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Introduction: The moment quantities associated with the nonlinear Schrödinger

equation offer important insights into the evolution dynamics of such dispersive

wave partial differential equation (PDE) models. The effective dynamics of the

moment quantities are amenable to both analytical and numerical treatments.

Methods: In this paper, we present a data-driven approach associated with the

“Sparse Identification of Nonlinear Dynamics” (SINDy) to capture the evolution

behaviors of such moment quantities numerically.

Results and Discussion: Our method is applied first to some well-known closed

systems of ordinary differential equations (ODEs) which describe the evolution

dynamics of relevant moment quantities. Our examples are, progressively, of

increasing complexity and our findings explore different choices within the SINDy

library. We also consider the potential discovery of coordinate transformations

that lead tomoment system closure. Finally, we extend considerations to settings

where a closed analytical form of the moment dynamics is not available.
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1 Introduction and motivation

The study of Nonlinear Schrödinger (NLS) type models (Sulem and Sulem, 1999;

Ablowitz et al., 2004) is of wide interest and significance in a diverse array of physical

modeling settings (Ablowitz and Clarkson, 1991; Ablowitz, 2011). Relevant areas of

application extend from atomic physics (Pitaevskii and Stringari, 2003; Pethick and

Smith, 2002; Kevrekidis et al., 2015) to fluid mechanical and hydrodynamic (notably

ones stemming from deep water waves) problems (Ablowitz, 2011; Infeld and Rowlands,

2000) and from plasma physics (Kono and Skorić, 2010; Infeld and Rowlands, 2000) to

nonlinear optics (Kivshar and Agrawal, 2003; Hasegawa and Kodama, 1995). Indeed, the

relevant model is a prototypical envelope wave equation that describes the dynamics of

dispersive waves. Specifically, in the context of nonlinear optics, it describes the envelope of

the electric field of light in optical fibers (as well as waveguides), with the relevant

measurable quantity being the light intensity I proportional to the square modulus of

the complex field u(x, t). Generalizations of relevant optical applications, involving

multiple polarizations or frequencies of light have also been widely considered, in both

spatially homogeneous and spatially heterogeneous media (Kivshar and Agrawal, 2003;

Hasegawa and Kodama, 1995).
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It is worthwhile to note that even to this day, the subject of NLS-

type models continues to fascinate researchers and to constitute a

fertile platform for a wide range of physical, mathematical and

computational works; see, e.g., Karjanto (2024) for a recent review.

At the same time, over the past few years, there has been an

explosion of interest in data-driven methods, whereby machine-

learning techniques are brought to bear towards understanding,

codifying and deducing the fundamental quantities of physical

systems. Arguably, a turning point in this effort was the

development of the so-called physics-informed neural networks

(PINNs) by Raissi et al. (2019) and of similar methodologies

such as the extension of PINNs via the so-called DeepXDE Lu

et al. (2021), as well as the parallel track of sparse identification of

nonlinear systems, so-called SINDy by Brunton et al. (2016), which

is central to the considerations herein. Additional methods include,

but are not limited to, the sparse optimization of Schaeffer (2017),

meta-learning of Feliu-Faba et al. (2020), as well as the neural

operators of Li et al. (2021). A review of relevant model

identification techniques can be found, e.g., in Karniadakis et al.

(2021). Notice that a parallel track to the above one seeks not to

discover the models, but rather key features thereof such as

conserved quantities (Liu and Tegmark, 2021; 2022; Liu et al.,

2022; Zhu et al., 2023) and its potential integrability

(Krippendorf et al., 2021; De Koster and Wahls, 2024).

In the present setting, we seek to combine this important class of

dispersive wave models within optical (and other physical)

applications with some of the above machine-learning toolboxes.

Our aim is not to discover the full PDE, or its conservation laws/

integrability as in some of the above works. Rather, our aim is to

leverage the theoretical understanding that exists at the level of

reduced-order ODEs in the form of moment methods (Pérez-García

et al., 2007; García-Ripoll and Pérez-García, 1999). Indeed, it is well-

known from these works that upon defining suitable moment

quantities, one can obtain closed form ODE dynamical systems

of a few degrees-of-freedom, often just two (lending themselves to

dynamical systems analysis) or sometimes involving a few more but

still offering valuable low-dimensional analytical insights on the

evolution of the center of mass, variance, kurtosis etc. of the relevant

distribution. It is those effective ODEs (that stem from the original

PDE via the moments) that we aim to retrieve using the data-driven

approach developed herein. It is also relevant to mention in passing

here that the moment methods were also used successfully to other

models such as Fisher-KPP equations, considering also applications

to the dynamics, e.g., of brain tumors (Belmonte-Beitia et al., 2014).

Our approach and presentation will be structured hereafter as

follows. In section 2, we will present a “refresher” from a

theoretical perspective of the method of moments, essentially

revisiting some basic results from the work of Pérez-García et al.

(2007); García-Ripoll and Pérez-García (1999). Then, in Section 3,

we will give a brief overview of SINDy type methods and the types of

choices (such as, e.g., of model libraries) that they necessitate.

