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Risk-Aware Distributed Multi-Agent Reinforcement Learning
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Abstract— Autonomous cyber and cyber-physical systems
need to perform decision-making, learning, and control in
unknown environments. Such decision-making can be sensitive
to multiple factors, including modeling errors, changes in costs,
and impacts of events in the tails of probability distribu-
tions. Although multi-agent reinforcement learning (MARL)
provides a framework for learning behaviors through repeated
interactions with the environment by minimizing an average
cost, it is not adequate to overcome the above challenges.
In this paper, we develop a distributed MARL approach to
solve decision-making problems in unknown environments by
learning risk-aware actions. We use the conditional value-at-
risk (CVaR) to define the cost function that is being minimized,
and introduce a Bellman operator to characterize the value
function associated to a given state-action pair. We prove
that this operator satisfies a contraction property, and that
it converges to the optimal value function. We then propose
a distributed MARL algorithm called the CVaR QD-Learning
algorithm, and establish that value functions of individual
agents reach consensus. We identify several challenges that arise
in the implementation of the CVaR QD-Learning algorithm, and
present solutions to overcome these. We evaluate the CVaR QD-
Learning algorithm through simulations, and demonstrate the
effect of a risk parameter on value functions at consensus.

I. INTRODUCTION

Reasoning about the satisfaction of objectives for complex
cyber and cyber-physical systems (e.g., autonomous vehicles,
smart manufacturing) typically involves solving a sequential
decision-making problem [1]. The operating environment
is represented as a Markov decision process (MDP) [2],
and transitions between any two states in the system is a
probabilistic outcome based on the actions of the decision
maker or agent. In dynamic and uncertain environments,
the frameworks of reinforcement learning [3] and optimal
control [4] have been used to solve sequential decision-
making problems by determining actions to minimize an
accumulated cost. Risk-neutral decision-making solutions
determine actions by minimizing an expected or average
cost; such techniques have been implemented in applications
including robotics, mobile networks, and games [5]-[11].
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Although risk-neutral solutions are computationally
tractable, they have been shown to have limitations in char-
acterizing sensitivity to changes in costs, modeling errors,
and the effect of tails of probability distributions [12]-
[14]. In order to solve a sequential decision-making problem
by learning risk-aware actions, we consider the conditional
value-at-risk (CVaR) [15]-[18] to characterize the objective
function of an MDP. The CVaR corresponds to the average
value of the cost conditioned on the event that the cost
takes sufficiently large values, and was shown to have strong
theoretical justification for its use in [15], [19]. Optimizing
a CVaR-based cost will ensure sensitivity of actions to
rare high-consequence outcomes [20]. However, different
from [19], we assume that the operating environment of
the agent is unknown. The agent then learns behaviors by
minimizing a cost that is revealed through repeated interac-
tions with the environment. For this setting, we develop a
CVaR-based variant of Bellman operator [3], and establish
its convergence to an optimal solution.

In multi-agent reinforcement learning (MARL), each agent
interacts with both the environment and other agents. Conse-
quently, the evolution of agents’ behaviors has been shown
to be non-stationary from the perspective of any single
agent [21]-[23], making the problem more challenging com-
pared to the single-agent case. The literature examining
incorporation of risk-sensitivity in MARL is limited. Re-
cently, the authors of [24], [25] developed a deep-learning
based framework to learn risk-sensitive policies in cooper-
ative MARL using CVaR. The algorithms proposed in the
above works use the centralized training with decentralized
execution (CTDE) paradigm [26] to learn behaviors. An
agent using CTDE can use information about other agents’
observations and actions to aid its own learning during
training, but will have to take decisions independently at test-
time [27], [28].

Different from the above works, in this paper, we design
a distributed risk-aware multi-agent reinforcement learning
algorithm. Our solution is inspired by QD-learning [29],
wherein at each step, a single update rule incorporates
costs revealed by the environment and information from
neighboring agents in a graph that describes inter-agent
communication. We establish the consensus of agents’ value
functions when they are optimizing a CVaR-based cost.
Our simulations also reveal that as agents become more
risk-aware, their value functions at consensus increase in
magnitude (corresponding to higher costs incurred); this
observation agrees with intuition when the goal is to mini-
mize an accumulated cost. We make the following specific
contributions:
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o We define a Bellman operator to characterize a CVaR-
based state-action value function.

e We prove that the Bellman operator is a contraction,
and that the fixed point of the operator is the optimal
risk-aware value function.

o We develop a risk-aware distributed multi-agent rein-
forcement learning algorithm called CVaR QD-Learning
and prove that CVaR-based value functions of individual
agents reach consensus.

e We carry out numerical simulations to validate the CVaR
OD-Learning algorithm, and show that value functions
at consensus increase in magnitude as agents become
more risk-aware.

