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ARTICLE INFO ABSTRACT
Keywords: In this study, we have derived a thermodynamically consistent phase-field model for two-phase
Two-phase flows flows with thermocapillary effects. This model accommodates variations in physical properties

Thermocapillary effects
Thermodynamic consistency
Phase-field method

such as density, viscosity, heat capacity, and thermal conductivity between the two components.
The model equations encompass a Cahn-Hilliard equation with the volume fraction as the
phase variable, a Navier-Stokes equation, and a heat equation, and meanwhile maintains mass
conservation, energy conservation, and entropy increase simultaneously. Given the highly coupled
and nonlinear nature of the model equations, we developed a semi-decoupled, mass-preserving,
and entropy-stable time-discrete numerical method. We conducted several numerical tests to
validate both our model and numerical method. Additionally, we have investigated the merging
process of two bubbles under non-isothermal conditions and compared the results with those
under isothermal conditions. Our findings reveal that temperature gradients influence bubble
morphology and lead to earlier merging. Moreover, we have observed that the merging of bubbles
slows down with increasing heat Peclect number Pe; when the initial temperature field increases
linearly along the channel, while bubbles merge faster with heat Peclect number Pe; when the
initial temperature field decreases linearly along the channel.

1. Introduction

The variations of surface tension caused by temperature gradients at a fluid-fluid interface usually lead to an interfacial shear force
along the interface, and thus induce the movement of fluids in the direction of the temperature gradient. This effect is known as the
thermocapillary effect, which plays an important role in various industrial applications involving microgravity or microdevices [1].
Several phase-field models have been developed for simulating the thermocapillary effects for two-phase flows [1-10]. The essential
idea for the phase-field model is to introduce an order parameter to characterize the different phases, which varies continuously over
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a thin interfacial layer and is essentially uniform in the bulk phases. However, most of the existing models are not thermodynamically
consistent, namely the fluid flow equation (Navier-Stokes), the phase-field equation (Cahn-Hilliard), and the heat equation are simply
coupled and thus do not satisfy energy conservation and entropy production laws.

Recently, a thermodynamically consistent phase-field model [1] has been developed for simulating two-phase flows with thermo-
capillary effects, where the mass concentration is employed as the phase variable. The model equations for the whole computational
domain can be derived variationally from energy and entropy functional, which allows the two fluids to have different physical
properties (including density, viscosity and thermal conductivity) and meanwhile maintains mass conservation, internal energy con-
servation, and entropy increase. The model equations are highly nonlinear and coupled, which leave a challenge to the numerical
simulations. In [10], another thermodynamically consistent phase-field model was developed for simulating thermocapillary effects,
where the volume fraction is employed as the phase variable instead of the mass concentration, and the two components are assumed
to be of equal density. Moreover, several stable and efficient numerical methods, including IEQ [11-13], SAV [14-17], extended SAV
[18-21] and SVM [10,22,23], have been developed for solving the phase-field models. In some of these methods, extra, auxiliary
variables have been introduced to ensure the discrete energy conservation and entropy increase.

In this paper, we propose a thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects,
which allows the two components to have different physical properties, including density, viscosity, heat capacity, and thermal
conductivity. The model equations consist of a Cahn-Hilliard equation with the volume fraction of one component as the phase
variable, a Navier-Stokes equation, and a heat equation. These equations are highly coupled and nonlinear, and meanwhile satisfy
mass conservation, total energy conservation, and entropy increase. To carry out the numerical simulations, we develop a first order,
semi-decoupled, mass conservative and entropy stable numerical method for solving the model equations, where there is no need to
introduce extra auxiliary variables to our method.

The paper is organized as follows. We present the derivations of the phase-field model for two-phase flows with thermocapillary
effects in §2, and provide the model validation in §3. The temporal discrete numerical method and the corresponding discrete mass
conservation and entropy increase are shown in §4. The fully discrete numerical method is provided in §5. The numerical results are
presented in §6, and finally the conclusion is given in §7.

2. Model equations
2.1. Phase-field variable and variable physical properties

We use the phase-field model to represent a two-phase incompressible fluid flow with variable physical properties and thermocap-
illary effects along the fluid/fluid interface. In particular, we use the following formulation as the variable density for the two-phase
fluid:

P (@1, ®y) = ;@ +pr P, ey

where p; > 0 is the constant density and @, is the volume fraction of the i fluid, respectively, for i = 1,2. Here, we use the no-voids
assumption,

D, +D,=1. )]
We next treat the two-phase fluid as one mixture, and define the phase variable as

v =0,
such that the variable density p for the mixture can be rewritten as

p=p1w +p(1 —y). €)

Similarly, we define the other variable properties for the mixture:

variable viscosity : pu(w) = py + (1 —y), 4
variable thermal conductivity : k(y)=k;w + k,(1 —y), (5)
variable heat capacity : C,(y)=Cj 1y + Cp (1 —y). (6)

2.2. Internal energy, free energy, and entropy

To investigate the thermocapillary effects, we expect the surface free energy of the two-phase fluid to be temperature-dependent.
To address this, we propose the internal energy density, i, free energy density, /, and entropy density, §, for the mixture as follows:

T, y,Vy)=uT,y)+ 4,6(w,Vy), (7)
F@w, V) = f(T,w) + 46w, V), (8)
S(T,y,Vy) =s(T,y) + A6(y, Vy). 9
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Here u, f and s represent the classical components that can be defined as [1]

u=pC,T, (10$)
T
f=pChT—pCthn<—>, 11
Ty
T
= (L), 12
’ phn(%) (42

where T denotes the absolute temperature, and 7, serves as the reference temperature. Furthermore, we note the following thermo-
dynamic relation:

f=u—Ts. (13)

Additionally, 6 represents the interface free energy, defined as:

1 [V |*
oy, Vy) = EW(III)+€ >
where W (y) = w2(1 — )2 /4 represents a double-well free energy, and e serves as a small parameter denoting the thickness of the
diffuse interface.
In the framework of the sharp-interface model, it’s common to assume that the surface tension decreases linearly with temperature,
given by:

14)

o(T) =0y —or(T —Tp), (15)
where o, represents the surface tension at the reference temperature T;, and o denotes the rate of change of surface tension with
temperature. Consequently, for our phase-field model, we consider 4,, 4,, and 4; as:

Ay =n(og +orTy), Ap= no(T), A;=nor, (16)
where # > 0 is a positive constant that establishes the relationship between the surface tensions of the diffuse-interface model and

the sharp-interface model, as discussed in [1]. Moreover, we note the following thermodynamic relations

Ap=4, =T, a7

S

f=0-Ts. (18)
2.3. Conservation laws
Next, we establish the conservation laws for the flow of the two-phase fluid. Assuming the two-phase fluid occupies a domain Q,

we consider an arbitrary material volume V' (f) € Q moving with the mixture. Here, we define the following quantities: the total mass
M, volume of a single fluid phase ¥, momentum P, and internal energy U:

M= / pdV, (19)
140

Wy / v dv. 20)
V()

P= / pv dV, (21)
140

U=/ﬁdV, (22)

V()

where p is defined in Eq. (3), v represents the mass-averaged velocity of the mixture as discussed in [24], and & denotes the internal
energy density as defined in Eq. (7). Given these considerations, the associated conservation laws can be expressed as follows:

am _

=0, 23
P (23)
av = / A ndA, 24)
dt p1
v (1)
%: /T-ndA—/pg%dV, (25)
140 V)
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Z—‘Z:/—qE-ndA+/Vv:TdV. (26)
v 40)

Here, n denotes the unit outward normal vector of the boundary 0V (), while 2 represents the unit vector in the vertical direction.

Eq. (23) represents the mass conservation of the mixture within the material volume, and Eq. (24) stands for the volume conservation

for a single fluid (here for the fluid 1), where J is the volume flux of fluid 1 through the boundary of the material volume. The

momentum conservation Eq. (25) states that the rate of change in total momentum equals the force (surface forces T) acting on the

volume boundary. Here we assume that

T=7r-pl+q, (27)

where 7= u (Vv + VUT) — % u(V - v)I represents the deviatoric stress tensor, p denotes the pressure, I stands for the unit tensor, and
q represents the unknown term that needs to be determined to ensure entropy non-decrease. Additionally, g in Eq. (25) corresponds
the gravitational constant. The internal energy conservation Eq. (26) states that the change in internal energy equals the rate of work
done by the forces (T) on the boundary plus the energy flux (q) through the volume boundary.