Additionally, we will introduce a data-driven approach for

learning coordinate transformations to close moment systems

when the initially chosen moments are not closed. Then, in

Section 4, we present a palette of numerical results and their

effective moment identification. Our narrative contains a

gradation of examples from simpler ones (where, e.g., an

analytical low-dimensional closure of moments may exist) to

gradually more complex ones, where a closure may exist after a

coordinate transformation and eventually to cases where a closed

system does not exist at the moment level to the best of our

knowledge. Our aim is to showcase not only the successes, but

also the challenges that the methodmay encounter in cases where we

do not know of a closure or when we may not rightfully choose the

library of functions (even when a closure may exist). We hope that

this will provide a more informed/balanced viewpoint to the reader

about what these methods may (and what they may not) be expected

to provide.

2 Moment equation theoretical
background

To contextualize our perspective, we will focus on the following

specific case of the (1 + 1)-dimensional nonlinear Schrödinger (NLS)

equation with a harmonic potential, V(x, t) � 1
2
x2 (Kevrekidis et al.,

2015; Kivshar and Agrawal, 2003),

iut � −1
2
uxx +

1

2
x2u + g u| |2, t( )u, (1)

where g(|u|2, t) denotes the nonlinearity. This model is not only of

relevance to optics (where the harmonic potential represents the

heterogeneous profile of the refractive index) (Kivshar and Agrawal,

2003), but also to atomic Bose-Einstein condensates, where this

parabolic confinement is a typical byproduct of magnetic traps

(Pitaevskii and Stringari, 2003; Kevrekidis et al., 2015). We will

consider the initial value problem of Equation 1 with localized and

sufficiently regular initial conditions (ICs) u0(x) � u(x, 0).

2.1 The method of moments

Instead of fully characterizing the solution of the Cauchy

problem of Equation 1, the method of moments (Pérez-García

et al., 2007), seeks to provide qualitative description of the

solution behavior by studying the evolution of several integral

quantities, i.e., the moments, of the solution u(x, t). This

approach enables a reduced-order description of the NLS

equation by transforming it into a system of (potentially) closed

ordinary differential equations (ODEs). More specifically, according

to Pérez-García et al. (2007), we define for k � 0, 1, 2,/ themoment

quantities of solution u(x, t) as follows,

Ik t( ) � ∫
R

xk|u x, t( )|2dx, (2)

Vk t( ) � 2k−1i∫
R

xk u x, t( ) ∂
�u x, t( )
∂x

− �u x, t( ) ∂u x, t( )
∂x

( )dx, (3)

K t( ) � 1

2
∫
R

∂u x, t( )
∂x

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

dx, (4)

J t( ) � ∫
R

G ρ x, t( ), t( )dx � ∫
R

G u x, t( )| |2, t( )dx, (5)

where �u is the complex conjugate of u, ρ(x, t) � |u(x, t)|2, and G �
G(ρ, t) is a function such that ∂G

∂ρ
(ρ, t) � g(ρ, t). Moments

Equations 2–5 of the solution u(x, t) have intuitive physical

meanings; for example, the first moment I1(t) is associated with

the center of mass as described by the (unnormalized) probability
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density ρ � |u|2. Higher moments Ik are also associated with this

density distribution (i.e., its variance etc.). The Vk quantities are the

respective ones associated with the momentum density (which is the

quantity in the corresponding parenthesis in the right hand side of

the Vk definition. K stems from (thinking quantum-mechanically)

the kinetic part of the Schrödinger problem energy, while J

represents the nonlinear part of the corresponding energy. We

assume that the IC u0(x) is regular enough to ensure that all

moments are well-defined for t≥ 0.

The method of moments aims to extract qualitative information

about the solution u(x, t) of the PDE Equation 1 by deriving a closed

set of evolution ODEs for the moments of u(x, t). Depending on the
nonlinearity g(ρ, t), these ODEs can sometimes be determined

analytically as is shown in the work of Pérez-García et al. (2007);

García-Ripoll and Pérez-García (1999). Below, we provide a

few examples.

Example 1. The moments I1 and V0 satisfy

dI1

dt
� V0,

dV0

dt
� −I1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)

This indicates that the evolution of the center of mass I1 behaves

as a harmonic oscillator, independent of the nonlinearity g(ρ, t).
More generally, for a parabolic confinement of frequency Ω, this

would be reflected in the associated frequency of moment

oscillations; this is the so-called dipolar motion (Pitaevskii and

Stringari, 2003; Kevrekidis et al., 2015).

Example 2. If g(ρ, t) ≡ 0, i.e., for the linear case of Equation 1, the

set of moments I2, V1, K are closed under

dI2
dt

� V1,

dV1

dt
� 4K − 2I2,

dK

dt
� −1

2
V1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Example 3. Assume the nonlinearity g(ρ, t) � g(ρ) is time-

independent and given by g(ρ) � g0ρ
2, where g0 ∈ R is a

constant. Although the evolution of the moments I2, V1, K and

J is not closed, it becomes closed under the coordinate

transformation E � K + J, i.e.,

dI2

dt
� V1,

dV1

dt
� 4E − 2I2,

dE

dt
� −1

2
V1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(7)

While the examples and conditions under which the method of

moments leads to closed equations are well-known, deriving such

analytical closure systems requires knowledge of the underlying

PDE system, Equation 1 and detailed calculations therewith. This

work explores data-driven methods for obtaining analytical or

approximate moment closure systems based on empirical

observations or simulations of the NLS equation, rather than

relying solely on such analytical understanding and derivations.