The remainder of this paper is organized as follows:
Sec. II introduces necessary preliminaries on reinforcement
learning and risk-aware decision making. Sec. III presents
construction of a Bellman operator, and shows that it is
a contraction. Sec. IV presents CVaR-based QD-learning
and associated analytical results, and Sec. V presents the
CVaR QD-Learning algorithm and describes how challenges
in the implementation of the algorithm are overcome. Sec.
VI shows results of evaluations through simulations and Sec.
VII concludes the paper.

II. SETUP AND PROBLEM FORMULATION

This section introduces the Markov game setup that we
consider, provides necessary preliminaries on reinforcement
learning and risk criteria used in decision-making. We then
formally state the problem that we will solve in this paper.

A. Setup

We consider a system with N agents. Inter-agent commu-
nication is described by an undirected graph G = (V, &),
where V = {1,---, N} is the set of vertices (or nodes) and
E C V x V is the set of edges between pairs of nodes.
Here the nodes and the edges in the graph G correspond to
the agents and the communication link between agents. We
assume that G is simple (no self-loops or multiple edges
between any two nodes) and connected (there is a path
between every pair of nodes). The set of neighbors of agent n
is denoted by A/ (n). The graph can be described by an N x N
Laplacian matrix L with entries L;; = —1 if (i,j) € £ or
otherwise zero when i # j, and L; = |N(:)| which is
equal to the degree of the node i. Since G is connected, the
eigenvalues of L can be ordered as 0 = A\ (L) < Ao(L) <
- < Aw(L) [30].

The multi-agent setup we consider here is similar to that of
[29]. Specifically, similar to [29] we assume that each agent
can fully observe the undertaken action and state of the sys-
tem. However, the cost/reward received by each agent is local
and may not be available to a remotely located controller.
As an example, this multi-agent setup can resemble spatially
distributed temperature sensors (agents) in a building [29].
A remote controller will have access to all sensor readings
but will not be aware of the desired temperatures at different
rooms in the building. A possible objective of the controller
could be to minimize the average squared deviation between

measured temperatures from sensors and their corresponding
locations’ desired temperatures. Though the assumption of
globally observable state and action is restrictive, however
this enables establishment of theoretical guarantee [29], [31].

In such a setting, behaviors of agents in the envi-
ronment can be described by a Markov game M :=
(S, A, {c1, - -en}, P,y), where S and A are assumed to
be finite state and action spaces. When the system is in state
s and the action taken by the controller is a, the agent n
incurs a bounded and deterministic local cost ¢,(s,a) €
[—Crnaz, Crmaz). We emphasize that in our setup the state
s € S and a € A are global (i.e. common to all agents)
whereas individual costs ¢,(s,a) are local to each agent.
P(s'|s,a) gives the probability of transitioning to state s’ €
S when taking action a € A in state s € S, and vy € [0,1)
is the discounting factor. However, different from [29], we
assume that costs are deterministic to aid the development
of our theoretical results.

A trajectory of M is an alternating sequence of states
and actions (sg,ag,$1,a1,...). A history up to time k,
denoted as hy € Hy, corresponds to a trajectory up to time
k ie. (so,aq,$1,01,.-.,S;). Formally, with Hy = S, we
recursively define the set of possible histories up to time
k>1as H, = Hr_1 x AxS. A policy at time k is a map
g : Hy — A, and we define Il := limy_,oc Il 1 to be
the set of all history-dependent policies. A policy p(sy) is
called Markov when it only depends on the current state sg.

Let ¢(sg, ar) = % Egil ¢n(Sk, a) be the average costs
over all agents observed at time k. The discounted average
cost up to time k is defined as Cp j := Zf:o ~yie(ss, ap) =
+ Zf:o ~t 25:1 ¢n(st,at). Thus discounted average cost
over the infinite horizon is given by Cj oo = limy_,00 Co k-

In reinforcement learning (RL), the transition probability
P(s'|s,a) is not known, and costs are revealed to agents
through repeated interactions with the environment [3]. The
objective is to learn a policy that minimizes the expected
accumulated discounted cost. One widely-used approach to
learn such a policy is the Q-learning algorithm [32]. Using
a state-action value function Q™(s,a) = E.[Co.c|s0 =
s,ap = a,m|, the Q-learning algorithm seeks to find the
optimal value Q* (s, a) corresponding to the optimal policy
7* such that Q*(s,a) < Q™ (s, a) for all (s,a) € S x A and
any policy .

