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A B S T R A C T

A clear understanding of actual infection rate is imperative for control and prevention of
diseases. In particular, it helps in formulating effective vaccination strategies and in assessing
the level of herd immunity required to contain the virus. In this paper, we conduct theoretical
and numerical study of a novel optimization procedure aimed at stable estimation of incidence
reporting rate and time-dependent effective reproduction number from real data on new
incidence cases, daily new deaths, and vaccination percentages. The iteratively regularized
optimization algorithm can be applied to a broad class of data fitting problems constrained by
various biological models, where one has to account for under-reporting of cases. To that end,
general nonlinear observation operators in real Hilbert spaces are considered in the proposed
convergence analysis. To illustrate theoretical findings, numerical simulations with 𝑆𝑉 𝐼𝑠𝐼𝑣𝑅𝐷
compartmental model and real data for Delta variant of COVID-19 pandemic in different states
of the US are conducted.

1. Introduction

How widely has the virus spread? This important and often overlooked question was brought to light by the recent COVID-19
utbreak. Several techniques have been used to account for silent spreaders along with varying testing and healthcare seeking habits
s the main reasons for under-reporting of COVID-19 cases. It has been observed that silent spreaders play a more significant role
n disease progression than previously understood, highlighting the need for policymakers to incorporate these hidden figures into
heir strategic responses.
In [1], the real number of COVID-19 instances in Europe has been investigated based on reported daily new deaths and pre-

estimated death rate (assuming it takes about 18 days from virus acquisition to death). To account for the observed irregularities,
the authors considered how quickly each country detected and reported COVID-19 infections. The study in [1] suggested that the
factual tally of COVID-19 cases noticeably surpassed the officially reported statistics.

The study in [2] employed the techniques of machine learning to find the incidence reporting rate by incorporating ‘‘invisible
spreaders’’ in a modified 𝑆𝐼𝑅 (Susceptible - Infected - Removed) model. The authors of [2] assessed the impact of invisible spreaders
on the pandemic progression by varying the proportion of invisible spreaders in their numerical simulations. They discovered that
even a slight rise in the percentage of invisible spreaders has the potential to significantly magnify the overall health impact on the
community.

The research [3] used a modified 𝑆𝐸𝐼𝑅 model that integrated both epidemiological and behavioral factors to address the
limitations of testing, prevalence of asymptomatic cases, and reporting variations among countries until September 30, 2020. The
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study revealed a significant under-reporting of cases and deaths globally, with cumulative cases around 7 times higher than in
official reports across 92 nations. The research underscored the challenges of assessing the true scope of the pandemic, emphasizing
the need for accurate reporting and effective policy responses.

The authors of [4] utilize a networked dynamic population model together with Bayesian inference to analyze the early spread
f COVID-19 in China. According to the authors’ findings, around 86% of COVID-19 infections remained undocumented before
ravel restrictions were put in place on January 23, 2020, and before the widespread testing became available. The transmission
ate of undocumented cases per person was slightly over a half the transmission rate of the documented ones. Still, due to their
arge number, these undocumented infections were the source of the vast majority of documented cases. This explains the rapid
eographic spread of COVID-19 in early 2020 and the unique challenge of containing this virus.
In [5], numerical simulations with post-vaccination COVID-19 data have been conducted for the period from July 9 to November

5, 2021. A new optimization algorithm has been introduced to analyze the data for new incidence cases and daily deaths. The study
ound that during the Delta wave of the pandemic in the US, in most states the reporting rate of new COVID-19 cases was between
5% to 25%.
While the methodology for the reporting rate estimation has moved to the forefront of bioinformatics research during the COVID-

