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A B S T R A C T

In this paper, we study the pickup and delivery problem with multiple transportation modalities,
and address the challenge of efficiently allocating transportation resources while price matching
users with their desired delivery modes. More precisely, we consider that orders are demanded
by a heterogeneous population of users with varying trade-offs between price and latency. To
capture how prices affect the behavior of heterogeneous selfish users choosing between multiple
delivery modes, we construct a congestion game taking place over a form of star network,
where each source–sink pair is composed of parallel links connecting users with their preferred
delivery method. Using the unique geometry of this network, we prove that one can set prices
explicitly to induce any desired network flow, i.e, given a desired allocation strategy, we have
a closed-form solution for the delivery prices. We conclude by performing a case study on a
meal delivery problem with multiple courier modalities using data from real world instances.

1. Introduction

As the world continues to integrate with digital technology, we become more reliant on e-commerce services such as food
delivery and ride-hailing. The global food delivery market has seen exponential growth, with the most mature markets becoming
four to seven times larger from 2018 to 2021 (Ahuja et al., 2021). In 2022, Uber reported a 19% year-over-year increase in online
bookings, marking a daily average of 23 million trips on their platform (Uber, 2023). Despite this growth, many pickup and delivery
services operate under low profit margins due to high driver wages (Shetty et al., 2022).

To fulfill market demands and mitigate these costs, recent efforts have been made to introduce autonomous transportation
methods for food delivery and ride hailing, such as delivery drones, electric vertical takeoff and landing (eVTOL) aircrafts, and
sidewalk autonomous delivery robots (SADRs) (Moshref-Javadi and Winkenbach, 2021; Starship, 2023). For example, Archer
Aviation Inc. has recently revealed their plans to provide passengers with an eVTOL aircraft travel option between O’Hare
International Airport and Vertiport Chicago that takes roughly 10 min, a trip which can take upwards of an hour or more during
rush hour traffic (Gump, 2023).

As these modalities are introduced, it is important for service providers to develop new resource allocation strategies that
efficiently utilize emergent transportation modalities, while coinciding with customer preferences. With the advent of urban air
mobility, recent research has studied demand modeling, operations, and integration with existing infrastructure (Garrow et al.,
2021). For example, surveys examining commuter preferences regarding transportation have found significant heterogeneity in
individuals’ value of time, and that the median value of time for air taxis is larger compared to other modalities (Binder et al.,
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Fig. 1. We represent the pickup and delivery problem as a congestion game played over a star network. Each source-sink pair is denoted by 𝑖 ∈ , which can
be viewed as a population of users at some location demanding a particular order at a certain rate. Each source-sink pair is connected by a set of parallel edges
𝑗 ∈  , which can be viewed as the set of delivery modes the users choose from. Note that we are not concerned with how the couriers are routed to the pickup
or delivery location, and instead focus on how we allocate the different delivery modes for each order. Specifically, our goal is to induce an optimal allocation
of transportation modalities by appropriately setting prices for each order-modality pair.

2018; Garrow et al., 2019). As the inclusion of urban air mobility is predicted to disrupt urban transportation, it will be crucial for
existing rideshare providers to adapt their pricing and allocation strategies. In light of these developments, we address the challenge
of using customer preferences to set prices that efficiently allocate transportation resources amongst them.

This paper examines the pickup and delivery problem with multiple transportation modalities, and demonstrates how one
can achieve a desired allocation strategy for a set of orders by appropriately setting prices for each modality. Specifically, we
consider orders demanded by a heterogeneous population of users with varying trade-offs between price and latency. This problem
is analogous to a congestion game taking place over a form of star network: one central source node is used to connect a set of sink
nodes, where for each source–sink pair, there is a directed graph composed of parallel links between the source and sink node. This
way, we can use the star network to represent a central delivery system responsible for connecting users placing some order, with
their preferred transportation modality. Note that by using parallel links to represent the modalities, we are not concerned with
routing individual vehicles, and instead focus on allocating transportation resources. We illustrate this congestion game in Fig. 1,
depicting a meal delivery problem where customers at different locations place orders for food via the available delivery modes.
This unique network structure enables us to show that we can explicitly define prices to induce any desired network flow, i.e, given
a desired allocation strategy, we have a closed-form solution for the delivery prices.

The main contributions of this work are:

• We construct a congestion game that captures how prices affect the behavior of heterogeneous selfish users choosing between
multiple delivery modes.

• Building on results from prior works, we prove that in these settings, the set of prices can be explicitly defined for any desired
network flow.

• We demonstrate our results with a case study on a meal delivery service with multiple courier modalities, using real world
instances provided by Grubhub (Reyes et al., 2018).

• Under additional assumptions, we extend our results by allowing users to have varying trade-offs for each modality. We
demonstrate this with a case study on a taxi service with urban air transportation to and from the O’Hare International Airport,
using data provided by the city of Chicago (Transportation, 2023).

2. Related work

The application of emerging transportation modalities such as unmanned aerial vehicles or drones has drawn a lot of attention.
Many works look at how drones can be utilized in logistic operations such as delivery systems (Beliaev et al., 2023), urban air
taxi (Ale-Ahmad and Mahmassani, 2023), on-demand meal delivery (Liu, 2019), as well as many other applications (Moshref-Javadi
and Winkenbach, 2021). Other works look at safety verification for dynamical systems utilizing drones to account for factors such as
collision avoidance (Llanes et al., 2022) and schedule feasibility (Wei et al., 2021). The pickup and delivery vehicle routing problem
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with drones has also been considered by some, where mixed integer linear programming models are used to find routing solutions
for optimizing various objectives (Gacal et al., 2020; Lu et al., 2022). Unlike these works, our research lies in the broader field of
congestion games, specifically building on previous works that consider pricing in non-atomic congestion games.

Congestion games aim to allocate traffic over transportation networks represented by graphs, where each road corresponds to an
edge with a latency function representing the travel time experienced by users on that edge (Dafermos and Sparrow, 1969). In these
settings, one aims to find the optimal network flow that minimizes a social cost, such as the aggregate latency experienced by all
users. However, if we assume that users are self-interested and choose their routes selfishly by minimizing their individual latency,
the resulting flow follows a network equilibrium (Wardrop, 1952; Sheffi, 1985). One area of research is focused on categorizing
the trade-off in social cost between the optimal network flow and the equilibrium network flow (Roughgarden, 2005; Lazar et al.,
2021, 2017). Many works specifically look at how tolling can be used to price network edges such that the equilibrium network
flow corresponds to the desired optimal flow (Dafermos, 1973; Cole et al., 2003a; Brown and Marden, 2017). In our work, we make
the distinction that users are heterogeneous in their trade-off between price and time.

While in the homogeneous case it has been long known that marginal cost pricing can guarantee that the equilibrium flow
equals the optimal flow (Beckmann et al., 1956), this strategy does not hold for heterogeneous populations. More recent research
has demonstrated that for directed graphs with one source–sink pair, optimal tolls exist and can be found by solving a polynomial
size set of linear inequalities, given that the number of users in the heterogeneous population is finite (Cole et al., 2003b). In this
seminal paper, it was assumed that the model was nonatomic, meaning that each user corresponded to an infinitesimal unit of flow,
and inelastic, meaning that the demand could not change as a function of the road parameters. Following this work, others have
improved the result by considering multicommodity networks (Karakostas and Kolliopoulos, 2004; Fleischer et al., 2004), allowing
user demand to be elastic (Karakostas and Kolliopoulos, 2006), and addressing the atomic setting (Fotakis et al., 2010). In this
paper, we keep the assumption of a nonatomic model with inelastic demands, but consider a graph structure which is unique to the
pickup and delivery problem considered. By exploiting this graph structure, we can define prices explicitly to induce any desired
network flow without limiting it to an optimal flow. Whereas prior works directly use Linear Program (LP) formulations to find
edge prices in general directed graphs, our theoretical results imply that one can first find path prices combinatorially to simplify
the LP formulation.

The rest of the paper is organized as follows. In the subsequent Section 3, we formally introduce the problem setting and show
how it is analogous to a congestion game. Following this, in Section 4 we describe our theoretical result in the general framework
of the aforementioned congestion game, and in Section 5, we describe the specific framework that is used to model the pickup and
delivery problem and find the optimal allocation strategy. We go on to apply our theoretical results on this framework in Section 6,
which consists of our two case studies using the public Grubhub dataset (Reyes et al., 2018) for meal delivery and the Chicago
Transportation Network Providers dataset (Transportation, 2023) for taxi services. Lastly, we conclude our work in Section 7, listing
potential avenues for improvement and further research.

3. Problem formulation

We model our pickup and delivery problem using a static system, where during a given time interval,1 there is a set of
orders  demanded by a population of users. We consider that each order originates from a unique neighborhood composed of
a heterogeneous population represented by the interval [0, 1], where each point 𝑎 ∈ [0, 1] is a non-cooperative and infinitesimal unit
referred to as a user. We sort these users by money sensitivity, where in general, we can view 𝛼𝑖 ∶ [0, 1] → (0,∞) as an unbounded,
non-decreasing function representing the trade-off between price and time for users in the population corresponding to order 𝑖. Thus,
when placing an order 𝑖 ∈ , each user chooses one of the 𝐽 delivery modes 𝑗 ∈  ∶ {1,… , 𝐽} based on latency 𝓁𝑖,𝑗 , dollar price
𝜏𝑖,𝑗 , and their money/time valuation 𝛼𝑖(𝑎). We assume users placing order 𝑖 ∈  have inelastic demands, i.e., they will not switch
their demand to a different order and will always choose one of the 𝐽 delivery modes. Our goal is then to find the set of delivery
prices which would induce some desired allocation of users between the delivery modes 𝑗 ∈  for each order 𝑖 ∈  (see Table 1).

This problem is analogous to a congestion game played over a star network as portrayed in Fig. 1, where each order 𝑖 ∈ 

corresponds to a source–sink pair connected by a set of parallel edges  representing the different delivery options. Each source–
sink pair 𝑖 ∈  has an associated demand of traffic flow at the sink which represents the population of users 𝑎 ∈ [0, 1] requesting
deliveries. Although we model this flow demand with the unit interval to simplify notation, we can allow for an arbitrary demand
𝑟𝑖 at each source–sink pair 𝑖. The edge corresponding to modality 𝑗 ∈  for source–sink pair 𝑖 ∈  has a congestion dependent
latency 𝓁𝑖,𝑗 , which represents the time needed to complete the order, and a price issued to control congestion 𝜏𝑖,𝑗 , which represents
the dollar price paid by the user, both of which are assumed to be nonnegative. Note that when we drop index 𝑗 from the notation
of terms like 𝓁𝑖,𝑗 by writing 𝓁𝑖, we refer to the set of latencies {𝓁𝑖,𝑗}𝑗∈ over all the edges  for a given source–sink pair 𝑖.

