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Abstract  

The hybrid graphene/carbon nanotube (CNT)/polymer nanocomposite is reported to be 

an ideal medium that makes up nanofiller-reinforced pressure sensors. In this paper we aim to 

illustrate the resistance response of such nanocomposite-based piezoresistive sensors under 

bending. The main idea is that the volume fractions of the two reinforced nano-inclusion 

phases – graphene and CNTs - change as a result of bending deformation, and this further 

promotes the overall electrical response of a pressure sensor. To this end, we construct a 

three-phase composite that simultaneously contains graphene nanoplatelets (GNPs) and 

CNTs as two inclusion phases and fluorinated elastomer as the matrix. A model of treating a 

pressure sensor as a thin plate under bending is introduced to analyze its elastic deformation. 

Then a micromechanics theory for an isotropic composite containing randomly oriented, 

transversely isotropic ellipsoidal inclusions is adopted to derive the effective elastic moduli 

for the hybrid composite. The effective-medium approximation (EMA) and resistors in 

parallel model are subsequently invoked to calculate the overall electrical resistance and to 

describe how it depends on the applied bending pressure. The calculated resistance reductions 

are shown to be in close agreement with the experimental data of graphene/CNT/THV 

sensors under 0 to 1.75 KPa. Several other novel features of the model are also highlighted. 
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1 INTRODUCTION 

Research on nanofiller-based pressure sensors has been very active in recent years. With 

the growing demands for healthcare, energy harvest and communications to environment, 

flexible and wearable pressure sensors are of great demand for various industrial and medical 

applications. These applications include electronic skin [1-2], touch detection [3], biomedical 

devices and prostheses [4], human motion monitoring [5] and energy harvesting devices [6]. 

The working mechanism of pressure sensor can be classified as force-induced capacitive 

sensing [7], piezoelectric sensing [8], triboelectric sensing [6] and piezoresistive sensing 

[1,9]. 

Resistive sensors have great development potential and plenty of promising applications 

due to easy fabrication, simple structure, and good sensitivity at low pressures (usually less 

than 5kPa) [10]. There is a strong demand for exploring highly sensitive, self-powered, 

portable pressure sensors because of the limited working time and environmental pollution. 

In this case, elastomer-based conductive polymer nanocomposites (CPCs) are popular and 

commonly used as they possess unique physical properties, high surface area, small 

dimensions and low cost [11]. Frequently used additives as the conductive phase in CPCs 

include carbon black (CB), metal nanoparticles, carbon fiber, carbon nanotubes (CNTs) and 

graphene nanoplatelets. Besides these traditional inclusions, novel microstructures have also 

been used such as CB-polyurethane (PU) foam [12], graphene-PU foam [13], 

graphene-polyimides (PIs) foam [14], polypyrrole hydrogel hollow-sphere microstructures 

[9], hierarchically porous polydimethylsiloxane (PDMS) structures [15], and embossed 

cellulose-CB paper [16]. 

Among these nanofiller-based and microstructure-based composite sensors, CNT 

reinforced nanocomposite sensors are cost-effective and capable of measuring a wide range 

of pressures. Multi-walled carbon nanotubes (MWCNTs) are available at relatively low cost 

and they can be bent through large angles and strains without mechanical failure and can 

resist failure under repeated bending [17]. For applications, Hu et al. [18] developed a 

multi-scale three-dimensional finite element method (FEM) model to predict the 

piezoresistivity behavior of CNT/epoxy nanocomposite resistive sensor. Sepúlveda et al. [19] 
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constructed an experiment where aligned CNTs embedded in a flexible substrate of PDMS, 

are used to fabricate capacitive sensors for testing blood pressure. It reveals that the bending 

of sensor caused by variations in outside pressure generates capacitive changes proportional 

to the pressure change. 

Like CNTs, graphene is another alternate low cost and stretchable filler material that has 

been used to form flexible electronic sensors [5,20]. Graphene shares similar electronic 

properties as CNTs but is more amenable to patterning and bulk manufacturing through 

solution-based exfoliation [21]. Yang et al. [22] analyzed graphene/PDMS sensor in 

sandwiched fabrication by FEM, and found its piezoresistive response decided by the 

compressibility of the microstructure and contact area. Lou et al. [23] designed and fabricated 

a highly sensitive piezoresistive pressure sensor by a self-assembled platform that combines a 

viscoelastic material P(VDF-TrFe) with conductive reduced graphene oxide (rGO). The 

sensor exhibits low detection limit and working voltage, excellent long-term stability under 

100,000 cycles, and rapid response time under low frequency.  

Apart from the single-inclusion reinforced nanocomposite sensors, nanocomposite 

sensors containing multi-inclusion phases have drawn more and more attention. Nowadays 

graphene/CNT/polymer nanocomposite becomes an ideal functional material to design and 

fabricate various pressure sensors for purposes of enhancing sensitivity, improving working 

time and expanding application scope. Hybrid CNT/graphene-based strain sensors were 

previously reported by Hwang et al. [24], in their experiment the vacuum filtration with 

dispersion of CNT/graphene is used to form a conductive layer that was subsequently 

transferred onto a polymethylmethacrylate (PMMA) substrate. The advantages of hybrid 

CNT/graphene structure are various and significant, for instance, Lee et al. [25] presented 

strain sensors featuring a piezoresistive composite made from a combination of MWCNTs 

and GNPs in PDMS to form a screen printable conductive PDMS, and tested zero current 

resistance and percolation threshold of sensor. Tran et al. [26] constructed quantum resistive 

pressure sensors consisting of graphene/CNT hybrid architectures, and the sensors are 

reported to have a more stable piezoresistive behavior with different compression speeds and 

mechanical histories. A higher range of linear resistive response is also achieved. 
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The three-phase graphene/CNT/polymer nanocomposite itself exhibits superior 

properties such as higher electrical conductivity and mechanical flexibility compared to 

traditional two-phase nanofiller/polymer nanocomposites. The enhancement mechanism from 

two inclusion phases is more significant and complicated than materials with a single 

inclusion phase. For example, the influences of adding graphene on CNT/polymer composite 

are reported by Peng et al. [27], in which they fabricated a cobalt sulfide/reduced 

graphene-oxide/carbon nanotube (CoS2/rGO-CNT) nanocomposite. The rGO nanosheets are 

assembled into a continuous carbon skeleton and entangled into porous CNT networks, 

yielding a three-dimensional conductive and flexible structural CoS2/rGO-CNT network. 