Importantly, the reconstruction of these ODE models can, in

principle, take place even for settings where the underlying PDE

model is unavailable/has not been specified. Given “experimental”

data for the field, one may aspire to utilize the toolboxes presented

below in order to obtain these effective, reduced

dynamical equations.

For systems with existing analytical closures of the moment

equations, such as Examples 1–3, our method seeks to rediscover the

moment evolution equations and potentially the necessary

coordinate transformations, such as E � K + J in Example 3, in a

model-agnostic and data-driven manner. For systems lacking

analytical closed moment equations, we seek to derive

approximate moment closure equations, providing a principled

and reduced-order description of the original PDE, capable of

predicting the future evolution of the system. The relevant details

will be explained in the following section.

3 Data-driven methods

We present two computational methodologies for finding

analytical or approximate closures for moment equations.

3.1 Sparse Identification of
Nonlinear Dynamics

Our first method leverages Sparse Identification of Nonlinear

Dynamics (SINDy) by Brunton et al. (2016), a data-driven approach

for discovering governing ODEs from simulated or observational

data. Consider a nonlinear ODE system of the form:

dx

dt
t( ) � f x t( )( ), (8)

where x � (x1, . . . , xn)⊤: [0,∞)→ R
n represents the state

evolution over time, governed by the dynamic constraint

f : Rn
→ R

n. SINDy aims to identify the unknown dynamics,

f(x) from a time series of x.

The key assumption is that f(x) has a “simple” form and can be

expressed or approximated as a linear combination of only a few

terms from a suitably chosen library, Θ(x) � [θ1(x), . . . , θp(x)].
For example, a monomial library of degree up to two, Θdeg≤2(x), is:

Θdeg≤2 x( ) � Θdeg�1 x( ),Θdeg�2 x( )[ ]
� x1, x2, . . . , xn︸�����︷︷�����︸

Θdeg�1 x( )

, x2
1, x1x2, . . . , x1xn, x

2
2, . . . , x

2
n︸������������︷︷������������︸

Θdeg�2 x( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� θ1 x( ), . . . , θp x( )[ ], (9)

with p � n + (n
2
). In particular, e.g., the right-hand sides of Equations

6, 7 can all be written as sparse linear combinations of terms from

Θdeg≤2(x). Given a dictionary Θ(x) � [θ1(x), . . . , θp(x)] of p

elements—p is typically larger than n—the sparsity assumption

implies the existence of a sparse matrix Ξ � (ξ1, . . . , ξn) ∈ Rp×n

such that
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f x( )⊤ � f1 x( ), / , fn x( )[ ] ≈ Θ x( ) · Ξ

� θ1 x( ), . . . , θp x( )[ ] · | | / |
ξ1 ξ2 / ξn
| | / |

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (10)

where each sparse column ξj ∈ R
p indicates which nonlinear

functions among the library Θ(x) � [θ1(x), . . . , θp(x)] are used

to parsimoniously represent fj(x).
To determine this sparse Ξ, SINDy employs sparse regressions

on the data. Specifically, given a time series {x(t1), . . . , x(tN)} ⊂ Rn

of the state x(t) at times t1, . . . , tN—N is generally much larger than

p, the library size—one can assemble the state matrix X ∈ R
N×n and

the derivative matrix _X ∈ R
N×n:

X �
| | |
X1 X2 / Xn

| | |
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ≔

x1 t1( ) x2 t1( ) / xn t1( )
x1 t2( ) x2 t2( ) / xn t2( )

.

.

.
.
.
.

1 .
.
.

x1 tN( ) x2 tN( ) / xn tN( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ RN×n,

d

dt
X � _X

�
| | |
_X1

_X2 / _Xn

| | |
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ≔

_x1 t1( ) _x2 t1( ) / _xn t1( )
_x1 t2( ) _x2 t2( ) / _xn t2( )
.
.
.

.

.

.
1

.

.

.

_x1 tN( ) _x2 tN( ) / _xn tN( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ RN×n,

where _X can be estimated by, e.g., finite differences on X. Define the

library matrix Θ(X) ∈ RN×p as

Θ X( ) �
| | |

θ1 X( ) θ2 X( ) / θp X( )
| | |

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦

≔

θ1 x t1( )( ) θ2 x t1( )( ) / θp x t1( )( )
θ1 x t2( )( ) θ2 x t2( )( ) / θp x t2( )( )

.

.

.
.
.
.

1
.
.
.

θ1 x tN( )( ) θ2 x tN( )( ) / θp x tN( )( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Evaluating Equations 8, 9 at all times t � t1, . . . , tN yields

| | |
_X1

_X2 / _Xn

| | |
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � _X ≈ Θ X( )Ξ

�
| |

θ1 X( ) / θp X( )
| |

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ | | / |
ξ1 ξ2 / ξn
| | / |

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (11)

Sparse regression techniques, such as LASSO (Tibshirani, 1996)

or sequential thresholded least-squares (Brunton et al., 2016), can

then solve the overdetermined system (Equation 11) for the sparse

Ξ. This provides an approximation to the governing equation as in

Equation 10.