With this approach, we can view network flow as an allocation of users over the delivery modes. To represent such allocation
strategies, we define 0 ≤ 𝑥𝑖,𝑗 ≤ 1 as the flow of users on edge 𝑗 ∈  corresponding to source–sink pair 𝑖 ∈ , where

∑
𝑗∈ 𝑥𝑖,𝑗 = 1

must be satisfied. More precisely, for each source–sink pair 𝑖 we view this flow as a Lebesgue-measurable function 𝑥𝑖 ∶ [0, 1] → 

which corresponds to a flow over the edges {𝑥𝑖,𝑗}𝑗∈ . We use notations 𝑥 = {𝑥𝑖,𝑗}𝑖∈,𝑗∈ and 𝜏 = {𝜏𝑖,𝑗}𝑖∈,𝑗∈ to denote the entire
set of edge flows and edge prices, respectively. As we will later show in Section 5 when defining the specific optimization problem,
we can use 𝑥 as a decision variable to find an optimal allocation strategy for a given objective, and explicitly define prices 𝜏 that
induce this desired strategy. For now, we continue to detail how latency and user equilibrium are considered in our framework.

1 Without loss of generality, we can define the time interval during which the orders  are demanded as one hour, using the same unit of time for all
variables and constants throughout our formulation.
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Table 1
Notations.

 | 𝑖 ∈  ≜ Set of orders | individual order (source–sink pair)
 | 𝑗 ∈  ≜ Set of modes | individual mode (edge)
𝐽 ≜ Number of modes, i.e., the cardinality of 

𝑎 ∈ [0, 1] ≜ A non-cooperative and infinitesimal unit referred to as a user
𝛼𝑖 ∶ [0, 1] → (0,∞) ≜ Function representing the trade-off between price and time for users placing order 𝑖.
𝓁𝑖,𝑗 ≜ Latency: total time required to complete order 𝑖 using mode 𝑗

𝜏𝑖,𝑗 ≜ Dollar price of placing order 𝑖 using mode 𝑗

𝑥𝑖,𝑗 ≜ Flow of users on edge 𝑗 corresponding to source–sink pair 𝑖

𝑥𝑖 ∶ [0, 1] →  ≜ Function representing flow over the edges  for source–sink pair 𝑖

𝑝𝑎
𝑖,𝑗

≜ User cost (hours) 𝑎 ∈ [0, 1] assigns to edge 𝑗 for source–sink pair 𝑖

𝑠𝑖,𝑗 | 𝑡𝑖,𝑗 | 𝑢𝑖,𝑗 ≜ Service time | travel time | pickup time (order 𝑖, mode 𝑗)
𝑟𝑖 | 𝑑𝑖 ≜ Pickup location | drop-off location (for order 𝑖)
𝑁𝑗 ≜ the total number of vehicles for mode 𝑗

𝜇𝑗 ≜ Order completion rate for mode 𝑗 in units of orders per hour
𝜌𝑗 | 𝜌̄𝑗 ≜ Utilization of mode 𝑗 | upper bound on utilization of mode 𝑗

𝛽𝑖,𝑗 ≜ Portion of available couriers distributed around pickup location 𝑟𝑖 such that their travel times are uniform in [0, 𝑘𝑗 ]
𝑘𝑗 ≜ Constant unit of time used for computing 𝛽𝑖,𝑗

𝑐𝑗 ≜ Cost in dollars for completing one order with mode 𝑗

𝑐𝑗 ≜ Cost in dollars per hour for operating mode 𝑗

𝐶 ≜ Cost in dollars per hour for operating the entire system

3.1. Congestion

We first describe the congestion element of our framework, namely, the latency function defined for each edge. Specifically, we
assume that each edge 𝑗 ∈  corresponding to source–sink pair 𝑖 ∈  has a nonnegative and continuous latency 𝓁𝑖,𝑗 as a function
of the entire network flow 𝑥. Each latency function 𝓁𝑖,𝑗 describes the time it takes for an order 𝑖 delivered by modality 𝑗 to arrive
at the customer’s location from the moment it was placed. We note that in order to claim our main theoretical result, we do not
need any further restrictions on the latency functions 𝓁𝑖,𝑗 . We leave further discussion regarding latency to Section 5, where we
model latency using concepts from queuing theory for our application. Until then, we stick with the aforementioned assumptions
and simply use notation 𝓁𝑖,𝑗 (𝑥) when defining edge latency.

3.2. User equilibrium

We are now ready to discuss how users choose between the different delivery modes. When confronted with a set of prices 𝜏𝑖
and latencies 𝓁𝑖 for the varying edge options 𝑗 ∈  , user 𝑎 ∈ [0, 1] will choose the edge with the smallest cost 𝓁𝑖,𝑗 (𝑥) + 𝛼𝑖(𝑎)𝜏𝑖,𝑗 .
Essentially, every source–sink pair 𝑖 ∈  corresponds to its own nonatomic game in which users 𝑎 ∈ [0, 1] choose between the 𝑗 ∈ 

pure strategies available. The non-cooperative behavior of users results in a Nash equilibrium, which is a stable point where no user
has an incentive to unilaterally alter their chosen strategy. Specifically, we let 𝑝𝑎

𝑖,𝑗
(𝑥, 𝜏𝑖) = 𝓁𝑖,𝑗 (𝑥) + 𝛼𝑖(𝑎)𝜏𝑖,𝑗 represent the evaluation

user 𝑎 ∈ [0, 1] assigns to edge 𝑗 for source–sink pair 𝑖.

Definition 1. For a given source–sink pair 𝑖 ∈ , we call the flow 𝑥𝑖 ∶ [0, 1] →  an equilibrium or Nash flow for instance (𝛼𝑖,𝓁𝑖, 𝜏𝑖)
if for any user 𝑎 ∈ [0, 1] and edge 𝑗 ∈  :

𝑝𝑎
𝑖,𝑥𝑖(𝑎)

(𝑥, 𝜏𝑖) ≤ 𝑝𝑎
𝑖,𝑗
(𝑥, 𝜏𝑖). (1)

The existence of such Nash flows is a well known and a general result (Schmeidler, 1973).

Proposition 1. For a given source–sink pair 𝑖 ∈ , any instance (𝛼𝑖,𝓁𝑖, 𝜏𝑖) admits a Nash flow 𝑥𝑖 ∶ [0, 1] →  satisfying Eq. (1).

We point out that the above Proposition requires not only the cost function 𝑝𝑎
𝑖,𝑗

to be nonnegative and continuous, but also the
set of possible flows to be a nonempty, convex, and compact. This is trivially satisfied when considering only the demand, as done
when presenting our theoretical results in Section 4. However, we will need to make sure the set is nonempty when including a
supply constraint, as done when formulating our optimization problem in Section 5.

Note that in the above results pertaining to Nash equilibria, for each source sink-pair 𝑖 ∈ , we consider the flow 𝑥𝑖 independently
from the entire network flow 𝑥, keeping the remaining flows constant. Since the latency 𝓁𝑖,𝑗 (𝑥) is assumed to be a function of the
entire network flow 𝑥, one may require a network flow 𝑥 ∶ {𝑥𝑖}𝑖∈ for which all source sink pairs 𝑖 ∈  exhibit Nash equilibrium
under their corresponding flow 𝑥𝑖 ∶ [0, 1] →  . We use the term stable allocation strategy to encompass this notion, formally defining
it below.

Definition 2. For a given star network defined by the source–sink pairs 𝑖 ∈  and edges 𝑗 ∈  , we call the network flow 𝑥 ∶ {𝑥𝑖}𝑖∈
a stable allocation strategy for instance (𝛼 ,𝓁, 𝜏) if for all source–sink pairs 𝑖 ∈ , the corresponding flow 𝑥𝑖 ∶ [0, 1] →  is an
equilibrium flow satisfying Eq. (1).

As we show in the subsequent section, any network flow 𝑥 is a stable allocation strategy for some set of prices 𝜏.
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Fig. 2. A sketch depicting how a canonical Nash flow splits the population 𝑎 ∈ [𝑎0 , 𝑎𝐽 ] into subintervals [𝑎𝑗−1 , 𝑎𝑗 ) ∶ 𝑥(𝑎) = 𝑗, where 𝑎0 = 0, 𝑎𝐽 = 1, and 𝑗 ∈  .
Note that order 𝑖 is left out from notation.

4. Theoretical results

Before stating our main results, we need to elaborate on one more property of equilibrium flows that applies to individual
source–sink pairs. Intuitively, we expect Nash flows to exhibit a structure where users 𝑎 ∈ [0, 1] close to 0, who value time more
than money, will choose an option with small latency but large price. Similarly, users further away from 0 will choose an option
with a relatively larger latency but a smaller price. Finally, users close to 1 will choose an option with very large latency in order
to pay a very small price. We encapsulate this notion below.

Definition 3. For a given source–sink pair 𝑖 ∈ , a flow 𝑥𝑖 at Nash equilibrium is canonical if:

• For any edge 𝑗 ∈  , the users assigned to 𝑗 form a possibly empty or degenerate subinterval of [0, 1].
• If 𝑎1 < 𝑎2, then 𝓁𝑖,𝑥𝑖(𝑎1)

(𝑥) ≤ 𝓁𝑖,𝑥𝑖(𝑎2)
(𝑥).

• If 𝑎1 < 𝑎2, then 𝜏𝑖,𝑥𝑖(𝑎1)
≥ 𝜏𝑖,𝑥𝑖(𝑎2)

.

In other words, a canonical Nash flow 𝑥𝑖 splits [0, 1] into at most 𝐽 potentially degenerate sub intervals, inducing an ordering
over the edges to which 𝑥𝑖 assigns users that is nondecreasing in latency and nonincreasing in prices. We portray this in Fig. 2.
Using results from prior work which proposed this definition (Cole et al., 2003b), we can state the following existence property,
providing an independent proof of this proposition in Appendix A for completeness.