B. OD-Learning

QD-learning is a multi-agent distributed variant of Q-
learning that was first proposed in [29] and has recently
been applied to develop distributed algorithms for other
settings [31]. In the QD-learning algorithm [29], at time-
step k, each agent n maintains a sequence of state-action
value functions {Q, x(s,a)} € RIS*Al for all state-action
pairs (s,a) € S x A. The sequence {Q,, x(s,a)} is updated
according to the following rule [29]:

Qnk+1(8k; ar) = (1 — ar)Qn k(K ar)
+ ag(cn(sk, an) + 7 min Qn e (sk+1, a'))
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— B Z (Qn,k(slmak)_Ql,k(sk;ak)); (D

leN(n)
where the weight sequences {ay} and {8} are given by
a
SR — 2
(077 (k I 1)7_17 ( )
b
=— 3
Bk (k n 1)7.27 ( )

with a and b being positive constants. Eqns. (2) and (3)
guarantee that the excitation for the innovation and consensus
terms in Eqn. (1) are persistent; i.e., Zk ap = oo and
>k B = oo. The sequences {ay} and {3} further satisfy
Spai < 00, B2 < coand B2 coas k= .
Constants a and b in Eqns. (2) and (3) are also chosen so that
(In — BrL — ayIy) is positive semidefinite for all k& where
I denotes the identity matrix in RY*Y_ One way to ensure
such positive semidefiniteness is to choose a and b so that
a+ Nb < 1. We refer to [29] for a detailed discussion on the
selection of the weight sequence. When the weight sequences
are chosen appropriately, the authors of [29] showed that the
sequence {Q), x(s,a)} asymptotically reaches consensus for
all agents and the value achieved at consensus was equal to
the optimal action-value function Q*(s, a).

C. Conditional Value-at-Risk (CVaR)

Let Z be a bounded random variable on the probability
space (€2, F, P) with cumulative distribution F'(z) = P(Z <
z). The value-at-risk (VaR) at confidence level y € (0,1] is
VaRy(Z) := min{z|F(z) > 1 — y} [15]. The conditional
value-at-risk (CVaR) at confidence level y is defined as
CVaRy(Z) := E[Z|Z > VaR,(Z)] [15], and represents
the expected value of Z, conditioned on the y quantile of
the tail distribution. We note that CVaR,(Z) = E(Z) when
y =1 and CVaR,(Z) — max{Z} as y — 0. The CVaR
of a random variable Z can be interpreted as the worst-case
expectation of Z under a perturbed distribution £ P, as given
by the following result from [19], [33].

Proposition 1 (Dual CVaR formulation [19], [33]). Let
E¢[Z] denote the &-weighted expectation of Z and
Ucvar(y, P) == {€ : €w) € [0,1], [ o &w)Pw)dw =
1}. Then,
CVaR,(Z) = max
§€Ucvar(y,P)
The above dual representation, together with the coherent
property of the CVaR metric was used to derive a decom-
position of CVaR,(Z) in a recursive manner [19], [34]. In
our setting, the random variable Z is a sequence of costs.

Ee[Z).

Proposition 2 (CVaR decomposition [19]). For k > 0, let
Z = (Zk+1, Zyyo,- - ) denote the sequence of costs starting
from time k+1 to onward. Then, the conditional CVaR, under
a policy T satisfies

CVaR,(Z|hy, )

= mgax E[5(8k+1)cvaRy§(sk+l)(Z‘hk;+17 7T)|]”Lk7 71']7

where £ € Uovar(y, P(-|st, at)), and the expectation is with
respect 10 Spy1.

D. Problem Formulation

Our objective in this paper is to learn risk-aware poli-
cies for multi-agent reinforcement learning in a distributed
manner. We use CVaR as a measure of risk sensitivity, and
aim to learn a policy w € Ily that will minimize a risk-
sensitive discounted cost. We use the terms confidence level
and risk parameter interchangeably to refer to the parameter
y € (0, 1]. The challenge in solving this problem is that the
transition probabilities are not known, and costs associated
to taking an action in a particular state are revealed to agents
only through repeated interactions with the environment. We
formally state the problem that we want to address as:

min C’VaRy (C()’OO|S(), 71'). (4)

welly

In order to solve the problem given in Eqn. (4), we will first
propose a CVaR-based Bellman operator for Q-learning and
show that the operator has a fixed point that corresponds
to the optimal solution. Then we will design a CVaR-based
QD-learning algorithm and show that the value functions of
individual agents reach a consensus. Through simulation, we
also verify the convergence of the algorithm.

III. BELLMAN OPERATOR CONSTRUCTION

In this section, we define a Bellman operator in order to
compute the optimal state-action value function for CVaR-
based reinforcement learning. Similar to techniques used for
other variants of Q-learning, e.g., [14], [32], [35], [36], we
establish the convergence of this operator by showing that
it satisfies a contraction property. Of particular relevance
is the result for CVaR-based dynamic programming for
the convergence of state value functions of MDPs (whose
transition probabilities and cost structures are known apriori)
presented in [19].