Similarly, the effects of inserting CNTs into graphene/polymer composite can be estimated 

from Shen et al. [28], where a three-dimensional TiO2-graphene-CNT nanocomposite is 

developed. CNTs in this unique hybrid nanostructure not only prevent the restacking and 

agglomeration of graphene sheets but also provide additional electron-transport paths besides 

the graphene layers. Both sets of experiment demonstrate that conductive graphene sheets 

and CNTs and their porous structures are beneficial for electronic and ionic transport, which 

leads to superior electrical and mechanical properties after the addition of the second 

inclusion phase. 

In the simulation domain, increasing effort has been placed to develop the 

homogenization scheme to predict the overall behaviors of two-phase inclusion/polymer 

nanocomposites [29-31]. In addition to the intrinsic properties of nanofillers and polymer 

matrix, many microstructural features such as filler aspect ratio [29], filler orientation state 

[30], and filler agglomeration [31], are reported to exert major effects on the overall 

mechanical and electrical properties, as well as the percolation threshold in electrical 

conductivity. Although there is substantial amount of research on the properties of two-phase 

graphene- or CNT-based nanocomposites, there are very few studies that concentrate on the 

mechanical and electrical properties of three-phase graphene/CNT/polymer nanocomposite. 

Consideration of such hybrid nanocomposites in pressure sensors remains scarce, if any. 

In this article, we will study a piezoresistive sensor based on graphene/CNT/elastomer 

(fluorinated copolymer) nanocomposite under bending. Our focus is to develop a model for 
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the calculation of effective conductivity and the evaluation of resistance response of the 

hybrid nanocomposite under an external bending pressure. To this end a bent composite thin 

plate is first constructed to describe the bending deformation and determine the volume 

change of the pressure sensor. In this step, the change of Young’s modulus of the sensor as a 

function of bending deformation and applied force will be calculated by invoking the 

Mori-Tanaka method [32] and Qiu-Weng’s theory [33] for an isotropic composite containing 

transversely isotropic randomly oriented ellipsoidal inclusions. Then the volume fraction 

changes of graphene and CNT phases during the bending process will be derived. 

Subsequently, we will call upon the classic Bruggeman’s effective-medium approximation 

(EMA) [34] to evaluate the effective conductivity and, together with the result of effective 

elastic moduli, to determine the resistance response of the three-phase nanocomposite sensor 

as a function of the applied bending pressure. At the end, the calculated resistance curves in 

both graphene/CNT/elastomer-based sensor and CNT/elastomer-based sensor will be 

compared with experiments. 

2 THE THEORY 

2.1 Nanofiller reinforced composite bending model  

The theory starts with a mechanical bending model of a piezoresistive pressure sensor as 

shown in Fig. 1. The dark region represents the sensor which is wrapped and embedded by 

the green substrate, and they are sandwiched between two Au electrodes. The external 

pressure P is applied perpendicular to the electrodes to make the sensor bend together with 

the substrate to some extent. To prepare for later comparison with the experimental data of 

Lee et al. [35], the sensor is a three-phase nanocomposite which includes GNPs, CNTs and 

fluorinated copolymer, tetrafluoroethylene-hexafluoropropylene-vinylidenefluoride (THV). 

By changing the value of applied pressure and testing the effective resistance of the sensor, 

the electrical behavior of a pressure sensor under bending can be obtained.  
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Fig.1. The pressure response measurement of the sensor under bending 

To analyze this issue, we treat the sensor as a thin plate with a longitudinal cross section 

shown in Fig. 2(a). The shadow area is the nanofiller composite and the whole structure is 

symmetric with respect to the vertical dashed line. The external applied force will cause a 

resultant normal force N  and a resultant moment M  that are acting on the cross section of 

the composite specimen. Similar with the beam bending issue, the top surface is compressed 

while the bottom one is stretched, so there must be a surface called the neutral surface that 

does not undergo a change in length. In addition,   is the radius of curvature and   is the 

angle that spans over the bent composite thin plate. Thus, we have L = , where L  is the 

length of the composite sensor. Due to the presence of axial normal force, N, the neutral 

surface is not located in the symmetric plane as with a pure bending problem.  

 

(a)                                 (b) 

Fig.2. (a) Longitudinal section of thin plate sensor and (b) cross-sectional internal stress analysis 
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Then we take the composite cross section to do the stress analysis, as Fig. 2(b) shows. 

Stress and strain of different horizontal surfaces are functions of x , where x  is the vertical 

distance from these surfaces to the top surface. y  is the distance between the neutral surface 

and the top surface. The stress-strain relationship can be derived from Hooke’s law as 

( ) ( ),x E x =                                                          (1) 

where E  is Young’s modulus of the entire composite under bending. We should notice that, 

for the composite sensor, its E  does not remain constant; it depends on the extent of 

bending. This is due to the fact that the total volume of composite sensor changes because of 

bending, and this in turn leads to a change of volume fractions of graphene nanoplatelets and 

CNTs, which in turn influences the overall elastic moduli of the nanoinclusion/polymer 

composite. It will be shown at the end of Sect. 2.2.3 that E  depends on   and ,y  as 

( , )E y .  

Similar to the beam theory, we assume different surfaces have the same curvature, so we 

have the expression of strains 

[ ( )]
( ) .

y x x y
x

  


 

− − − −
= =                                          (2) 

Integrating the stress over the cross section with respect to the neutral axis, we can obtain the 

resultant force and resultant moment by taking tension as positive and compression as 

negative. On the other hand, from force analysis we can use external pressure and the 

geometric property of the sector section to express the resultant force and moment. This leads 

to 

0
( , ) ,

cos
2

t x y P
E y Wdx



−
= −                                           (3.1) 

2

0

( )
( , ) cos ,

2

t x y
E y Wdx P


 



−
=                                       (3.2) 

respectively, where W  and t  are the width and thickness of the composite sensor. Now we 

have two equations with two unknown variables,   (or  ) and y . Their values can be 

determined explicitly if the size of the nanocomposite-based sensor, ( , , )L W t , is given and 
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the applied pressure is set. After the value of y  is calculated, the position of the neutral 

surface can be determined. From the definition of neutral surface, the volume always 

decreases for the part above the neutral surface while volume increases for the part below it. 

Then according to the assumption, different bent horizontal surfaces have same curvature, 

and geometric property of the longitudinal section under bending (a sector), we can obtain the 

volume changes for the parts above and below the neutral surface: 

0

2above

above

V y

V





 −
=                                                       (4.1) 

0

( ) 2below

below

V t y

V





 + −
=                                                   (4.2) 

where 0

aboveV , 0

belowV , 
aboveV   and 

belowV   are volumes of the part above and below neutral 

surface before and after bending, respectively. Since 0 y t  , the first ratio is always less 

than 1 and the second is larger than 1, which corresponds to neutral surface definition. 