2.4. Model derivation

By substituting Egs. (19) — (22) into the conservation laws (23) — (26), respectively, we derive the following equations:

Dv
—— =V.-T-pe3 28
Ly Pgz, (28)
Voy=—a¥ld (29)
P1
. D V.
—W+V-(wv)=—u or —W+y/(V-v)= v J, (30)
ot Pl Dt Py
Ju DT
ﬁE=_V'qE+VU:T_S"C’ (31)

D 0
sre= (3—; + /luw> =X 4 eV (Vwa—“t/) +a(V-v)

Dt
+ 2,eV-(Vy @ Vy) - v, (32)
!
w=" W _ Ay (33)
€
a=(py—p1)/ P2 (34

and D/Dt=09/0t + v -V denotes the material derivative. Note that the comprehensive derivation is provided in Appendix A.
We now define the entropy as

5= / sav, (35)

[40)

and calculate the time derivative of the entropy. Here § represents the entropy density as defined in Eq. (9), and the following relation
is used

-1
oT \oT T
Similar to the derivation of Eq. (A.12), we obtain
05 _ 0ds oT ds oy oy
BB (B jw) =+ 4,6V (Vy—), 37
ot oT ot <01// Sw) or TAEV (WD) 37)
such that
ds ds oT ds dy oy .
€ - BE (B dw)Z + 46V (Vy—2)+V- av
T /{0T ot (du/ Sw> or TAEV- (Vw5 +V- (o)
140)
1 ou oT ds oy oy N
= - —+1 — 4+ 1,eV-(Vy—)+ V- dav. 38
/{T@T t+(0w+5w> or TAEY -+ (w)} (38)

140
Substituting (31) into (38), we obtain
D 0
s =/ { 9 yoyr— 1 <ﬂ+xuw> v lauev-(vwa—"t’)
W

— -—v
dt oT T Dt T
140}
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1. 1 1 1
(V) = =V g+ V0 T = eV (Vw @ Vi) v

as Dy dy .
+ <£ + Axw> <E - v-Vw) + A€V (VWEH—V . (sv)} dv.
With the help of Eq. (17) and the following identities
10f 10du 0s

Toy Toy oy’
v-Vi=v- QVT+ £+/lw Vy + A,eV - (Vy ® Vy)
=v-| % P AR v Vy) |,

Eq. (39) can be rewritten as

ds 1 1 1
I=/ {—TV-qE+7VUZT—TAMGV-(VI//®VI//)-V
140)

2
- %AHGV : (vwa—"t’) +5(V-0) + A€V - (Vy @ V) - v

1. 1 [(of Dy oy
——aV-v)— = (L +Aw ) =2 + 4,eV - (Vy—) S av.
Tu( v) <0ll/+ fw> D + A€V - ( y/at)

In addition, with the help of Eq. (18) and the following identity
V-Vy@Vy) - v=V-(Vy @ Vy)-v)- Vv : (Vy ® Vy),
we rewrite Eq. (42) as
ds 1 oy
o = / { - ?V . (qE +4,e(Vy @ Vy)-v+ ﬂué‘Vl//E)
140}

1 1,

+ Vo (T+2,e(Vy @ Vy)) — /-0
1(0

+ A€V (VY @ Vy) - 0) — <£+Afw

+/15€V-(V1//aa—yt/)}dV.
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(39)

(40)

(41)

(42)

(43)

(44)

Next, by substituting Eq. (27) (the definition of T), mass conservation Eq. (29) and volume conservation Eq. (30) into Eq. (44), we

obtain

dsS 1 dy
i =/ { - TV' (qE +/lu€(V1//®Vy/)-v+/1u€V1//E>
140
lo .
+ ?Vv : (r+q+ /lfe(Vl//®Vl//)+y01//I)

—lf(v-v)+l,4£v- i+/15€v-((Vl//®Vl//)~U)
T T P

+/15€V'(Vl[/aa—llt/)}dV,

where
of
=—+41iw,
Ho ow f
He = Mo +ap.

With the help of the following identity

1 J 1 J J 1 1 J
—yV-—=V-<—u _>_ﬂ _.v<_)___.vﬂ’
T py T p ‘ T nooe

Eq. (45) can be rewritten as

ds 1 1 1 oy 1 T
— = V| =qp+=Ae(Vy@Vy) v+ —AreVy— — —pu,—
R /{ <Tq5 TAreVw@Vy) v+ -ipe v, Tmﬁ)

1 40)
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1 oy J

+V (;) . <(IE +4,e(Vy @ Vy)-v+ /IMSVU/E - ﬂcp—1>
1 A

+ 7Vv C(r+aq+ Are(Vy ® V) + powl — /1)
1 J

-——-V dav. 49
Tp e } (49)

For the above equation, we denote the first part as the entropy flux of the material volume, and the rest parts as the local entropy
increase, .S;,., which needs to be non-negative according the second law of thermodynamics, such that

1 oy J
Sie =/ {V(?) : <qE FAEVY @VY) v+ ATy = —ﬂC;>
40)

+%Vv : (r+q+/1fe(vw®vw)+uow1-f1)—%pi-wc} >0. (50)
1

To comply with the second law of thermodynamics, which states that local entropy generation must be non-negative for an irreversible
process, we specify the unknown terms as:
a=/1-47e(Vy ® Vy) — powl, (51)
J==pm,Vu,, (52)

v, T

qr =—kVT — 4,e(Vy @ Vy)-v— 1,eVy o +p.—, (53)
p1

where m,, = my/yw2(1 — w)? is the degenerate mobility for the diffuse interface, and m is a constant. Substituting Egs. (51) — (53) into
Eq. (50), we obtain the entropy generation for the two-phase fluid system

V7> 1 1
Sinc = / {k T2 + 7VU Tt ?mwlvﬂclz >0. (54)
[40]

Substituting Egs. (51) — (53) into Egs. (28) — (31), respectively, we finally obtain the model equations for two-phase flow with
variable properties and thermocapillary effects:

ov

> +pv-Vvo=V.-T-pg2, (55)
V-v=aV-(m,Vu,), (56)
o
L4V () =V - (m, Vi), (57)
a(pC,T)
—— VG Tr)=-V-qp+Vv: T
95
— (E +V-(6v)>, (58)
where
A=Ay +A(1—y) for A=p,u,Cp.k, (59)
T=—pl+ fT+7—A(T)e(Vy @ Vy) — poyl, (60)
f=r+apT)5, f=pChT—pCthn(T1>, (61)
0
2 201 _ )2 2
s=VW It _wd -y Vvl 62)
€ 2 4e 2
r=u(Vo+Vo') - %y(V -v)l, (63)
af
Ho= g A (64)
of T T
o =(p; — po)C,T(1 —1In FO) +p(Cpy — Cypp)T(1 —1In F0), (65)
!
w= W) _ eAy, (66)
He =Ho + ap, (67)
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oy
g=—kVT —4,e(Vy @ Vy) -v— 1,eVy — ” WMEV;[C (68)
2.5. Non-dimensionalization

We now non-dimensionalize the model Egs. (55) — (58). Using the properties of fluid 1 as the characteristic quantities, we non-
dimensionalize the variable properties as

A=y +{(0-y), (69

where A stands for p, u, ¢;,. and k, respectively, and {, = A, /A, are the corresponding physical property ratios. By selecting R*, V'*,
and T™ as the characteristic length, velocity, and temperature, respectively, and y = p; (V*)? as the characteristic chemical potential,
energy density, and pressure, o, as the characteristic surface tension, and m*w = m as the characteristic mobility for the phase field,
we non-dimensionalize the physical quantities as follows:

_ * - - T

B T Ty A
R 1% T T R 01 (V%)

5 f . ] ST p

/= 5 U= >, 8= —. b= =
p1(V¥) (V%) pi(V*) (V%)

- A A _ ATE m

J,=2 Af:_f’ Io=2 mw:_‘”, (70)
0'0 0'0 0'0 m

After dropping the bar notations, the non-dimensional phase-field model for two-phase flows with thermocapillary effects can be
given as follows:

ov [
pat+pv Vvo=V-T- F (71)
\"E (m Vyc) (72)
dy 1
;+V-<W>=a"-<mm>, 73
0 (pCyT)
T+V-(pCth)=—V-qE+Ech:T
Ec , (06
~ S (§+v (5v)) 74)
where
A=y +{ (I —w), {\=A/A; for A=p,u,Cy k, (75)
A1 1
T=-pl+ fI+ ReTT %Af(T)e(VW ® Vy) — poyl, (76)
. 1
= f(T — A (T
I =@+ G AT, 77)
1 1 T
=—pC,T— —pC,Tln| —
S = gePCnT = g PCon n<T0>’ 78
Ap(T)=n(1-CaMa(T - Tp)), (79)
2
5= W(W)+€|VW| , (80)
€ 2
2 1— 2
W= (81)
=u(Vo+Vo') - % u(V - o), (82)
of 1
L 4 — AT 83
Ho = 61//+W r(Mw, (83)
c,, -C
W _Anzre iy ( L))o L, 22 (1 (), (84)
oy Ec 2 Ty Ec Cha T,
!
VW Ay, (85)
€
1
W' ) =wly - Dy - 3 (86)

my, = V(1 —y)?, (87)
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He = po +ap, (88)
1 Ec Ec dy
=——kVT — —1,e(Vy @ Vy) - v — — A eViy —
9E="pe, We VW @VY) v = o AWy o,

Ec

= Vu., 89

Pe, my, 1V, (89)

A, =n(1 + Ca MaTy). (90)

Here the non-dimensional parameters are given by

V*R* V* T *)2
Re=pl R Ca=“l R Ma=UT -, Fr=(V),
Hi oo my gR*
* Pk pC V*R* V)2
Pew= V.R , Per = Lkl , Ec= ) , We=CaRe, 91)
m;‘,yz“ k] Ch,lT*

where Re is the Reynolds number, Ca is the Capillary number, Ma is the thermal Marangoni number, Fr is the Froude number, Pe,,
and Pe; are the Peclect numbers for the phase-field and heat equations, respectively, Ec is the Eckert number and We is the Weber
number. In addition, the non-dimensional internal energy and entropy densities are given by

1 1
G=u+—A,8, u=—pC,T, 92
UEUT We U R ©2)
s=s+ 25, s=apc,in( L), i =yCaMa (93)
We * Ec" " ,) 1 ‘

3. Model validation

In this section, to validate the model derivations, we demonstrate that the conservation laws of mass and energy, and entropy
increase can be derived from the model Egs. (71)-(74), which can be further served as the foundation for designing numerical methods.