Leveraging Proposition 2, we first augment the state-action
pair (s,a) with an additional ‘continuous state’ y € Y =
(0, 1] which represents the confidence level for CVaR. Then,
for a given policy m and CVaR confidence level y € V), we
define the augmented state-action value function as:

Q" (s,a,y) = CVaRy(Co,0ls0 = s,a0 = a, ). (5)

To set up a dynamic programming characterization of
Q™ (s,a,y), we define a Bellman operator on the space of
augmented state-action value functions. Consider the CVaR
Bellman operator T : S x A x)Y — 8§ x A x Y and
& € Ucvar(y, P(:|s,a)). Then, we define

T(Q)(s,a,) := c(s.a)+y min [m?ng(sl)

P(s'|3,0)Q(s',a', y<(s)]. (©)

Our first result formalizes the fact that the Bellman oper-
ator defined in Eqn. (6) satisfies a contraction property.

Lemma 1 (Contraction). Let Q'(s,a,y) and Q*(s,a,y) be
two augmented state-action value functions for the same
(s,a,y) as defined in Eqn. (5). Then, the Bellman operator T
defined in Eqn. (6) is a contraction under the sup-norm. That
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is, [IT[Q"](s,a,y) — T[Q*(s,0,9)llec < 2IQ"(s5,0,y) —

QQ(Sa a7y)‘|00

Proof. Our proof uses an argument similar to [19]. How-
ever, different from [19], the environment in our setting is
unknown; this will require reasoning about state-action value
functions [3], rather than state value functions used in [19].

Since £(s)P(s'|s,a’) > 0 for all ¢ €
Ucvar(y, P(]s,a)), we have T[Q'](s,a,y) <
T(Q|(s,a,y) whenever Ql(s,ay) < Q%(s,ay)
for all s € S,a € A,y € Y. Moreover, since

Y oses&(s)P(s'[s,a’) = 1 for all £ € Uovar(y, P(-|s,a)),
we have T[Q + d(s,a,y) = ¢y + T[Q](s,a,y)
where ¢ i1s a constant. Thus, we have established
that T[Q](s,a,y) exhibits the monotonicity and
constant shift properties. Now, from the definition of
sup-norm, for all s € S,a € Ay € )Y we have
Q1 (s.a,y) — Q%(s,a,9)| < [|Q (s, a,) — Q%(s,a,9)|os

which is equivalent to

Q2(87avy) - HQl(S,Cl,y) - Q2(57U:, y)HOO < Ql(S,Cl,y)
< Q%(s,a,9) + Q" (s,a,y) — Q*(s,4,1)||oo- (7)

Applying the Bellman operator to the terms in Eqn. (7)
and leveraging the monotonicity and constant shift properties
with ¢ = £[|Q*(s,a,y) — Q?*(s,a,9)||s0» for all s € S,a €
A,y € YV, we obtain

T[QQ]('S?avy) - ’YHQI(Svaa y) - Q2(57a7y)||00 S
T(Q]' (s,a,y) < T[Q]*(s,a,y)
+’Y||Q1(Sva7y) _QQ(Saa’vy)HOO' (8)

This is equivalent to |T[QY](s,a,y) — T[Q?](s,a,y)| <
YR (s, a,y) —Q?(s,a,y)||eo Vs € S,a € A,y € Y, which
completes the proof. [

Lemma 1 allows us to establish the convergence of the
CVar Bellman operator T to a fixed point Q/ (s, a,y) when
applied repeatedly. Let Q* (s, a, y) be the optimal state-action
value function with respect to CVaR confidence level y i.e.

Q*(s,a,y) = rgllTn CVaRy(Co,o0lzo = 8,00 = a,m). (9)
melly

We now derive an intermediate result that will allow us to
show the optimality of the fixed point of CVaR Bellman
operator i.e. Qf(s,a,y) = Q*(s,a,y). To do so, by TF we
denote the application of the Bellman operator T for k times
for some k£ € N.

Lemma 2. Let Qi (s,a,y) = T*[Qol(s,a,y) for all s €
S,a € A,y € Y where k € N and Qq is an arbitrary
initial value of Q(s,a,y) for all s € S,a € Ay € ).
Then Qi (s,a,y) = minger, CVaRy(Cox—1 +7*Qolso =
S,ap = a, ).

Proof. Similar to [19], we prove this result using induction.

