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Introduction: The moment quantities associated with the nonlinear Schrédinger
equation offer important insights into the evolution dynamics of such dispersive
wave partial differential equation (PDE) models. The effective dynamics of the
moment quantities are amenable to both analytical and numerical treatments.

Methods: In this paper, we present a data-driven approach associated with the
"Sparse Identification of Nonlinear Dynamics” (SINDy) to capture the evolution
behaviors of such moment quantities numerically.

Results and Discussion: Our method is applied first to some well-known closed
systems of ordinary differential equations (ODEs) which describe the evolution
dynamics of relevant moment quantities. Our examples are, progressively, of
increasing complexity and our findings explore different choices within the SINDy
library. We also consider the potential discovery of coordinate transformations
that lead to moment system closure. Finally, we extend considerations to settings
where a closed analytical form of the moment dynamics is not available.
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1 Introduction and motivation

The study of Nonlinear Schrédinger (NLS) type models (Sulem and Sulem, 1999;
Ablowitz et al., 2004) is of wide interest and significance in a diverse array of physical
modeling settings (Ablowitz and Clarkson, 1991; Ablowitz, 2011). Relevant areas of
application extend from atomic physics (Pitaevskii and Stringari, 2003; Pethick and
Smith, 2002; Kevrekidis et al.,, 2015) to fluid mechanical and hydrodynamic (notably
ones stemming from deep water waves) problems (Ablowitz, 2011; Infeld and Rowlands,
2000) and from plasma physics (Kono and Skori¢, 2010; Infeld and Rowlands, 2000) to
nonlinear optics (Kivshar and Agrawal, 2003; Hasegawa and Kodama, 1995). Indeed, the
relevant model is a prototypical envelope wave equation that describes the dynamics of
dispersive waves. Specifically, in the context of nonlinear optics, it describes the envelope of
the electric field of light in optical fibers (as well as waveguides), with the relevant
measurable quantity being the light intensity I proportional to the square modulus of
the complex field u(x,t). Generalizations of relevant optical applications, involving
multiple polarizations or frequencies of light have also been widely considered, in both
spatially homogeneous and spatially heterogeneous media (Kivshar and Agrawal, 2003;
Hasegawa and Kodama, 1995).

01 frontiersin.org



Yang et al.

It is worthwhile to note that even to this day, the subject of NLS-
type models continues to fascinate researchers and to constitute a
fertile platform for a wide range of physical, mathematical and
computational works; see, e.g., Karjanto (2024) for a recent review.
At the same time, over the past few years, there has been an
explosion of interest in data-driven methods, whereby machine-
learning techniques are brought to bear towards understanding,
codifying and deducing the fundamental quantities of physical
systems. Arguably, a turning point in this effort was the
development of the so-called physics-informed neural networks
(PINNs) by Raissi et al. (2019) and of similar methodologies
such as the extension of PINNs via the so-called DeepXDE Lu
et al. (2021), as well as the parallel track of sparse identification of
nonlinear systems, so-called SINDy by Brunton et al. (2016), which
is central to the considerations herein. Additional methods include,
but are not limited to, the sparse optimization of Schaeffer (2017),
meta-learning of Feliu-Faba et al. (2020), as well as the neural
operators of Li et al. (2021). A review of relevant model
identification techniques can be found, e.g., in Karniadakis et al.
(2021). Notice that a parallel track to the above one seeks not to
discover the models, but rather key features thereof such as
conserved quantities (Liu and Tegmark, 2021; 2022; Liu et al,
2022; Zhu et al, 2023) and its potential integrability
(Krippendorf et al., 2021; De Koster and Wahls, 2024).

In the present setting, we seek to combine this important class of
dispersive wave models within optical (and other physical)
applications with some of the above machine-learning toolboxes.
Qur aim is not to discover the full PDE, or its conservation laws/
integrability as in some of the above works. Rather, our aim is to
leverage the theoretical understanding that exists at the level of
reduced-order ODEs in the form of moment methods (Pérez-Garcia
etal., 2007; Garcfa-Ripoll and Pérez-Garcia, 1999). Indeed, it is well-
known from these works that upon defining suitable moment
quantities, one can obtain closed form ODE dynamical systems
of a few degrees-of-freedom, often just two (lending themselves to
dynamical systems analysis) or sometimes involving a few more but
still offering valuable low-dimensional analytical insights on the
evolution of the center of mass, variance, kurtosis etc. of the relevant
distribution. It is those effective ODEs (that stem from the original
PDE via the moments) that we aim to retrieve using the data-driven
approach developed herein. It is also relevant to mention in passing
here that the moment methods were also used successfully to other
models such as Fisher-KPP equations, considering also applications
to the dynamics, e.g., of brain tumors (Belmonte-Beitia et al., 2014).
Our approach and presentation will be structured hereafter as
follows. In section 2, we will present a “refresher” from a
theoretical perspective of the method of moments, essentially
revisiting some basic results from the work of Pérez-Garcia et al.
(2007); Garcia-Ripoll and Pérez-Garcia (1999). Then, in Section 3,
we will give a brief overview of SINDy type methods and the types of
choices (such as, e.g., of model libraries) that they necessitate.
Additionally, we will introduce a data-driven approach for
learning coordinate transformations to close moment systems
when the initially chosen moments are not closed. Then, in
Section 4, we present a palette of numerical results and their
Our
gradation of examples from simpler ones (where, eg, an