While SINDy can be directly applied to Examples 1–3 to

discover closed moment systems based on simulated PDE data

(Equation 1), our specific interest lies in the following:

1. Given time series data of moments with a known closedmoment

system (e.g., Examples (1) and (2)), can we robustly discover the

governing dynamics using a correct but potentially oversized

dictionary Θ(x), such as polynomials up to a high degree?

2. If a system is not closed for a chosen set of moments,

but closure exists after a proper coordinate transformation

(e.g., selecting x � [I2, V1, K, J]⊤ in Ex. 3), what insights can

we gain by directly applying SINDy to time series data from

this “incorrect” set of moments?

3. For more general systems where analytical closure does not

exist, can data-driven methods provide a “good enough”

numerical approximation to predict the future evolution of

the moment system, effectively serving as a principled reduced-

order description of the underlying PDE?

These questions will be addressed in Section 4. Of particular interest

is the second point, where we demonstrate that, in certain cases, we can

gain insight into the appropriate transformation to close the system,

even if the moment system is not closed under the originally selected

variables. In the following section, we discuss amore principled strategy

to discover such transformations in a data-driven fashion.

3.2 Data-driven discovery of coordinate
transformations for moment system closure

To illustrate the idea, we focus on Example 3, where the initially

selected moments are x � [I2, V1, K, J]⊤, and an analytical closure

exists only after a coordinate transformation, y � A⊤x,

y �
I2
V1

K + J

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � 1 0 0 0
0 1 0 0
0 0 1 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
I2
V1

K
J

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � A⊤x,

Remark 1. Note that the transformation matrix A ∈ R
4×3 is not

unique. For any full-rank matrix P ∈ R
3×3, the moment system

remains closed under the transformation ~y � ~A
⊤
x, with ~A � AP.

Assume we aim to discover A purely from simulated PDE data.

We propose the following strategy: Let X ∈ R
N×4 be the state matrix

for the original coordinate x � [I2, V1, K, J]⊤, sampled at t1, . . . , tN,

as defined by Equation 8. Let y � A⊤x be the new coordinate, and the

associated new state matrix Y ∈ R
N×3 becomes

Y �

— y t1( )⊤ —
— y t2( )⊤ —

.

.

.

— y tN( )⊤ —

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

— x t1( )⊤ —
— x t2( )⊤ —

.

.

.

— x tN( )⊤ —

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦A � XA

We can then solve for A through the following optimization.

min
A∈R4×3

min
Ξ∈R

p×3

d

dt
XA( ) − Θ XA( ) · Ξ

�������
�������
2

F

+ μ‖Ξ‖1, (12)

s.t.A⊤A � I3×3

where d
dt
(XA) is the derivative matrix, Equation 8, associated with

the new state matrixY � XA, ‖ · ‖F and ‖ · ‖1 are the Frobenius norm
and l1 norm, respectively, defined for any m × n matrix B � (bij)
as follows:

B| || |F �

���������
∑m
i�1

∑n
j�1

bij
∣∣∣∣ ∣∣∣∣2

√√
,

B| || |1 � max1≤j≤n ∑m
i�1

bij
∣∣∣∣ ∣∣∣∣.
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In addition, μ≥ 0 is a non-negative weight, and Θ(XA) �
Θ(Y) ∈ RN×p is the library matrix, Equation 8, of a chosen

library Θ(y) on the new coordinate y � A⊤x.

The idea behind Equation 12 is very simple: we search for the

transformation matrix A ∈ R
4×3 such that the dynamics under the

new coordinate y � A⊤x can be parsimoniously represented from

the library Θ(y). The weight μ≥ 0 controls the sparsity-promoting

L1-regularization, and the constraint A
⊤A � I3×3 prevents the trivial

solution A � 0. The set of A satisfying the constraint A⊤A � I3×3 is

called the Stiefel manifold (Edelman et al., 1998; Absil et al., 2008).

Remark 2. When the weight μ � 0, even with the Stiefel manifold

constraint A⊤A � I3×3, the solution to Equation 12 is not unique.

Just like Remark 1, if (A*,Ξ*) is a solution, then for any orthogonal

matrix O ∈ O(3), the pair (~A*, ~Ξ*) is also a solution, where

~A* � A*O, ~Ξ* � O⊤
Ξ*O

To solve Equation 12, we use alternating optimization, iteratively

optimizing A and Ξ while keeping the other fixed. Specifically, when A

is fixed, solving forΞ reduces to a LASSO problem. Conversely, when Ξ

is fixed, the problem becomes a Stiefel manifold optimization with a

smooth objective function, which can be efficiently solved using

methods such as those presented in (Oviedo and Dalmau, 2019;

Xiao et al., 2020; Liu et al., 2021). To ensure the algorithm remains

unbiased, we implement an annealing strategy for the hyperparameter

μ. Initially, μ is kept constant for Iter_scheduled iterations.

Following this period, μ is reduced by half every α iterations. Refer

to Algorithm 1 for the pseudocode to solve problem Equation 12.

Algorithm 1. Data-driven discovery of coordinate transformation.