Theorem 3.1. Consider a closed system in Q with following boundary conditions

Vpa=0. n-Vulsg=n -Vulsg=n-VT|;0=0, (94
the model Eqs. (71) — (74) satisfy the following mass and energy conservation

d dE _d L1 2 P

— dx=0 and — = — {+— + = }d =0, 95
dt pax an dt dt “ 2p|v| FrZ X (95)
Q Q

where E denotes the dimensionless total energy of the system, comprising the internal energy ii, kinetic energy ql plv|?, and potential energy

£
i 2

Proof. We first show the proof for the mass conservation in (95). Multiplying Eq. (73) by a and using Eq. (72), we obtain

ay,+aV-(yv)=V.v. (96)
With the help of a (34) and p (75), Eq. (96) can be reformulated as

p+V-(pv)=0. (97)

By integrating over Q and applying the divergence theorem with the boundary conditions in (94), we deduce the mass conservation
in (95).
We now show the proof for the energy conservation. Multiplying Eq. (73) by —p,a and using Eq. (72), we obtain

oy

—pra - praV - (yv)=—p,V-v. (98)
With the definitions of @ (34) and p (75), Eq. (98) can be rewritten as

7]

LAV () =0, 99

Multiplying Eq. (71) by v and Eq. (99) by |v|?/2, and adding them together, we obtain

19(plv]*)
2 ot
where the following identity is used

+ 1y Py =v-T-v— Lz, (100)
2 Fr
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1 1
- V0) v+ V- (pu)|p) = 2V - (plv D). (101)
In addition, with the help of i (92), Eq. (74) can be rewritten as
i 1
—+V. —-—V. Vv : T. 102
Y +V-(w)= Ee 4 + Vv (102)

Combining Egs. (100) and (102), and integrating over Q while applying the divergence theorem with the boundary conditions in
Eq. (94), we obtain

% {%p|v|2+ﬁ} dx=/—Fﬁz v dx, (103)
Q Q

where the following identity is used

V-T-v)=V-T-v+Vv:T. (104)
In addition, using Eq. (99), we have
d dp z z
— — dx -V. — dx. 105
dt /azF / ()5 dx (105)

Adding Egs. (103) and (105) together, and applying the divergence theorem with the boundary conditions in (94), we deduce the
energy conservation in (95). []

Theorem 3.2. Consider a closed system in 2 with following boundary conditions

Vlpa =0, n-Vulso=n-Vylso=n-VT|)o =0, (106)

the model Eqs. (71) — (74) satisfy the following entropy increase

as _d 1 T\, 1

24 [ L, a5 bd

dr  dr {Ephn<T>+We }x
Q

vT|? : My |Vu,)?
_ k VTP 1 z:Vo ™My Vi dx>0. (107)
EcPe; T2 Re T Pe, T

where the entropy S of the system is defined as

S§= / 3(T,y,Vy)dx, (108)
Q
and § is defined in Eq. (93).

Proof. Multiplying Eq. (73) by , we obtain

oy 1
—;40 +V-(wo)uy=—V- (m,l,Vuc) Ho- (109)
ot Pe,,

Using the definitions of y (Eq. (83)) and w (Eq. (85)), the first term leads to

61// _ 9w af 1 01// w' (l//)
- —/l T)—eA 110
0t or ow f( ) We f( ) € v. ( )
Furthermore, we note that
01// wW'(y) 1 oW
AT =A,(T)-— 111
ks Pepps 11
and
ow oy 1 |Vy|?
—As(T)—eAy =—A,(T)eV - (—Vy)+ = A(T . 112
£(C )ate v r(Me (at V) 2 r(Me % (112)

Substituting Eqs. (111) and (112) into Eq. (110), and using the definition of § (Eq. (80)), the first term of Eq. (109) can be rewritten
as

v _owof 1
"= o oy twe

The second term of Eq. (109) leads to

e}
A2 — o d NV - (v, (13)
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V- (wo)ug = pow (V- 0) + (v - V)

of 1
=poy(V-v) + ﬂ(v -Vy) + @Af(T)(v -Vy)w,

where Eq. (83) (the definition of ) is used. Furthermore, we obtain

W)
€
=4, (D)@ V) = A (T)eV - (Vy ® Vy) - )

Ar(M) @ - Vyw = 4 ,(T)(v - Vy) — AW - Vy)eAy

+ /lf(T)e‘Vv :(Vy @ Vy),
where the following identity and the definition of 6 (Eq. (80)) are used

- -Vp)Ay ==V - (Vy @ Vy)-v)+ Vv : (Vy @ Vy)

[Vy |
+v-V——.
v
Substituting Eq. (115) into Eq. (114), the second term of Eq. (109) can be rewritten as
V.- (yv)uy= (V-v)+ﬂ(v-V )+L/1 (T)(v-Vé)
YU)Hy = HoyW oy "4 We f
1 1 .
- %Af(T)eV (Vy ®Vy)-v)+ e Ap(T)eVv @ (Vy @ V).

Substituting Egs. (113) and (117) into Eq. (109), we obtain

owos __of

i 35
W oy - i
aoy - oy W TRy,

1 oy
+— A (DEV - | =V + (Vi @ V) -
Wef()e <atl//(l//®u/)v>

= uow(V-v) — \% Ap(T)(@ - V8)

1 X 1
~ e rMeve : (Vy @ Vy) + EV - (my, Vi) uo.

Multiplying Eq. (72) by p, and adding it to Eq. (118), we obtain
ovos __of

1 96
% vy = g%
aoy oW Ry

1 oy
1

- ﬁ/{f(T)EVU :(Vy @ Vy)

— oy (V-v)—p(V-v)

1 my, 5
+—V. Vu,)— —1\Vu,|,
Pe, (my, u.Vue) Pe, Vil
where the following identity is used

1

a
EV . (mWVuC) Ho + gv . (mWVyC) D
v v
1
=§V- (mWV,uc)yc
(74
1 my, 2
=—V-(m,uVu,)— =—|Vu.".
Pe, vEeTe pe, ¢
In addition, with the help of the definition of u (92), Eq. (74) can be rewritten as
du 1 1 i)
MV (w)=——V-qp+Vv:T— —2 <—+V- 5 )
or TV W)= Vgt Ve T e, (5 4V - (60)

Subtracting Eq. (119) from Eq. (120), we obtain
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(114)

(115)

(116)

(117)

(118)

(119)

(120)
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%—ﬂa—l’/:— -Vu +—f(v v )——T,lsa'S
Jat oy ot We at

1 1
— —TA(v-Vé V. (kVT
We s Vo) + Ec Pep ¥T)

1 dy
—TAeV- | Vgy—+V Y
+ e TAs€ < vt v w))
N L. My, 2
-T5(V-v)+ —7:Vv+ —|Vpu ", (121)
Re Pe,,
where the following identities are used
1 95 1 a6
— A, = —TAi,—,
We “or f()dt We' " or
1 n 1
V- (u)+ %zuv -(6v)—Vuv : fI= v-Vu+Ts(V-v)+ %AM(V-V&,

1 TRICE va)—sz(T)(v Vo)= o ! ol 4sw-V8).

Furthermore, with the help of the followmg identities
ou Oy of ds

o ooy lar
795, Lp, 06 _pos
Jat  We at Jat

v-Vu—ﬂ(v-Vy/)=Tv-Vs,
oy

Tv-Vs+ WLTAS(U-V5)+T§(V -v)=TV - (3v),
e
Eq. (121) can be rewritten as

0§ 1 1 kK IVT|?
=-V.Gv)+ V. (kVT) +
o G+ Eepe, VTV Eope, 12

1 oy

— A€V | Vy— +Vy(@-V
+ W ts€ <W0t+ v w))
Lz:Vo My |Va

(122)
Re T Pe T

Taking the integral over Q and applying the divergence theorem with the boundary conditions in Eq. (106), we finally deduce the
entropy increasing Eq. (107). []

4. Temporal discrete numerical method

The continuous model (Egs. (71) — (74)) is mass conserved, energy conserved and entropy increasing, which is highly nonlinear and
coupled, making it challenging to develop an algorithm that preserves all these properties simultaneously. Therefore, we developed
an algorithm that maintains the conservation of mass and entropy increase at the temporal discrete level.