For the base case i.e. k = 1, we have

Q1(s, a,y) = T[Qo(s, a,y) = ¢(s,a) +~ min

D EP($ s, a)Qo(s' oy ()

s'es

[ max
§€Ucvar(y,P(]s,a)

¢(s,a) + min [’7 max
a’€A L gclcvar(y,P(-]s,a))

Eg(s[Qo
lso = &' a0 = a',w]}

max

]E s’ CV&R s’
cctton 2K, o ) B )| YE(s)

- i [0+

(Qols’,a’)|so = s,a9 = a,ﬂ)]]
= 31612‘ [c(s,a) +~CVaR,(Qolso = s,a0 = a,ﬂ')}
= néin CVaRy(Coo +vQolso = s,a0 = a, ).
TET

Thus the base case is proved. Now we assume that the result
holds for k¥ = ¢. Now for £ =7+ 1 we have

Qi+1(s,a,y) = T"Qo](s,a,y) = T[Q;](s, a,y)

= cls,a) + 7 min [seucvmy P(-]s.0)) ,ze;f (s'ls, )
Qi(s/aa/uyf(s )):|

—cls ) tymin | mm S )P0

s'eS
Hélr? CVaRye(s1(Coi-1+ 7' Qolso = 8, ag = a'ﬂf)]
max
E€Ucvar(y,P(:]s,a))
CVaRyE(S/ (Cl i +’Yi+1Q0‘8/ a/)|80 = S,a0 = a 7T)]:|
= min CVaRy(Co,; + 4T Qqls0 = s,a0 = a, 7). (10)

TET;4+1

Eg(s/)[min

= min [c(s,a) + i
mell;

a’€eA

Hence the proof is complete by induction. O

The main result of this section proves that the fixed point
of the Bellman operator T[Q](s,a,y) is the optimal value
function Q*(s, a,y).

Theorem 1. As k — oo, Qx(s,a,y) converges to a unique
fixed point T[Q*|(s,a,y) = Q*(s,a,y) foralls € S,a € A
and y € ).

Proof. The proof follows from Lemma 1 and Lemma 2.
Since the CVaR Bellman operator T[Q](s,a,y) has the
contraction property, we have that limy_, o, Qx (s, a,y) con-
verges to a unique fixed point T[Qf](s, a,y) = Q/(s,a,y).
From Lemma 2 and using the fact that v < 1, we can write

Q' (s,a,y)
= lim Qr(s,a,y)

min CVaR ( lim Co 1 —|—’ka0|$0 =s,a9 = a,m)
k—o0

melly

= min CVaRy(Co,c0lTo = s,a0 = a,7)
welly

= Q*(Saa’7y)'

Hence the proof is complete. O
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We note that the optimal value function Q*(s,a,y) can
be achieved by a stationary (deterministic) Markov policy
1*(s,y) where p* is a mapping from the current state s
and CvaR confidence level y to an action a, i.e., pu* :
(§,Y) — A. We obtain the fixed point Q*(s, a,y) through
repeated application of the CVaR Bellman operator, and
then determine a greedy policy p* on Q*(s,a,y) such
that p*(s,y) = argmin, Q*(s,a,y) [29]. Then, from the
definition of Q*(s,a,y) in Eqn. (9), it follows that the
greedy policy p* indeed achieves optimality. This makes the
problem of finding an optimal policy tractable, even though
the original problem in (4) is defined over the set of history-
dependent policies.

IV. CVAR-BASED DISTRIBUTED MULTI-AGENT
REINFORCEMENT LEARNING

We use the insight from Theorem 1 to design of a dis-
tributed multi-agent reinforcement learning algorithm where
agents seek to optimize a risk-aware objective. Such an
objective is expressed in terms of a CVaR-based discounted
accumulated cost as described in Eqn. (5). The update rule
for our CVaR QD-Learning algorithm is informed by the
QD-learning scheme proposed in [29]. However, optimizing
a CVaR-based value function (instead of an expectation-
based function in [29]) will require us to develop additional
mathematical structure, which will be described below.

At each iteration of the CVaR QD-Learning update, the
augmented state-action value function of an agent evolves
as a weighted sum of (i) the augmented state-action value
function at the previous iteration, (ii) an innovation term
arising from the cost observed by taking a particular action
in a given state, and (iii) a consensus term corresponding
to the difference between augmented state-action values of
the agent with its neighbors A(+) in the inter-agent commu-
nication graph G. Specifically, the sequence {Qp x(s,a,y)}
evolves for each agent n according to the following equation:

Qn kt1(58, ar, yi) = (1 — o) Qn i (5K, ks, Yi)

+ o (cn Sk, k) + vy min ma
e{en(skar) +7 'eA[geucme(\sa))

§(5k4+1)Qn .k (Skt1, 0 uyk§(3k+1))])
— Bk Z (Qne (s ar, yk) — Quislse, ar,yk)), (A1)

leN(n)

where the weight sequences {ax} and {Bx} are given by (2)
and (3) where 71 € (3,1] and 7, € (0,71 — 3). Like [29],
here the weight sequences satisfy ), ar = oo, Y, B =
00, Yopaf < 0o, > B% < oo and B’f — o0 as k —
oo. Constants a and b in Eqns. (2) and (3) also satisfy that
(In — BxL — apIy) is positive semidefinite for all .
Since the costs {c,(s,a)} and the parameter {{(s)}
are bounded, and the initial augmented state-action value
functions {Qn,0(s,a,y)} are chosen to be bounded for all
agents n, and for all s € S,a € A and y € ), we
can show that {Q,, x(sk,ar,yx)} is pathwise bounded, i.e.,
P(supy, |@Qn.klloc < 00) = 1. Our next result establishes

that the augmented state-action value functions of the agents
asymptotically reach a consensus.