effective  moment identification. narrative contains a

analytical low-dimensional closure of moments may exist) to
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gradually more complex ones, where a closure may exist after a
coordinate transformation and eventually to cases where a closed
system does not exist at the moment level to the best of our
knowledge. Our aim is to showcase not only the successes, but
also the challenges that the method may encounter in cases where we
do not know of a closure or when we may not rightfully choose the
library of functions (even when a closure may exist). We hope that
this will provide a more informed/balanced viewpoint to the reader
about what these methods may (and what they may not) be expected
to provide.

2 Moment equation theoretical
background

To contextualize our perspective, we will focus on the following
specific case of the (1 + 1)-dimensional nonlinear Schrédinger (NLS)
equation with a harmonic potential, V' (x, t) = %xz (Kevrekidis et al.,
2015; Kivshar and Agrawal, 2003),

1 1
iy, = 3 + Exzu +g(jul’ t)u, (1)

where g(|u|2 ,t) denotes the nonlinearity. This model is not only of
relevance to optics (where the harmonic potential represents the
heterogeneous profile of the refractive index) (Kivshar and Agrawal,
2003), but also to atomic Bose-Einstein condensates, where this
parabolic confinement is a typical byproduct of magnetic traps
(Pitaevskii and Stringari, 2003; Kevrekidis et al., 2015). We will
consider the initial value problem of Equation 1 with localized and
sufficiently regular initial conditions (ICs) ug (x) = u(x,0).

2.1 The method of moments

Instead of fully characterizing the solution of the Cauchy
problem of Equation 1, the method of moments (Pérez-Garcia
et al., 2007), seeks to provide qualitative description of the
solution behavior by studying the evolution of several integral
quantities, i.e., the moments, of the solution u(x,t). This
approach enables a reduced-order description of the NLS
equation by transforming it into a system of (potentially) closed
ordinary differential equations (ODEs). More specifically, according
to Pérez-Garcia et al. (2007), we define fork = 0,1, 2, -+ the moment
quantities of solution u (x,t) as follows,

L) = ijﬂu(x, Hdx, 2)
Vi(t) = zk’liJ xk<u(x, n ) o M t)>dx, 3)
R ox ox
2
K(t) = %jR a“éi OF s, (4)

J(t) = J.RG (p(x,1),t)dx = JRG(|u(x, %, t)dx, (5)

where # is the complex conjugate of u, p(x,t) = |u(x, )% and G =
G(p,t) is a function such that %—g (p,t) = g(p,t). Moments
Equations 2-5 of the solution u(x,t) have intuitive physical
meanings; for example, the first moment I, (¢) is associated with
the center of mass as described by the (unnormalized) probability

frontiersin.org



Yang et al.

density p = |ul*. Higher moments I are also associated with this
density distribution (i.e., its variance etc.). The V. quantities are the
respective ones associated with the momentum density (which is the
quantity in the corresponding parenthesis in the right hand side of
the Vi definition. K stems from (thinking quantum-mechanically)
the kinetic part of the Schrodinger problem energy, while J
represents the nonlinear part of the corresponding energy. We
assume that the IC ug(x) is regular enough to ensure that all
moments are well-defined for ¢ >0.

The method of moments aims to extract qualitative information
about the solution u (x, t) of the PDE Equation 1 by deriving a closed
set of evolution ODE:s for the moments of u (x, t). Depending on the
nonlinearity g(p,t), these ODEs can sometimes be determined
analytically as is shown in the work of Pérez-Garcia et al. (2007);
Garcia-Ripoll and Pérez-Garcia (1999). Below, we provide a
few examples.

Example 1. The moments I; and V) satisfy

dIl v

. = 0>

dt ©)
ave

a "

This indicates that the evolution of the center of mass I; behaves
as a harmonic oscillator, independent of the nonlinearity g(p,t).
More generally, for a parabolic confinement of frequency Q, this
would be reflected in the associated frequency of moment
oscillations; this is the so-called dipolar motion (Pitaevskii and
Stringari, 2003; Kevrekidis et al., 2015).

Example 2. If g (p,t) = 0, i.e, for the linear case of Equation 1, the
set of moments I,,V, K are closed under

dIZ

=2 -y,

dt !

dVl

T 4K - 20,
dt 2
dK 1

g
dt 2!