We now present a first order, semi-decoupled, mass conserving and entropy increasing temporal discrete numerical method for
the model Egs. (71) — (74):

p"

p"vp+ p"v" - Vot =V T b (123)
Vo =ptV- (m Vﬂ"+l) (124)
(S
v
it V- (o) =PLV CAZAOE (125)
€
W
(PC)" ' Ti+ (pC)" ' " VI ==V - ¢ + hs. (126)

We refer to Appendix B for the detailed definitions. Here, v", p", y", ;43 and T" are the approximations of v(nét), p(nét), y(nét),
uo(nét) and T'(nét) at time ¢ = nét, respectively, 67 is the time step, and ;= ™ —wmy /6t
Next, we prove that the numerical method (123) - (126) preserves the temporal discrete mass conservation and entropy increase.

Theorem 4.1. Consider a closed system in Q with following boundary conditions

V'30=0, n- Vﬂgbg =n-Vy"|;q=n-VT"|30 =0, (127)
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the numerical method (123) — (126) preserves the following temporal discrete mass conservation

/p; dx =0, (128)
Q

and discrete entropy increase corresponding to the continuous counterpart (107)

§n+l —gn k |VT"+1 +VT"|2 1 Tn+l . an+l
Si= [ Z——"dx= L L

5t Ec Pe; 4(Tm)? Re ™
m" |V#n+l |2
VT ires dx >0, (129)
Pew "

n+1
where §"1 = Elcp"“C}'l’Jrl In <%) + ﬁisé”“, and res is defined in Eq. (164).
0

Proof. We first show the proof for the discrete mass conservation. Multiplying Eq. (125) by a and using Eq. (124), we obtain

ay; +aV - (") =V v, (130)

With the help of the definitions of « (34) and p"t! (B.1), Eq. (130) can be rewritten as

i+ V- ("o =0. (131)

Taking the integral over Q with the boundary conditions in (127), we obtain the discrete mass conservation (128).
We now show the proof for the discrete entropy increasing law. Multiplying Eq. (125) by ;48“, we obtain

Wfﬂg“‘l +V- (W”+lvn)ﬂg+1 =%V . (m;’llvﬂzt+l>ﬂg+l (132)
v

Using Eq. (B.4) (the definition of yg“), the first term leads to
il af 1 W’(l//"+l)

Vily = W;E + %/lf(T")WZ

- %Af(T")wfeAw”H. (133)
Furthermore, we have

1 W’( n+1) 1 W-
%Af(T")W;% = Ja b A Ferry, (134)
1 W@ — ")
=— a2 ¥ 135
e = et 25te : (135)

where ¢ is between y"*! and y”, and we have used the following Taylor expansion

W =) = W) - W + WO — . (136)

In addition, we have

1 a1 A A
— - Ap(THwreAy" ——%/If(T")ev'(TVW" )

We

1 |an+l |2 V' - an+1
+— A (T" -

we )€< 5t 5

1
=g br eV - WYy

2
V|2

1
+ —A,(T"
we e
|VW)1+1 _ anlz
26t ’

Substituting Egs. (134) and (137) into Eq. (133), the first term of Eq. (132) can be rewritten as

n af 1 n 1 n 1
wut! = Vig, T e ir (T8 = 5= ATV - (i Vw +h)

+erry, (137)

erry = WL Af(T")e (138)
e

+erry +err;. (139)
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The second term of Eq. (132) leads to

3}
V. (l//"+1v");16'+1 ﬂg+11//n+1(v ) av{ " - an+1)
1
eflf(T")('-’" . an+1)wn+l’

n+1

A (Eq. (B.4)) is used. Furthermore, we have

where the definition of u

1y n+l
ﬂf(T")(U" . an+l)wn+l - ﬂf(T")(U" . an+1) W' (y"")
€

_ Af(Tn)(vn . an+l)€Awn+l

— /lf(Tn)(vn . V5n+l)

_ Af(T")eV . ((an+| ®an+1) . vn)
+ A (TMeVD" : (Vy™! @ Yy,

where the following identity is used

—(U" ) an+l)Awn+l =_V. ((an+l ® an+1) . vn)

v n+1)2
£V (Ve @ vyt o v D = "
Substituting Eq. (141) into Eq. (140), the second term of Eq. (132) can be rewritten as
a
V. (W”+1Un)ﬂg+l = ”g+lwn+l(v . vn) + _f(vn . VWIH-I)
oy
1
+ — A (T n V5"+1
S )
1

_ %Af('rn)ev . ((an+l ®VW}1+1) . vn)
1 n Y/ 1 n
+ e A MV = (Vy +H @ vyt

Substituting Egs. (139) and (143) into Eq. (132), we obtain

of _ of

1
Viow = o VY = G AT

1
+ %Af(Tn)CV . (‘I/fVW'H—l + (VI//"+1 ® VW’I+1) . vl’l)

- n 1 1
—#0+ll// (Y o) —

%Af(T")(v" . V5n+l)
- ﬁﬁ F(TMeV" : (Vy"! @ V")
+ %V . (m;/Vy;”" ) /46'“ —err| —erry.
Multiplying Eq. (124) by p"*!, we obtain
p"“(V V) = %V . <mZ/V”?+l ) pn+1_

Adding Eq. (145) to Eq. (144), we obtain

af of et 1 n
SR — — 2, (T
oy~ opV W) T e T
1 n n - n n
+ e s eV - (i Vy (v @ vyt ")
1

1
— Wk T" Vst
- éa F(TMeV" 2 (Vy"t! @ vyt
_ ﬂg+lwn+l(v . U") _ pn+1(v ) U")
n

1 1 My 12
+ — V. mn n+ \v nt+ly ¥V v n+
Pe, (my, 1™ V™) PeWI |
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(140)

(141)

(142)

(143)

(144)

(145)
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—err; —erry,
where the following identity is used
1

_ 1 n n+l1 n+l1
eV (v )t

4

V. (m:/v;l"+l)/l3+l + %V <mlr;/V#£v+l>pn+l
v

n

1 my,
= V.- (m" n+lV n+ly _ v n+1 2.
Pe, (my 1™V ™) Pewl He ol

Next, multiplying Eq. (146) by —Ec, and adding to Eq. (126), we obtain

Jdu 0f n
(pch)"“T;+Ec£w;— Ee g wi=—(rC) " v
i a
—Be 2 vyt 4 Be 2L o vyt
oy oy

Ec 1 VTl 4 v

- =—T")6:+ —V+ | hk—————
We 7' Pep < 2

+ %T”/ISSV . (vwn+lwi+vwn+l(vn . VW}'I+1))
€

_Ec
We

—Ec Tn§n+l(v . vl’l) + %1n+l . an+l
(]

T"is(vn . V5"+l)

Ec

+ P—m;|Vﬂg+l 1% + corr”
Cy

+Ec err; +Ec err,,

where the following identities are used
T"A =4, — /lf(T"),
(Vl[/”+l ® an+1) V= Vl[l"+l (U" . an+l ),
vo' . /4"+ll//"+ll = “n+lwn+1(v . U")
D Hy 5 .

Furthermore, using Egs. (B.5) and (B.10), we obtain

of  _ +1 +1 T
ECEW; = p;CZ T" - pECZ T"In FO

+ 0"(C)T" — p"(C)iT" In <;—>
0

T"
= (pCh);T" - (pCh)ET" In <F> N
0

and

ou
Ec—y; + (pC)" ' T; = (pC,);T"

oy
C "'HT" n+1 n
+M ln(T_)_ln(T_)
st T, T,
+err3,
(pch)n+lTn(Tn+l _ Tn)2

errsy

3

2T )25t
where T is between 7"*! and T, and we have used the following identity
1 ™"
2T)?
Subtracting Eq. (151) from Eq. (152), we obtain

T" —+
Ty

(Tn+l _ Tn)2.

n+l1 n T n
T 7 = (In(—)—In(==) | T" +
Ty
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(146)

(147)

(148)
(149)

(150)

(151)

(152)

(153)

(154)
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ou af _ (pCym'Tr et
C)"H T+ Be——y; —Be——y; = —2 |
(rCp) Cop Vi B, v 5 n( T )
C,)"T" "
- % In (—) +erry
=Ec T"s; + errs. (155)
In addition, we have
—(pC)™@" - v - Ec—(v -Vt +Ec 9f (v LYyt
=—EcT"("-VS§"™, (156)
where the following identities are used
—(pCp)"™ " - VT™) = —Ec T"" (v VT, (157)
it n+l df n n+ly _ a n n+l
oy @D @ Wy =T RER ) (158)

