340

aEmol and Eatom are from fitting the reference energy, Eref of eq 13, to
total energy versus energy per heavy atom. Columns “up to 4” and “up
to 7” are from fitting Eref to molecules with up to four versus up seven
heavy atoms. Dipole errors are for Cartesian components of the
dipole, with ESP indicating that the dipole is computed from the
atomic charges. Units are kcal/mol for energy, e− for charges, and
Debye for dipole.

Figure 3. Distribution of interatomic distances in the training and test
data of section. 4, for different pairs of elements. x-Axis is interatomic
distance in angstroms and y-axis is number of occurrences in interval
centered on that point. Vertical lines are cutoff distances for modi-
fications to the repulsive potential, R, (dashed) and the electronic
matrix elements, H and G (solid).
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from an empirical to physics-based model for charge−charge
interactions may allow models trained on smaller molecules to
transfer to larger molecules. The lower and upper ranges of the
splines are set by the range of interatomic separations in Figure 3.
The splines are implemented using a B-spline basis.69 Given

the values at which the spline is to be evaluated, ri, the values,
Vi, can be obtained from a single matrix multiply,

= +V BX V0 (28)

where X is a vector holding the parameters that may be varied
to span the space of all cubic spline functions consistent with
the above boundary conditions. V0 is a constant vector that is
needed because the desired boundary conditions lead to a
general linear dependence on model parameters.
When the model is trained on molecules with up to seven

heavy atoms, the performance on test molecules with between
one and eight heavy atoms is improved, relative to the mio-0-1
values (lower panels of Figure 4). The RMS errors in energies

and dipole components are reduced by about a factor of 2.
However, when trained on molecules with up to four heavy
atoms, the performance on molecules with more than four
heavy atoms improves in early epochs but then begins to
degrade (upper panels of Figure 4). Figure 5 shows how the
spline evolves with training epoch, for matrix elements of H
between p orbitals of carbon atoms aligned in a σ orientation.
Similar results are obtained for other matrix elements (see
Supporting Information). When trained on molecules with up
to four heavy atoms, the spline begins to oscillate (Figure 5a)
as the model begins to overtrain. When trained on molecules
with up to seven heavy atoms, the spline has a smoother
dependence on r (Figure 5d). This suggests that overfitting
may be due to overly complex forms for the dependence of the
matrix elements on interatomic distance, r.
To help prevent overfitting, we tried imposing a penalty on

oscillatory behaviors. This was done by adding an additional
term to the loss of eq 27 that penalizes nonmonotonic behavior,

∑λ= ′pVLoss max(0, )
i

imono mono
2

(29)

where λmono sets the magnitude of the penalty, the sum is over a
uniform grid with the same range as the splines defining the

matrix elements but with three times the density, Vi′ is the
derivative of the spline at the ith point of this dense grid, and p is
+1 if the matrix element should be a decreasing function of r and
−1 otherwise. This is implemented efficiently by using a linear
form similar to that of eq 28 to evaluate Vi′ and Tensorflow’s
ReLU function for the max term. Values for λmono of 10

3 and 105

give equivalent results, indicating that for both values, the penalty
is sufficient to enforce monotonic behavior. Results shown in this
paper are with λmono = 105. When only the repulsive potential R
is allowed to vary, monotonic regularization is sufficient to lead
to improved transfer from smaller to larger molecules (middle
panels of Figure 6). However, when the electronic Hamiltonian
is also allowed to vary, monotonic regularization is not sufficient

Figure 4. Spline model without regularization. Upper and lower panels
are trained on molecules with up to four and seven heavy atoms,
respectively. Solid lines are on test data and dotted lines are for train
data. Charges are updated using DIIS to solve the self-consistent-field
problem every 10 epochs, and data shown is following such updates.

Figure 5. Dependence on interatomic separation, r, of the one-
electron Hamiltonian matrix element between p orbitals of Carbon
atoms, aligned in a σ overlap orientation. Upper/lower panels are for
models trained with up to 4 and up to 7 heavy atoms, respectively.
The right-most column is with no regularization, the middle column is
with monotonic regularization, and the left-most column is for DFTB
regularization.

Figure 6. Spline model used only for the repulsive energy. Upper and
lower panels are for training on up to 4 and up to 7 heavy atoms,
respectively. Left column uses no regularization and middle column
uses monotonic regularization. Right column uses DFTB regulariza-
tion, with dotted lines indicating points at which the penalty for
deviation from mio-0-1 starting values is relaxed.
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to improve transfer to larger molecules (Figure 7). Figure 5b
suggest that, even with monotonic regularization, the depend-
ence on r remains overly complex.

As a means to further constrain the model space, we added
an additional penalty for deviation from the original DFTB
model.