Furthermore, the ratio of the total composite volume under bending to the initial volume 

before bending can be obtained as  

    
0

2V y t

V





 − +
= ,                    (5) 

which will be used in the next sections to calculate the updated volume fractions of GNPs and 

CNTs phases from their initial concentrations under the bending state. 

2.2 Homogenization scheme and elastic properties of the graphene/CNT/polymer 

nanocomposite 

Next, we focus on the determination of effective elastic moduli of the nanocomposite 

itself. It is a three-phase composite containing both graphene nanoplatelets and CNTs 

simultaneously. This is a novel medium compared to traditional two-phase composites that 

just have graphene or just have CNTs. In this 3-phase system, and in accordance with the 

experimental setting of Lee et al. [35] whose data will be compared later, both graphene and 

CNT fillers are taken to be homogeneously dispersed and randomly oriented inside the THV 

matrix. A schematic of the three-phase graphene/CNT/THV composite is depicted in Fig. 3. 
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Fig.3. The schematic of the three-phase graphene/CNT/THV composite 

2.2.1 Volume fractions of the three constituent phases 

In this article, we use phase 0, phase 1 and phase 2 to represent THV matrix phase, 

graphene nanoplatelets and CNTs respectively. The volume fractions of graphene phase, CNT 

phase and THV phase are denoted by 1c , 2c  and 0c , in turn. From the previous section we 

know that pressure-induced bending will cause the volume of the entire composite to change, 

or more precisely, to decrease. This leads to the changes of volume fractions of each phase 

inside the composite since we assume the total volume of either graphene fillers or CNTs will 

not be affected from the bending. Based on this observation, we can establish the expressions 

of their volume fractions during the bending as 

1 1 ,
/ 2

initialc c
y t




=

− +
 for graphene,           (6.1) 

2 2 ,
/ 2

initialc c
y t




=

− +
 for CNTs,             (6.2) 

Here 1

initialc  and 2

initialc  are the initial volume fractions of graphene and CNTs in the unbent 

state. The volume fraction of polymer matrix always follows from 0 1 21 .c c c= − −  

2.2.2 Elastic stress-strain relations of constituent phases 
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Graphene nanoplatelets and CNT fillers are both transversely isotropic ellipsoidal 

inclusions. For graphene, we take the normal-to-plane direction as direction 1 and in-plane 

isotropic directions as 2 and 3; and for CNT, we take the axial direction as direction 1 and the 

two transverse directions as 2 and 3. Their transversely stress-strain relations can be 

succinctly written in Hill’s short-hand notations as [36] 

(1) (1)

1= L   with 
1 1 1 1 1 1(2 , , , 2 ,2 )k l n m p=L ,                               (7.1) 

(2) (2)

2= L   with 
2 2 2 2 2 2(2 , , , 2 ,2 )k l n m p=L ,                             (7.2) 

where 1L  and 2L  are the elastic stiffness tensors of graphene and CNT, the superscript and 

subscript “1” and “2” represent the graphene and CNT phases. The five constants, k , l , n , 

m  and p  are their plane-strain bulk modulus, cross modulus, axial modulus under an axial 

strain, transverse shear modulus, and axial shear modulus, respectively.  

Unlike the graphene or CNTs, the polymer matrix is an isotropic medium. Its isotropic 

stiffness tensor can be written as 0 0 0(3 ,2 ) =L , where subscript “0” represents the 

polymer phase and 0  and 0  are its bulk and shear moduli. 

2.2.3 The overall effective elastic moduli of the three-phase composite 

Even though both graphene and CNTs are transversely isotropic inclusions, they are 

randomly dispersed inside the composite, which makes the entire composite an isotropic 

medium. So, the issue can be treated as randomly oriented ellipsoidal inclusions in an 

isotropic matrix. By means of Mori-Tanaka’s method [32], Qiu and Weng [33] developed an 

orientational scheme to calculate the effective elastic moduli of such composites. The 

effective moduli tensor of the entire three-phase composite holds the following expression 

( )( )
1

0 0 1 1 1 2 2 2 0 1 1 2 2 ,c c c c c c
−

= + + + +L L L A L A I A A                     (8) 

where the curly brackets   designate the orientational average of the said quantity, and A  

is the strain concentration tensor. The orientational average of A is isotropic, with 

( )A A3 ,2i i i =A , where 1,2i =  for the two inclusion phases. Its hydrostatic and 

deviatoric components are respectively 
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( )A ( ) ( ) ( ) ( )

( )

1
2 2 ,

9

i i i i

i i
d g h c

l
  = − + +

 
                                    (9.1) 

( )A ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 1
2 2 .

30 5

i i i i

i i i i
d g h c

l e f


 
 = + + + + +  

 
                      (9.2) 

Similarly, we write ( )LA LA3 ,2i i i i =L A , and its components are 

( ) ( ) ( )LA ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1
4 2 2 2

9

i i i i i i i i

i i i i i i i i ii
k d l g l d n g l c k h n c l h

l
  = − + − + − + −

 
       (10.1) 

( ) ( ) ( )LA ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2
2 2

15 5

i i i i i i i i i i
i i i i i i i i ii i i

m p
k d l g l d n g l c k h n c l h

l e f


 
 = − − − + − + − + +  

 
 

(10.2) 

In above equations, 1,2i =  represent the graphene phase and CNT phase respectively. 

The parameters for circular thin disc-like graphene are given as (1) 1c = , (1)

1 0d n n= , 

(1) 1e = , (1)

1 0f p p= , ( )(1)

1 0 0g l l n= − , (1) 0h =  and (1)

1 0l n n= ; for a long circular 

cylinder-like CNT they are given as (2)

2 0 01 ( )c k k n= + − , (2) 1d = , 

(2)

0 0 2 0 0 01 ( )( ) (2 )e m n m m m n= + + − , (2)

2 0 0( ) (2 )f p p p= + , 
(2) 0g = , 

(2)

2 0 0( ) (2 )h l l n= −  and (2)

2 0 01 ( )l k k n= + − . 