Substituting Egs. (155) and (156) into Eq. (147), and recalling the definitions of § (Eq. (93)) and g+l (Eq. (B.12)), we obtain
n+1 n
Ee 778 = —v. ((  Y__+VI"
Per 2
+ %T"l €V - (an+1u/;+vwn+l(vn . Vl[/n+1))
n <n+1. n Ec n+l . n+1
—EcT"V. (5 v)+R—r : Vo
e

Ec
+ —m’J/|V;4:’+1 |2+ corr” + Ec erry +Ec erry — erry. (159)

Pe,,

Multiplying Eq. (159) by 1/(Ec T"), and using the following identities

n+1 n n+1 n n+1 n|2
Lv.(,{w +VT >=V_(LVT +VT", KV 4 VT

" 2 " 2 4(Tn)2
erry
2 (160)
kIvVT? 2 —k VTn+1 2
erry = KIVT"P = KIVTT (161)
4Tn
we obtain
R k |VTn+l +VTn|2
S =
Ec Pe 4(Tn)2
L] (LVT”+'+VT")
Ec PeT 2
+ #ASGV . (VW"+1W;+VWM+1(U" . an+1))
) Loyt [Vt
-V- (s"+l v + Re z T + % ;" + res, (162)
where
corr” +Ec err| +Ec erry —erry + %erm
res = r . (163)

EcT"
Recalling the definitions of corr” (Eq. (B.14)), err, (Eq. (135)), err, (Eq. (138)), erry (Eq. (153)) and err, (Eq. (161)), we obtain

(W" _ l[/"+l)2 (pCh)"+l(T"+l _ Tn)2

Ec (1 7
res = o (T )<Z W (5))

2T7ste 2T,
C n+1 Tn+1 —_T" 2
_ (Cp) (~ ) >0, (164)
2T)25t
where we have used the relations W' (&) > —1/4, A(T") >0 and T,,;, < T.

Taking the integral over Q and applying the divergence theorem with the boundary conditions in Eq. (127), we finally deduce
the discrete entropy increase (128) of our numerical method

175



Y. Sun, J. Wu, M. Jiang et al. Applied Numerical Mathematics 206 (2024) 161-189

VTn+l +VT" 2 ntl . n+1
S;=/§;dx=/ k| ! +LT AL
Ec Per 4Tn)? Re ™
Q Q

n
LA\,
Pev "

+res}dx20. O (165)

5. Fully discrete numerical method
5.1. Basic definitions

In this study, we employ the finite difference method on staggered grids for spatial discretization of the model Egs. (71) — (74). We
first show some basic definitions and notations for the finite difference discretization on a staggered grid. Here we use the notation
and results from [25]. Let Q = (0, LX) X (O, Ly), with L, =m, - h and L,=m,- h, where m; and m, are positive integers and 2 > 0
is the spatial step size. For simplicity we assume that L, = L,. Consider the following four sets

Em1={xl.+%|i=0,...,m1}, E,;,l={x. 1i==1,...,m +1},

lez{xil_izl,...,ml}, ,;,lz{xilizo,...,ml+l},

where x;, 1 =i-hand x; = (i - %) - h. Here the elements of E,, and Ej are called edge-centered points. The two points belonging
2

to E; \E,, are called ghost points. The elements of C,, and Cj are called cell-centered points. Again, the two points belonging to
Ca, \le are called ghost points. Analogously, the sets £, and Ej contain the edge-centered points, and C,,, and Cj;, contain the
cell-centered points of the interval [O, Ly]. We then define the following function spaces

Conyxxmy = {W 1 Gy X Gy, _’R}’ vrl;:clxmz = {f DB X Ep, _)R}’

gew ={u:E,,,GC,,,2—>R}, en ={u:le><E,,,2—>R},

myXmy myXmy

for cell-centered functions, vertex-centered functions, east-west edge-centered functions and north-south edge-centered functions,
respectively. Due to the different locations of the functions, we define several average and difference operators as follows:
edge to center average and difference: a,, a,, dy.d,;
center to edge average and difference: A,,A,,D,,D,;
vertex to edge average and difference : 2,2
edge to vertex average and difference: A, A
center to vertex average: A.
We refer the reader to Appendix C for a description of our notations for the above operators. We also define average operators

(A, O _(a O . . .
A= < 0 A, >, A, = < 0 a > and the following gradient operators:

Va=(dedy). Vp=(DxDy). Vap =(duD,).

You=(DPxdy), Voo=(Dx2,). Von=(9:D,).
Note that in this paper, the cell-centered functions are the phase variable y, chemical potential y,, pressure p, and temperature

T, the east-west edge-centered function is the x-component of the velocity, u, and the north-south edge-centered function is the
y-component of the velocity, v.

5.2. Finite difference discretization on staggered grid
We now apply the finite difference method on staggered grids in space to the temporal discrete numerical method (123) - (126),

and let the grid functions y", ué’,p”,T” S C,;,lx,;,z,u" S é‘r‘,’fl"xmz and V" € é',’,'fl iy For convenience, we present the following two-
dimensional fully discrete numerical scheme:

Ap'v; + p"0" -V =V T - %2. (166)

v, 0 =%vd : (Amg,VDﬂg+1), (167)

W+ V- (Ap" ") =%vd - (Am;’,VDﬂg“), (168)

(PCR)" T+ (pCy)"™ (A" - AV [T ==V, - g + s, (169)

where the terms p"v" - Vo', v . T q’g' and hs are defined in Appendix D. The numerical scheme in three-dimensional space
can be easily generalized straightforwardly.
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Table 1
Comparison of L? errors for the phase variable y, and velocity components « and v obtained at
t = 0.25 with various 6t on a fixed grid size of 1024 x 1024. Refer to §6.1 for details.

5t L?errorof y  Order L? errorofu  Order L? errorof v Order
1/64 4.2312¢-2 9.7261e-3 1.0042¢e-2

1/128 2.1379e-2 0.9849 4.7447e-3 1.0355 4.9610e-3 1.0174
1/256 1.0806¢-2 0.9844 2.3420e-3 1.0186 2.4671e-3 1.0078
1/512 5.4513e-3 0.9871 1.1675e-3 1.0043 1.2358e-3 0.9974
1/1024 2.7434e-3 0.9906 5.8559¢-4 0.9955 6.2164e-4 0.9913

For the discretization of boundary conditions, the homogeneous Neumann boundary conditions for y", ! and T" are discretized
as

=n-Vpu''| =n.v,T"™| =0,

n+l
n-Vpy ‘ NP 0

0Q

and the no-slip boundary condition for velocity v"*! are discretized as

U"+l | =0.
0Q

After obtaining (v, p", w", ug, T"), we can use the fully discrete numerical scheme (166)-(169) to find (oL, prtl oyt ;43“ T
by the following steps:
Step 1. solve Egs. (167) and (168) to obtain u/"“,uﬁ“,p"“;
Step 2. solve Eq. (166) to obtain vl
Step 3. solve Eq. (169) to obtain 77*!.
Note that the conservation properties at the fully discrete level are not within our scope of consideration.

6. Numerical results
6.1. Time accuracy test

We first conduct a time accuracy test for our numerical method (166)-(169) in a 2D domain [0, 2] X [0, 2], while also demonstrating
that the entropy remains increasing. Here, we fix the grid size as 1024 X 1024, ensuring that errors from spatial discretization are
negligible compared to time discretization errors. Without considering gravity, we set the non-dimensional parameters as follows

Pe,, = 100,Re = 1,We = 10,Ca = 10,Ma = 0.01,Pe; = 1,Ec = 1,
£, =1.4,=0.1.4c, =0.1.5, =0.1,e =0.05,7 = 6V2. (170)

The initial conditions are given as

w(x,y,0)=0.5(sin(zx)cos(ry) + 1), (171)
v(x,y,0)= (uo, UO) = (sin(zrx) sin(xry), sin(zx) sin(xy)), 172)
T(x,y,0)=0.5(cos(zx)cos(xy) + 1), (173)
p(x, y,0) =sin(zx) sin(zy). (174)

On the left and right boundaries of the domain, we apply periodic boundary conditions. On the top and bottom walls, we apply no-slip
boundary condition for v and no-flux boundary conditions for y, y, and T'. As exact solutions are not available, errors in L? norms
are calculated as the difference between the solution of the coarse time step and that of the adjacent finer time step. The errors of the
phase variable y and velocity components « and v at t = 0.25 with various time step sizes are presented in Table 1. We observe that
our numerical method (166)—(169) almost perfectly matches the first-order accuracy in time. Additionally, the numerical results of
the entropy and volume of the two-phase fluid system with various time steps are shown in Figs. 1 and 2, where we observe that the
entropy remains increasing, and the volume is preserved up to 10~'2 (all the lines in Fig. 2 are coincident).

6.2. Thermocapillary migration of a droplet with infinitely small Pe,

In this subsection, we explore the thermocapillary migration of a droplet in a square microchannel with a fixed linearly increasing
temperature field imposed along the channel. The temperature gradient is 0T /0z = VT, > 0, and the effect of gravity is assumed to
be negligible.