∑
λ

= −
N

VLoss
1 1

( DFTB )
i

N

i iDFTB
DFTB
2

elements

2
elements

(30)

where λDFTB sets the magnitude of the penalty, the sum is over
all matrix elements required for the minibatch, Vi is the current
value of the ith matrix element and DFTBi is the value of that
element in the initial mio-0-1 parametrization.
Because the results have a strong dependence on λDFTB, for

the remainder of this paper, we will present results in the
format of Figure 8. The DFTB penalty is relaxed during

training by increasing the value of λDFTB every 60 epochs. The
vertical dotted lines in Figure 8 indicate epochs at which the
penalty is relaxed. For values of λDFTB where overfitting is not

prevalent, 60 epochs is sufficient for training to stabilize. This
approach therefore provides a concise picture of the depend-
ence of the results on the DFTB penalty, before overfitting sets
in, and the manner in which the model degrades, once over-
fitting sets in. The best performance is at about 360 epochs.
Training on up to seven heavy atoms and testing on eight
heavy atoms, leads to RMS errors in Eatom of 0.72 kcal/mol,
q of 0.125, and μ of 0.20 D. Comparison with Table 3 shows
that this corresponds to an error reduction of 60% in Eatom,
27% in q and 41% in μ. Training on up to four heavy atoms
gives similar improvements for Eatom (1.08 kcal/mol, 53%) and
q (0.12, 27%), with less improvement seen for μ (0.25 D,
28%). The values in parentheses are RMS errors and percent
reduction relative to the column in Table 3 for which the
reference energy was trained on molecules with up to four
heavy atoms.
The Supporting Information shows results from adjusting

some classes of matrix elements during the fitting process,
freezing the remainder at their mio-1-0 values. The results
suggest that most of the improvement results from fitting the
off-diagonal matrix elements of H and G, and that simulta-
neous fitting of all matrix elements leads to the best performance.

7. NEURAL NETWORK MODELS

In the spline models of the previous section, the matrix ele-
ments depend only on the element type and the distance
between atoms. Here, we use neural networks to allow the
matrix elements to depend on the molecular environment of
the atoms. The features input to the network are those
developed for the ANI-1 neural network.21 Encoded bonds
features15 were also tried but did not perform as well (see
Supporting Information). The form of the network is shown
schematically in Figure 9. For each of the three element types

Figure 7. Spline model with regularization used to force monotonic
decay, using λmono = 105 in eq 29. Conventions are as in Figure 4.

Figure 8. Spline model with regularization used to force monotonic
decay, using λmono = 105 in eq 29, and to penalize deviation from mio-
0-1 values. Dotted lines indicate points at which the penalty for
deviations from mio-0-1 starting values are relaxed, with values for
λDFTB following the series: 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and
10 kcal/mol. Remaining conventions are as in Figure 4.

Figure 9. Schematic representation of neural network structure, for
the case of one hidden layer. (a) For each element type, C, H, and O,
a network takes in features that describe the atomic environment, Fi,
and outputs a set of latent variables for that atom. (b) For each of the
diagonal matrix element types in Table 1, a neural network predicts
the matrix element from the latent variables of the associated atom.
(c) Off-diagonal elements are predicted from the latent variables of
the two associated atoms and a thermometer-encoded representation
of the interatomic distance, eq 31.
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(C, H, and O), we create a FFNN that takes the features Fi of a
particular atom as input and generates latent variables that sum-
marize the atomic environment of that atom (Figure 9a). This is
similar to the use of latent variables in the deep tensor neural
network.70 Each atom gets a single set of latent variables that
are used to predict all matrix elements associated with that atom.
For each of the diagonal matrix element types in Table 1, a

FFNN is used to predict the matrix element from the latent
variable of the associated atom (Figure 9b). For each of the off-
diagonal matrix elements in Table 1, a FFNN is used to predict
the matrix element from the latent variables of the two asso-
ciated atoms, concatenated with features, Ri

therm, that thermom-
eter encode the interatomic distance (Figure 9c). The ther-
mometer encoding is done via

=
+
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i

i
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(31)

where r is the interatomic distance being encoded, ri
grid is a

uniform grid with 10 points, and σ is the inverse of the grid
spacing. Similar to the spline model, for interatomic
separations beyond the cutoff distances for the Hamiltonian
matrix elements in Figure 3, we use the matrix elements from
the mio-0-1 parameters. ri

grid is therefore a uniform grid of
10 points spanning the range from the smallest interatomic
distances in the data set to the cutoff distance. We emphasize
that each atom has a single set of latent variables, that is used
in predicting all matrix elements involving that atom.
Although the schematic of Figure 9 shows a single hidden

layer for each of the networks, we have tried a number of other
network structures (see Supporting Information). Figure 10

shows results from using ANI-1 features,21 one hidden layer
with 10 nodes for the latent network and the diagonal network,
and one hidden layer with 50 nodes for the off-diagonal
network. Sigmoid activation was used for all layers, except the
final layer which is linear. Initialization occurs in two stages. In
the first stage, the weights of each layer are initialized with a
random normal distribution, the standard deviation of which is
the inverse of the number of inputs to the layer. The distri-
bution is truncated by redrawing any numbers with an absolute
value greater than two standard deviations. In the second stage,
the full network is then trained to reproduce the mio-0-1
matrix elements for all molecules in the training set for 5000
epochs, leading to an RMS error slightly below 0.1 kcal/mol.