Theorem 2 (Consensus of CVaR QD-Learning). For the
CVaR QD-learning update in Egn. (11), each agent reaches
consensus asymptotically for all s € S,a € A and y € Y.
That is,

Qk(svavy)H = 0) = 1a (12)

P(limg—o0||Qn i (s, a,y) —

where

Qr(s,a,y) (13)

Zansay

nl

Proof. For agent n we can write the update in Eqn. (11) as:

241 = (U — Bl — apdn)ze + ap(Up + Ji)  (14)

where L is the Laplacian matrix of the graph G as defined
in Section II and
2z = Qi p(sk =8, ap =a,yp =a)---
Qnk(sk =s,ar = a,yr, = y)]Tv

Uy, := v min Spy1 =S

=730 i T gy S8 =)

Qnk(sk41 = 5", a', yr€(skr1))],

J = cn(sk = s,a = a).

Let 2, = 2z — %1%%1]\; where 1y is a vector in RY with
all entry as 1. Then we can write Eqn. (14) as

(IN — Bl — OlkIN)":'k + Oék(Uk + jk)

where Uk = Uk — %1%[]]@1]\7 and jk = Uk — %17]\“”]]@1]\{.
Then following the argument of [29] and applying Lemma
4.2 in [29], we can write for k > kg

N = BrL — apln) 2|l < (1 = c2 i) 2]

where ¢; € (0,1), 0 < r; < 1 and kg € N. Combining
Eqns. (15) and (16), we can write for k > kg

Zog1 = 5)

(16)

12l < (1= e2 )12l + aw (1Tl + 1|l

Since {Qn 1 (s, a,y)}. {£(s)} and {c, (s, a)} are bounded for
all agents n and for all s € S,a € A and y € ), we have
that {||Ux|} and {||.Jx||} are bounded. Using Lemma 4.1 of
[29] we can conclude that P((k+1)72, — 0) =lask — oo
for all 7 € (0,71 — 72 — 3). Therefore, we have P(2, —
0)=1= Pz — ]bszklN) =1= P(Qni(s,a,y) —

Qn(s,a,y)) =1foralln and all s € S;,a € Aand y € Y
as k — oco. Hence we recover Eqn. (12). O

a7)

In order to solve the maximization over ¢ in Eqn. (11)
effectively, we establish that the CVaR QD-learning update
preserves the concavity of {y Q. x(s, a,y)}. We observe that
this concern is unique to the CVaR-based update, and is not
seen in the expectation-based QD-learning update in [29].
Our next result formalizes this insight.

Theorem 3. Suppose {y Qn. r(s,a,y)} is concave in y for
all agents n and for all s € S,a € A and y € Y. Then,
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{y Qn+1,k(s,a,y)} is also concave in y for all agents n
and for all s € S,a € Aand y € ).

Proof. Let, y1,y2 € Y, A € [0,1] and y\ = (1 — A)y1 + \ya.
Then, we can write

(1 = MNv1Qne+1(8,a,y1) + Ay2Qn o1 (5, @, y2)
= (1= o = IN()IB) ((1 = Ny Qu (5. a.91)

+ Ay2Qn i (s, a, y2)> + B > (1= Ny Qui(s,a )
leN(n)

+ Ay2Qui(s,a,y2)) + g (((1 — ANy1 + Ay2)en(s, a)+
min max sHY(1 =\
7(‘1'16“4 &1€lcvar(y,P(¢]s,a)) 51( )( )yl
k(s a, s))| + min max
Onilsdmba@)] +min [ max
an,k(3/7a127y2§2(5))})

< (1= ak = IN()B)yaQni(s,a,92) + B Y (ua
leEN (n)

fz(sl)yz

Qui(s,a,90)) + ok (yacn (s, a) +~( Cflnelf}‘ I

max sH(1 =\ (s, a, s
§1€Ucvﬂ,R(y1=P('\S1a))gl( )( )le ,k( 9152( ))
&2€Ucvar(y2,P( ]s,a))

+ &a(8")y2Qun i (5", ay, y2&a(s))])
< (1= ak = IN()B)yaQni(s,a,92) + B Y (ua

leEN (n)

Quik(s,a,90)) + ar(yacn(s, a) +( min

(1= Nyr&i(s") + Ay2ba(s))

[ max
&1€Ucvar(y1,P(-|s,a))
&2€Ucvar(y2,P(¢]s,a))

Qni(s',a', (1= Ny1&a(s) + Ay2&2(s))])

Note that (1—ay —|N(n)|Bx) > 0 and S > 0. In the above,
we have used the concavity of min operation and the concav-
ity of linear combination of concave functions with positive
coefficients and our assumption that {y Q. x(s,a,y)} is
concave in y for all agent n and for all s € S,;a € A and
y e ).