Example 3. Assume the nonlinearity g(p,t) = g(p) is time-
independent and given by g(p) = gop?, where go€R is a
constant. Although the evolution of the moments I,, V;, K and
J is not closed, it becomes closed under the coordinate

transformation E = K + J, ie.,

dl,

—= =V,

dt !

dav,

—— =4E -2I,, 7
7 2 (7)
dE 1

ar =y

While the examples and conditions under which the method of
moments leads to closed equations are well-known, deriving such
analytical closure systems requires knowledge of the underlying
PDE system, Equation 1 and detailed calculations therewith. This
work explores data-driven methods for obtaining analytical or
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approximate moment closure systems based on empirical
observations or simulations of the NLS equation, rather than
relying solely on such analytical understanding and derivations.
Importantly, the reconstruction of these ODE models can, in
principle, take place even for settings where the underlying PDE
model is unavailable/has not been specified. Given “experimental”
data for the field, one may aspire to utilize the toolboxes presented
below in order to obtain these effective, reduced
dynamical equations.

For systems with existing analytical closures of the moment
equations, such as Examples 1-3, our method seeks to rediscover the
moment evolution equations and potentially the necessary
coordinate transformations, such as E = K + ] in Example 3, in a
model-agnostic and data-driven manner. For systems lacking
analytical closed moment

approximate moment closure equations, providing a principled

equations, we seek to derive
and reduced-order description of the original PDE, capable of
predicting the future evolution of the system. The relevant details

will be explained in the following section.

3 Data-driven methods

We present two computational methodologies for finding
analytical or approximate closures for moment equations.

3.1 Sparse ldentification of
Nonlinear Dynamics

Our first method leverages Sparse Identification of Nonlinear
Dynamics (SINDy) by Brunton et al. (2016), a data-driven approach
for discovering governing ODEs from simulated or observational
data. Consider a nonlinear ODE system of the form:

= = £ x (1), ®)

dt
5 x,)": [0,00) = R?
evolution over time, governed by the dynamic constraint
f: R" - R". SINDy aims to identify the unknown dynamics,
f (x) from a time series of x.

where x= (x1,.. represents the state

The key assumption is that f (x) has a “simple” form and can be
expressed or approximated as a linear combination of only a few
terms from a suitably chosen library, @ (x) = [0) (x), ..., 0, (x)].
For example, a monomial library of degree up to two, @geg<> (X), is:

®degsZ (X) = [Gdegzl (X), ®deg:2 (X)]

2

2 2
= xl,.xZ,...,xn,xl,xle,...,xlxn,xz,...,Xn
Ogeg-1 (%) BOgeg-2 (X)
=10, (x),...,0,(x)|, 9)
p

with p = n+ (%). In particular, e.g., the right-hand sides of Equations
6, 7 can all be written as sparse linear combinations of terms from
Ogegez (x). Given a dictionary @ (x) = [0, (x),...,0,(x)] of p
elements—p is typically larger than n—the sparsity assumption
implies the existence of a sparse matrix E = (&,,...,§,) € RP"

such that
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f)'=[fix, -, fi(®]=60(x)-E

Lo
=[91<x),...,ep(x)]~[£1 & fn] (10)

where each sparse column &; € R? indicates which nonlinear
functions among the library @ (x) = [0 (x),...,0,(x)] are used
to parsimoniously represent f;(x).

To determine this sparse E, SINDy employs sparse regressions
on the data. Specifically, given a time series {x(t1),...,x(¢tn)} ¢ R”
of the state x (t) at times ¢y, . . ., ty—N is generally much larger than
p, the library size—one can assemble the state matrix X € RN*" and

the derivative matrix X € RN,

x1(t1) x2(t1) - x.(t1)

I | x1(t2) x2(t2) - x,(t2) Nx
X=X X5 - X, |= . . . e RM™,
. | x1(tn) %2 (tn) - xa(tN)

dx—X
X=
X1 (t1) x2(t1) -+ xa(t)
[.l | | ] X1 (t) &a(ty) - Ea(ta)
= XI X2 Xn = ) ) ' ) eRan)
- | X1 (tn) X2 (EN) -+ Xu(fN)

where X can be estimated by, e.g., finite differences on X. Define the
library matrix © (X) € RN*? as

| | |
0, (X) 6,(X) -+ 6,(X)

| | |
0, (x(t1)) 6, (x(t1)) -+ 0,(x(t1))
01 (x(ty)) 0,(x(t2) -+ 0,(x(t2))

0(X) =

6, (x(tn)) 6 (x(tn)) -+ 6, (x(tx))

Evaluating Equations 8, 9 at all times t =ty,...,ty yields

| I
[Xl Xz R Xn]:X::@(X)E
I I

I I
61 (X) -+ 6,(X)
| |

[ ] - |
& & fn] (11)
IR

Sparse regression techniques, such as LASSO (Tibshirani, 1996)
or sequential thresholded least-squares (Brunton et al., 2016), can
then solve the overdetermined system (Equation 11) for the sparse
E. This provides an approximation to the governing equation as in
Equation 10.

While SINDy can be directly applied to Examples 1-3 to
discover closed moment systems based on simulated PDE data
(Equation 1), our specific interest lies in the following:

1. Given time series data of moments with a known closed moment
system (e.g., Examples (1) and (2)), can we robustly discover the
governing dynamics using a correct but potentially oversized
dictionary @ (x), such as polynomials up to a high degree?