In all cases, the repulsive potential is treated with splines
configured as in section 6.
The network is then trained using DFTB regularization in a

manner identical to that used while training the spline models.
Monotonic regularization is applied only to the repulsive
potential. The results of Figure 10 show that the neural
network model performs somewhat better than splines.
Training on molecules with up to seven heavy atoms and
testing on molecules with eight heavy atoms leads to RMS
errors, at 500 epochs, in Eatom of 0.59 kcal/mol, q of 0.11, and
μ of 0.14 D. This corresponds to an error reduction, relative to
the spline model in Figure 8, of 18% in Eatom, 10% in q, and
27% in μ. When trained on molecules with up to four heavy
atoms, the enhancement in performance on molecules with
eight heavy atoms, relative to the spline model, is more
modest. At 240 epochs, the error in Eatom is reduced by 18%
relative to the spline, but the errors in q and μ are increased by
21% and 12%, respectively. At 360 epochs, the error in all
quantities is reduced relative to the spline model, but by only
1% for Eatom, 3% for q, and 9% for μ.
The Supporting Information includes results from a variety

of other neural network architectures. These results show that
making the model more flexible by adding additional hidden
layers or more nodes to the hidden layers, may somewhat
improve performance when training on molecules with up to
seven heavy atoms, but degrades performance when training
on molecules with up to four heavy atoms. Additional approaches
to regularization that better restrict the model flexibility may help
with transfer from smaller to larger molecules, but developing
such regularizations is left to further work.

8. DISCUSSION
The DFTB layer for deep learning introduced here makes it
computationally feasible to adjust the electronic portion of a
semiempirical QC Hamiltonian to relatively large sets of
ab initio data. Substantial improvements in predictions of energy,
charge distributions, and dipole moments were obtained with
both the spline and neural network models explored here.
Moreover, because the quantum chemical algorithm is imple-
mented as a layer for deep learning, any model that can be
implemented in a deep learning framework may be used to
generate the Hamiltonian matrix elements. This opens the
possibility of discovering models that further improve perfor-
mance and expand the range of chemical systems and
properties that may be described.
A challenge in development of such models is that the

resulting models are highly flexible. This flexibility comes from
both the flexibility of models used to generate the Hamiltonian
matrix elements and from the large number of such matrix
elements present in each molecule. Detrimental effects from
this flexibility were apparent in the overfitting that limited trans-
fer of models trained on smaller molecules to larger molecules.
This transfer was improved through regularization that penalized
deviation of the matrix elements from those of the initial mio-0-1
model parametrization. Finding additional and more effective
approaches to regularization is one avenue through which the
utility of this approach can potentially be improved.
Despite the highly flexible nature of the model, performance

on the training data remained above the 0.5 kcal/mol accuracy
for total molecular energy that is the target for chemical
accuracy. This indicates that the current model is not able to
accurately capture the interactions present in the molecule.
The similar performance observed for spline and neural

Figure 10. Neural network model with regularization used to penalize
deviations from mio-0-1 values. Conventions are as in Figure 8.
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network models suggests that the limitations are coming from
the form of the Hamiltonian itself, as opposed to the models
used to generate the matrix elements of this Hamiltonian.
Comparison of DFTB with other semiempirical models

suggests one way in which the Hamiltonian can be generalized.
In DFTB, the Coulomb interactions between atoms are described
by charge−charge interactions. In neglect of diatomic differential
overlap (NDDO) models, this is extended to include interactions
between atomic dipoles and quadrupoles.27 DFTB has also been
extended to include dipole interactions.71 Extending the cur-
rent quantum chemical layer to include higher multipole inter-
actions should not lead, as far as we can anticipate, to any funda-
mental issues.
Another source of information regarding more general forms

of the model Hamiltonian comes from comparison with the
results from quasiatomic minimal-basis orbitals (QUAMBO).72

QUAMBO can, from the SCF solution of a molecule in a large
basis set, generate a minimal basis Hamiltonian that will
reproduce that SCF solution. The two-electron integrals of the
resulting QUAMBO Hamiltonian are full four-index structures
that do not adhere to the highly simplified forms of the DFTB
or NDDO Hamiltonians. Inclusion of this aspect into the QC
layer seems hopelessly complex. However, examination of
QUAMBO Hamiltonians also reveals that the matrix elements
between atomic p orbitals do not exhibit the cylindrical symmetry
implicit in the DFTB model form. This cylindrical symmetry
arises from the use of a single ppπ model (Table 1), to generate
Hamiltonian matrix elements between the p orbitals on two
atoms. This assumption may be relaxed by allowing models to
break the cylindrical symmetry, using features that describe the
nonsymmetrical molecular environment about the relevant atoms.
In summary, we hope the DFTB layer developed here will

aid development of parametrizations that expand the power
and applicability of DFTB. In addition, we hope this will
enable more systematic investigations into the benefits and
challenges associated with incorporating quantum chemistry
directly into deep learning models.
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