Proposition 2. For a given source–sink pair 𝑖 ∈ , every instance (𝛼𝑖,𝓁𝑖, 𝜏𝑖) admits a canonical Nash flow.
With these properties, we can say that for a given source–sink pair 𝑖 ∈  and instance (𝛼𝑖,𝓁𝑖, 𝜏𝑖), there exists a canonical Nash

flow 𝑥̃𝑖 ∶ [0, 1] →  . This canonical Nash flow represents the flow {𝑥̃𝑖,𝑗}𝑗∈ , where users in interval [𝑎𝑗−1, 𝑎𝑗 ] ∈ [0, 1] are routed on
edge 𝑗 for some corresponding set 𝑎0 ≤ 𝑎1 ≤ ⋯ ≤ 𝑎𝐽 , with 𝑎0 = 0 and 𝑎𝐽 = 1. In the pickup and delivery setting, we can assume
that the delivery provider already has a set of flows {𝑥𝑖,𝑗}𝑗∈ representing the desired allocation strategy for order 𝑖, and wants to
find a corresponding set of prices {𝜏𝑖,𝑗}𝑗∈ such that the induced equilibrium flow {𝑥̃𝑖,𝑗}𝑗∈ is equal to the desired flow. Building
on top of the aforementioned results, we find a closed-form solution to this problem.

Theorem 1. For a given source–sink pair 𝑖 ∈ , any desired flow {𝑥𝑖,𝑗}𝑗∈ is an equilibrium flow for instance (𝛼𝑖,𝓁𝑖, 𝜏𝑖), where the set
 ∶ {1,… , 𝐽} orders the edges by non-decreasing latency, 𝛼𝑖 ∶ [0, 1] → (0,∞) is a non-decreasing distribution function, 𝓁𝑖 is the set of
corresponding edge latencies, and 𝜏𝑖 is the set of prices defined by:

𝜏𝑖,𝑗 = 𝜏𝑖,𝐽 +

𝐽−1∑

𝑘=𝑗

𝓁𝑖,𝑘+1 − 𝓁𝑖,𝑘

𝛼𝑖(𝑎𝑘)
∀𝑗 ∈  , (2)

where 𝜏𝑖,𝐽 is any predefined price for the cheapest option.

Proof. The proof strategy is as follows: given the result of Proposition 2 which states that every instance (𝛼𝑖,𝓁𝑖, 𝜏𝑖) admits a canonical
Nash flow, we use the properties of canonical Nash flows along with a subset of the inequalities defined for Nash equilibrium in
Eq. (1) to show that for some desired flow {𝑥𝑖,𝑗}𝑗∈ to be at equilibrium, there is only one set of valid prices 𝜏𝑖. We complete the
proof by showing that the corresponding set of prices 𝜏𝑖 does indeed satisfy all of the inequalities defined in Eq. (1). The full proof
is provided in Appendix B. □

It follows directly that given any network flow 𝑥 ∶ {𝑥𝑖}𝑖∈ representing a desired allocation strategy over all orders, one can
independently set prices 𝜏 ∶ {𝜏𝑖}𝑖∈ for each source–sink pair to make 𝑥 a stable allocation strategy.

Corollary 1. For a given star network defined by source–sink pairs 𝑖 ∈  and edges 𝑗 ∈  , any network flow 𝑥 ∶ {𝑥𝑖}𝑖∈ is a stable
allocation strategy for instance (𝛼 ,𝓁, 𝜏) when the set of prices 𝜏 is defined according to Eq. (2).

We note that under additional assumptions, the results of Theorem 1 and Corollary 1 can be extended to the setting where users
have different trade-offs between price and latency 𝛼𝑖,𝑗 for different modes of transportation 𝑗 as well as orders 𝑖.

Corollary 2. For a given source–sink pair 𝑖 ∈  and instance (𝛼𝑖,𝓁𝑖, 𝜏𝑖), if a desired flow {𝑥𝑖,𝑗}𝑗∈ is inducible under some equilibrium flow
𝑥̃𝑖 ∶ [0, 1] →  that routes users in interval [𝑎𝑗−1, 𝑎𝑗 ] ∈ [0, 1] on edge 𝑗 for some corresponding set 𝑎0 ≤ 𝑎1 ≤ ⋯ ≤ 𝑎𝐽 , then the set of prices
𝜏𝑖 must be defined by:

𝜏𝑖,𝑗 =
𝛼𝑖,𝑗+1(𝑎𝑗 )

𝛼𝑖,𝑗 (𝑎𝑗 )
𝜏𝑖,𝑗+1 +

𝓁𝑖,𝑗+1 − 𝓁𝑖,𝑗

𝛼𝑖,𝑗 (𝑎𝑗 )
∀𝑗 ∈ {1,… , 𝐽 − 1}, (3)
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where 𝑎0 = 0 and 𝑎𝐽 = 1, 𝛼𝑖 is a set of non decreasing functions 𝛼𝑖,𝑗 ∶ [0, 1] → (0,∞) for 𝑗 ∈ {1,… , 𝐽} such that given 𝑎 < 𝑎′,
𝛼𝑖,𝑗+1(𝑎)

𝛼𝑖,𝑗 (𝑎)
≥

𝛼𝑖,𝑗+1(𝑎
′)

𝛼𝑖,𝑗 (𝑎
′)

for all 𝑗 ∈ {1,… , 𝐽 − 1}, 𝓁𝑖 is the set of corresponding edge latencies, and 𝜏𝑖,𝐽 is any predefined price for the cheapest
option. It follows directly that if the network flow 𝑥 ∶ {𝑥𝑖}𝑖∈ is a stable allocation strategy for instance (𝛼 ,𝓁, 𝜏), then the set of prices 𝜏 is
defined by Eq. (3).

The proof is provided in Appendix C, where we can no longer rely on Proposition 2 that allows us to utilize the properties
of canonical Nash flows. Due to this, we only consider well behaved equilibrium flows which divide the users into 𝐽 potentially
degenerate sub intervals, inducing an ordering over the edges which preserves the assumption placed on the distribution functions
𝛼𝑖,𝑗 . Intuitively, this assumption requires the modalities {1,… , 𝐽} ordered by their relative luxury, since users 𝑎 ∈ [0, 1] closer to
0, who have a greater value of time overall, will have a proportionally higher value of time for more luxurious modes. Hence,
Corollary 2 tells us that if the desired flow {𝑥𝑖,𝑗}𝑗∈ can be induced by such an equilibrium flow, then the prices {𝜏𝑖,𝑗}𝑗∈ must
follow Eq. (3). Although this is a weaker result compared to Theorem 1, it can be strengthened and used in applicable settings as
we will demonstrate in our second case study provided in Section 6.

Lastly, we point out that so far we have not made any claims regarding the uniqueness of equilibrium flows. While the uniqueness
of Nash flows for networks composed of parallel links is a known result (see Theorem 1 in Orda et al. (1993) or Proposition 3.3
in Milchtaich (2000)), it requires additional assumptions: convexity and strict monotonicity of cost functions 𝑝𝑎

𝑖,𝑗
with respect to

flow 𝑥𝑖,𝑗 . To keep our results in Theorem 1, as well as Corollaries 1 and 2, general for any arbitrary latency functions 𝓁𝑖,𝑗 , we forego
making such restrictions. However, we note that the latency function 𝓁𝑖,𝑗 used in our case studies satisfies the aforementioned
requirements. Furthermore, due to the results of Proposition 2, any two allocation strategies 𝑥 and 𝑥′ that are stable for instance
(𝛼 ,𝓁, 𝜏), must induce the same ordering over the edges 𝑗 ∈  that is nondecreasing in latency 𝓁𝑖,𝑗 , and nonincreasing in prices 𝜏𝑖,𝑗 ,
for all source–sink pairs 𝑖 ∈ .

5. Pickup and delivery problem

To show the usability of our model, we apply our theoretical framework to the pickup and delivery problem with multiple courier
types. Our goal is to find the optimal allocation strategy with respect to some objective, where we will use Theorem 1 to set the
prices which induce this desired strategy. Our objective will be to find the optimal values of 𝑥 which minimize the expected latency
over all orders:

𝐿(𝑥) = 1

||
∑

𝑖∈

∑

𝑗∈

𝓁𝑖,𝑗 (𝑥)𝑥𝑖,𝑗 . (4)

Using the model and optimization problem developed in this section, we will perform case studies on both a meal delivery service
and a taxi service in the following Section 6. Before we set up and solve this optimization problem, we first specify how latency is
measured, and how cost is accounted for.

5.1. Latency model

We begin by characterizing each order 𝑖 ∈  by a 2–tuple ⟨𝑟𝑖, 𝑑𝑖⟩, consisting of a pick-up and drop-off location, respectively. We
would like our system to model the time it takes to complete a customer’s order from the moment it was placed. We refer to this
as the latency 𝓁𝑖,𝑗 for order 𝑖 ∈  and modality 𝑗 ∈  , computing it as:

𝓁𝑖,𝑗 (𝑥) = 𝑠𝑖,𝑗 + 𝑡𝑖,𝑗 + 𝑢𝑖,𝑗 (𝑥). (5)

Essentially, the above Eq. (5) splits the latency 𝓁𝑖,𝑗 into three components: service time 𝑠𝑖,𝑗 , travel time 𝑡𝑖,𝑗 , and pickup time 𝑢𝑖,𝑗 for
modality 𝑗 of order 𝑖.

In total, to compute the latency 𝓁𝑖,𝑗 of an order, we account for how long it takes a courier to arrive at the designated pickup
location 𝑢𝑖,𝑗 , the travel time between the pickup and drop-off locations 𝑡𝑖,𝑗 , and the service time required 𝑠𝑖,𝑗 . We view the service
time 𝑠𝑖,𝑗 as a constant representing the time spent at the pickup and drop-off locations when completing order 𝑖 using modality 𝑗.
Some examples of this include parking for vehicle couriers, landing for aerial couriers, loading, and unloading. Similarly, we define
the travel time 𝑡𝑖,𝑗 as the time it takes to physically travel between pickup 𝑟𝑖 and drop-off 𝑑𝑖 locations using modality 𝑗. The travel
time 𝑡𝑖,𝑗 between locations can be pre-computed separately for each modality 𝑗 and order 𝑖 using some known functions. Lastly,
we view the pick-up time 𝑢𝑖,𝑗 as the time it takes for a courier of modality 𝑗 to arrive at pick-up location 𝑟𝑖. Unlike the other two
components, the time required for pickup 𝑢𝑖,𝑗 should depend on the availability of couriers captured by our decision variable 𝑥, as
well as the expected travel time between the pickup location and nearest available courier.