2. If a system is not closed for a chosen set of moments,
but closure exists after a proper coordinate transformation
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(e.g., selecting x = [I,,V|,K,J]" in Ex. 3), what insights can
we gain by directly applying SINDy to time series data from
this “incorrect” set of moments?

3. For more general systems where analytical closure does not
exist, can data-driven methods provide a “good enough”
numerical approximation to predict the future evolution of
the moment system, effectively serving as a principled reduced-
order description of the underlying PDE?

These questions will be addressed in Section 4. Of particular interest
is the second point, where we demonstrate that, in certain cases, we can
gain insight into the appropriate transformation to close the system,
even if the moment system is not closed under the originally selected
variables. In the following section, we discuss a more principled strategy
to discover such transformations in a data-driven fashion.

3.2 Data-driven discovery of coordinate
transformations for moment system closure

To illustrate the idea, we focus on Example 3, where the initially
selected moments are x = [I,V,K,J]", and an analytical closure
exists only after a coordinate transformation, y = ATx,

I, 1000 &
y=| Vi [=]0100 Kl =A"x,
K+]J 0011 ]

Remark 1. Note that the transformation matrix A € R*? is not
unique. For any full-rank matrix P € R¥?, the moment system
remains closed under the transformation y = A'x, with A = AP.

Assume we aim to discover A purely from simulated PDE data.
We propose the following strategy: Let X € R™** be the state matrix
for the original coordinate x = [I,,V, K, 1, sampled atty,...,ty,
as defined by Equation 8. Lety = A"x be the new coordinate, and the
associated new state matrix Y € R™ becomes

—y@t) — —x(t) —
—y(t)" — —x(t)" —

- , - , A=XA
v =) x0T —

We can then solve for A through the following optimization.

d =
5 (XA)-0(XA) -8

min min
AeR¥3 BeRP?

2
+plElL» (12)
F

s.t. ATA = I3X3

where % (XA) is the derivative matrix, Equation 8, associated with
the new state matrix Y = XA, | - ||z and || - ||; are the Frobenius norm
and I' norm, respectively, defined for any m x n matrix B = (b;;)
as follows:

1Bl =

m
[IB[l; = max;gjc, Zlbij|~
i=1
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In addition, y>0 is a non-negative weight, and @ (XA) =
0(Y) € RN*P s the library matrix, Equation 8, of a chosen
library © (y) on the new coordinate y = A™x.

The idea behind Equation 12 is very simple: we search for the
transformation matrix A € R*? such that the dynamics under the
new coordinate y = ATx can be parsimoniously represented from
the library ® (y). The weight >0 controls the sparsity-promoting
L, -regularization, and the constraint AT A = I5,; prevents the trivial
solution A = 0. The set of A satisfying the constraint AT A = I3,; is
called the Stiefel manifold (Edelman et al., 1998; Absil et al., 2008).

Remark 2. When the weight ¢ = 0, even with the Stiefel manifold
constraint AT A = I343, the solution to Equation 12 is not unique.
Just like Remark 1, if (A*, E*) is a solution, then for any orthogonal
matrix O € O(3), the pair (A*, E) is also a solution, where

A*=A*0, E*=0'E*0

To solve Equation 12, we use alternating optimization, iteratively
optimizing A and E while keeping the other fixed. Specifically, when A
is fixed, solving for 2 reduces to a LASSO problem. Conversely, when &
is fixed, the problem becomes a Stiefel manifold optimization with a
smooth objective function, which can be efficiently solved using
methods such as those presented in (Oviedo and Dalmau, 2019
Xiao et al,, 2020; Liu et al., 2021). To ensure the algorithm remains
unbiased, we implement an annealing strategy for the hyperparameter
. Initially, y is kept constant for Iter scheduled iterations.
Following this period, y is reduced by half every « iterations. Refer
to Algorithm 1 for the pseudocode to solve problem Equation 12.

Required: maxIter: Total number of iterations.
Iter_scheduled: Number of initial iterations during which ;. remains constant.
«: Number of iterations after which y is halved.
Random initializations: A(®) € R**3 on the Stiefel manifold and 2(©) € RP*?.
Output: Ay, Sout
1 for kin (1,2, maxIter|do
2 if k > Iter_scheduledand k is a multiple of o then
3| pep/2
4 end

2
s | 20 « argming |4 (XAU"’I)) -0 (XAU"’I)) - EHF + || Z |1, solved by LASSO.
2
6 A®) « argmingr_g H% (XA) - O (XA)- E(l‘"l)Hr. solved by Stiefel optimization.
7 end
8 Agu < A(maxlter)
9 Sout < E(maxlcer)

Algorithm 1. Data-driven discovery of coordinate transformation.

4 Numerical results

In this section, we present numerical results on data-driven
closure of moment systems (Examples 1-3) using the methodologies
described in Section 3. To obtain the data, we first numerically solve
the PDE Equation 1 with periodic boundary conditions and various
ICs using an extended 4th-order Runge-Kutta method, the
exponential integrator (ETDRK4) (see (Kassam and Trefethen,
2005) for a detailed explanation). The time series of the
moments is subsequently extracted by numerical spatial
integration according to Equations 2-5, with spatial derivatives
computed using pseudo-spectral Fourier methods. We note once
again that should the numerical data be replaced by “experimental”
ones from a given physical process, the procedure can still

be applied. Unless otherwise noted, the time series are evaluated
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at N = 16,000 uniformly spaced times ¢ = t,,. .., ty, where t; = iAt

and At = 0.0025.