The droplet (fluid 2) of radius R is surrounded by another immiscible fluid (fluid 1) in the microchannel. The thermocapillary
migration of a droplet was first investigated analytically by Young et al. [26], where both the heat Peclect and Reynolds numbers
are assumed to be infinitely small, and the convective transport of momentum and energy is neglected. The terminal velocity (also
known as YGB velocity) of the droplet under constant temperature gradient VT is given as
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3.7

3.6
0 / —ot=1/64
S ®3 3.63 —5t=1/128
5 3.4 —5t=1/256
& 5t =1/512
g 3.3 — 5t=1/1024

3.2 358

0.5 1
3.1
0 0.5 1
Time

Fig. 1. Entropy (.S) computed using Eq. (108) with different time steps on a fixed grid size of 1024 x 1024. Refer to §6.1 for details.

le-12
< ——— 6t =1/64
by — 5t=1/128
- 0 — 4§t =1/256
= ot =1/512
— —— 9t =1/1024

-le-12

0 0.5 1
Time

Fig. 2. Discrete volume conservation fQ w" —y° with different time steps on a fixed grid size of 1024 x 1024. Refer to §6.1 for details.

v _ 200 VTR (175)
YOB ™ Q4 ky/ky)2uy +313)

To validate our phase-field model, we compare the numerical results to the analytical solution Vy;p obtained from the sharp-
interface model. The characteristic length, velocity and temperature for this test are R* = 10R, V* = Vy;p and T* = VTR,
respectively. Numerical simulations are carried out in a 3D dimensionless domain [0,0.75] x [0,0.75] X [0, 1.5]. We impose peri-
odic boundary conditions on all the side boundaries (x =0,0.75, y =0,0.75), and apply no-slip boundary condition for v and no-flux
boundary conditions for y and p, on the top and bottom boundaries (z =0, 1.5).

The droplet of dimensionless radius 0.1 is initially stationary and centered at (0.375,0.375,0.75). Therefore, the initial conditions
for velocity and phase variable are given as

v(x,y,2,0)=0, (176)

w(x,7.2,0)=0.5+0.5tanh ((0.1 - /2\/56), (177)

where r = v/(x — 0.375)2 + (y — 0.375)2 + (z — 0.75)2. In addition, the dimensionless temperature field is fixed as

T(z)=10z+1, (178)

and thus, the heat Eq. (74) is not considered. The model parameters and ratios of physical properties are set as follows
Pe, =1.5%10%/e,Re=1.3%x 107, We=88x107°,Ca=6.6x 107>,

Ma=75Ee=17x10"°¢,=1.(,=1.¢c, =l.n= 6V2. (179)

In the simulations, the droplet migration velocity, v,, is calculated numerically by

Jowv - kdx
Jowdx

where k is the unit vector in z direction. We first demonstrate the convergence of the model by testing various values of e(=
0.0025,0.005,0.01,0.02) with a fixed grid size 128 X 128 X 256 and a time step of 1075. As shown in Fig. 3(a), the terminal velocity
converges to Vy ;p asymptotically as the value of e decreases. Next, we show the convergence of the results by refining the grid with a
fixed ¢ = 0.0025 and a time step of 1075, Specially, we use four grid sizes (32X 32 X 64,64 x 64 X 128, 128 X 128 X 256,256 X 256 X 512)
for the computations. As shown in Fig. 3(b), the migration velocity converges as the grid size increases, and the results for the grid
sizes 128 x 128 x 256 and 256 X 256 X 512 are very close. Therefore, we set the grid size 128 x 128 x 256 and a time step of 10~ for
the 3D computations in the subsequent section.

vy = (180)
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1 1 =
3 (>* A
= e = (’\
g | g |
5 0.5 = 0.5 ;
o o e=0.0025 o ——32x32x64
g €=0.05 2 ——64 % 64 x 128
K e=01 K] ——— 128 % 128 x 256
& €=02 & 256 x 256 x 512
= =
0 0
0 0.1 0.2 0.3 0 0.1 0.2 0.3
Time Time
(a) (b)

Fig. 3. Time evolution of the thermocapillary migration velocity of a droplet with (a) various € and a fixed grid size 128 X 128 X 256, and (b) various grid sizes and a
fixed € =0.0025. See 86.2 for details.
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Fig. 4. The diagram depicting two immiscible fluids in a microchannel. The temperatures of the lower and upper walls are given by T'(x,—b) =T, +T, cos(wx) and
T(x,a)=T,, respectively, where T;, > T, > T, and w = ZT” is the wave number. Refer to §6.3 for further details.

6.3. Thermocapillary-driven convection

We now investigate the thermocapillary-driven convection in a heated microchannel with two superimposed planar fluids [27].
The setup of the problem is illustrated in Fig. 4. The heights of the fluid 1 (upper) and fluid 2 (lower) are a and b, respectively, and
the fluids extend infinitely in the horizontal direction. The temperatures of the upper and lower walls are imposed as follows:

T(x,a)=T,, (181)

and

T(x,—b) =T, + Tycos(wx), (182)

respectively, where T}, > T, > Ty > 0, and @ =2z /I is a wave number with / being the channel length. The given thermal boundary
conditions establish a temperature field that is periodic in the horizontal direction with a period length of /. Therefore, it is sufficient
to only concentrate on the solution within one period domain —//2 < x < /2.

When the heat Peclect number and Reynolds number are negligibly small, it is possible to ignore the convective transport of
momentum and energy. In addition, it is assumed that the interface remains flat, and the effect of gravity is assumed to be negligible.
By solving the simplified linear governing equations, Pendse and Esmaeeli [27] obtained the analytical solutions for the temperature
field T'(x, y) and stream-function ®(x, y). Specifically, for the upper fluid, the solutions are obtained as follows:

(T, —Ty) y+kT,b+Tha

T(x,y)= _ + T, f(a, f, k) sinh(a — wy) cos(wx), (183)
a+ kb
T Umax 1 .2
@(x,y) =—— ——— {wysinh“(«) cosh(wy)
®  sinh*(a) — a2
— % [2(12 + wy(sinh(Qa) — 20()] sinh(wy)} sin(wx), (184)

and for the lower fluid

k(T.-T,) y+kT,b+Ta
a+kb

— k sinh(wy) cosh(a)] cos(wx), (185)

T(x,y) = + T, f(a, B, k)[sinh(a) cosh(wy)
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U 1

D(x,y)=—22 _________{wysinh?(f)cosh(wy)
@ sinh?(p) — p2
- % [2% — wy(sinh(28) — 28] sinh(cwy)} sin(ewx). (186)
The unknowns in the above equations are defined by
-k -
k=2t a=aw, f=bo. f(@p.h)=— L : (187)
ko k sinh(f) cosh(a) + sinh(a) cosh(f)
and
Tyo -
Unax = (—i L ) g(a, . k)h(a, f, i), (188)
2
where the subscripts 1 and 2 stand for the fluid 1 and 2, respectively,
g(a, B, k) =sinh(a) f (a, B, k), (189)
sinh?(a) — a?) (sinh?(p) — p2
h(a, B, i) = ( ) ( ) (190)

fi (sinh*(B) — ) (sinh(2a) — 2a) + (sinh*(a) — a?) (sinh(2) — 28)

k=1k,/k, and ji = ji, / u, are the thermal conductivity ratio and viscosity ratio between the two fluids, respectively.
Here, we use a, Tyor /1y, T, and Tyora/ u, as the characteristic length, velocity, temperature and stream-function for the present
test, respectively. The numerical simulations are carried out in a 2D domain [—!/2,1/2] X [—b, a], where

1=2, a=b=1, (191)

resulting in a dimensionless domain [—1, 1] X [—1, 1]. To ensure a flat and rigid interface between the two fluids, we specify the phase
variable as

y
2\/56

where ¢ represents the thickness of the diffuse interface. Periodic boundary conditions are enforced on the left and right boundaries
of the domain. On the upper and lower walls, no-slip boundary conditions are imposed. The wall temperatures are prescribed through
Egs. (181) and (182), where dimensional temperatures are T, =20, T, = 10, and T, = 4, yielding dimensionless temperatures T}, =2,
T, =1, and T, = 0.4. The ratios of fluid properties and model parameters are specified as:

w(y) = % + % tanh< >, for ye(-1,1), (192)

Re =0.05, We =0.004,Ca=0.08, Ma=2.5,Pe; =0.01,
&= 1.6,=1.8g, = 1.6 =1/kn=6V2. (193)

To show the effect of the thermal conductivity ratio on the stream-function and the temperature field, we examine two cases with
different values of k, i.e., k =1 for case 1, and k = 0.2 for case 2. According to the definition of the variable thermal conductivity
k(y), we have a constant k for case 1,

ko
k(y)=y + k—(l -—y)=1,
1
and a variable k(y) for case 2,
ky
k(w)=y + k—(l —y)=5-4y.
1

Figs. 5 and 6 depict the temperature field and stream-functions contours for the two cases, respectively. The numerical simulation
is conducted on a grid size 1024 x 1024 with a time step of 10~* and e = 0.0025. It’s apparent that the numerical results agree
well with the analytical solutions. Moreover, as the thermal conductivity ratio k decreases, the temperature distribution at the
interface becomes more nonuniform (See Fig. 5). This results in an enhanced shear force along the interface, and thus strengthens
the thermocapillary-driven convection, as reflected in Fig. 6, where the gradient of the stream-function increases as k decreases.
Additionally, to demonstrate the convergence of our phase-field model towards the sharp-interface model as the diffuse interface
thickness tends to zero, we compute the L2 norms of the relative differences between the numerical results with five different e
values (0.0025,0.005,0.01,0.02,0.04) and the analytical solutions. The L? norms of the relative differences are defined as:

T-T|,> O-P|,»
Il - Il ; Eq>=” - Iy
71l .2 1Dl .2
for the temperature and stream-function, respectively, where ® represents the numerical result of the stream-function. The numerical

results are shown in Table 2, indicating a decrease in the L? norm of the relative differences as the value of ¢ decreases for both the
temperature field and the stream-function.