The effective stiffness tensor of entire composite follows Eq. (8), (3 ,2 ) =L , with 

LA LA

0 0 1 1 2 2

A A

0 1 1 2 23 3

c c c

c c c

  


 

+ +
=

+ +
, 

LA LA

0 0 1 1 2 2

A A

0 1 1 2 2

.
2 2

c c c

c c c

  


 

+ +
=

+ +
                          (11) 

Eq. (11) renders the end results of the effective bulk and shear moduli of the 3-phase 

graphene/CNT/polymer composite at given filler concentrations, 
1c  and 

2.c  These filler 

concentrations are evaluated at the bent state of the pressure sensor, which are related to the 

initial concentrations in the unbent state from Eqs. (6.1) and (6.2). The corresponding 

Young’s modulus can be written in terms of the bulk and shear moduli, leading to 

1 2

9
( , ),

3
E E c c



 
= =

+
 or 1 2( , , , ),initial initialE E c c y=  from Eqs. (6.1) and (6.2).   (12) 
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This Young’s modulus is exactly what we need in Eq. (1). It is evident now that the Young’s 

modulus of the sensor is not a constant; it is a function of   and y  as we pointed out in 

Sect. 2.1. 

2.2.4 The imperfect mechanical bonding between phases 

The preceding results have been obtained with a perfect interface condition. However, 

the true nanofiller-polymer interface is usually not perfect, which tends to lower the overall 

elastic stiffness. A “coated filler” is introduced here with a thin interphase to treat the 

weakening effect of an imperfect interface, as Fig. 4 shows. The Mori-Tanaka model is 

adopted to obtain the effective elastic stiffness tensor of one coated filler, cL . By assuming 

the properties of the interface to be isotropic, the elastic stiffness tensors of a coated graphene 

nanoplatelet and CNT can be evaluated as [37] 

( ) ( ) 1

int int int int 1 int int1 ,GNP GNP GNP GNP GNP GNP GNP

c c c
− = − + − +

  
L L S L L L I                   (13.1) 

( ) ( ) 1

int int int int 2 int int1 ,CNT CNT CNT CNT CNT CNT CNT

c c c
− = − + − +

  
L L S L L L I                   (13.2) 

where (2 , , , 2 ,2 )c c c c c ck l n m p=L , with the subscript “c” representing the “coated” inclusion. 

In addition, intc  is the volume fraction of the interphase in one coated graphene platelet or 

one coated CNT. With graphene platelet, 

2 2

int

1 1

1 ,
2 2 2 2

GNP GNP GNPc h h
   

 

     
= − + +     

      

                         (14.1) 

and with CNT, 

( ) ( ) ( )
2

3

int 2 21 ,CNT CNT CNTc R R h R h  = − + +
  

                             (14.2) 

where GNPh  and CNTh  are graphene-matrix interlayer thickness and CNT-matrix interlayer 

thickness, respectively.   is the thickness of the graphene platelets, and R  is the radius of 

the CNTs. 1  and 2  are aspect ratios of graphene and CNT, with 1 1,   and 
2 1.   

For simplicity we take int int 0.1GNP CNTc c= =  in the calculations. 
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(a)                                 (b) 

Fig.4. (a) A coated graphene platelet and (b) a coated CNT filler 

In addition, tensor (int) (int) (int) (int) (int) (int) (int)

int 2222 2233 1122 2211 1111 2323 1212( , , , , 2 , 2 )S S S S S S S= +S  is the Eshelby 

S-tensor of coated filler, and (1,0,0,1,1,1)=I  is the unit tensor written in the transversely 

isotropic form. The elements of int

GNP
S  and int

CNT
S  can be obtained from Eqs. (A.1) to (A.7) 

by replacing 0  by int

GNP  and int

CNT . Furthermore, int

GNP
L  and int

CNT
L  are elastic moduli 

tensors of isotropic graphene-THV interfaces and CNT-THV interfaces; their elements can be 

derived from Appendix Eqs. (A.8) to (A.11). 

After considering the influence of imperfect interlayers, the stiffness tensors of graphene 

and CNT, 1L  and 2L  in Eq. (8) should be replaced by 
GNP

cL  and 
CNT

cL  respectively to 

calculate the overall elastic moduli of the three-phase composite with imperfect interfaces. 

2.3 Electrical properties of the graphene/CNT/polymer nanocomposite 

From the derived elastic properties of the three-phase composite and the relationship 

between bending deformation and elastic moduli, we can find out how graphene and CNT 

volume fractions change under bending. In this section, we discuss the characteristics of the 

overall electrical properties - especially the conductivity and percolation threshold – of the 

three-phase composite during the bending process. 

2.3.1 Effective-medium approximation (EMA) method 

The electrical properties of the three-phase composite in which both graphene and CNT 

fillers are randomly oriented simultaneously can be analyzed by the effective-medium 

approximation (EMA). To pave the way for the calculation, we first recall its basic 

framework under the perfect interface condition. The original effective-medium 
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approximation was developed by Bruggeman [34] and first applied by Landauer [38] to 

calculate the electrical conductivity of isotropic composites containing perfectly bonded 

spherical particles. To apply it to either graphene or CNT fillers, or the combination of the 

two, it is essential to extend it to configurations of ellipsoidal inclusions. There are several 

ways to extend the original EMA to composites containing aligned or randomly oriented 

ellipsoidal inclusions with a perfect interface. One of the most convenient ways is to adopt 

Maxwell's approach of far-field matching as put forward in Weng [39]. This approach 

requires that the sum of the scattered fields by all constituent phases at far distance be equal 

to the scattering field of the effective medium itself. If we take the moduli tensor as the 

conductivity tensor  , this would lead to the overall effective conductivity e  of the 

three-phase medium as 

1 1 1
1 1 1 1 1 1

0 0 0 1 1 1 2 2 2( ) ( ) ( )e e e e e ec c c
− − −

− − − − − −     − + + − + + − + =     S S S 0            (15) 

where   stands for the orientational average of the inside quantity as in the previous 

mechanical section. The quantities 0 , 1  and 2  are conductivity tensors of polymer 

matrix, graphene filler and CNT filler respectively, and iS  is the depolarization tensor in 

electrostatics [40] (akin to Eshelby S-tensor in elasticity) for phase i. After carrying out the 

orientational averages for all graphene and CNT fillers, the above equation can be written in a 

scalar form for the effective conductivity, ,e  of the three-phase composite 
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      (16) 

In this expression, it is to be recalled that, for graphene platelet, the normal-to-plane direction 

is 1 and the two in-plane directions are 2 and 3, and that, for CNTs, the axial direction is 1 

and the two transverse directions are 2 and 3. Here 
1

GNP , 
1

CNT , 
3

GNP  and 
3

CNT  are 

graphene and CNT conductivities along 1 and 3 directions, respectively. 