4 Numerical results

In this section, we present numerical results on data-driven

closure of moment systems (Examples 1–3) using the methodologies

described in Section 3. To obtain the data, we first numerically solve

the PDE Equation 1 with periodic boundary conditions and various

ICs using an extended 4th-order Runge-Kutta method, the

exponential integrator (ETDRK4) (see (Kassam and Trefethen,

2005) for a detailed explanation). The time series of the

moments is subsequently extracted by numerical spatial

integration according to Equations 2–5, with spatial derivatives

computed using pseudo-spectral Fourier methods. We note once

again that should the numerical data be replaced by “experimental”

ones from a given physical process, the procedure can still

be applied. Unless otherwise noted, the time series are evaluated

atN � 16, 000 uniformly spaced times t � t1, . . . , tN, where ti � iΔt

and Δt � 0.0025.

4.1 Examples with analytical
moment closure

We first examine Examples (1) and (2), where analytical (linear)

closure exists for the chosen moments x � [I1, V0] (Example 1) and

x � [I2, V1, K] (Example 2).

4.2 Example 1

Let the selected moments be x � [I1, V0]. We construct the data

matrices X(0) � [I(0)1 ,V(0)
0 ] ∈ RN×2 and X(1) � [I(1)1 ,V(1)

0 ] ∈ RN×2

from numerically solving the PDE Equation 1 with the ICs:

u 1( ) x, 0( ) � π−1/4 exp −1
2
x − 5( )2( ),

u 2( ) x, 0( ) � 1

2
sech2 x − 5( ).

We apply SINDy to this system using monomial libraries of

degree up to n ∈ N,Θdeg≤n(x), as defined in Equation 9. We find that

as long as n≤ 2, SINDy applied to either data matrix X(0) or X(1)

discovers the dynamics nearly perfectly. However, as we gradually

expand the library Θdeg≤n(x) by increasing n, SINDy applied to

either X(0) or X(1) individually typically produces erroneous

dynamics, regardless of how carefully the sparsity-promoting

parameter is tuned. A typical negative result from SINDy applied

to X(0) with n � 3 is presented in the Supplementary Material. This

outcome is expected, as increasing the library size makes the

problem more ill-posed, leading SINDy to overfit the data and

produce incorrect dynamics.

To address the overfitting issue, we can enlarge the dataset by

concatenating the data matrices X(0) and X(1) vertically, forming

X � [X(0)⊤,X(1)⊤]⊤ ∈ R
2N×2. When applying SINDy to this new

data matrix X (considering boundary issues when taking finite

differences), SINDy can now discover the correct dynamics that

match Equation 6, even with a much larger libraryΘdeg≤n(x) for n up
to 16. For example, when n � 16, the output ODE from SINDy reads

dI1
dt

� 1.000V0,

dV0

dt
� −1.000I1,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
where the coefficients are rounded to three decimal places. This

suggests the potential usefulness of concatenating different time

series, especially in cases where one may not be familiar with the

order of the relevant closure.

4.3 Example 2

For Example 2 with the selected moments x � [I2, V1, K], our
findings are similar to those in Section 4.2. When applying SINDy to

a data matrix from a single IC, SINDy discovers erroneous dynamics

for the quadratic dictionary Θdeg≤2. However, using larger data
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matrices from multiple ICs, SINDy can once again accurately

identify the correct dynamics even with the larger dictionaries.

Representative negative and positive results are presented in the

Supplementary Material, similar to the previous example.

4.4 Examples where closure exists after
coordinate transformations

We now turn to Example 3, where the selected moments are

x � [I2, V1, K, J], and the moment system only closes after a

coordinate transformation. Specifically, we consider the nonlinearity

g(ρ, t) � ρ2 in Equation 1, which satisfies the condition in Example 3.

We collect the moment time series data by numerically solving the

PDE with the following four distinct ICs, Equations 13–16:

u 1( ) x, 0( ) � π−1/4 exp −1
2
x − 5( )2( ), (13)

u 2( ) x, 0( ) � 1.88 exp −1
2
x − 5( )2( ), (14)

u 3( ) x, 0( ) � 1.88 exp −1
2
x − 5( )2( ) + exp − x − 2( )2( )( ), (15)

u 4( ) x, 0( ) � 1.88 cos 2x( ) + sin 2x( )( )exp −x2( ). (16)

We consider the following questions:

• What insights can we gain by directly applying SINDy to this

system with the selected moments x � [I2, V1, K, J], where a
closure does not exist?

• Can the method described in Section 3.2 correctly identify the

coordinate transformation that closes the moment system?

We note that normalized moment time series are used as input

for SINDy, as a way of incorporating feature scaling. This is an

important aspect that ensures that all the relevant quantities are

considered on “equal footing,” when the sparse regression step

takes place.

4.5 SINDy with linear library Θdeg�1(x)

We begin by applying SINDy with a linear library Θdeg�1(x) to
the moment time series data from IC Equation 14. The resulting

equations are:

dI2

dt
� 1.000V1,

dV1

dt
� −2.000I2 + 4.000K + 3.998J,

dK

dt
� −0.569V1,

dJ

dt
� 0.069V1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

The coefficients are rounded to three decimal places. The first four

panels of Figure 1 compare the “ground-truth” time-evolution data of

[I2, V1, K, J] obtained from PDE integration (red curves) and the

definition of these quantities through Equations 2–5 with those from

integrating the SINDy-predicted ODEs Equation 17 (blue curves).