9 pandemic, this topic is of paramount importance in the study of many other infectious diseases. For example, in the case of 2014
bola (EVD) outbreak in West Africa [6], numerous early cases have not been reported since the symptoms of the disease were
imilar to malaria, typhoid fever, hepatitis and other viral haemorrhagic fevers. As the result, identification of the true nature of
he disease and the implementation of much needed mitigation measures were delayed. During Vibrio cholerae epidemic in Peru, a
significant proportion of asymptomatic cases [7,8] remained underreported. The unprecedented cholerae outbreak started in 1991
and generated multiple waves of disease over several years. In [8], the reporting rate estimation for cholerae infections has been
ncorporated in the numerical study.
A clear understanding of actual infection rate is imperative for control and prevention. In particular, it helps in formulating

ffective vaccination strategies and in assessing the level of herd immunity required to contain the virus. In this paper, we conduct
heoretical and numerical study of a novel optimization procedure aimed at stable estimation of incidence reporting rate and time-
ependent effective reproduction number from real data on new incidence cases, daily new deaths, and vaccination percentages. The
egularized optimization algorithm can be applied to a broad class of data fitting problems constrained by various biological models,
here one has to account for under-reporting of cases. To that end, in the convergence analysis we consider general nonlinear
bservation operators in real Hilbert spaces. To illustrate our theoretical findings, we conduct numerical simulations with real data
or Delta variant of COVID-19 pandemic in different states of the US [9,10]. As a biological model for post-vaccination stage of
OVID-19, we use a 𝑆𝑉 𝐼𝑠𝐼𝑣𝑅𝐷-type of transmission dynamic first introduced in [11].
The paper is organized as follows. In Section 2, we present the motivation and introduction of a new iteratively regularized

ptimization scheme for the reporting rate estimation. In Section 3, a rigorous theoretical analysis of the proposed algorithm, coupled
ith a posteriori stopping rule, is carried out. Numerical experiments for the 𝑆𝑉 𝐼𝑠𝐼𝑣𝑅𝐷-constrained nonlinear least squares problem
re given in Section 4. Conclusions and future plans are outlined in Section 5.

2. Nonlinear constrained minimization problem

Parameter 0 is a widely used indicator of a transmission potential in a well-mixed susceptible population and is driven by
the average contact rate and the mean infectious period of the disease [12]. Yet, it only characterizes transmission potential at
the onset of the epidemic and varies geographically due to differences in local healthcare, mitigation measures, social and cultural
factors [13,14]. Unlike 0, the effective reproduction number, 𝑒(𝑡), tracks time-dependent changes in transmission potential during
the entire course of the outbreak. Therefore, stable estimation of the effective reproduction number, 𝑒(𝑡), and its underlying
transmission rate, 𝛽(𝑡), is extremely important [15–17].

A time-dependent transmission rate of an epidemic, 𝛽(𝑡), is usually estimated from a nonlinear minimization problem constrained
by a disease-specific (networked) dynamic population model, 𝐺̃(𝑢, 𝛽) = 0, with observation operators, 𝛷̃(𝑢, 𝛽) and 𝛺̃(𝑢, 𝛽), fitted to
daily new cases and deaths, 𝜂̂ and 𝜎̂, respectively. In 𝐺̃(𝑢, 𝛽) = 0, 𝑢 is the state variable describing various ′′states′′ of a disease.
Oftentimes, due to a considerable number of asymptomatic cases [18,19], one has to assume that incidence data, 𝜂̂, is underreported,
and the true number of incidence cases is 𝜂̂∕𝛹 , 0 < 𝛹 < 1. The reporting of daily new deaths, on the other hand, is more accurate
for most diseases. While still noise contaminated, the data on daily new deaths, 𝜎̂, is not generally under- or over-reported. Thus,
our goal is to optimize the biological model, 𝐺̃(𝑢, 𝛽) = 0, with respect to the transmission rate, 𝛽 = 𝛽(𝑡), and the reporting rate, 𝛹 ,
by solving the following nonlinear least squares problem (NLSP)

min
𝛽,𝜓

𝛬̃(𝛽, 𝜓), where 𝛬̃(𝛽, 𝜓) ∶=
𝜆1
2
‖𝛷̃(𝑢, 𝛽) − 𝜓𝜂̂‖2 +

𝜆2
2
‖𝛺̃(𝑢, 𝛽) − 𝜎̂‖2, 𝜆1, 𝜆2 > 0, (2.1)