4.1 Examples with analytical
moment closure

We first examine Examples (1) and (2), where analytical (linear)
closure exists for the chosen moments x = [I;, V] (Example 1) and
x = [I,Vy, K] (Example 2).

4.2 Example 1

Let the selected moments be x = [I;, Vy]. We construct the data
matrices X(© = [Il(o),V(()O)] e RM? and X = [Il(l),V((,l)] e RV??
from numerically solving the PDE Equation 1 with the ICs:

1
uW(x,0) = 77 exp(—z(x - 5)2)’

u® (x,0) = =sech? (x - 5).

1
2

We apply SINDy to this system using monomial libraries of
degree up ton € N, @gegey (X), as defined in Equation 9. We find that
as long as n<2, SINDy applied to either data matrix X® or XV
discovers the dynamics nearly perfectly. However, as we gradually
expand the library @gee<, (x) by increasing n, SINDy applied to
either X or X individually typically produces erroneous
dynamics, regardless of how carefully the sparsity-promoting
parameter is tuned. A typical negative result from SINDy applied
to X with n = 3 is presented in the Supplementary Material. This
outcome is expected, as increasing the library size makes the
problem more ill-posed, leading SINDy to overfit the data and
produce incorrect dynamics.

To address the overfitting issue, we can enlarge the dataset by
concatenating the data matrices X(¥ and XV vertically, forming
X = [XOT, XT)T ¢ R?V2 When applying SINDy to this new
data matrix X (considering boundary issues when taking finite
differences), SINDy can now discover the correct dynamics that
match Equation 6, even with a much larger library @ge,<, (x) for nup
to 16. For example, when n = 16, the output ODE from SINDy reads

dIl

=L = 1.000V,,
dt 0
Vo _ 1 0001
dt - . 1>

where the coefficients are rounded to three decimal places. This
suggests the potential usefulness of concatenating different time
series, especially in cases where one may not be familiar with the
order of the relevant closure.

4.3 Example 2

For Example 2 with the selected moments x = [I,, V1, K], our
findings are similar to those in Section 4.2. When applying SINDy to
a data matrix from a single IC, SINDy discovers erroneous dynamics
for the quadratic dictionary @gee<;. However, using larger data
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matrices from multiple ICs, SINDy can once again accurately
identify the correct dynamics even with the larger dictionaries.
Representative negative and positive results are presented in the
Supplementary Material, similar to the previous example.

4.4 Examples where closure exists after
coordinate transformations

We now turn to Example 3, where the selected moments are
x = [[,,V1,K,J], and the moment system only closes after a
coordinate transformation. Specifically, we consider the nonlinearity
g(p,t) = p? in Equation 1, which satisfies the condition in Example 3.
We collect the moment time series data by numerically solving the
PDE with the following four distinct ICs, Equations 13-16:

u (x,0) = 77V exp(—%(x - 5)2), (13)

u®(x,0) = 1.88 exp(—%(x - 5)2), (14)

u®(x,0) = 1.88(exp(—%(x - 5)2) +exp(—(x - 2)2)), (15)
u™ (x,0) = 1.88 (cos (2x) + sin (2x))exp (—x?). (16)

We consider the following questions:

e What insights can we gain by directly applying SINDy to this
system with the selected moments x = [I,,V, K, J], where a
closure does not exist?

e Can the method described in Section 3.2 correctly identify the
coordinate transformation that closes the moment system?

We note that normalized moment time series are used as input
for SINDy, as a way of incorporating feature scaling. This is an
important aspect that ensures that all the relevant quantities are
considered on “equal footing,” when the sparse regression step
takes place.

4.5 SINDy with linear library ®geg-1 ()

We begin by applying SINDy with a linear library @geg-1 (x) to
the moment time series data from IC Equation 14. The resulting
equations are:

b, _ 1.000V,
dt ’
dVl
— - —2.0001I, + 4.000K + 3.998],
1 (17)
dK
i -0.569V1,
a7 _ 0.069V;.
dt

The coefficients are rounded to three decimal places. The first four
panels of Figure 1 compare the “ground-truth” time-evolution data of
[I,,V1,K,]] obtained from PDE integration (red curves) and the
definition of these quantities through Equations 2-5 with those from
integrating the SINDy-predicted ODEs Equation 17 (blue curves).
While the SINDy-predicted time evolution of [I, V] closely matches
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the ground truth, there is a significant discrepancy for the moments
[K,J] in Figure 1. Accordingly, the SINDy-predicted dynamics is not
accurate for the original coordinates x = [I5, V1, K, J].