To account for the availability of couriers, we use the concept of server utilization from queuing theory. Specifically, we use the
𝑀∕𝑀∕𝑐 queue as an approximate model for the availability of couriers since we can obtain closed form formulas for the average
order arrival and order completion rates. For a given modality 𝑗, we set 𝑐 to be the total number of couriers 𝑁𝑗 , approximate the rate
at which users are placing orders as

∑
𝑖∈ 𝑥𝑖,𝑗 , and define the rate at which an order is completed by these types of couriers as 𝜇𝑗 .

Note that we can define the order completion rate 𝜇𝑗 as a constant provided by historical data, or estimate it using the parameters
of our problem instance as we will do in the case studies following. Drawing these analogies allows us to define the utilization 𝜌𝑗
of our queuing system for couriers of modality 𝑗 as:

𝜌𝑗 =

∑
𝑖∈ 𝑥𝑖,𝑗

𝑁𝑗𝜇𝑗
. (6)
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In our regime of interest, the rate of order arrivals is magnitudes larger than the rate of order completions, and hence the number
of available couriers 𝑐 needs to be large. Using the 𝑀∕𝑀∕𝑐 latency function, one can show that in this regime of interest, the time
spent waiting for an available server is negligible unless we are close to the capacity limit (Kelly-Bootle and Lutek, 1990). For
example, given a system with 𝑐 = 50 servers and a demand of 100 requests per hour, when the server utilization is high at 𝜌 = 0.99,
the average time spent in the system is 84 min, with 55 min in the queue. Once we lower the utilization to 𝜌 = 0.9, the average
time spent in the system is 29 min, with only 2 min spent in the queue. This means that the expected waiting time for a courier to
be available is relatively small compared to the latency required to complete the order, given that the utilization parameter 𝜌𝑗 is
below a reasonable threshold. Thus, to make sure that customers are not experiencing long wait times for couriers to respond, we
can upper-bound the utilization parameter 𝜌𝑗 for all courier types, and ignore the effect of varying availability.

To model the time a courier must spend traveling to the pick-up location 𝑟𝑖, we take a probabilistic approach by calculating
the expected travel time of the nearest available courier. Specifically, we assume that for modality 𝑗, some portion 𝛽𝑖,𝑗 ∈ (0, 1] of
available couriers are distributed around the pick-up location 𝑟𝑖 such that their travel times are uniform in [0, 𝑘𝑗 ]. Note that we can
choose 𝑘𝑗 as some constant unit of time from which 𝛽𝑖,𝑗 is estimated based on the pick-up location and modality. Since we know
that the expected number of available couriers will be (1 − 𝜌𝑗 )𝑁𝑗 , we can define the pick-up time as the expected travel time of the
nearest courier:

𝑢𝑖,𝑗 (𝑥) =
𝑘𝑗

1 + 𝛽𝑖,𝑗𝑁𝑗 (1 − 𝜌𝑗 )
, (7)

where we used the fact that the expected minimum value of 𝑛 independent uniform random variables in [0, 1] is 1

𝑛+1
.

Before continuing, we want to note that although our latency function 𝓁𝑖,𝑗 (𝑥) defined in Eq. (5) does not account for traffic
congestion on the road, this is not an inherent limitation of our model. Specifically, we choose to set the travel time 𝑡𝑖,𝑗 as constant
in order to focus our latency model on the congestion caused by courier utilization, as captured by the pick-time 𝑢𝑖,𝑗 defined in Eq. (7).
Since we expect couriers to be a small percentage of total traffic, we believe this simplification to be justified. Nonetheless, given
that our theoretical results in Section 4 make no restrictions to the latency function 𝓁𝑖,𝑗 , and the fact that our current formulation
of latency 𝓁𝑖,𝑗 is non-linear and non-convex, one can consider a model for the travel time 𝑡𝑖,𝑗 which accounts for congestion.

5.2. Cost model

Before setting up our optimization problem, we need to model the cost of operating this system. We define the average dollar
cost of completing a single order using a courier of modality 𝑗 as the delivery cost 𝑐𝑗 . This way, we can define the total cost of
running our delivery system given the allocation strategy 𝑥:

𝐶(𝑥) =
𝐽∑

𝑗=1

𝑐𝑗
(∑

𝑖∈

𝑥𝑖,𝑗
)
, (8)

where 𝐶(𝑥) is units of dollars per hour because 𝑥𝑖,𝑗 is a rate of orders per hour. We use this model in our first case study concerning
the meal delivery service. Alternatively, one can define a cost model using fixed hourly wages 𝑐𝑗 for different courier modalities 𝑗,
making the total cost of our system independent of the allocation strategy 𝑥:

𝐶 =

𝐽∑

𝑗=1

𝑐𝑗𝑁𝑗 , (9)

where 𝑐𝑗 is now in units of dollars per hour. Whereas we only account for completed orders in Eq. (8), by modeling couriers using
average wages in Eq. (9) we are accounting for the unused couriers. We use this model in our second case study concerning the taxi
service as information regarding wages is readily available. In practice, more sophisticated cost models can be utilized by addressing
statistics such as profit margins, travel distance for couriers, and other information that is available to the service provider.

5.3. Optimization problem

We are now ready to set up the overall optimization problem.

min
𝑥

𝐿(𝑥) = 1

||
∑

𝑖∈

∑

𝑗∈

𝓁𝑖,𝑗 (𝑥)𝑥𝑖,𝑗 (10)

subject to 𝐶(𝑥) ≤
∑

𝑖∈

∑

𝑗∈

𝜏𝑖,𝑗𝑥𝑖,𝑗 , (11)

𝜌𝑗 (𝑥) ≤ 𝜌̄ ∀𝑗 ∈  , (12)
∑

𝑗∈

𝑥𝑖,𝑗 = 1, ∀𝑖 ∈ , (13)

0 ≤ 𝑥𝑖,𝑗 ≤ 1, ∀𝑖 ∈ , 𝑗 ∈  . (14)

For this case study, we want to find the allocation strategy 𝑥 which minimizes expected latency 𝐿, as shown in Eq. (10). In addition,
we constrain the operational cost in Eq. (11) to be less than the total compensation received from all deliveries. Note that because
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Table 2
Results for a meal delivery system with 100 car couriers when there is only one modality
available. The total operational cost is $1375 per hour.

Cars

Orders (%) 100
Utilization 𝜌𝑗 (%) 88
Latency 𝓁𝑗 (min) 19
Distance (miles) 1.47
Price 𝜏𝑗 ($) 5.00

Theorem 1 allows us to arbitrarily set price for the cheapest delivery option, one can always set the minimum allotted price to
satisfy the constraint after optimization. We also constrain courier utilization in Eq. (12) by choosing an appropriate upper bound
𝜌̄ for all modalities 𝑗 ∈  . Note that with this additional supply constraint, we assume that the number of available couriers 𝑁𝑗 is
large enough so that the set of possible solutions is nonempty, as required by Proposition 1. We use the constraint in Eq. (13) to
satisfy demands for each order 𝑖 ∈ . Finally, we bound our decision variable between the domain of [0, 1] in Eq. (14) so that there
are no negative values in the solution. Once we find a desirable allocation strategy by solving this optimization problem, we can
set prices using our theoretical results such that this flow is induced at equilibrium.

The optimization problem defined above is non-linear and non-convex, and we use a public implementation of the interior-point
filter line-search algorithm (Wächter and Biegler, 2006) to solve it, noting that this method can be used to solve nonlinear programs
on the order of a million variables (Biegler and Zavala, 2009). As aforementioned, many choices can be made for the formulation
of the latency functions 𝓁𝑖,𝑗 , cost constraint 𝐶, and the optimization objective 𝐿. To efficiently use the interior point method, it is
desired for the objective function and constraints to be twice differentiable so that the Hessian can be defined. We include details
regarding this implementation in Appendix E, and provide our code online (Beliaev, 2023).

6. Case studies

We can now discuss the setting and results in our case studies. We first model a meal delivery system with three transportation
modalities: cars, delivery drones, and sidewalk autonomous delivery robots (SADRs). In this setting, we model each population
corresponding to order 𝑖 with a trade-off function 𝛼𝑖 that is independent of the modalities provided. Our second setting considers
a taxi service transporting customers to and from the Chicago O’Hare International Airport (ORD) using three transportation
modalities: cars, luxury cars, and electric vertical takeoff and landing (eVTOL) aircrafts. Unlike the first study where users are
simply ordering food, we now model our populations with different trade-off functions 𝛼𝑖,𝑗 for each modality. We list how the
problem parameters are defined and our results below, providing the full implementation in our code online (Beliaev, 2023).

6.1. Meal delivery: Grubhub instance

Setup. To define the problem parameters for our optimization formulation, we used real world instances from Grubhub (Reyes
et al., 2018), which list information about the orders placed and car couriers available throughout a given time interval. Although
there is no consideration of other modalities, we use the provided information as a basis and define our remaining parameters to
be consistent. For service time 𝑠𝑖,𝑗 , we directly used the given pickup and dropoff times. Similarly for travel time 𝑡𝑖,𝑗 , we used the
provided distances between restaurant and customer locations, converting them to time by using constant speeds for all modalities.
For cars, we set the speed to 11.93 mph according to the dataset. For drones, we set the speed to 30 mph, using the upper end of
the reported range of 13−34 mph (Macrina et al., 2020) since food deliveries are relatively light. Finally for SADRs, we set the speed
to 4 mph, as they are expected to operate at the typical speed of pedestrians (Gehrke et al., 2023).