T= (194)
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Fig. 5. Isotherms for fluid systems with thermal conductivity ratios of (a) k = 1 and (b) k = 0.2. Solid lines represent numerical results 7', while dashed lines depict

analytical solutions T. For further details, refer to §6.3.

Table 2

The L? norms of the relative differences between the numerical results obtained
at the steady state and analytical solutions with various ¢ and a fixed grid size
1024 x 1024. For more details, refer to §6.3.

k=1 k=02
€ E; E, E; E,
0.04 1.8290¢-07  1.5493¢-01 1.0591¢-02  1.6071c-01
0.02 1.8290¢-07  4.4292¢-02 5.7621¢-03  6.0471¢-02
0.01 1.8290¢-07  1.6597¢-02 2.9972¢-03  2.3082¢-02
0.005 1.8290¢-07  1.2590¢-02 1.5303¢-03  1.0508¢-02
0.0025 1.8290¢-07  1.2233¢-02 7.7892¢-04  9.1579¢-03

6.4. The merging process of two bubbles with thermocapillary effects

We now investigate the merging process of two spherical gas bubbles in a squared channel with an initially linear temperature field
imposed along the channel (97 /dz = VT_,). The two bubbles, surrounded by a viscous liquid, are initially stationary with the same
radius R,. We adopt R* = Rj, V* =4/gR,, and T* = |VT_ | R, as the characteristic length, velocity, and temperature, respectively.
The dimensionless computational domain is [0, 8] X [0, 8] X [0, 16], and the initial bubbles, each with a radius of 1, are centered at
(4,4,5) and (5.6,4,2), respectively. The following initial conditions are imposed for the numerical simulations:
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8.8422e-04
6.8773e-04
4.9123e-04
2.9474e-04
9.8246e-05
-9.8246e-05
-2.9474e-04
-4.9123e-04
-6.8773e-04
-8.8422e-04

1.4737e-03
1.1462e-03
8.1872e-04
4.9123e-04
1.6374e-04
-1.6374e-04
-4.9123e-04
-8.1872e-04
-1.1462e-03
-1.4737e-03

(b)

Fig. 6. Streamlines for fluid systems with different thermal conductivity ratios: (a) k = 1 and (b) k = 0.2. Solid lines represent numerical results ®, while dashed lines
depict analytical solutions ®. For further details, refer to §6.3.

v(x,y,2,0)=0, (195)
w(x,y,z,0)=1+ltanh<1_—\/ﬁ>+ltanh<l_—ﬁ>, (196)
2 2\/56 2 2\/56‘
T(x,y,2,0)=z+ 20, (case 1) (197)
or
T(x,y,z,00=—z+36, (case?2) (198)

where r| =(x — 42+ (y—42+(z—5)% and ry=(x— 5.6)% + (y — 4)2 + (z — 2)%. No-slip boundary conditions are imposed for v on
all domain boundaries, while no-flux boundary conditions are applied for y and p,. Additionally, no-flux boundary conditions are
set for T on all side boundaries (x =0,8, y=0,8), and T is specified on the top and bottom boundaries (z = 0, 16) through (197) or
(198). The model parameters and ratios of physical properties are given as follows

Pe,, =40,Re =0.34,We =0.05,Ca=0.14,Ma=0.2,Ec = 0.001,Fr =1,

¢,=1000,¢, =100.¢c, =4.5=23,e=003.9 = 6V2. (199)

6.4.1. The merging process of two bubbles under isothermal conditions

We first investigate the merging behavior of two bubbles under isothermal conditions. Here, surface tension is assumed to be
constant (o = 1) over the bubble interfaces, and the heat equation (74) is dropped. The numerical results, as shown in Fig. 7, are
found to align well with experimental results [28]. In addition, it is found that the bubbles gradually rise and deform due to the
buoyancy force. As two bubbles approach, the lower bubble accelerates because the drag force on lower bubble becomes smaller than

the upper bubble.
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o )
o O 6‘

Fig. 7. Comparison of numerical results and experimental results for merging process of two bubbles, adapted from [28]. Refer to §6.4.1 for further details.
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Fig. 8. Time evolution of bubbles interfaces (contour y = 0.5) on the slice y = 4 under isothermal conditions, along with the time evolution of isotherms and bubbles
interface on the same slice at different Pe;; numbers when the initial temperature field increases linearly along the channel. See §6.4.2 for details.

6.4.2. Effect of thermocapillarity on the merging of two bubbles

We further investigate the merging behavior of two bubbles under non-isothermal conditions by considering the full model
Egs. (71)-(74). Two cases of initial temperature, given by Egs. (197) and (198), are examined to analyze the effect of the heat
Peclect number Pe; on the merging process of bubbles. Various Per, specially Pe; =4, 16, 64, 256, are selected for this examination,
with other settings described in §6.4. The numerical results are illustrated in Figs. 8 and 9.

In case 1, where the initial temperature field increases linearly along the channel, the numerical results are presented in Fig. 8.
Comparing with the results under isothermal conditions, several observations are made. Firstly, prior to bubble merging, the upper
bubble becomes flatter and the lower bubble elongates. Following the merging, the resulting bubble also flattens further. Secondly,
the presence of a positive temperature gradient causes bubbles to merge earlier, evident from the second column of Fig. 8. Lastly, as
Pe; increases, the merging process slows down and the isotherms surrounding the bubbles become more distorted.

In case 2, where the initial temperature field decreases linearly long the channel, the numerical results are displayed in Fig. 9.
Similar to case 1, prior to merging, the upper bubble flattens while the lower bubble elongates, followed by further flattening of
the resulting bubble post-merging. Moreover, the negative temperature gradient accelerates bubble merging, noticeable from the
second column of Fig. 9. Furthermore, as Pe; increases, bubble merging occurs more rapidly, accompanied by greater distortion of
the surrounding isotherms.
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Fig. 9. Time evolution of bubbles interfaces (contour y =0.5) on the slice y =4 under isothermal conditions, along with the time evolution of isotherms and bubble
interfaces on the same slice at different Pe; numbers when the initial temperature field decreases linearly along the channel. See §6.4.2 for details.

7. Conclusion

In this study, we present a thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects,
which allows the two fluid components to have different physical properties, including density, viscosity, heat capacity, and thermal
conductivity, and meanwhile maintains the balance laws of mass, momentum, and energy and entropy increase simultaneously.

Given the highly coupled and nonlinear nature of the model equations, we develop a first order accurate numerical method that
satisfies the discrete laws of mass conservation and entropy increasing. We validate both our model and numerical method through
a series of numerical tests. These include the thermocapillary migration of a droplet, thermocapillary convection within a heated
microchannel featuring two superimposed planar fluids, and the merging dynamics of two bubbles under isothermal conditions. Re-
markably, our results align closely with existing analytical solutions or experimental findings. Furthermore, we delve into the merging
process of bubbles under non-isothermal conditions. In comparing these scenarios with those under isothermal conditions, we ob-
serve significant differences: temperature gradients prompt earlier bubble merging and substantial alterations in bubble morphology.
Moreover, as the initial temperature field increases linearly along the channel, the merging rate of bubbles decelerates with rising
heat Peclect number (Pe; ). Conversely, for scenarios with a linear decrease in the initial temperature field along the channel, bubbles
coalesce at a faster rate as Pe; increases.
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Appendix A. Derivation of the conservation equations
A.1. Mass and volume conservation equations

Substituting Eq. (19) into Eq. (23), and substituting Eq. (20) into Eq. (24), we obtain the following mass conservation equation

0
P4V (pw) =0, (A.1)
ot
and volume conservation equation
0 .
l+v.(wv)=_u_ (A.2)
ot p1
Similarly, we assume the volume conservation equation for fluid 2 is
0D, v-J
—4V. (D) =——", A3
Py (@) =-— (A3)

where @, is the volume fraction of fluid 2, and J is the volume flux of fluid 2. Multiplying Eq. (A.2) by p, and Eq. (A.3) by p,, adding
them together, and using Eq. (A.1), we obtain