For oblate inclusions such as graphene, the S-tensor has the following components 



15 
 

2 1/21
22 33 1 1 1 11 332 3/2

1

arccos (1 ) , 1 2 ,
2(1 )

GNP GNP GNP GNPS S S S


  


 = = − − = − −
        (17) 

and for prolate inclusions such as CNTs, the components are given by 

2 1 22
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2

( 1) arccosh , 1 2 ,
2( 1)

CNT CNT CNT CNTS S S S


  


 = = − − = − −
      (18) 

in which 
1  stands for the aspect ratio of phase 1 (graphene platelet) and 

2  is the aspect 

ratio of phase 2 (CNTs).  

2.3.2 Interface effects 

As in elastic deformation, the interface effects are important in electrical conduction. For 

the effective conductivity, there are two principal interface effects. The first one is the 

imperfect mechanical bonding and the second one is electron tunneling. The first one tends to 

reduce the overall conductivity while the second one can enhance it. 

(i) Imperfect mechanical bonding 

As with the study of effective stiffness in the previous section, a thin interphase layer 

with weak conductivity is introduced here to surround the nanofiller to form a “coated” 

inclusion. The effective conductivity of the “coated” graphene nanoplatelet and “coated” 

CNT filler can be derived by the Mori-Tanaka method [32, 37], as 
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where the subscript “i” signifies the i-th component of the designated quantity, and “int” 

refers to the thin interphase layer. The quantities, 
int

GNP  and 
int

CNT , are the interphase 

conductivities between graphene-polymer interphase and between CNT-polymer interphase, 

that depend on the tunneling-assisted interfacial conductivity. 

(ii) Electron tunneling at the interface 
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To model the tunneling-assisted interfacial conductivity, it was observed that this 

mechanism leads to a sharp increase in electrical conductivity at the percolation threshold. 

Near the percolation threshold, the distance between nanofillers markedly decreases, and this 

increases the probability of electron tunneling. Considering electron hopping as a continuum 

statistical process, Cauchy’s cumulative probability function and its associated resistance-like 

function have been introduced [29]. In terms of graphene and CNT volume fractions, 
1c  and 

2c , and their corresponding percolation thresholds, *

1c  and *

2c , Cauchy’s cumulative 

functions for graphene and CNT nanocomposites are respectively given by 
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where 1  and 2  are the scale parameters of the electronic tunneling at graphene-matrix 

interface and CNT-matrix interface, respectively. The resistance-like functions for graphene 

and CNT are given by 
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With the aid of these two functions, it has been demonstrated that the tunneling-assisted 

interfacial conductivities can be represented by [29, 30] 

( )(int) *

int 0 1 1 1 1/ , , ,GNP GNP c c   =                                           (22.1) 

( )(int) *

int 0 2 2 2 2/ , , ,CNT CNT c c   =                                          (22.2) 

where 
(int)

0

GNP  and 
(int)

0

CNT  represent the intrinsic graphene-THV and CNT-THV 

interfacial conductivities solely due to the imperfect mechanical bonding. This set of 

interphase conductivities, int

GNP  and int

CNT , should be used in Eqs. (19.1) and (19.2), to 
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calculate the effective conductivities of the coated graphene and CNT, which in turn are to 

replace their original conductivities in Eq. (16) of EMA.   

2.3.3 Percolation thresholds for the two inclusion phases 

Percolation phenomenon occurs in electrical conductivity of nanofiller-reinforced 

composites. It describes a dramatic increase (usually several orders of magnitude) in 

conductivity with only a slight increase in the amount of nanofillers. For a traditional 

two-phase nanocomposite, such as graphene/polymer composite or CNT/polymer composite, 

the filler aspect ratio, orientation, and dispersion state are reported to be the most important 

factors affecting the value of percolation threshold.  

For our graphene/CNT/polymer three-phase composite, percolation can occur in a 

graphene/polymer inclusion first, or in a CNT/polymer inclusion first, depending on the 

aspect ratio of graphene and CNT. So, there are dual percolation phenomena for the 

three-phase composite. As pointed out in [29], the percolation threshold for each inclusion 

phase can be determined by setting the matrix phase to be an ideal insulator, 0 0 = . Under 

this condition the governing equation in the EMA, Eq. (16), will turn into a quadratic 

equation about effective conductivity e . As the graphene volume fraction increases from 

zero to a critical value *

1c  and CNT volume fraction increases from zero to a critical value 

*

2c , this quadratic equation changes from having no solution to giving rise to a non-zero 

solution. These critical values *

1c  and *

2c  are the percolation thresholds respectively for 

graphene nanoplatelets and CNTs; they can be determined by setting 0th term of e  to zero. 

Then we can have a linear equation about 1c  and 2c , which means the percolation threshold 

for one inclusion phase will be influenced by the presence of the other inclusion phase in our 

three-phase nanocomposite. Only if the volume fraction of one inclusion phase is specified, 

the percolation threshold for the other one can be derived. The outcomes of the two 

percolation thresholds are: 
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We can see unlike the percolation threshold in a two-phase composite that just depends 

on inclusion aspect ratio, * *

1 1 ( )c c = , percolation threshold for two inclusion phases in 

three-phase composite is a function as * *

1 1 1 2 2( , , )c c c =  and * *

2 2 1 2 1( , , )c c c = . Moreover, 

if we take graphene percolation threshold *

1c  for example to consider, CNT volume fraction 

will make it decrease linearly. This is because after the addition of CNTs in the composite, 

the space for graphene fillers to form continuous conductive paths are constrained and 

reduced, besides this, CNTs themselves can connect graphene fillers to construct new 

graphene-CNT conductive paths. This leads to a lesser amount of graphene required to form 

the conductive pathway, and thus a lower percolation threshold. The same mechanism also 

applies to the CNT percolation threshold *

2c . 

2.3.4 Resistors in parallel model for the effective resistance of a pressure sensor 

The effective conductivity of three-phase composite e  can be determined from EMA 

and interface effects. For the calculation of overall effective resistance, this bent pressure 

sensor is treated as numerous differential resistors in parallel as Fig. 5 shows. We divide the 

sensor plate into n  equal small resistors, each resistor holding the length 

( / ) /ilen L y t i n = − +   and cross-sectional area A Wt n= . Here the resistor number i  

is counted from the top to the bottom so that, 0i =  and ,i n=  respectively stand for the top 

and the bottom layers of the resistors. The resistance of each small resistor is 

( )i i eR len A= . Finally, the total resistance of the bent pressure sensor can be obtained from 
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the effective resistance of the parallel resistors: 

1

1

1n

i i

R
R

−

=

 
=  
 
 . Here we take 100n =  for 

calculations in this article. 

 

Fig.5. Resistors in parallel model 

2.3.5 Computational procedure 

By now the theory is completely developed. The following schematic shows the 

computational procedure for the calculation of final resistance response of the 

nanocomposite-based piezoresistive sensor, which corresponds to Sect. 2.1 to Sect. 2.3.4. 