To calculate pickup time 𝑢𝑖,𝑗 , we computed all the parameters required in Eq. (7). The number of couriers 𝑁 was directly chosen
for each instance so that the problem was feasible under the utilization capacities 𝜌̄𝑗 . For cars and SADRs, we set 𝜌̄𝑗 to 0.9, while
for drones, we decreased this value to 0.8 due to the smaller number of vehicles utilized. We then generated courier locations for
all three modalities, and computed the portion of available couriers 𝛽𝑖,𝑗 that were at most 𝑘 = 10 min away from the restaurant
corresponding to order 𝑖. For car couriers, we directly sampled from the provided locations, while for drone couriers, we sampled
uniformly from a grid spanning the restaurant locations. To capture SADRs delivering from restaurants closer to downtown, we
sampled their locations uniformly from a grid centered in the middle of all restaurant locations, with length and width equal to
their coordinate’s respective standard deviations. Using these parameters, we estimated the mean rate 𝜇𝑗 of order completions as
the inverse of expected latency E𝑖[𝓁𝑖,𝑗 ]

−1 for each modality 𝑗, assuming load was equally distributed across them.
To compute the operational costs 𝑐𝑗 for each modality, we set the cost per order to $5 for car and drone deliveries as they are

expected to be competitive under certain regimes (Cornell et al., 2023), while using a lower cost per order of $1.50 for SADRs as
the current cost per order is expected to drop from $2 to $1 in the near future (Jennings and Figliozzi, 2019). For user trade-off
between price and time 𝛼(𝑎), we used a linear function with the lowest evaluation 𝛼(1) set to $10 per hour, and the highest 𝛼(0) set
to $100 per hour, for all orders 𝑖 ∈ . We go on to discuss the results of our case study for an instance with 505 unique orders, each
demanded with an equal rate of approximately 0.54 deliveries per hour.
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Table 3
Results for a meal delivery system with 20 car, 24 drone, and 100 SADR couriers available, with a total operational cost of
$856.84 per hour.

Cars Drones SADRs Total

Orders (%) 17 29 54 100
Utilization 𝜌𝑗 (%) 90 80 88 86
Latency 𝓁𝑗 (min) 24 15 26 23
Distance (miles) 1.69 2.42 0.88 1.47
Price 𝜏𝑗 ($) 4.13 7.08 0.65 3.12

Results. We first consider the case when there are only 100 car couriers available, with no other transportation modality. We show
the result in Table 2, listing the portion of orders delivered and the courier utilization as percentages, the average latency 𝓁𝑗 for
modality 𝑗 in minutes, the distance between customer and restaurant in miles, and finally the delivery price in dollars. For this
setting, prices were set so that the money accrued from delivery services was equal to the operational cost. Since car couriers have
an operational cost of $5.00 per order, we need an average delivery price of $5.00 per order to satisfy it. Note that although in this
setting the minimum delivery price can be set arbitrarily for all orders since users have no choice to make, when we introduce other
delivery modalities this is no longer the case as the prices must follow Eq. (2) to satisfy Nash conditions.

Next, we consider the case when there are 20 car, 24 drone, and 100 SADR couriers available displayed in Table 3. With the
introduction of low cost SADRs into the system, the average latency has increased from 18 to 23 min, while the average price has
decreased from $5.00 to $3.12 per order. Although a high cost and fast delivery service is now available via drones, customers are
expected to pay a premium. These trends are expected for two reasons: (1) SADRs are much cheaper to operate making the total
operational cost smaller, and (2) the faster speed of drones allows us to charge users who favor shorter delivery times more than
users who favor cheaper delivery prices. It is interesting to note that drones are used to complete orders for customers furthest away
from their chosen restaurant, while SADRs are used for customers closest to their chosen restaurant. This is due to the travel speeds
of the different transportation modalities, as drones can travel efficiently between distant destinations, while robots are expected to
operate in a smaller range as they have a pedestrian pace.

Overall, this case study shows that by setting prices according to users’ trade-offs between money and time, one can implement a
desired allocation strategy over multiple delivery modalities while improving their profit margins. One flaw with the study above is
that we assumed users in different neighborhoods had identical distributions for their value of time. Although we had no information
that would allow us to model this discrepancy, we expect that this would have an effect on where drones are utilized, as wealthier
customers may reside in areas that are closer to downtown locations. Such an effect is considered in the following case study, where
we model users’ value of time (VOT) based on previous data.

6.2. Taxi service with urban air transportation: Chicago O’hare international airport

Setup. For the second setting, we consider passengers requesting rides to and from the ORD Airport via three available transportation
modalities: cars, luxury cars, and eVTOL aircrafts. Using the publicly available data provided by rideshare companies in the city
of Chicago (Transportation, 2023), we analyzed all taxi requests between January 2023 and March 2023, collecting travel times,
taxi fares, as well as pickup and dropoff locations. The dataset is conveniently divided into 77 city areas, with the vertiport and
ORD airport located at area #31 and area #75, respectively. Accordingly, we set the number of unique orders in our problem to 153,
representing all trips to and from the airport.2 We set the total demand roughly equal to the average rate of 1550 orders per hour
reported in the dataset, and distributed this proportionally among the orders.

For travel time 𝑡𝑖,𝑗 by car, we used the mean of all reported travel times between respective city areas. When considering trips
via eVTOL aircrafts, 10 min of flight time was added to the travel time required to get to and from the vertiport by car (Gump,
2023). To calculate pickup time 𝑢𝑖,𝑗 , we computed all the parameters required in Eq. (7). The number of couriers 𝑁 was directly
chosen for each instance so that the problem was feasible under the utilization capacities 𝜌̄𝑗 , with the additional consideration that
each eVTOL aircrafts would carry 4 passengers (Gump, 2023). For both car modalities we set 𝜌̄𝑗 to 0.95, while for eVTOL aircrafts
we decreased this value to 0.75 due to the smaller number of vehicles utilized. To estimate the portion of available car taxis near
each city area 𝛽𝑖,𝑗 , we assumed that the higher densities of drivers were located in areas with higher demand. To model this, we
exponentially scaled 𝛽𝑖,𝑗 between 0.1 and 0.3 according to the demand at the corresponding city area. We set 𝑘 to 5 min for both car
modalities, and 0 min for eVTOL aircrafts as they do not need to travel to the pickup location. Service time 𝑠𝑖,𝑗 was set to 0 min for all
modalities. Using these parameters, we estimated the mean rate 𝜇𝑗 of order completions as the inverse of expected latency E𝑖[𝓁𝑖,𝑗 ]

−1

for each modality 𝑗, assuming load was equally distributed across them. Based on estimated driver wages in Chicago reported by
Uber (Rideshare, 2023), we set the hourly wages 𝑐𝑗 for standard cars and luxury cars to $25 and $40 per hour, respectively.3 For
eVTOL aircrafts we assumed an operational cost of $200 per hour for each vehicle, meaning $50 for each passenger.

2 We assumed that trips which start and end in area #75 were departing at the airport.
3 The reported average wage was $28.03 per hour for all drivers.
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Fig. 3. The above schematic is an example of the user preference functions 𝛼𝑖,𝑗 for three modes  = {1, 2, 3}, where the index corresponding to order 𝑖 ∈  has
been left out for convenience. The 𝑥-axis represents users 𝑎 ∈ [0, 1] and the 𝑦-axis represents hours per dollar, the inverse of the value of time. We can see that
the three lines all intersect at 𝑎 = 1, signifying that the most frugal users do not care about the modality and prefer the cheapest option. All three lines have

varying slopes, and we sort their indices so that for 𝑎 < 𝑎′, 𝛼𝑖,𝑗+1 (𝑎)

𝛼𝑖,𝑗 (𝑎)
≥

𝛼𝑖,𝑗+1 (𝑎
′ )

𝛼𝑖,𝑗 (𝑎
′ )

for all 𝑗 ∈ {1,… , 𝐽 − 1}. The dashed gray lines help visualize this property: as we

increase 𝑎 to 1, the ratio 𝛼3 (𝑎)

𝛼2 (𝑎)
decreases due to 𝛼2 having a larger slope than 𝛼3, reaching a minimum value of 1 when 𝑎 = 1. Intuitively, this orders modalities by

their slopes in decreasing order, representing a decrease in relative luxury. For our setting, this order is eVTOL aircrafts, luxury vehicles, and standard vehicles.

Table 4
Results for the airport taxi system with 990 standard vehicles and 110 luxury vehicles, with a total operational cost of $23,100

per hour.

Standard Luxury Total

Orders (%) 91 9 100
Utilization 𝜌𝑗 (%) 94 85 93
Latency 𝓁𝑗 (min) 35 35 35
Price 𝜏𝑗 ($) 41.35 60.63 43.06
Profit (1000$ per hour) 38.60 5.04 43.59

Table 5
Results for the airport taxi system with 900 standard vehicles, 100 luxury vehicles, and 25 eVTOL aircrafts, with a total operational
cost of $26,000 per hour.

Standard Luxury eVTOL Total

Orders (%) 83 8 9 100
Latency 𝓁𝑗 (min) 35 30 23 34
Utilization 𝜌𝑗 (%) 94 87 75 92
Price 𝜏𝑗 ($) 40.96 42.50 112.15 47.26
Profit (1000$ per hour) 34.80 2.38 10.08 47.26

Unlike the previous case study, we rely on Eq. (3) to derive our prices. Hence, in addition to modeling the heterogeneity in
individuals’ value of time (VOT), we assumed that more luxurious transportation modes are more valuable to the user. Previous
studies have shown that users are willing to pay more for air taxi transportation compared to ground transportation (Fu et al.,
2019; Binder et al., 2018). To represent this, for each order 𝑖 we computed the mean VOT based on the dataset, and scaled it
by 2, 1.5, and 1 for eVTOL aircrafts, luxury cars, and standard cars, respectively. Furthermore, we assumed that the most frugal
users at 𝑎 = 1 would prefer the cheapest option regardless of the modality, and set 𝛼𝑖,𝑗 (1) for all modes 𝑗 equal to one standard
deviation below the computed mean VOT for that order 𝑖. To connect these two points for each order 𝑖 and modality 𝑗, we used a
straight line, making our overall model linear with larger slopes representing more luxurious modalities. We visualize this in Fig. 3.
Note that because of the common intercepts at 𝛼𝑖,𝑗 (1) for all modalities 𝑗 and the constant slopes, the assumption in Corollary 1 is
satisfied. Furthermore, by not offering users travel via eVTOL aircrafts when they are slower than the other two options, we can
strengthen Corollary 1 by guaranteeing that any desired flow is indeed inducible under some well behaved equilibrium flow. This
result is shown in Appendix D. We make this aforementioned restriction in our formulation, and also explicitly check that the Nash
equilibrium conditions of our solutions are indeed satisfied under the derived prices.

Results.

We first consider the case when there are only 1100 car couriers available, with 110 luxury vehicles and 990 standard vehicles.
We show the result in Table 4, listing the portion of orders delivered and the courier utilization as percentage, the average latency 𝓁𝑗
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for modality 𝑗 in minutes, the delivery price in dollars, and finally the total profit in 1000’s of dollars per hour. For this setting, the
minimum price was set so that users taking a standard taxi would pay their expected amount. Recall that setting the minimum price
does not alter the Nash equilibrium since demand is inelastic, and hence we set it accordingly to reflect current prices experienced
by users. We see this reflected in the results, as customers are expected to pay $41.35 for a standard cab, and $60.63 for a luxury
cab on average. We expect this since both vehicles have identical travel times, but the mean VOT for luxury vehicles 50% higher
compared to standard vehicles. This shows the importance of modeling VOT separately for different transportation modes, as such
an effect would not be observed otherwise.