While the SINDy-predicted time evolution of [I2, V1] closely matches

the ground truth, there is a significant discrepancy for the moments

[K, J] in Figure 1. Accordingly, the SINDy-predicted dynamics is not

accurate for the original coordinates x � [I2, V1, K, J].
Nevertheless, interestingly, if we add the ODE forKwith that for

J in Equation 17, which corresponds to the correct coordinate

transformation for closure, we obtain:

dI2
dt

� 1.000V1,

dV1

dt
� −2.000I2 + 4.000K + 3.998J,

d K + J( )
dt

� −0.500V1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(18)

Equation 18 closely matches the ground-truth moment system

Equation 7. The last panel of Figure 1 shows that the predicted time

evolution of K + J aligns perfectly with the ground truth, even

though SINDy does not accurately recover those of K and J

individually. This finding is intriguing because, even when SINDy

is applied to the original coordinates [I2, V1, K, J]without closure, it
“strategically chooses” to sacrifice accuracy for K and J but

indirectly captures the correct dynamics when considering the

proper coordinate transformation E � K + J. Moreover, a similar

pattern is consistently observed when applying SINDy to the

moments simulated from the other three ICs. The results are

shown in the Supplementary Material. We have also provided an

analogous example for 2D NLS equations. For details, please refer to

Section 3 of the Supplementary Material. Indeed, this clearly

illustrates that the methodology presented herein is not in any

fundamental way limited to 1D NLS models, but can be extended

to higher dimensional ones, as may be deemed desirable.

4.6 SINDy with quadratic library Θdeg≤2(x)

Next, we investigate the performance of SINDy with an

expanded quadratic library Θdeg≤2(x) applied to the moment

time series with the same IC Equation 14. The predicted ODEs

now become:

dI2

dt
� 1.000V1,

dV1

dt
� −2.000I2 + 4.000K + 3.998J,

dK

dt
� −0.174V1 − 0.003V1K − 0.083V1J,

dJ

dt
� −0.002I2V1 + 0.082V1J.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

As before, if we add the predicted dynamics of K and J in

Equation 19, we obtain:

dI2
dt

� 1.000V1,

dV1

dt
� −2.000I2 + 4.000K + 3.998J,

d K + J( )
dt

� −0.174V1 − 0.003V1K − 0.002I2V1 − 0.001V1J.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(20)
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Unlike the previous case with Θdeg�1(x), the SINDy-predicted

governing Equation 20 using the expanded library Θdeg≤2(x) after
the (theoretically motivated) coordinate transformation E � K + J

still fails to match the ground truth ODE Equation 7 and remains

unclosed (i.e., the third equation in Equation 20 cannot be written

using only I2, V1, and E � K + J). Specifically, the coefficient of V1

FIGURE 1

Comparison of the ground-truth and SINDy-predicted time evolutions of [I2 ,V1 ,K, J,K + J]. SINDy is trained only on the selected moments

x � [I2 ,V1 ,K, J], where a closure does not exist, using a linear libraryΘdeg�1(x). Interestingly, SINDy can “afford” to sacrifice accurate prediction for K and J

individually, provided that it captures the correct dynamics for E � K + J, suggesting in this way the proper coordinate transformation under which a

closure does exist. For the physical meanings of the moments in this figure, please refer to Equations 2–5 and the paragraph thereafter.

FIGURE 2

Comparison of the ground-truth and SINDy-predicted time evolutions of [I2 ,V1 ,K, J,K + J]. SINDy is trained only on the selected moments

x � [I2 ,V1 ,K, J], where a closure does not exist, using a quadratic library Θdeg≤2(x). Similar to Figure 1, SINDy sacrifices accurate prediction for K and J

individually but indirectly captures the correct time evolution of E � K + J.
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in Equation 20 is −0.174, deviating substantially from that of −0.5 in
the ground truth. Although the coefficients for the additional terms

(V1K, I2V1, and V1J) are relatively small, their presence hinders the

accurate recovery of the correct coefficient for V1.

Figure 2 compares the ground-truth time evolutions of

[I2, V1, K, J, E � K + J] obtained from PDE integration with their

SINDy-predicted dynamics after integrating Equations 19, 20.

Similar to Figure 1, SINDy with the quadratic library Θdeg≤2(x)
applied to the unclosed moments [I2, V1, K, J] sacrifices the exact

recovery of the time evolution of J andK, but indirectly captures the

correct time evolution of E � J + K. However, unlike the linear

library case in Section 4.5, SINDy with the quadratic library can yield

the correct time evolution of E � K + J but fails to uncover the

correct governing equation for E [Equation 20] due to the expanded

library size, leading to overfitting issues discussed above.