 

Fig.6. The computational procedure of resistance calculation 
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3 RESULTS AND DISCUSSION 

In order to make direct comparison with the experimental results of Lee et al. [35], the 

data of the size of pressure sensor were taken directly from that paper, that is, the length 

9L cm= , width 9W cm=  and thickness 20t m= . Also, in accordance with the 

experimental conditions, the aspect ratios of graphene nanoplatelets and CNTs are 

respectively given as 1 0.087 =  and 2 30.2 = . The initial volume fractions of graphene 

and CNTs before bending are 1.47vol% and 0.026vol%, which were translated from the 

experiment weight fractions 1.7wt% and 0.017wt%. As for the THV matrix phase, its 

Young’s modulus and Poisson’s ratio are 0 2GPaE =  and 0 0.35 = . The electrical 

conductivity of pure THV is taken as 8

0 4 10 −=  S/m. All other mechanical and electrical 

constants for the calculations of graphene/CNT/THV composite are listed in Tables 1 and 2, 

respectively. 

3.1 Elastic behavior and Young’s modulus of graphene/CNT/THV nanocomposite 

We first discuss the elastic moduli, especially Young’s modulus of the three-phase 

graphene/CNT/polymer composite, since in bending deformation Young’s modulus is an 

important quantity that correlates stress and strain. From Sect. 2.2.3 we know the overall 

Young’s modulus is a function of volume fractions of two inclusion phases. But we can start 

with finding how it is solely related to 1c  (or 2c ) by specifying different values of 2c  (or 

1c ). For example, as in original composite before bending, the CNT volume fraction is 

0.026%, by setting 2 0.026%c =  we draw a curve of 1( )E E c= , as Fig. 7(a) shows. The 

blue solid line is obtained by considering the imperfect interface effect while the red dashed 

line is the perfect interface result. There is another green dashed line for comparison which 

represents a condition with no CNT inclusions. We can see that the imperfect mechanical 

bonding between inclusions and polymer weakens the overall Young’s modulus, 

corresponding to what we discussed in previous theoretical parts. As the amount of CNT 

inclusions in our three-phase composite is very small, it leads to a small difference with and 
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without CNTs. Similarly, we can get the curve of 2( )E E c=  by setting 1 1.47%c =  before 

bending, as Fig. 7(b) shows. There is an obvious increase of Young’s modulus in the 

three-phase composite compared to the two-phase one without any graphene because the 

amount of graphene fillers is much larger than CNTs and graphene plays a dominant role in 

determining the overall stiffness. 

 

(a)                                        (b) 

Fig.7. Overall Young’s modulus versus (a) graphene volume fraction and (b) CNT volume fraction 

Then we can combine these two to draw a 3D mesh diagram of overall Young’s modulus 

as a function of graphene volume fraction and CNT volume fraction, 1 2( , )E E c c= , as Fig. 8 

shows. Where the starting point of the surface is 2GPa, corresponds to the Young’s modulus 

of pure polymer. With the increase of either graphene volume fraction or CNT volume 

fraction, the overall Young’s modulus increases smoothly. Besides, we can compare the 

reinforcements in three-phase nanocomposite from graphene fillers and CNTs, the latter has a 

more significant enhancement. But this is not a general situation, the reinforcements from 

different nanofiller inclusions depend on elastic stiffness tensors and aspect ratios of 

inclusions. With the values we set as in Table 1, under this circumstance we can say CNTs 

increase the overall elastic moduli to a greater extent than graphene with the same volume 

fractions. 
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Fig.8. The 3D mesh diagram of Young’s modulus versus two inclusion phase volume fractions 

3.2 Bending deformation of graphene/CNT/THV nanocomposite 

Now we want to find out how the nanofiller pressure sensor deforms under bending. We 

will give the results by the curvature of bent composite plate and the changes of volume 

fractions of different phases during the bending process. Since we treat the nanofiller 

composite as a thin plate and bent composite longitudinal section as a thin-sector, the 

curvature is a key factor to describe the bending deformation. Combining Young’s modulus 

that we just discussed and bending governing equations in Sect. 2.1, we can solve for the 

value of radius of curvature   explicitly with a given external pressure. Then taking its 

reciprocal we can get the bending curvature as Fig. 9 shows. There are two conditions that 

should be taken into account: a variable Young’s modulus that is related to pressure ( )E P  

and the imperfect interface. With these two factors, the calculation leads to our solid blue 

curve. If we treat Young’s modulus as a constant value, say the Young’s modulus of 

composite before bending, beforeE , we will get a curvature that is a little bigger than the true 

one as the green dashed curve shows. This is because during the bending, the increase of 

inclusions volume fractions leads to the increase of the effective Young’s modulus, making 

the bent composite stiffer and finally having a little smaller curvature compared to the 

condition with a constant Young’s modulus. As for the interface effect, a perfect interface will 
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lead to a higher Young’s modulus, making the curvature smaller than the actual value, as the 

red dashed curve shows. 

 

Fig.9. The change in curvature of composite plate under bending 

Next, we consider the changes of volume fractions of two inclusion phases, graphene 

and CNT, during the bending, as Fig. 10 shows. The starting points are respectively the initial 

graphene volume fraction and CNT volume fraction. With the increase of the applied pressure, 

the composite becomes more bent, leading to the decrease of the overall volume and 

increases of graphene or CNT volume fractions. When the applied bending pressure is up to 

1kPa, 1c  reaches approximately to 1.487% while 2c  is around 0.0263%. As with the 

curvature discussion, there are two comparison curves for just considering the imperfect 

interface or just considering variable Young’s modulus. 

 

(a)                                       (b) 

Fig.10. The change in (a) graphene volume fraction and (b) CNT volume fraction under bending 
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3.3 Electrical behavior of graphene/CNT/THV nanocomposite 

3.3.1 Conductivity and percolation threshold 

From EMA, the effective electrical conductivity can be written as a function of 

inclusions volume fractions, 1 2( , )e e c c = . The electrical behaviors are more complicated 

than mechanical ones since the percolation threshold should be considered here, which 

depends on the two inclusion phases in a three-phase composite. To analyze how graphene 

phase and CNT phase influence the total effective conductivity, we start by specifying the 

volume fraction of one phase to find the relation between conductivity and the volume 

fraction of the other phase. 

 

Fig.11. Effective electrical conductivity versus graphene volume fraction at different CNT fractions. 