Next we consider the case when 25 eVTOL aircrafts are introduced into the system, displayed in Table 5. As expected, we can see
that this premium transportation option comes with a high cost of $112.15 per order. Although services provided by standard vehicles
are mostly unaffected, demand for the luxury vehicle option is severely impacted. Specifically, luxury vehicles have a harder time
competing and are required to lower their price from $60.63 to $42.50. In addition, we see their average trip latency drop from 35

to 30 min, signifying that commuters located further away are more willing to pay the price for the eVTOL aircraft option. With the
higher costs required to operate luxury vehicles, we can expect such competition to greatly affect profits provided by this service,
most likely lowering the expected wage for luxury vehicle drivers.

This case study outlines the importance of modeling VOT separately for different transportation modalities, as this can point out
potential pitfalls in market strategies as new transportation modalities are introduced into the rideshare ecosystem. As we observed,
even though eVTOL aircrafts only took 9% of the total orders, they had a large affect on the profitability of already existing luxury
transportation options.

7. Conclusion

We model the pickup and delivery problem with multiple transportation modalities as a congestion game played over a star
network, and show that we can explicitly define prices to induce any desired network flow. With this framework, we construct case
studies for both a meal delivery service and a taxi service. In the first setting, we show that by utilizing autonomous transportation
methods which are more efficient, one can set prices according to users’ trade-offs between money and time to induce a desired
allocation strategy while improving their profit margins. The second setting considers the additional assumption that users’ trade-offs
may differ between transportation modalities, and shows that such consideration are crucial to predict trends as new transportation
modalities are introduced. We go over some of the implications of our work, pointing out limitations and directions for improvement.

We first note that in the setting of non-atomic congestion games taking place on graphs composed of one source–sink pair, prior
works have asked if a feasible solution can be found to compute optimal prices for edges combinatorially, without relying on LP
formulations (Cole et al., 2003b). Our main theoretical result states that in these settings, one can define optimal prices for paths
combinatorially, implying that the LP formulation used to find prices for edges can be simplified. This points to the possibility that
other network structures inherit properties which allow one to find prices efficiently, and we leave this direction for future works.

Further, we point out that our case studies only provide two examples where such a model is useful. Due to the general
construction of the congestion game defined, our analysis is practical for any application that utilizes a platform to price match
customers with different transportation methods. Since our formulation poses little restriction on the latency function defined, one
can construct a model that is suitable for the desired application. Of course our framework gives no guarantees on finding the
optimal allocation strategy, and instead provides a method by which prices can be set to induce a desired strategy.

One direction for future work is relaxing our formulation to allow for elastic demand. Such a consideration is interesting as
it would permit one to optimize for profits directly, since the minimum price set would now affect the total user demand. The
difficulty of such an extension lies in the ordering permutations required to compute the delivery prices. In this setting, additional
assumptions may be required as one would need to compute derivative information while keeping track of ordering permutations
that depend directly on the decision variable.

Lastly, we want to comment on the ethical implications of our first case study. On the positive side, our results show that
by utilizing more autonomous transportation methods one can improve profit margins. However, this is true because our model
considers car couriers operated by humans as less cost efficient. While one may have financial incentives to substitute part of
their current workforce with autonomous machines, other decisions can be made that improve wages and work conditions for
employees. Such a discussion is beyond the scope of our work, and is a topic that should be carefully addressed by policy makers
before corporations are allowed to make decision that greedily improve their profits.
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Appendix A. Proof of Proposition 2

As stated by prior work, the proof of Proposition 2 (Proposition 2.4 in Cole et al. (2003b)) can be arrived at using a rearrangement
argument, showing the stronger statement that an arbitrary Nash flow can be reorganized into a canonical one without changing the
disutility incurred by any agent or the induced flow on paths. As this proof is omitted from the aforementioned work, we provide
an independent result for completeness.

Our proof strategy is as follows: assuming that 𝑥 is an arbitrary Nash flow, we use the inequalities defined by a Nash flow in
Eq. (1) to show that the additional inequalities defined by a canonical Nash flow in Definition 3 must follow. The existence of
canonical Nash flows follows directly from the well known result stated in Proposition 1. Note that for sake of notation, we drop
the subscript referring to orders 𝑖 ∈ , as it should be clear that the proof applies to an individual source–sink pair.

Formally, 𝑥 is an equilibrium flow for instance (𝛼 ,𝓁, 𝜏) if for all edges 𝑗 ∈ {1,… , 𝐽}, no user 𝑎 traveling on edge 𝑗 should want
to switch to any other edge 𝑗′ ∈ {1,… , 𝐽}:

𝓁𝑗 + 𝛼(𝑎)𝜏𝑗 ≤ 𝓁𝑗′ + 𝛼(𝑎)𝜏𝑗′ ∀𝑎 ∈ {𝑎 ∶ 𝑥(𝑎) = 𝑗}, (A.1)

where we leave out denoting the flow 𝑥 in latency 𝓁𝑗 (𝑥). Given an arbitrary Nash flow 𝑥 for instance (𝛼 ,𝓁, 𝜏), we would like to show
that for any two users 𝑎1, 𝑎2 ∈ [0, 1] where 𝑎1 < 𝑎2: 𝓁𝑥(𝑎1) ≤ 𝓁𝑥(𝑎2)

, and 𝜏𝑥(𝑎1)
≥ 𝜏𝑥(𝑎2)

must hold.
Clearly, when users 𝑎1 and 𝑎2 are routed on the same edge 𝑗, the aforementioned inequalities hold. To show that they hold in

general, we assume that user 𝑎1 is routed on edge 𝑗, 𝑎1 ∈ {𝑎 ∶ 𝑥(𝑎) = 𝑗}, and user 𝑎2 is routed on edge 𝑗′, 𝑎2 ∈ {𝑎 ∶ 𝑥(𝑎) = 𝑗′}, where
𝑗 ≠ 𝑗′. It follows directly from Eq. (A.1) that:

𝓁𝑗 − 𝓁𝑗′ ≤ 𝛼(𝑎1)(𝜏𝑗′ − 𝜏𝑗 ), (A.2)

and similarly,

𝓁𝑗 − 𝓁𝑗′ ≥ 𝛼(𝑎2)(𝜏𝑗′ − 𝜏𝑗 ). (A.3)

Given 𝛼(𝑎) ≥ 0 ∀𝑎 ∈ [0, 1] and 𝛼(𝑎1) ≤ 𝛼(𝑎2) from definition, we can infer from the above two inequalities that 𝜏𝑗 ≥ 𝜏𝑗′ and
𝓁𝑗 ≤ 𝓁𝑗′ . This is trivially shown by contradiction: assume that 𝜏𝑗′ − 𝜏𝑗 is positive, and divide by it on both sides of the inequalities to
arrive at the contradiction 𝛼(𝑎2) ≤

𝓁𝑗−𝓁𝑗′

𝜏𝑗′−𝜏𝑗
≤ 𝛼(𝑎1), implying that 𝜏𝑗′−𝜏𝑗 and 𝓁𝑗−𝓁𝑗′ are negative. Since 𝓁𝑥(𝑎1)

≤ 𝓁𝑥(𝑎2)
and 𝜏𝑥(𝑎1)

≥ 𝜏𝑥(𝑎2)

must hold for any two users 𝑎1, 𝑎2 ∈ [0, 1] where 𝑎1 < 𝑎2, it follows directly that for any edge 𝑗 ∈  , the users assigned to edge 𝑗 by
a flow 𝑥 at Nash equilibrium form a (potentially empty or degenerate) subinterval of [0, 1]. This completes the proof.

Appendix B. Proof of Theorem 1

Note that for sake of notation, we will drop the subscript referring to orders 𝑖 ∈ , as it should be clear that the proof applies
to an individual source–sink pair. In addition, we assume that indexes 𝑗 ∈  ∶ {1,… , 𝐽} correspond to the set of edges sorted by
non-decreasing latency. Note that throughout our proof, we apply Proposition 2 which allows us to assume that any Nash flow 𝑥 is
a canonical Nash flow, as demonstrated in Appendix A above.

We define two adjacent intervals that are formed by our flow 𝑥: users 𝑎 ∈ [𝑎𝑗−1, 𝑎𝑗 ] on the left experience latency 𝓁𝑗 and price 𝜏𝑗 ,
while users 𝑎 ∈ [𝑎𝑗 , 𝑎𝑗+1] on the right experience latency 𝓁𝑗+1 and price 𝜏𝑗+1. The two intervals are portrayed in Fig. 2, where we note
that this definition holds for 𝑗 ∈ {1,… , 𝐽 − 1}. Using the inequalities defined in Eq. (1), we know that for 𝑥 to be a (canonical) Nash
flow for instance (𝛼 ,𝓁, 𝜏), no user 𝑎 from the left interval 𝑎 ∈ [𝑎𝑗−1, 𝑎𝑗 ] should want to switch to the delivery option corresponding
to the right interval:

𝓁𝑗 + 𝛼(𝑎)𝜏𝑗 ≤ 𝓁𝑗+1 + 𝛼(𝑎)𝜏𝑗+1 ∀𝑎 ∈ [𝑎𝑗−1, 𝑎𝑗 ], (B.1)

where we leave out denoting the flow 𝑥 in latency 𝓁𝑗 (𝑥). It follows:

𝜏𝑗 − 𝜏𝑗+1 ≤
𝓁𝑗+1 − 𝓁𝑗

𝛼(𝑎)
∀𝑎 ∈ [𝑎𝑗−1, 𝑎𝑗 ], (B.2)

𝜏𝑗 − 𝜏𝑗+1 ≤ min
𝑎∈[𝑎𝑗−1 ,𝑎𝑗 ]

(𝓁𝑗+1 − 𝓁𝑗

𝛼(𝑎)

)
. (B.3)

The preceding inequality can be simplified further by using the non-decreasing property of function 𝛼 defining the population’s
price sensitivity: for any 𝑎1, 𝑎2 ∈ [0, 1] such that 𝑎1 ≤ 𝑎2, given user 𝑎 ∈ [𝑎1, 𝑎2], max 𝛼(𝑎) = 𝛼(𝑎2) and min 𝛼(𝑎) = 𝛼(𝑎1). This comparison
results in the following condition which must be true for 𝑥 to be a Nash flow:

𝜏𝑗 − 𝜏𝑗+1 ≤
𝓁𝑗+1 − 𝓁𝑗

𝛼(𝑎𝑗 )
. (B.4)

We can repeat this process by enforcing that no user 𝑎 from the right interval 𝑎 ∈ [𝑎𝑗 , 𝑎𝑗+1] should want to switch to the edge
on the left:

𝓁𝑗+1 + 𝛼(𝑎)𝜏𝑗+1 ≤ 𝓁𝑗 + 𝛼(𝑎)𝜏𝑗 ∀𝑎 ∈ [𝑎𝑗 , 𝑎𝑗+1], (B.5)
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𝜏𝑗 − 𝜏𝑗+1 ≥ max
𝑎∈[𝑎𝑗 ,𝑎𝑗+1]

(𝓁𝑗+1 − 𝓁𝑗

𝛼(𝑎)

)
, (B.6)

which results in the following:

𝜏𝑗 − 𝜏𝑗+1 ≥
𝓁𝑗+1 − 𝓁𝑗

𝛼(𝑎𝑗 )
. (B.7)

From (B.4) and (B.7) we can see that the two inequalities force the set of prices {𝜏𝑖,𝑗}𝑗∈ to follow:

𝜏𝑗 − 𝜏𝑗+1 =
𝓁𝑗+1 − 𝓁𝑗

𝛼(𝑎𝑗 )
∀𝑗 ∈ {1,… , 𝐽 − 1}, (B.8)

where if 𝜏𝐽 is given, the rest of the prices can be found recursively as defined in Eq (2).
To complete the proof, we must show that for this set of prices 𝜏, the desired 𝑥 is indeed an equilibrium flow. Formally, 𝑥 is an

equilibrium flow for instance (𝛼 ,𝓁, 𝜏) if for all edges 𝑗 ∈ {1,… , 𝐽} no user 𝑎 in interval 𝑎 ∈ [𝑎𝑗−1, 𝑎𝑗 ] should want to switch to any
other edge 𝑗′ ∈ {1,… , 𝐽}:

𝓁𝑗 + 𝛼(𝑎)𝜏𝑗 ≤ 𝓁𝑗′ + 𝛼(𝑎)𝜏𝑗′ . (B.9)

Clearly, these inequalities hold when 𝑗 = 𝑗′, and hence we show that they hold when 𝑗 > 𝑗′ and 𝑗 < 𝑗′. Starting with the former,
when 𝑗 > 𝑗′ we are considering that no user choosing edge 𝑗 will switch to any edge 𝑗′ on the left, where by definition 𝜏𝑗 ≤ 𝜏𝑗′ and
𝓁𝑗 ≥ 𝓁𝑗′ . Rearranging Eq. (B.9), we have the following for all edges 𝑗 > 𝑗′:

𝓁𝑗 + 𝛼(𝑎)𝜏𝑗 ≤ 𝓁𝑗′ + 𝛼(𝑎)𝜏𝑗′ ∀𝑎 ∈ [𝑎𝑗−1, 𝑎𝑗 ],

𝜏𝑗′ − 𝜏𝑗 ≥ max
𝑎∈[𝑎𝑗−1 ,𝑎𝑗 ]

(𝓁𝑗 − 𝓁𝑗′

𝛼(𝑎)

)
,

𝐽−1∑

𝑘=𝑗′

𝓁𝑘+1 − 𝓁𝑘

𝛼(𝑎𝑘)
−

𝐽−1∑

𝑘=𝑗

𝓁𝑘+1 − 𝓁𝑘

𝛼(𝑎𝑘)
≥

𝓁𝑗 − 𝓁𝑗′

𝛼(𝑎𝑗−1)
,

𝑗−1∑

𝑘=𝑗′

𝓁𝑘+1 − 𝓁𝑘

𝛼(𝑎𝑘)
≥

𝑗−1∑

𝑘=𝑗′

𝓁𝑘+1 − 𝓁𝑘

𝛼(𝑎𝑗−1)
.

Since 𝛼(𝑎𝑗−1) ≥ 𝛼(𝑎𝑘) when 𝑗′ ≤ 𝑘 ≤ 𝑗 − 1, every summation term on the left hand side is strictly greater than or equal to every
summation term on the right hand side, validating the inequalities in Eq. (B.9) for 𝑗 > 𝑗′. We can do the same for 𝑗 < 𝑗′, where now
𝜏𝑗 ≥ 𝜏𝑗′ and 𝓁𝑗 ≤ 𝓁𝑗′ :

𝓁𝑗 + 𝛼(𝑎)𝜏𝑗 ≤ 𝓁𝑗′ + 𝛼(𝑎)𝜏𝑗′ ∀𝑎 ∈ [𝑎𝑗−1, 𝑎𝑗 ],

𝜏𝑗 − 𝜏𝑗′ ≤ min
𝑎∈[𝑎𝑗−1 ,𝑎𝑗 ]

(𝓁𝑗′ − 𝓁𝑗

𝛼(𝑎)

)
,

𝐽−1∑

𝑘=𝑗

𝓁𝑘+1 − 𝓁𝑘

𝛼(𝑎𝑘)
−

𝐽−1∑

𝑘=𝑗′

𝓁𝑘+1 − 𝓁𝑘

𝛼(𝑎𝑘)
≤

𝓁𝑗 − 𝓁𝑗′

𝛼(𝑎𝑗 )
,

𝑗′−1∑

𝑘=𝑗

𝓁𝑘+1 − 𝓁𝑘

𝛼(𝑎𝑘)
≤

𝑗′−1∑

𝑘=𝑗

𝓁𝑘+1 − 𝓁𝑘

𝛼(𝑎𝑗 )
.

This time, since 𝛼(𝑎𝑗 ) ≤ 𝛼(𝑎𝑘) when 𝑗 ≤ 𝑘 ≤ 𝑗′ − 1, every summation term on the left hand side is strictly less than or equal to every
summation term on the right hand side. This completes the proof.

Remark 1. Although Eq. (2) in Theorem 1 defines prices for parallel edges, this is equivalent to finding prices for paths in general
directed graphs composed of one source–sink pair. Briefly consider a directed graph 𝐺 = (𝑉 , 𝐸) with source 𝑠 and sink 𝑡, with
edges 𝑒 ∈ 𝐸 and simple 𝑠 − 𝑡 paths 𝑃 ∈  . Since the desired flow 𝑥 ∶ [0, 1] ↦  is provided, the path latency can be found using
𝓁𝑃 (𝑥) =

∑
𝑒∈𝑃 𝓁𝑒(𝑥𝑒), where the edge flow is given by 𝑥𝑒 =

∑
𝑃∶𝑒∈𝑃 𝑥𝑃 . The proofs for Proposition 2 and Theorem 1 stated above

follow directly by replacing edges 𝑗 ∈  with paths 𝑃 ∈  . Note that this does not guarantee that there exists a unique set of
additive edge prices 𝜏𝑒 such that 𝜏𝑃 =

∑
𝑒∈𝑃 𝜏𝑒 is true for all paths 𝑃 ∈  . Since users choosing between delivery modes can be

represented by parallel edges, we forego defining paths in our formulation to be concise.

Appendix C. Proof of Corollary 2

The proof strategy is as follows: similar to the proof of Theorem 1, using a subset of the inequalities defined for Nash equilibrium
in Eq. (1), we show that for some desired Nash flow {𝑥𝑖,𝑗}𝑗∈ there is only one set of valid prices 𝜏𝑖 that satisfies this subset of
inequalities. Note that we drop the subscript referring to orders 𝑖 ∈ , as it should be clear that the proof applies to an individual
source–sink pair. In addition, we assume that indexes 𝑗 ∈  ∶ {1,… , 𝐽} are ordered to satisfy the following assumption:

Given 𝑎 ≤ 𝑎′ ∶
𝛼𝑗+1(𝑎)

𝛼𝑗 (𝑎)
≥

𝛼𝑗+1(𝑎
′)

𝛼𝑗 (𝑎
′)

∀𝑗 ∈ {1,… , 𝐽 − 1}, (C.1)
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where 𝛼 is a set of non decreasing functions 𝛼𝑗 ∶ [0, 1] → (0,∞) for 𝑗 ∈ {1,… , 𝐽}.
As before, we define two adjacent intervals that are formed by our desired flow 𝑥: users 𝑎 ∈ [𝑎𝑗−1, 𝑎𝑗 ] on the left experience

latency 𝓁𝑗 and price 𝜏𝑗 , while users 𝑎 ∈ [𝑎𝑗 , 𝑎𝑗+1] on the right experience latency 𝓁𝑗+1 and price 𝜏𝑗+1. The two intervals are no longer
guaranteed to exhibit the properties of a canonical Nash flow portrayed in Fig. 2. Nonetheless, using the inequalities defined in
Eq. (1), we know that for 𝑥 to be a Nash flow for instance (𝛼 ,𝓁, 𝜏), no user 𝑎 from the left interval 𝑎 ∈ [𝑎𝑗−1, 𝑎𝑗 ] should want to
switch to the delivery option corresponding to the right interval:

𝓁𝑗 + 𝛼𝑗 (𝑎)𝜏𝑗 ≤ 𝓁𝑗+1 + 𝛼𝑗+1(𝑎)𝜏𝑗+1 ∀𝑎 ∈ [𝑎𝑗−1, 𝑎𝑗 ], (C.2)

where we leave out denoting the flow 𝑥 in latency 𝓁𝑗 (𝑥). It follows:

𝜏𝑗 −
𝛼𝑗+1(𝑎)

𝛼𝑗 (𝑎)
𝜏𝑗+1 ≤

𝓁𝑗+1 − 𝓁𝑗

𝛼𝑗 (𝑎)
∀𝑎 ∈ [𝑎𝑗−1, 𝑎𝑗 ], (C.3)

max
𝑎∈[𝑎𝑗−1 ,𝑎𝑗 ]

(
𝜏𝑗 −

𝛼𝑗+1(𝑎)

𝛼𝑗 (𝑎)
𝜏𝑗+1

)
≤ min

𝑎∈[𝑎𝑗−1 ,𝑎𝑗 ]

(𝓁𝑗+1 − 𝓁𝑗

𝛼𝑗 (𝑎)