Nevertheless, interestingly, if we add the ODE for K with that for
J in Equation 17, which corresponds to the correct coordinate
transformation for closure, we obtain:

dIz

22 = 1.000V,,
dt !
av
d—t‘ = —-2.0001, + 4.000K + 3.998], (18)
d(K+])
e _0.500V,.
dt !

Equation 18 closely matches the ground-truth moment system
Equation 7. The last panel of Figure 1 shows that the predicted time
evolution of K + ] aligns perfectly with the ground truth, even
though SINDy does not accurately recover those of K and J
individually. This finding is intriguing because, even when SINDy
is applied to the original coordinates [I,, V', K, J] without closure, it
“strategically chooses” to sacrifice accuracy for K and ] but
indirectly captures the correct dynamics when considering the
proper coordinate transformation E = K + J. Moreover, a similar
pattern is consistently observed when applying SINDy to the
moments simulated from the other three ICs. The results are
shown in the Supplementary Material. We have also provided an
analogous example for 2D NLS equations. For details, please refer to
Section 3 of the Supplementary Material. Indeed, this clearly
illustrates that the methodology presented herein is not in any
fundamental way limited to 1D NLS models, but can be extended
to higher dimensional ones, as may be deemed desirable.

4.6 SINDy with quadratic library @geg<2 (X)

Next, we investigate the performance of SINDy with an
expanded quadratic library @gee< (x) applied to the moment
time series with the same IC Equation 14. The predicted ODEs
now become:

( dI,
22 = 1.000V,,
dt !
av
dTl = —2.0001, + 4.000K + 3.998],

: (19)
dK

;= 0174V~ 0.003V,K — 0.083Vy,

dj

dt

= -0.0021,V, + 0.082V,].

As before, if we add the predicted dynamics of K and J in
Equation 19, we obtain:

dlz
=2 =1.000V,,
dt !
av
d_tl = —2.000I, + 4.000K + 3.998],
d(K+])
g = ~0174V1 = 0.003V,K - 0.002LV; = 0.001V, .

(20)

frontiersin.org



Yang et al. 10.3389/fphot.2024.1444993
I i K
200 —— I, sampled from PDE 200 —— V) sampled from PDE —— K sampled from PDE
I, from SINDy prediction —— V) from SINDy prediction 100 —— K from SINDy prediction
150 \ \ 100 A A AohoR
100 0 50
50 | -100 \} I
| 0 : J y
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
t 1 t
J K+J
30
——J sampled from PDE 100 —— K + J sampled from PDE
——J from SINDy prediction 50 —— K + J from SINDy prediction
20 1
/ . ’ 60
OJ\/\M. VAVAVAVAVAVAVAVIREY
0 10 20 30 40 0 10 20 30 40
t t

FIGURE 1
Comparison of the ground-truth and SINDy-predicted time evolutions of [/, V1, K,J,K +J]. SINDy is trained only on the selected moments

x = [I2, V1, K,J], where a closure does not exist, using a linear library ®geq-1 (X). Interestingly, SINDy can "afford” to sacrifice accurate prediction for K and J
individually, provided that it captures the correct dynamics for E = K + J, suggesting in this way the proper coordinate transformation under which a
closure does exist. For the physical meanings of the moments in this figure, please refer to Equations 2-5 and the paragraph thereafter.
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FIGURE 2
Comparison of the ground-truth and SINDy-predicted time evolutions of [/, V1, K,J,K +J]. SINDy is trained only on the selected moments

x = [/, V1,K,J], where a closure does not exist, using a quadratic library @geq<2 (X). Similar to Figure 1, SINDy sacrifices accurate prediction for K and J

individually but indirectly captures the correct time evolution of £ = K + J.

Unlike the previous case with @geg-1 (X), the SINDy-predicted  still fails to match the ground truth ODE Equation 7 and remains

governing Equation 20 using the expanded library @gege (x) after  unclosed (i.e., the third equation in Equation 20 cannot be written

the (theoretically motivated) coordinate transformation E = K+ ]  using only I, Vy, and E = K + J). Specifically, the coefficient of V;
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in Equation 20 is —0.174, deviating substantially from that of —0.5 in
the ground truth. Although the coefficients for the additional terms
(V1K, I,Vy, and V]) are relatively small, their presence hinders the
accurate recovery of the correct coefficient for V;.

Figure 2 compares the ground-truth time evolutions of
[I;,V1,K,]J,E = K + J] obtained from PDE integration with their
SINDy-predicted dynamics after integrating Equations 19, 20.
Similar to Figure 1, SINDy with the quadratic library @geg<s (X)
applied to the unclosed moments [I,,V, K, J] sacrifices the exact
recovery of the time evolution of J and K, but indirectly captures the
correct time evolution of E = J + K. However, unlike the linear
library case in Section 4.5, SINDy with the quadratic library can yield
the correct time evolution of E = K + ] but fails to uncover the
correct governing equation for E [Equation 20] due to the expanded
library size, leading to overfitting issues discussed above.