-V-J-V-J=0 (A4)
or
V. (J+7)=0.
Furthermore, adding Egs. (A.2) and (A.3) together, we obtain
V-J V-J _pi—m

Viv=—"-—""— —V- I (A.5)
P ] 1P
Let @ = (p, — p1)/ P2, thus Eq. (A.5) can be rewritten as
Vor=—a¥l (A.6)
P1
Recall the definition of the total time derivative:
Dy oy
—_—=—4vr- V R A7
Dr  or v (A7)
then (A.2) can be rewritten as
D _V.-
o w(V-v)= V-7 (A.8)
Dt P1

A.2. Momentum and energy conservation equations

Substituting Eq. (21) into Eq. (25), and using Eq. (A.1), we obtain the momentum conservation equation

Dv
— =V-T-pez. A.9
"pr pez (A9)
In addition, substituting Eq. (22) into Eq. (26), we obtain
dii .
E+V-(uv):—V-qE+Vv:T. (A.10)

Using the definition of & (in (7)), we obtain
o0 ou 0T = ou oy )
—c =+, —.
ot 0T ot OJy ot ot
Substituting the definition of § (14) into (A.11), we obtain
i a w' 3]
oa_ oudl  oudw  , Ww) oy
ot 0T ot dy ot € ot

+ 4,eVy -V <6_1//>

(A.11)

ot
_Oudl  oudy . W) oy
oT ot oy ot e ot

dy dy
+4,€V - (VWE) - /lueAy/E
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ou oT ou oy oy
=—— —+ 4 — + 1,eV-(Vy—),
oT o (aw “w> or T A Twg)
where
Wl
WZM—CAW.

€
In addition, we have the following identity:

A~ ou ou
v-Vi=v- <()_TVT+ <£+Auw> Vl//+/1u€V-(Vu/®Vl//)>.

Substituting (A.12) and (A.14) into (A.10), we obtain the energy conservation equation
ou DT ou Dy dy .
— == —+4+1 — —1,eV-(Vy—) =V -
oT Di (01// “w> pr ~ e (Vw5 =iV -)

—4,eV-Vy®@Vy)-v—V-qp+Vv: T.
Appendix B. Specification for temporal discretization

The detailed definitions in Egs. (123) — (126) are as follows:

A =y g (L —y™ ), g =AMy /A for A=p,p,Cyk,

Tn+1=mn+l+RLTn+l+fn+lI,
€

mn+1 - _pn+lI _ Lﬂf(T")€(VWn+l ® an+l) _ Mg+lwn+ll’
We

of 1
n+l

=2 4+ —
Mo = oy T We

b — C,—C n
O _ L (P2 emiipn 20l T2 (g (1))
oy Ec\ p " Ch,1 Ty

T"+1 - “n (an+1 + (an+1)T) _ %ﬂn(v 3 U”+1)I,

Af(Tn)LU’H—l,

~ n
fn+l - Lpn+lcz+lTn <1 —In <T_>> + WLAf(Tn)érH—l’
€

Ec Ty
n+l _ _L VT"+I + V7" _ E n , n+l n+1
@& = Pe, k 2 Pe, my e VHe
— %Aue (VW}H-IW; + (Vl//n+l ® VW"+1) . vn) ,
hs = —Ec:—uu/;— Ec:—u(v" V") £ Ec m™! vt
v v
Ec 41 . 1 antl Ec
+ ET'H- . an+ —Ec TnSn+ (V . Un) - %iué;
- \I’ETCA“(U" V&™) + corr”,
e
% = L <P1 _pzcn+l + ,,Ch,l _Ch~2> "
= h pr— s
dy Ec 2 Ch1
0 _0f |, aoS™
dy Oy awn+1 ’

& 1
§n+1 - Sn+l +—12 5n+1’
We *
& 1 1 1 T"
Sn+1 — = n+ Cn+ In{ = ,
Ec” “n T,
corr” = corr| + corry + corrs + corry,
(Wn+l _ W")2
86te

s

corry = %if(T")

Ec |an+1 _ an|2
corry = —%Af(T”)eizéz ,
corrn = (pCh)"+1T"(T"+l _ Tn)2
’ 2T, 251 ’
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leTn+l |2 _ leTnll
4 Per T"

corry = (B.18)

s

where §"*! is the approximation of s"*!, 5"*! is the approximation of §"*', and T, is the global minimum value of the initial

temperature.

min

Appendix C. Average and difference operators

Here we define the edge-to-center average and difference operators a,,d, é';l’l"xmz Couyxm, and a,.d, 6',’,',51 xmy Conyxem, S
=1 d =1 (C.1
axui’j—z ui+%,j+ui—%,j 5 Xui’j_ﬁ ui+%J_ui—%,j 5 .
1 d _1 (C.2)
ayv,-’j = E Ui,j+% + Ui,j—% ) yvi,j = z vi,j+% — Ui,j—% ) .
fori=1,...,myand j=1,...,m,.
The center-to-edge average and difference operators A, D, : Cp, v, — é‘;‘l'l"xm? and Ay, D, : Cpy v, = é'msl wmy € defined as
A ! _1
Wil 1i=3 (Wi+1,j +Wi,j)’ Dy, 1 Ly = (Wi+1,j —'I/i,j), (C.3)
1 1
AWl =3 (Wijar +wij) Dy j1=5 (Wijar = wiy) s €4
fori=0,...,m; and j =0, ... ,m,.
The center-to-vertex average operator A : Cy i, = Y xm, 15 defined as
1
A¢i+%,j+% =7 (Dis1je1 + Bijur + bisr +bij) » (C.5)

fori=0,...,m;and j=0,...,m,.

The edge-to-vertex average and difference operators A,,D, : £ = -V, and Ay, D 1Y L =V, «m, are defined as

myXmy myXmyp y? © T myxXmy
AU 1 1=1 v 1 +U. 1 D.v. . 1.1 l v 1=V, 1 (C.6)
itzj+s 2\ itlj+s ij+3 ]’ itzg+s — p \itlits ij+3 )’
Au. l w1 tu 1, Du. 1. 1=l W, 1. —U_ 1. (C.7)
y 1+ /+ 2 i+5.j+1 i+5. )" Yiits.+s  h i+5.j+1 i+5. )’

fori=0,...,m; and j =0, ..., m,.

The vertex-to-edge average and difference operators A, Dy : Vy, xm, é';fl xny and Ay, D1 Vi m, é',f,wxm are defined as
2 =] D =1 (C.8)
Xfi,j+%_§ f1+ J+1+f +3 Xfi,j+%_ﬁ fi+%,j+%_fi—%,j+% ’ :
g 1 =o D81 =1 C9
ygi+%,j ) gi+%,j+— T8,1 Li-y ) ygi+%,j ~n gi+%,j+% _gi+%,j—% > .
fori=0,...,myand j=1,...,m,.

Appendix D. Specification for fully discretization

Here we specify the terms p"v" - vortl vt q’l’;l and hs in fully discrete numerical method (166)-(169) as follows:
o s o () 13, (U D)
A, (Ap"Ayu"va"“) +A, (p"ayu"dyv"“)
e (Dy(A(TMa (D™ 1)) +D, (AA(TD A" D Ay
We <®x (A4 (THD Ay D, Ay 1) + D, (Af(T")ay(Dyl//"“)Z))
1 (2D, (u"d ")+ D, (Au"(Dyu"t" + Do)
Re <©X (.Au"(D utl +D v"“)) +2Dy(/4"dyv”+1)>

V'T"+l=—

i v/ (Pn+l+ll”+l l’l+1)__vD( nvd.vn+l)+VDfn+l’

10y, n+1
w1 _ OF + L,lf(T”) <M
€

+1

le—l = fn+l + WLAf(Tn)(SrH—l’
€
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W(W"+1) |VdAWn+1 |2
+e€

6n+1 = ,
€ 2
1 VoI +V,T"  Ee
q;' = —gAk—D > b KA(’":,/‘:-H)VD”T-I
T 4
Ec ((uanwn+1 +Axayvn©yAWn+l) wan+1)
- — A€
u
We (Ayax“":DXAW’H—l + U"Dyl[I"'H) DyW"+1
Ec 1
- — e (Vpu" ),
We u t
hs = —Ecaa—;jy/; - Ec:—uul(v" -Vy"™) + Ec m™! : Vo
Ec . Ec
+ §T"+1 D Vot - Be TNV, 0" - o Audi
- %AM(V" V8™ + corr”,
(S
1
lnn+1 - —%ﬂf(T")e ((VdAl[l"+1) ® (VdAW"+1))

_ (pn+l +H8+1W"+1)I,
2
T"+1 = ”n (ver-l + (erH—l)T) _ §Mn(vd R Vn+1)1,
v an+1 = axunaxwarHl + ayvnayDyWr&l’
v -Vv&t =aua, D" + ayv”ayDy5"+1,

corr" = corr| + corr, + corry + corry,
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