)
. (C.4)

The LHS of the above inequality can be simplified using the assumption made in Eq. (C.1), whereas the LHS can be simplified as
before by using the non-decreasing property of function 𝛼𝑗 defining the population’s price sensitivity. This results in the following
condition which must be true for 𝑥 to be a Nash flow:

𝜏𝑗 −
𝛼𝑗+1(𝑎𝑗 )

𝛼𝑗 (𝑎𝑗 )
𝜏𝑗+1 ≤

𝓁𝑗+1 − 𝓁𝑗

𝛼𝑗 (𝑎𝑗 )
. (C.5)

We can repeat this process by enforcing that no user 𝑎 from the right interval 𝑎 ∈ [𝑎𝑗 , 𝑎𝑗+1] should want to switch to the edge
on the left:

𝓁𝑗 + 𝛼𝑗 (𝑎)𝜏𝑗 ≥ 𝓁𝑗+1 + 𝛼𝑗+1(𝑎)𝜏𝑗+1 ∀𝑎 ∈ [𝑎𝑗 , 𝑎𝑗+1], (C.6)

min
𝑎∈[𝑎𝑗 ,𝑎𝑗+1]

(
𝜏𝑗 −

𝛼𝑗+1(𝑎)

𝛼𝑗 (𝑎)
𝜏𝑗+1

)
≥ max

𝑎∈[𝑎𝑗 ,𝑎𝑗+1]

(𝓁𝑗+1 − 𝓁𝑗

𝛼𝑗 (𝑎)

)
, (C.7)

which results in the following:

𝜏𝑗 −
𝛼𝑗+1(𝑎𝑗 )

𝛼𝑗 (𝑎𝑗 )
𝜏𝑗+1 ≥

𝓁𝑗+1 − 𝓁𝑗

𝛼𝑗 (𝑎𝑗 )
. (C.8)

From (C.5) and (C.8) we can see that the two inequalities force the set of prices {𝜏𝑖,𝑗}𝑗∈ to follow:

𝜏𝑗 −
𝛼𝑗+1(𝑎𝑗 )

𝛼𝑗 (𝑎𝑗 )
𝜏𝑗+1 =

𝓁𝑗+1 − 𝓁𝑗

𝛼𝑗 (𝑎𝑗 )
∀𝑗 ∈ {1,… , 𝐽 − 1}, (C.9)

where if 𝜏𝐽 is given, the rest of the prices can be found recursively. This completes the proof.

Remark 2. Note that unlike Theorem 1, we cannot generalize the result of Corollary 2 to apply for any desired flow. Since we
cannot rely on Proposition 2 to order the edges as we do for a canonical Nash flow, we cannot show that 𝜏𝑖 does indeed satisfy all
of the inequalities defined in Eq. (1). Hence we only prove that for a desired flow {𝑥𝑖,𝑗}𝑗∈ to be an equilibrium flow, the prices
{𝜏𝑖,𝑗}𝑗∈ must follow Eq. (C.9).

Appendix D. Generalization of Corollary 2

As mentioned in Section 6, by not offering users travel via eVTOL aircrafts when they are slower than the other two options, we
can guarantee that any desired flow is indeed inducible by a well behaved equilibrium flow. More precisely, we assume that there
are three modalities 𝐽 = 3, and the most premium option 𝑗 = 1 must have the smallest latency 𝓁𝑖,1 ≤ 𝓁𝑖,2,𝓁𝑖,3 for all considered
orders 𝑖. Given this, we can show that all of the inequalities defined for Nash equilibrium in Eq. (1) can be satisfied under some
choice of the cheapest price 𝜏𝑖,3, which is free for us to define. We proceed to show this, dropping the subscript referring to orders
𝑖 ∈  as it should be clear that the proof applies to an individual source–sink pair.

First recall that the result of Corollary 2 directly satisfies the inequalities defined for Nash equilibrium when adjacent edges are
considered. In otherwords, the prices given by Eq. (3) guarantee that users will not switch from luxury cars 𝑗 = 2 to standard cars
𝑗 = 3 or vice-versa, as well as luxury cars 𝑗 = 2 to eVTOL aircrafts 𝑗 = 1 or vice-versa. This result is shown in Appendix C for
the general setting. Since we only have three edges in this setting, two inequalities are left to check. No user 𝑎 from the leftmost
interval 𝑎 ∈ [0, 𝑎1] corresponding to eVTOL aircrafts 𝑗 = 1 should want to switch the right most interval corresponding to standard
cars 𝑗 = 3:

𝓁1 + 𝛼1(𝑎)𝜏1 ≤ 𝓁3 + 𝛼3(𝑎)𝜏3 ∀𝑎 ∈ [0, 𝑎1], (D.1)

and vice-versa:

𝓁1 + 𝛼1(𝑎)𝜏1 ≥ 𝓁3 + 𝛼3(𝑎)𝜏3 ∀𝑎 ∈ [𝑎2, 1]. (D.2)
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As done in Appendix C, the above two inequalities can be simplified to remove the intervals, and combined to form the following:
𝛼1(𝑎1)

𝛼3(𝑎1)
𝜏1 −

𝓁3 − 𝓁1

𝛼3(𝑎1)
≤ 𝜏3 ≤

𝛼1(𝑎2)

𝛼3(𝑎2)
𝜏1 −

𝓁3 − 𝓁1

𝛼3(𝑎2)
. (D.3)

Note that since 𝓁3 − 𝓁1 ≥ 0 and 𝛼3(𝑎1) ≤ 𝛼3(𝑎2), we have −
𝓁3−𝓁1
𝛼3(𝑎1)

≤ −
𝓁3−𝓁1
𝛼3(𝑎2)

. In addition, we have 𝛼1(𝑎1)

𝛼3(𝑎1)
≤

𝛼1(𝑎2)

𝛼3(𝑎2)
due to the

assumption stated in Corollary 2. This means that the domain of possible values for 𝜏3 is not degenerate, meaning we can set 𝜏3
to satisfy both Eqs. (D.1) and (D.2) simultaneously. In practice, we set 𝜏3 to reflect current prices as mentioned in Section 6, and
verify that it is within the permissible range.

Appendix E. Implementation details

We use a public implementation of the interior-point filter line-search algorithm (Wächter and Biegler, 2006), and integrate it
with the dataset of Grubhub instances (Reyes et al., 2018) and Chicago taxi services (Transportation, 2023) using Python. We briefly
outline the results needed to implement the algorithm, and provide our code online (Beliaev, 2023).

First we define derivative information for the latency, where we use the fact that
𝑑 𝜌𝑗 (𝑥)
𝑑 𝑥𝑖′ ,𝑗′

=
1[𝑗=𝑗′]

𝑁𝑗𝜇𝑗
.

𝓁𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝑡𝑖,𝑗 + 𝑘𝑗 [1 + 𝛽𝑖,𝑗𝑁𝑗 (1 − 𝜌𝑗 (𝑥))]
−1, (E.1)

𝑑𝓁𝑖,𝑗

𝑑 𝑥𝑖′ ,𝑗′
= 1[𝑗=𝑗′]

𝛽𝑖,𝑗𝑘𝑗

𝜇𝑗
[1 + 𝛽𝑖,𝑗𝑁𝑗 (1 − 𝜌𝑗 (𝑥))]

−2, (E.2)

𝑑2𝓁𝑖,𝑗

𝑑 𝑥𝑖′′ ,𝑗′′𝑑 𝑥𝑖′ ,𝑗′
= 1[𝑗=𝑗′=𝑗′′]

2𝛽2
𝑖,𝑗
𝑘𝑗

𝜇2
𝑗

[1 + 𝛽𝑖,𝑗𝑁𝑗 (1 − 𝜌𝑗 (𝑥))]
−3. (E.3)

Now we can use this to get derivative information for the objective function.

𝐿(𝑥) = 1

||
∑

𝑖∈

∑

𝑗∈

𝓁𝑖,𝑗𝑥𝑖,𝑗 , (E.4)

𝑑 𝐿(𝑥)
𝑑 𝑥𝑖′ ,𝑗′

=
1

||

[(∑

𝑖∈

∑

𝑗∈

𝑑𝓁𝑖,𝑗

𝑑 𝑥𝑖′ ,𝑗′
𝑥𝑖,𝑗

)
+ 𝓁𝑖′ ,𝑗′

]
, (E.5)

𝑑2𝐿(𝑥)

𝑑 𝑥𝑖′′ ,𝑗′′𝑑 𝑥𝑖′ ,𝑗′
=

1

||

[(∑

𝑖∈

∑

𝑗∈

𝑑2𝓁𝑖,𝑗

𝑑 𝑥𝑖′′ ,𝑗′′𝑑 𝑥𝑖′ ,𝑗′
𝑥𝑖,𝑗

)
+

𝑑𝓁𝑖′′ ,𝑗′′

𝑑 𝑥𝑖′ ,𝑗′
+

𝑑𝓁𝑖′ ,𝑗′

𝑑 𝑥𝑖′′ ,𝑗′′

]
. (E.6)

Next, we derive derivative information for the two constraints separately, starting with the utility constraints in Eq. (12) which
we denote as 𝑔𝑗 (𝑥) ≤ 𝜌̄ ∀𝑗 ∈  .

𝑔𝑗 (𝑥) = 𝜌𝑗 (𝑥), (E.7)

𝑑 𝑔𝑗 (𝑥)
𝑑 𝑥𝑖′ ,𝑗′

=
1[𝑗=𝑗′]

𝑁𝑗𝜇𝑗
, (E.8)

𝑑2𝑔𝑗 (𝑥)

𝑑 𝑥𝑖′′ ,𝑗′′𝑑 𝑥𝑖′ ,𝑗′
= 0. (E.9)

Finally, we denote the flow constraints in Eq. (13) as ℎ𝑖(𝑥) = 1 ∀𝑖 ∈ , listing the derivative information below.

ℎ𝑖(𝑥) =
∑

𝑗∈

𝑥𝑖,𝑗 , (E.10)

𝑑 ℎ𝑖(𝑥)
𝑑 𝑥𝑖′ ,𝑗′

= 1[𝑖=𝑖′], (E.11)

𝑑2ℎ𝑖(𝑥)

𝑑 𝑥𝑖′′ ,𝑗′′𝑑 𝑥𝑖′ ,𝑗′
= 0. (E.12)

Note that the cost constraint in Eq (11) is not required for optimization as the minimum price can be manually set to satisfy it.
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