For example, by taking CNT volume fraction at its initial value 0.026%, we can draw a 

curve of conductivity e  versus graphene volume fraction 1c  as in Fig. 11. The blue curve 

takes both imperfect mechanical bonding interface effect and tunneling assisted interfacial 

conductivity into account. In the same figure the other two dashed curves that represent 

2 0c =  and 2 0.5%c =  are also provided for us to see how the amount of CNTs affects the 

percolation threshold of graphene (i.e., the volume fraction of graphene at vertical line). With 

the increase of CNTs, percolation threshold of graphene will decrease. It corresponds with 

our Eqs. (23) and (24) where we wrote the percolation threshold of one inclusion phase as a 
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function of volume fraction of the other inclusion phase, *

1 2( )c c . The same rule also applies 

to the percolation threshold of CNTs with the change of amount of graphene fillers, *

2 1( )c c . 

Extending this to the general two-phase-dependent case, the overall conductivity versus 

volume fractions of the two inclusion phases is described as a 3D mesh diagram in Fig. 12. 

We can clearly see how exactly percolation occurs inside the graphene/CNT/polymer 

composite owing to the increase of graphene fillers and CNTs. As for the small jumps of 

conductivity after percolation, it is attributed to the difference of graphene and CNT intrinsic 

conductivities, leading to different effective conductivities after percolation in the composite. 

 

Fig.12. The 3D mesh diagram of electrical conductivity versus two inclusion phase volume fractions 

3.3.2 Overall effective resistance 

Combining all the above, we finally obtain the relationship between the overall 

resistance of the three-phase nanocomposite sensor and applied bending pressure. The curves 

are shown in Fig. 13. The blue points are the experiment data of Lee et al. [35], and the blue 

solid curve is our analytical result considering imperfect interface and tunneling-assistant 

interfacial conductivity. From the results we can see that our simulation is in close agreement 

with the experiment data even though there exist small deviations when the resistance has a 

sharp decrease. This sharp decrease region is exactly the percolation threshold, which 

represents that, just after the addition of applied pressure, percolation occurs in 
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graphene/CNT/polymer. Since the amount of CNTs inside the composite is much smaller 

than graphene, it is graphene that dominants the overall percolation threshold. So, we can 

conclude that the percolation threshold for graphene, *

1c , is just slightly larger than the initial 

graphene volume fraction 1.47%, which corresponds to the applied pressure of 0.1 kPa from 

our calculations. This value of pressure is close to what can see from the experiment data in 

[35], which is around 0.1-0.2 kPa. 

The green dashed curve and red dashed curve are also provided as two comparison 

conditions. The first one was obtained by just considering imperfect interface but not the 

tunneling-assisted conductivity, and the second one is for the perfect interface condition. 

From the figure we can see that imperfect interface with constant interfacial conductivity will 

give a little higher resistance, while not considering the imperfect interface will reach a much 

lower resistance. This is consistent with our results in Sect. 2.3.2. 

 

Fig.13. The resistance response of graphene/CNT/THV-based sensor under bending. Experiments 

from Lee et al. [35]. 

We now change the amount of CNTs inside the three-phase composite to see how CNTs 

influence the overall resistance under the same bending condition. From Fig. 14 we can see 

that, even a very small change of CNT volume fraction can cause a huge difference in overall 

resistance and percolation threshold. From Eq. (23), we know that the percolation threshold 

for graphene depends on the amount of CNTs, and thus, if we remove CNTs from the 

composite we can get a slightly higher percolation threshold for graphene and a little different 
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conductivity curve, as Fig. 11 already indicated. Although it is very close to true case in Fig. 

11, our three-phase composite sensor is pressure-sensitive, and changes of volume fractions 

of inclusion phases, though in a small range under the bending, can still lead to totally 

different resistance versus pressure curves, as Fig. 14 indicated. With the increase of the 

amount of CNTs, percolation threshold for graphene decreases, making the percolation 

occurring earlier and at less corresponding pressure. This finally influences the value of 

overall resistance significantly under the same external bending pressure. 

 

Fig.14. The different resistance of sensor under bending with different amounts of CNTs. Experiments 

from Lee et al. [35]. 

Recalling that the resistors-in-parallel model was adopted when we calculate the overall 

resistance of the bent sensor, it is instructive to provide a comparison curve that does not 

consider resistors in parallel. In Fig. 15, the green dashed curve represents the calculated 

resistance by treating the bent sensor as one resistor with a constant length, say, the initial 

length of composite sensor 9cm, and the blue solid line is from the suggested 

resistors-in-parallel model. They are very close to each other, which indicates that the two 

models do not have significant difference on the overall resistance. This is because the length 

of our composite sensor is much larger than its thickness, leading to very small changes on 

the effective lengths of different layers that will be taken into account in overall resistance 

calculation. But compared to treating the bent sensor as one single resistor, the 

resistors-in-parallel model should give a more precise result. 
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Fig.15. Comparison of considering resistors-in-parallel model with a single-resistor model. 

Experiments from Lee et al. [35]. 

3.4 Application of the theory to two-phase CNT/THV nanocomposite-based pressure 

sensor 

Apart from the three-phase graphene/CNT/THV nanocomposite pressure sensor, the 

experiments of Lee et al. [35] also reported pressure-sensing results for the two-phase 

CNT/THV pressure sensor. In this last section, we demonstrate the application of the 

developed theory to this case by setting the graphene volume fraction, 1 0c =  in all 

calculations, and 2c  is reset as 1.49% (1wt%) according to the experiment data. First, with 

the increase of applied pressure from zero to 1.8 kPa, the change of CNT volume fraction was 

obtained as shown in Fig. 16. 
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Fig.16. The change in CNT volume fraction in CNT/THV composite under bending. 

With the CNT volume fraction so updated, the results of overall resistance versus the 

applied pressure during bending was calculated, as shown in Fig. 17. The calculations 

included the conditions of perfect interface (dashed red lines), imperfect interface without 

electron tunneling (dashed green line), and the complete interfacial conditions with imperfect 

bonding and electron tunneling (solid blue line). The sharp decrease of resistance is evident 

with the applied pressure, most notably around 0.1-0.15kPa. Just after applying the pressure, 

the percolation occurs inside the composite, which means that the percolation threshold is 

only a little more than the initial CNT volume fraction 1.49%. According to Eq. (24) and the 

CNT aspect ratio 2 30.2 = , our calculated percolation threshold is 1.492%, which fits well 

with the experimental behavior. 

 

 

Fig.17. The resistance response of CNT/THV-based sensor under bending. Experiments from Lee et 

al. [35].  