Here, we see a key complication within SINDy that has been also

present in works such as (Champion et al., 2019) and especially

(Bakarji et al., 2022), namely the methodology is likely to result in

ODE models that are proximal to the theoretically expected ones,

but not identical to them. This, in turn, may result in a nontrivial

error outside of the training set. Especially when the library at hand

is “richer” than the terms expected to be present, unfortunately, it

does not generically seem that the reduced, theoretically expected

model will be discovered. Rather, our results suggest that it is

possible that the additional “wealth” of the libraries used can be

leveraged to approximate the data via different (nonlinear)

dependent variable combinations.

As an even more problematic example, applying SINDy with a

quadratic library to the moment time series generated from another

IC Equation 16 results in a predicted ODE system that not only fails

to match the ground truth, even after the theoretically suggested

coordinate transformationK + J, but also causes the ODE system to

blow up in finite time. For a detailed discussion, we refer the

interested reader to the Supplementary Material.

4.7 Stiefel optimization for discovering
coordinate transformations

Next, we test the methodology from Section 3.2 to discover the

coordinate transformation needed to close the moment system.

Case 1: μ � 0. We first consider the case where the

hyperparameter μ in Equation 12 is set to μ � 0, i.e., we do not

promote sparsity in the matrix Ξ. We use the linear library

Θ(x) � Θdeg�1(x), and set the maximum number of iterations to

maxIter � 150 in Algorithm 1. The algorithm produces the

following outputs

Aout ≈

−0.973 0.179 0.144
−0.169 −0.982 0.083
−0.111 −0.040 −0.697
−0.111 −0.040 −0.697

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Ξout ≈

−0.024 −1.076 0.005
1.016 0.470 −0.540
0.913 5.778 −0.446

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
(21)

The coefficients are rounded to three decimal places. On the

other hand, the “ground-truth” coordinate transformationAgt (after

normalization to satisfy the Stiefel manifold constraint) and the

corresponding dynamics Agt according to Equation 7 are:

Agt �

1 0 0

0 1 0

0 0
1�
2

√

0 0
1�
2

√

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≈

1 0 0

0 1 0

0 0 0.707

0 0 0.707

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Ξgt �

0 −2 0

1 0 − 1

2
�
2

√

0 4
�
2

√
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≈

0 −2 0

1 0 −0.354
0 5.657 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (22)

At first glance, the predicted solution Equation 21 appears

different from the ground truth in Equation 22. However, after a

further change of coordinates using

O �
−0.973 −0.169 −0.156
0.179 −0.982 −0.0565
0.144 0.0830 −0.986

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ∈ O 3( ),

we have

AoutO �

1.000 −0.000 0.000
0.000 1.000 −0.000
0.000 −0.000 0.707
0.000 0.000 0.707

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≈ Agt,

O⊤
ΞoutO �

0.000 −2.000 0.000
1.000 0.000 −0.354
0.000 5.657 0.000

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ≈ Ξgt.

Hence, according to Remark 2, (Aout,Ξout) and (Agt,Ξgt) are
equivalent solutions, and our method successfully predicts the

correct coordinate transformation Aout to close the moment

system. However, as expected, due to μ � 0, the linear

combination matrix Ξout of the transformed dictionary is not sparse.

Case 2: μ> 0. We next explore the case when μ ≠ 0 in Equation

12. We use the same linear library Θ(x) � Θdeg�1(x), and μ is

initially set to μ � 1. In Algorithm 1, we set maxIter � 1000,

Iter_scheduled � 400, and α � 20. The algorithm returns

~Aout ≈

−1.000 0.000 0.030
0.000 −0.100 0.002
−0.021 −0.001 −0.707
−0.021 −0.001 −0.707

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, ~Ξout ≈

0.000 −1.830 0.003
1.000 0.011 −0.383
0.000 5.714 −0.010

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
(23)

Similarly, after a further change of coordinates using:

~O �
−1.000 0.000 −0.030
0.000 −1.000 −0.002
0.030 0.002 −1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ∈ O 3( ),

we again have

~Aout
~O �

1.000 −0.000 0.000

0.000 1.000 −0.000
0.000 −0.000 0.707

0.000 0.000 0.707

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≈ Agt,

~O
⊤
~Ξout

~O �
0.000 −2.000 0.000

1.000 0.000 −0.354
0.000 5.657 0.000

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≈ Ξgt.
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Note that the result (~Aout, ~Ξout) in Equation 23 for μ> 0 is much

closer to the ground truth (Agt,Ξgt) in Equation 22, compared to

(Aout,Ξout) in Equation 21 with μ � 0. This demonstrates that a

positive μ with annealed optimization not only discovers the correct

coordinate transformation to close the system but also achieves a

sparser solution for Ξ, reducing the number of terms on the right-

hand side of the moment ODE system.

4.8 An example of unclosed moment system

Finally, we present a case without analytical closure. Our “data-

driven closure” aims to provide an accurate, reduced-order

description of the PDE by approximating the evolution of the

moment systems. In principle, this is the type of problem that we

are aiming for, namely the discovery of potential moment closures

when these may not be analytically available; the examples presented

previously are valuable benchmarks to raise the complications that

may emerge when one seeks to use this type of methodology in

systems where the answer may be unknown and what credibility one

may wish to assign to the obtained results.