We define £ = 0
&1 € Ucvar(yr, P(-[s,a)) and & € Ucvar(y2, P(:s, a))
we can write £ € [0, y%], where } .5 &(s")P(s]s,a) = 1.
Thus, we can write

A=Nyi& (D +2282(5)  Noge that when

(1= Ny1Qnk+1(s,a,91) + Ay2Qn k11(8, a,y2)
< (1= ak = IN()[B)yaQni(s,a,92) + B Y (ua
lEN (n)

Qui(s,a,y0)) + ar (yacn (s, a) +( ;nelljl

max S/ n 8/, a/a Sl
feuCVaR(y,P(‘|s,a))y>\£( )Qn,i( yrE(s)])

= y)xQn,k:-‘rl (57 a, y)\),
which completes the proof. O

V. THE CVAR QD-LEARNING ALGORITHM

Theorems 2 and 3 are the critical components in the design
of our CVaR QD-Learning algorithm. This section presents

our algorithm, and describes how some challenges in the
implementation of the algorithm are overcome.

First, the parameter y in the Q-value Q,, x(s,a,y) takes
values in the contiguous interval Y = (0, 1]. We overcome
this challenge in the manner proposed in [19] by discretizing
Y into sufficiently large number of intervals m, and consid-
ering only the extremities of each interval. Then, we can
rewrite Y = [y1,- - ,Ym]), where 0 < g1 < -+ < Y < 1.

The second challenge arises from the maximization of
§(5k41)Qn k(Skt1,a", Y€ (sk41)) over § in the update in
Eqgn. (11). Our algorithm overcomes this challenge by solv-
ing a modified maximization problem,

iggﬁi) (k€ (sk41))Qnok (k415 @', yr€(sk41))]

The concavity property proved in Theorem 3 then al-
lows us to conclude that any local maximum points of
[(ykf(sk+1))Qn7k(sk+1,a’7yk§(sk+1))] is indeed a global
maximum.

The final challenge is identifying an admissible value for
&(8k41) during the maximization step since the transition
probabilities P(sy1|Sk,ax) in reinforcement learning are
unknown and revealed to agents only during interactions
with the environment. Our implementation addresses this
challenge by initially choosing ¢(s’) = 1 for all s € S.
Then, at every iteration of the CVaR QD-Learning algorithm,
we update an upper bound &£(s’|s,a) in a manner such that
£(s'|s,a)P(s'|s,a) < 1, where P(s'|s,a) is an estimate of
P(s']s,a). We use a standard assumption in Q-learning that
a (stochastic) base policy 7 is chosen such that every state-
action pair is visited infinitely often [3], [32] to compute an
estimate P(s'|s, a) and thus obtain the bound £(s'|s, a). We
use £(s|s,a) = p(s,l‘s’a) if P(s'|s,a) # 0 (otherwise we
keep the initial guess £(s’|s,a) = 1). For the maximization
over &, we will use any &(sg11) < €(ska1|Sk, ax) such that
§(sk+1) Yk € V.

The steps of our CVaR QD-Learning algorithm is detailed
in Algorithm 1.

Algorithm 1 CVaR ) D-Learning
1: Input: y, {ar}, {Br}, 7 S A YV =1[y1," ,Yml), N.
2: Inmitialization: {Q, 0(s,a,vy)}, £(s'|s,a) =1, k= 0.
3: Output: {Q,(s,a,y)}.

4: loop for each episode

5: Initialize so € S

6

7

8

loop take actjon ag, in si and observe next state Sy 1.
Update &(sk41|5k, ar).

Each agent n locally update {Q,, j+1(Sk, ak,y)}

according to (11) for all y € Y using any &(sg4+1) <

&(Sk41|Sk, ar) such that &(sk11) yr € V.

9: k+1<+k.
10: end loop until s is a terminal state.
11: end loop

Since all agents asymptotically reach a consensus (The-
orem 2), a greedy policy over any agent’s evaluation of
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Fig. 1: This figure presents the evolution of CVaR Q)—value
estimates of six state-action pairs for four different non-
neighbor agents with CVaR confidence level y = 0.7. Each
state-action pair (s, a) is represented by a different color. We
observe that when following Algorithm 1, C'VaR (Q—values
of the agents reaches consensus for all (s, a) pairs.

the augmented action-value functions can be used to se-
lect the desired policy. Hence, the desired policy for the
confidence level y of CVaR can be selected as u(s,y) =
limg_— o0 argming Qy, (s, a,y) forany n =1,--- , N.