4 CONCLUSIONS 

In this paper, we have established a comprehensive theory to calculate the elastic 

stiffness and electrical conductivity of a hybrid graphene/CNT/polymer nanocomposite 

sensor during the bending process. A key finding is that the volume fractions of graphene 

nanoplatelets and CNTs increase with the bending curvature, and this increase in turn leads to 
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the sharp decrease in electrical resistance once the bending force is applied. The explicit 

relationship between external bending pressure and resistance of pressure sensor is given. 

With the increase of the pressure, resistance reduced by several orders of magnitude, which 

makes pressure sensor conductive from an insulator. The theoretical origin of this remarkable 

outcome is believed to be first reported in the literature. It can have significant implications 

on the applications of nanofiller-reinforced polymer composites in pressure sensing. 

In the calculations of elastic stiffness, in particular, the effective Young’s modulus, of the 

three-phase graphene/CNT/polymer nanocomposite, the influence of volume fractions of 

graphene nanoplatelets and CNTs, and their transversely anisotropic behavior, are fully 

accounted for, under both perfect and imperfect interface conditions. The growth of graphene 

and CNT volume fractions, and the change of bending curvature of the composite sensor as 

the applied pressure increases, are demonstrated. In the electrical setting, the effective 

conductivity and percolation threshold of the three-phase nanocomposite are fully addressed 

with full consideration of imperfect interfacial bonding and electron tunneling. In addition, a 

resistors-in-parallel model is also proposed to calculate the effective resistance of the pressure 

sensor. The calculated conductivity and percolation threshold, and the decrease of resistance 

for the three-phase graphene/CNT/THV nanocomposite as the applied pressure increases, are 

shown to be in accordance with the experimental data. The theory has also been applied to the 

two-phase CNT/THV nanocomposite. The calculated resistance is found to decrease 

markedly as the applied pressure increases.  

The outcomes of these studies have pointed to the direction that the hybrid three-phase 

composite is exactly a very novel and valuable material compared to the traditional 

two-phase nanocomposites that contain just graphene or just CNTs. The mechanism on 

conductance enhancement of two inclusion phases is more significant compared to a single 

inclusion phase. From our theory, we can clearly see exactly how percolation occurs inside 

the graphene/CNT/polymer composite owing to the increase of graphene fillers and CNTs, 

and how both two inclusion phases determine the overall percolation threshold and electrical 

conductivity. Moreover, these two inclusion phases influence each other’s respective 

percolation threshold. The percolation threshold for graphene fillers decreases with the 
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addition of CNTs, and this phenomenon also applies to percolation threshold for CNTs after 

adding graphene. Based on this trait, the nanofiller pressure sensor made of 

graphene/CNT/polymer composite exhibits more sensitivity to pressure and lower electrical 

resistance. More importantly, since we can obtain the elastic and electrical responses for a 

given sensor, we can inversely use our theory to design piezoresistive sensors. To meet with 

the specific desired working pressure, resistance responses and sensitivity range in industry, 

we can predict the geometry and weight (or volume) concentrations of each component in 

this kind of nanofiller-polymer based sensors. This can provide new ideas for the 

development of more novel and ideal piezoresistive sensors in industrial production. 

Appendix 

For an ellipsoidal inclusion embedded into polymer matrix with the symmetric axis 

identified as 1x , the components of its Eshelby tensor in mechanical domain are given as 
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where ( )g   is given by 2 3/2 2 1/2( ) / (1 ) acos( ) (1 )g         = −  − −     when inclusion is 
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oblate like graphene; and 2 3/2 2 1/2( ) / ( 1) ( 1) acosh( )g         = −  − −     when inclusion 

is prolate like CNT. When we calculate the Eshelby tensor components of graphene-THV 

interface and CNT-THV interface, just replace 0  in above expressions by int

GNP  and int

CNT  

respectively. 

The conversions between the elastic stiffness tensor components and Young’s modulus 

and Poisson’s ratio of isotropic medium can be expressed as 

2(1 2 )(1 )

i
i

i i

E
k

 
=

− +
                                                 (A.8) 

(1 2 )(1 )

i i
i

i i

E
l



 
=

− +
                                                  (A.9) 

(1 )

(1 2 )(1 )

i i
i

i i

E
n



 

−
=

− +
                                                  (A.10) 

2(1 )

i
i i

i

E
m p


= =

+
                                                   (A.11) 

where subscript “i” can be 0 to represent the isotropic polymer matrix phase or can be “int” to 

represent the isotropic graphene-THV interface and CNT-THV interface. 
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Table 1. Parameters and physical values used in mechanical part (graphene properties taken 

from Cadelano et al. [41] and Hashemi [42] and CNT properties from Shen and Li [43]) 

Plane-strain bulk modulus of graphene, 1k  (GPa)  26.1 10  

Cross modulus of graphene, 1l  (GPa)  15 

Axial modulus of graphene, 1n  (GPa)  36.9 

Transverse shear modulus of graphene, 1m  (GPa)  24.3 10  

Axial shear modulus of graphene, 1p  (GPa)  4 

Plane-strain bulk modulus of CNT, 2k  (GPa)  22.7 10  

Cross modulus of CNT, 2l  (GPa)  86.4 

Axial modulus of CNT, 2n  (GPa)  31.1 10  

Transverse shear modulus of CNT, 2m  (GPa)  17 

Axial shear modulus of CNT, 2p  (GPa)  24.4 10  

Young’s modulus of graphene-THV interface, int

GNPE  (GPa)  20 

Poisson’s ratio of graphene-THV interface, int

GNP  0.33 

Young’s modulus of CNT-THV interface, int

CNTE  (GPa)  21.0 10  

Poisson’s ratio of CNT-THV interface, int

CNT  0.33 
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Table 2. Parameters and physical values used in electrical part (graphene properties taken 

from Stankovich et al. [20] and CNT properties from Zhang et al. [44]) 

Out-of-plane electrical conductivity of graphene filler, 1

GNP  
1( )Sm−

 21.0 10  

In-plane electrical conductivity of graphene filler, 3

GNP  
1( )Sm−

 51.0 10  

Axial electrical conductivity of CNT, 1

CNT  
1( )Sm−

 43.0 10  

Transverse electrical conductivity of CNT, 3

CNT  
1( )Sm−

 30  

Intrinsic electrical conductivity of graphene-THV interface, 
(int)

0

GNP 1( )Sm−
 2.0  

Intrinsic electrical conductivity of CNT-THV interface, 
(int)

0

CNT 1( )Sm−
 0.2  

Electronic tunneling scale parameter at graphene-THV interface, 1  41.5 10−  

Electronic tunneling scale parameter at CNT-THV interface, 2  41.0 10−  

 

 