Specifically, we consider an NLS Equation 1 with a time-

dependent nonlinearity:

g ρ, t( ) � sin t( ) + 2( ) ρ
∣∣∣∣ ∣∣∣∣2. (24)

Notice that such time-dependent nonlinearities are well-known

for some time in atomic physics settings (Donley et al., 2001;

Staliunas et al., 2002) (and continue to yield novel insights to

this day (Shagalov and Friedland, 2024)) and similar dynamical

scenarios have been considered in nonlinear optics (Centurion et al.,

2006; Zhang et al., 2021).

Moment systems with such nonlinearity will not close to the best

of our knowledge, so we aim to numerically approximate form of the

dynamics of the moments x � [I2, V1, E], where E � K + J. We

consider the following three ICs:

u1 x, 0( ) � 1.88 exp −1
2
x − 5( )2( ), (25)

u2 x, 0( ) � 1.88 cos 2x( ) + sin 2x( )( )exp −x2( ), (26)
u3 x, 0( ) � exp −0.1x2( )exp 0.1ix2( ). (27)

Notably, the IC Equation 27 includes a quadratic phase,

motivated by the quadratic phase approximation (QPA) ansatz

for NLS equations discussed by (Pérez-García et al., 2007). It also

includes regular, smooth localized initial conditions, as well as one

involving Fourier mode oscillations, modulated by the Gaussian

term. We expect the SINDy-predicted dynamics to vary with the

different ICs of Equations 25–27, hence the relevant choices.

Due to the periodic nature of the nonlinearity g in Equation 24,

we expect the moment system to be non-autonomous and exhibit an

oscillatory pattern. To capture this, we introduce the following two

“auxiliary moments”:

H � sin t( ) + 2,
Q � cos t( ) + 2.

{
Naturally, one can observe that these are inspired by the nature

of g(ρ, t). However, one can envision the use of Fourier modes even

FIGURE 3

Comparison between the ground-truth time evolution (in red) and the SINDy-predicted evolution (in blue). Training data were obtained by

integrating the NLS equation up to T � 20 using the initial conditions of Equations 25–27. In all cases (displayed in three different rows), the SINDy-

predicted moment dynamics closely match the ground truth, well past the time frame of the training data, offering a satisfactory reduced-order

description of the underlying PDE through the corresponding moment systems.
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if the mathematical model was not known or if the data stemmed

from experimental observations.

We then apply SINDy with a linear library Θdeg�1(~x) to the

expanded moment systems ~x � [x, H, Q] � [I2, V1, E,H,Q]. The
time series data of the moments are collected by integrating the

PDE up to T � 20. The exact SINDy-predicted ODEs for all three

ICs are presented in the Supplementary Material.

To test the accuracy of the predicted moment systems, we

integrate the SINDy-predicted ODEs into the future, up to

T � 100. Figure 3 compares the ground-truth and SINDy-

predicted time evolutions for the three ICs Equations 25–27. In

all cases, the model closely matches the ground truth up to T � 100.

Indeed, this is well past the training time ofT � 20 and thus provides

a satisfactory reduced-order description of the underlying PDE

effective moment dynamics. Thus, despite the potential

shortcomings of the method which we tried to present in an

unbiased fashion in case examples where the analytical theory

helps assess them, we still find it to be a worthwhile tool to

consider. I.e., from a data-driven perspective, it can be seen to

potentially provide an effective, low-dimensional dynamical

representation of the associated high-dimensional PDE dynamics.

5 Conclusion and future directions

This study explores a data-driven approach to identifying

moment equations in nonlinear Schrödinger models. This paves

the way more generally towards the use of similar methods in

nonlinear PDEs which may feature similar wave phenomena. We

applied the relevant sparse regression/optimization methodology

aiming to rediscover known analytical closures (progressively

extending considerations to more complex settings), addressed

overfitting by augmenting datasets with multiple initial

conditions, and identified suitable coordinate transformations for

systems requiring them so as to bring forth the reduced or

analytically tractable form of the dynamics. Additionally, we

demonstrated that our approach could provide a reduced-order

description of systems without analytical closures by approximating

the evolution of the moment systems. Our findings show that this

data-driven method can capture complex dynamics in NLS models

and offer insights for various physical applications, possibly well past

the training time used for the data-driven methods.

Future work will focus on extending our method to more

complex PDEs and exploring its applicability to other types of

nonlinear dynamical high-dimensional models, such as, e.g., the

ones we mentioned in the context Fisher-KPP models and their

applications to brain tumor dynamics, as analyzed, e.g., in

(Belmonte-Beitia et al., 2014). Another possible avenue is to,

instead of recovering the moment systems through numerical

differentiation of the moment time series (as done in SINDy),

leverage numerical integration into future time of a suitably

augmented system. This approach, similar to Neural ODEs

(Chen et al., 2018) and shooting methods, can help avoid

producing predicted ODEs that blow up in finite time which

SINDy may produce (see details in Section 4.2.2 and the

Supplementary Material). Additionally, we plan to develop

techniques to identify nonlinear coordinate transformations that

can close the moment system, further enhancing the applicability of

our method. Lastly, one can envision such classes of techniques for

obtaining additional reduced features of solitary waves, such as data-

driven variants of the variational approximation (Malomed, 2002),

or data-driven models of soliton interaction dynamics (Manton,

1979; Kevrekidis et al., 2004; Ma et al., 2016).
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