VI. SIMULATION STUDIES

In this section, we carry out simulation to evaluate the per-
formance of the CVaR QD-Learning algorithm (Algorithm
1). We first describe the experiment environment, and then
report our results.

A. Environment

Our simulation setup is similar to [29] which consists of
a network of N = 40 agents. Each agent communicates
with two of its nearest neighbors. Different from [29], which
considered binary-valued state and action spaces, we assume
that both state and action spaces have 3 possible values
giving |S x U| =9, and 27 different transition probabilities.
Eighteen of these transition probabilities are selected ran-
domly via a uniform sampling; this fixes the remaining nine
transition probabilities. For each agent n, the cost ¢, (s, a)
is chosen from a uniform distribution that has a different
mean for each state-action pair (s,a). We set the discount
factor v = 0.7, and parameters in Eqns. (2) and (3) are
chosen to be 71 = 0.2, 79 = 0.3, a = 0.2 and b = 0.1. The
interval (0, 1] is discretized into 100 equally spaced intervals
to quantify confidence levels associated with CVaR. Thus, we
have ) = {0.01,0.02,---,0.99,1}. We evaluate Algorithm
1 by instantiating a single trajectory {s;,a;}. At each step
t in state s;, actions a; is chosen randomly via uniform
sampling; the next state s,y is determined by the transition
probabilities. The initial state sg is chosen randomly. We
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Fig. 2: This figure presents the change in CVaR Q)—value
estimates of six state-action pairs at time-step ¢ = 50000 for
four non-neighbor agents when the CVaR confidence level
y € [0.2,1]. Each color denotes the CVaR Q—value for
one (s,a) pair. We observe that agents’ risk sensitivity varies
from risk-aware (y < 1) to risk-neutral (y = 1), the CVaR
@ —value decreases. Intuitively, this shows that risk-aware
behaviors will result in higher (CVaR) Q—values when the
objective is to minimize an accumulated cost.

also set the initial estimates of (J—values for the agents to
different values.

B. Simulation Results

We show the evolution of the C'VaR ()—value estimates
of six state-action pairs when following our CVaR QD-
Learning algorithm (Algorithm 1) for four different non-
neighbor agents in Fig. 1, where each state-action pair (s, a)
is represented by a different color. The CVaR confidence
level is set to y = 0.7 for all state-action pairs. We observe
that agents asymptotically reach consensus on estimates of
their CVaR @Q—values for shown (s,a) pairs. The rate
of convergence is proportional to the number of times the
state-action pair is visited in the trajectory (since a larger
number of samples will be available in order to update the
corresponding CVaR @Q—value).

Fig. 2 demonstrates the variation of CVaR Q—value
estimates of six state-action pairs at time-step ¢ = 50000
for different values of the confidence level y € [0.2,1],
where each state-action pair (s, a) is represented by a dif-
ferent color. As agents reach consensus, we observe that
for the state-action pairs, the CVaR (Q—value decreases
with increase in y. The CVaR Q—value is lowest when
y = 1, i.e., the situation identical to the more conventional
expectation-based @)—value [3], [29]. Intuitively, this result
indicates that as agents’ risk sensitivity varies from risk-
neutral (y = 1) to risk-aware (y < 1), their respective
(CVaR) Q—values will be higher (since their objective is to
minimize an accumulated cost). We believe that our proposed
algorithm will remain effective for other simulation setups,
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though the computational complexity will increase with the
number of states, actions, and agents.

VII. CONCLUSION

In this paper, we proposed a distributed multi-agent rein-
forcement learning (MARL) framework for decision-making
by learning risk-aware policies. We used the conditional
value-at-risk (CVaR) to characterize a risk-sensitive cost
function, and introduced a Bellman operator to describe a
CVaR-based state-action value function. Theoretically, we
proved that this operator was a contraction, and that it
converged to the optimal value. We used this insight to
develop a distributed MARL algorithm called the CVaR
OD-Learning algorithm, and proved that risk-aware value
functions associated to each agent reached consensus. We
presented solutions to multiple challenges that arose during
the implementation of the CVaR QD-Learning algorithm,
and evaluated its performance through simulations. We also
demonstrated the effect of a risk parameter on value functions
of agents when they reach consensus.

One possible extension of our approach is to investigate
the adversarial setting when some agents may be malicious
or corrupt. Some preliminary work in this direction has been
studied considering the presence of Byzantine agents, albeit
while minimizing an average cost criterion [31]. Another
interesting problem is to examine the continuous state-action
spaces in distributed setup, where policies are parameterized
by (deep) neural networks. Initial research in the design of
risk-sensitive policies for MARL has focused on the cen-
tralized training regime [24]. Another possible future work
direction is extensions to non-cooperative cases and scenarios
where agents are heterogeneous, with distinct objectives and
state-action spaces.
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