Here, we see a key complication within SINDy that has been also
present in works such as (Champion et al, 2019) and especially
(Bakarji et al., 2022), namely the methodology is likely to result in
ODE models that are proximal to the theoretically expected ones,
but not identical to them. This, in turn, may result in a nontrivial
error outside of the training set. Especially when the library at hand
is “richer” than the terms expected to be present, unfortunately, it
does not generically seem that the reduced, theoretically expected
model will be discovered. Rather, our results suggest that it is
possible that the additional “wealth” of the libraries used can be
leveraged to approximate the data via different (nonlinear)
dependent variable combinations.

As an even more problematic example, applying SINDy with a
quadratic library to the moment time series generated from another
IC Equation 16 results in a predicted ODE system that not only fails
to match the ground truth, even after the theoretically suggested
coordinate transformation K + J, but also causes the ODE system to
blow up in finite time. For a detailed discussion, we refer the
interested reader to the Supplementary Material.

4.7 Stiefel optimization for discovering
coordinate transformations

Next, we test the methodology from Section 3.2 to discover the
coordinate transformation needed to close the moment system.

Case 1: u=0. We first consider the case where the
hyperparameter y in Equation 12 is set to y = 0, i.e., we do not
promote sparsity in the matrix 2. We use the linear library
O (x) = Ogeg-1 (), and set the maximum number of iterations to
maxIter =150 in Algorithm 1. The algorithm produces the

following outputs

-0.973 0.179 0.144

-0.169 —0.982 0.083 ~0.024 =1.076 0.005

At =1 0111 —0.040 ~0.697 [ Zewt = (l)'gig (5)"71;(8) :g'ijg '
~0.111 ~0.040 ~0.697 ‘ ' '
(21)

The coefficients are rounded to three decimal places. On the
other hand, the “ground-truth” coordinate transformation A (after
normalization to satisfy the Stiefel manifold constraint) and the
corresponding dynamics A, according to Equation 7 are:
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10 07
01 0 10 0
A 1 01 0
*00 7 oo 007
) 0 0 0.707
00—
L V2
0 -2 0
. 0 -2 0
2 =11 0 ——]= —
By 3 1 0 -0354 (22)
05657 0
L0 4v2 0

At first glance, the predicted solution Equation 21 appears
different from the ground truth in Equation 22. However, after a
further change of coordinates using

-0.973 -0.169 —0.156
O=| 0179 -0.982 —0.0565 | € O(3),
0.144 0.0830 —0.986
we have

r1.000 —0.000 0.000 T

0.000 1.000 —0.000
Aot = 0.000 —0.000 0.707 |~ 9"

0.000 0.000 0.707 |

0.000 —2.000 0.000 T
O0'E,,0 =|1.000 0.000 -0.354|=E,.

10.000 5.657 0.000 |

Hence, according to Remark 2, (Agu, Eour) and (Ay, Egy) are
equivalent solutions, and our method successfully predicts the
correct coordinate transformation A, to close the moment
system. However, as expected, due to p =0, the linear
combination matrix &, of the transformed dictionary is not sparse.

Case 2: ¢ > 0. We next explore the case when y # 0 in Equation
12. We use the same linear library @ (x) = @gee-1 (X), and y is
initially set to g = 1. In Algorithm 1, we set maxIter = 1000,

Iter_scheduled =400, and « = 20. The algorithm returns

—-1.000 0.000 0.030
0.000 -0.100 0.002
-0.021 -0.001 -0.707
-0.021 -0.001 -0.707

Ay = 1.000 0.011 —0.383

~ 0.000 —-1.830 0.003
T |:0.000 5.714 —0.010:|.
(23)
Similarly, after a further change of coordinates using:

-1.000 0.000 -0.030
0.000 -1.000 -0.002
0.030 0.002 -1

0= € 0(3),

we again have

r1.000 —0.000 0.000 T

- 0000 1.000 -0.000
AauO=1 0000 —0.000 0707 |~ A

[0.000 0.000 0.707

£0.000 —2.000 0.000 T
0'E,,0=1.000 0000 -0.354 |=E,.

[0.000 5.657 0.000 ]
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FIGURE 3

Comparison between the ground-truth time evolution (in red) and the SINDy-predicted evolution (in blue). Training data were obtained by
integrating the NLS equation up to T = 20 using the initial conditions of Equations 25-27. In all cases (displayed in three different rows), the SINDy-
predicted moment dynamics closely match the ground truth, well past the time frame of the training data, offering a satisfactory reduced-order
description of the underlying PDE through the corresponding moment systems.

Note that the result (A, Zoye) in Equation 23 for g > 0 is much
closer to the ground truth (A, 84) in Equation 22, compared to
(Aout> Bowe) in Equation 21 with g = 0. This demonstrates that a
positive p with annealed optimization not only discovers the correct
coordinate transformation to close the system but also achieves a
sparser solution for Z, reducing the number of terms on the right-

hand side of the moment ODE system.

4.8 An example of unclosed moment system

Finally, we present a case without analytical closure. Our “data-
driven closure” aims to provide an accurate, reduced-order
description of the PDE by approximating the evolution of the
moment systems. In principle, this is the type of problem that we
are aiming for, namely the discovery of potential moment closures
when these may not be analytically available; the examples presented
previously are valuable benchmarks to raise the complications that
may emerge when one seeks to use this type of methodology in
systems where the answer may be unknown and what credibility one
may wish to assign to the obtained results.

Specifically, we consider an NLS Equation 1 with a time-
dependent nonlinearity:

g(p,t) = (sin(t) + 2)|p|2. (24)
Notice that such time-dependent nonlinearities are well-known
2001;
2002) (and continue to yield novel insights to

for some time in atomic physics settings (Donley et al.,
Staliunas et al,,
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this day (Shagalov and Friedland, 2024)) and similar dynamical
scenarios have been considered in nonlinear optics (Centurion et al.,
2006; Zhang et al., 2021).

Moment systems with such nonlinearity will not close to the best
of our knowledge, so we aim to numerically approximate form of the
dynamics of the moments x = [I5,V, E], where E=K +]. We
consider the following three ICs:

u; (x,0) = 1.88 exp(—%(x - 5)2), (25)
1, (x,0) = 1.88(cos (2x) + sin (2x))exp (—x?), (26)
us (x,0) = exp (-0.1x?)exp (0. 1ix?). (27)

Notably, the IC Equation 27 includes a quadratic phase,
motivated by the quadratic phase approximation (QPA) ansatz
for NLS equations discussed by (Pérez-Garcia et al., 2007). It also
includes regular, smooth localized initial conditions, as well as one
involving Fourier mode oscillations, modulated by the Gaussian
term. We expect the SINDy-predicted dynamics to vary with the
different ICs of Equations 25-27, hence the relevant choices.

Due to the periodic nature of the nonlinearity g in Equation 24,
we expect the moment system to be non-autonomous and exhibit an
oscillatory pattern. To capture this, we introduce the following two
“auxiliary moments”:

H =sin(t) + 2,
Q =cos(t) + 2.

Naturally, one can observe that these are inspired by the nature
of g (p, ). However, one can envision the use of Fourier modes even
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if the mathematical model was not known or if the data stemmed
from experimental observations.

We then apply SINDy with a linear library @gee-; (X) to the
expanded moment systems X = [x, H,Q] = [I,V, E, H,Q]. The
time series data of the moments are collected by integrating the
PDE up to T = 20. The exact SINDy-predicted ODEs for all three
ICs are presented in the Supplementary Material.

To test the accuracy of the predicted moment systems, we
integrate the SINDy-predicted ODEs into the future, up to
T =100. Figure 3 compares the ground-truth and SINDy-
predicted time evolutions for the three ICs Equations 25-27. In
all cases, the model closely matches the ground truth up to T' = 100.
Indeed, this is well past the training time of T' = 20 and thus provides
a satisfactory reduced-order description of the underlying PDE
effective moment dynamics. Thus, despite the potential
shortcomings of the method which we tried to present in an
unbiased fashion in case examples where the analytical theory
helps assess them, we still find it to be a worthwhile tool to
consider. Le., from a data-driven perspective, it can be seen to
potentially provide an effective, low-dimensional dynamical
representation of the associated high-dimensional PDE dynamics.

5 Conclusion and future directions

This study explores a data-driven approach to identifying
moment equations in nonlinear Schrodinger models. This paves
the way more generally towards the use of similar methods in
nonlinear PDEs which may feature similar wave phenomena. We
applied the relevant sparse regression/optimization methodology
aiming to rediscover known analytical closures (progressively
extending considerations to more complex settings), addressed
overfitting by augmenting datasets with multiple initial
conditions, and identified suitable coordinate transformations for
systems requiring them so as to bring forth the reduced or
analytically tractable form of the dynamics. Additionally, we
demonstrated that our approach could provide a reduced-order
description of systems without analytical closures by approximating
the evolution of the moment systems. Our findings show that this
data-driven method can capture complex dynamics in NLS models
and offer insights for various physical applications, possibly well past
the training time used for the data-driven methods.

Future work will focus on extending our method to more
complex PDEs and exploring its applicability to other types of
nonlinear dynamical high-dimensional models, such as, e.g., the
ones we mentioned in the context Fisher-KPP models and their
applications to brain tumor dynamics, as analyzed, eg., in
(Belmonte-Beitia et al, 2014). Another possible avenue is to,
instead of recovering the moment systems through numerical
differentiation of the moment time series (as done in SINDy),
leverage numerical integration into future time of a suitably
augmented system. This approach, similar to Neural ODEs
(Chen et al, 2018) and shooting methods, can help avoid
producing predicted ODEs that blow up in finite time which
SINDy may produce (see details in Section 4.2.2 and the
Supplementary Material). Additionally, we plan to develop
techniques to identify nonlinear coordinate transformations that
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can close the moment system, further enhancing the applicability of
our method. Lastly, one can envision such classes of techniques for
obtaining additional reduced features of solitary waves, such as data-
driven variants of the variational approximation (Malomed, 2002),
or data-driven models of soliton interaction dynamics (Manton,
1979; Kevrekidis et al., 2004; Ma et al., 2016).
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