ubject to the constraint, 𝐺̃(𝑢, 𝛽) = 0. In (2.1), the reporting index, 𝜓 , is the reciprocal of the reporting rate, 𝛹 , and 𝑢 is the state
ariable. The purpose of 𝜆1 and 𝜆2 is to balance the two residuals, since 𝜓𝜂̂ and 𝜎̂ are of different orders of magnitude. If one solves
he constraint biological system, 𝐺̃(𝑢, 𝛽) = 0, for the state variable, 𝑢, and substitutes 𝑢 = 𝑢(𝛽) into the observation operators, 𝛷̃(𝑢, 𝛽)
nd 𝛺̃(𝑢, 𝛽), then one arrives at an unconstrained minimization problem

min𝛬(𝛽, 𝜓), where 𝛬(𝛽, 𝜓) ∶=
𝜆1

‖𝛷(𝛽) − 𝜓𝜂̂‖2 +
𝜆2

‖𝛺(𝛽) − 𝜎̂‖2, 𝜆1, 𝜆2 > 0, (2.2)
2

𝛽,𝜓 2 2



Journal of Computational and Applied Mathematics 451 (2024) 116105A. Smirnova and M. Baroonian

w

L

g
e
n

S
G
a

t

where 𝛷̃(𝑢(𝛽), 𝛽) ∶= 𝛷(𝛽) and 𝛺̃(𝑢(𝛽), 𝛽) ∶= 𝛺(𝛽). In most practically interesting cases, the population model, 𝐺̃(𝑢, 𝛽) = 0, is nonlinear
with respect to the state variable, 𝑢. Therefore, generally, the operator equation 𝐺̃(𝑢, 𝛽) = 0 has to be solved numerically for every
current value of 𝛽(𝑡) = 𝛽𝑘(𝑡), 𝑘 = 1, 2,…

Assume that Fréchet differentiable observation operators 𝛷 and 𝛺 act between real Hilbert spaces 𝐻 and 𝐻1 and 𝐻 and 𝐻2,
respectively, i.e., 𝛷 ∶ 𝐻 → 𝐻1 and 𝛺 ∶ 𝐻 → 𝐻2. By the first order necessary condition (FONC) for the unconstrained minimization,
one concludes

𝜕
𝜕𝜓

𝛬(𝛽, 𝜓) = 0, that is, −(𝜂̂, 𝛷(𝛽)) + 𝜓‖𝜂̂‖2 = 0 and 𝜓 =
(𝜂̂, 𝛷(𝛽))
‖𝜂̂‖2

, (2.3)

here ( , ) is a scalar product in the Hilbert space 𝐻1. This yields the NLSP in the form

min
𝛽

{

𝜆1
2

‖

‖

‖

‖

𝛷(𝛽) −
𝜂̂(𝜂̂, 𝛷[𝛽])

‖𝜂̂‖2
‖

‖

‖

‖

2
+
𝜆2
2
‖

‖

‖

‖

𝛺(𝛽) − 𝜎̂
‖

‖

‖

‖

2}

. (2.4)

et 𝜈̂ ∶= 𝜂̂
‖𝜂̂‖

be the normalized incidence data. Then nonlinear optimization problem (2.4) can be cast as follows

min
𝛽

{

𝜆1
2

‖(𝐸 − 𝜈̂(𝜈̂, ⋅ ))𝛷(𝛽)‖2 +
𝜆2
2

‖𝛺(𝛽) − 𝜎̂‖2
}

. (2.5)

In (2.5), 𝐸 is the identity operator in 𝐻1 and 𝐸 − 𝜈̂(𝜈̂, ⋅ ) is an orthogonal projection. By the FONC,

𝜆1
(

(𝐸 − 𝜈̂(𝜈̂, ⋅ ))𝛷′(𝛽)
)⊤ (𝐸 − 𝜈̂(𝜈̂, ⋅ ))𝛷(𝛽) + 𝜆2𝛺′⊤(𝛽)[𝛺(𝛽) − 𝜎̂] = 0. (2.6)

Since 𝑃 2 = 𝑃 = 𝑃⊤ for 𝑃 ∶= 𝐸− 𝜈̂(𝜈̂, ⋅ ), one has 𝜆1𝛷′⊤(𝛽)𝑃𝛷(𝛽)+𝜆2𝛺′⊤(𝛽)[𝛺(𝛽)− 𝜎̂] = 0. This yields the following Hessian operator:

𝐻(𝛽) ∶= 𝜆1𝛷
′′⊤(𝛽)𝑃𝛷(𝛽) + 𝜆1𝛷′⊤(𝛽)𝑃𝛷′(𝛽) + 𝜆2𝛺′′⊤(𝛽)[𝛺(𝛽) − 𝜎̂] + 𝜆2𝛺′⊤(𝛽)𝛺′(𝛽). (2.7)

In transition from full Newton to Gauss–Newton, one disregards the terms containing the second derivative operator applied to the
residual, since the residual is expected to decrease as iterations move forward. Thus one obtains Hessian approximation in the form

𝐻(𝛽) ≈ 𝜆1𝛷
′⊤(𝛽)𝑃𝛷′(𝛽) + 𝜆2𝛺′⊤(𝛽)𝛺′(𝛽). (2.8)

This Hessian approximation is self-adjoint and nonnegative definite. Indeed, for any ℎ ∈ 𝐻 , one has

𝜆1ℎ
⊤𝛷′⊤𝑃𝛷′ℎ + 𝜆2ℎ⊤𝛺′⊤𝛺′ℎ = 𝜆1ℎ

⊤𝛷′⊤𝑃⊤𝑃𝛷′ℎ + 𝜆2ℎ⊤𝛺′⊤𝛺′ℎ (2.9)
= 𝜆1(𝑃𝛷′ℎ)⊤𝑃𝛷′ℎ + 𝜆2(𝛺′ℎ)⊤𝛺′ℎ = 𝜆1‖𝑃𝛷

′ℎ‖2 + 𝜆2‖𝛺′ℎ‖2 ≥ 0.

Given Hessian approximation (2.8), we propose to solve minimization problem (2.5) numerically by using what we call iteratively
regularized projected Gauss–Newton (IRPGN) algorithm [20–23]:

𝑃 ∶= 𝐸 − 𝜈(𝜈, ⋅ ), 𝛷𝑘 ∶= 𝛷(𝛽𝑘), 𝛺𝑘 ∶= 𝛺(𝛽𝑘), 𝛷′
𝑘 ∶= 𝛷′(𝛽𝑘), 𝛺′

𝑘 ∶= 𝛺′(𝛽𝑘),
(

𝜆1𝛷
′⊤
𝑘 𝑃𝛷

′
𝑘 + 𝜆2𝛺

′⊤
𝑘 𝛺

′
𝑘 + 𝜏𝑘𝐿

⊤𝐿
)

𝑧𝑘 = −
{

𝜆1𝛷
′⊤
𝑘 𝑃𝛷𝑘 + 𝜆2𝛺

′⊤
𝑘 (𝛺𝑘 − 𝜎) + 𝜏𝑘𝐿⊤𝐿(𝛽𝑘 − 𝛽)

}

𝛽𝑘+1 = 𝛽𝑘 + 𝜇𝑘𝑧𝑘, (2.10)

where {𝜏𝑘} is the regularization sequence and 𝐿 is a linear operator from a Hilbert space 𝐻 to a real Hilbert space 𝐻3. The sequence
{𝜇𝑘} stands for the step size, while 𝛽 is a reference value for the unknown parameter, 𝛽. In practical implementation, it is assumed
that the observation operators, 𝛷 and 𝛺, are fitted to 𝜈 and 𝜎, some noise contaminated measurements for two data sets, 𝜈̂ and 𝜎̂,
respectively. The standard assumptions on {𝜏𝑘},

𝜏𝑘 ≥ 𝜏𝑘+1 > 0, 𝜏 ∶= sup
𝑘=0,1,2,…

√ 𝜏𝑘
𝜏𝑘+1

< ∞, and lim
𝑘→∞

𝜏𝑘 = 0 (2.11)

uarantee that, given the right choice of initial approximations, the regularization is sufficient to ensure stability, but not
xcessive [20,21]. The sequence {𝜇𝑘} can be chosen by a backtracking line search procedure [24] with an upper bound on the
umber of the search steps that would enforce the lower bound on 𝜇𝑘:

0 < 𝜇 ≤ 𝜇𝑘 ≤ 1. (2.12)

ince parameter estimation problems are generally unstable and the reported data are corrupt, iteratively regularized projected
auss–Newton algorithm (2.10) is expected to be semi-convergent, which means it has to be terminated early. To that end, we
dopt the following a posteriori stopping rule

max
{

‖𝑃𝛷𝛿‖
2, ‖𝛺𝛿 − 𝜎‖

2
}

< 𝜌𝛿 ≤ max
{

‖𝑃𝛷𝑘‖
2, ‖𝛺𝑘 − 𝜎‖2

}

, 0 ≤ 𝑘 < 𝛿 ,

𝑐 ∶= max
{

1, 2‖𝛷(𝛽)‖
}

<
√

𝜌, (2.13)

hat is, iterations are terminated at the first index 𝑘 = 𝛿 , for which max
{

‖𝑃𝛷𝑘‖2, ‖𝛺𝑘 − 𝜎‖2
}

is less than 𝜌𝛿.
3
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3. Convergence analysis

Of primary interest in our convergence analysis is the case where the functional in (2.5) is vanishing for exact data, 𝜈̂ and 𝜎̂,
that is, there is some element 𝛽 ∈ 𝐻 (maybe nonunique) such that

{

𝜆1
2

‖

‖

‖

𝑃𝛷(𝛽)‖‖
‖

2
+
𝜆2
2

‖

‖

‖

𝛺(𝛽) − 𝜎̂‖‖
‖

2
}

= inf
𝛽∈𝐻

{

𝜆1
2

‖

‖

‖

𝑃𝛷(𝛽)‖‖
‖

2
+
𝜆2
2

‖𝛺(𝛽) − 𝜎̂‖2
}

= 0 (3.1)

with 𝑃 ∶= 𝐸 − 𝜈̂(𝜈̂, ⋅ ) and 𝜈̂ ∶=
𝜂̂

‖𝜂̂‖
. Suppose that nonlinear operators 𝛷 and 𝛺 act between real Hilbert spaces 𝐻 and 𝐻1 and 𝐻

and 𝐻2, respectively, i.e., 𝛷 ∶ 𝐻 → 𝐻1 and 𝛺 ∶ 𝐻 → 𝐻2, and that 𝛷 and 𝛺 are Fréchet differentiable in 𝜁 (𝛽) ∶= {𝑞 ∈ 𝐻 ∶
𝑞 − 𝛽‖ ≤ 𝜁} without such structural assumptions as monotonicity, invertibility of 𝛷′⊤( ⋅ )𝛷′( ⋅ ) and/or 𝛺′⊤( ⋅ )𝛺′( ⋅ ) etc. The radius
of the neighborhood, 𝜁 , is specified in the statement of Theorem 1 below. Let the following conditions hold:

max
{

‖𝛷′(𝑞)‖, ‖𝛺′(𝑞)‖
}

≤ 𝑀1 for any 𝑞1 ∈ 𝜁 (𝛽), (3.2)

max
{

‖𝛷′(𝑞) −𝛷′(ℎ)‖, ‖𝛺′(𝑞) −𝛺′(ℎ)‖
}

≤ 𝑀2 ‖𝑞 − ℎ‖ for any 𝑞, ℎ ∈ 𝜁 (𝛽). (3.3)

efine  (𝑀1,𝑀2) to be the class of operators 𝛷 and 𝛺 satisfying (3.2) and (3.3). The crucial part of the convergence analysis of
lgorithm (2.10) is the following lemma.

Lemma 1. Assume that for a linear operator 𝐿 acting between real Hilbert spaces 𝐻 and 𝐻3, the operator 𝐿⊤𝐿 is surjective and there is
constant 𝑚 > 0 such that

(𝐿⊤𝐿ℎ, ℎ) ≥ 𝑚‖ℎ‖2 for any ℎ ∈ 𝐻. (3.4)

et nonlinear operators 𝛷 and 𝛺 be Fréchet differentiable in 𝜁 (𝛽) with 𝜁 > 0, and 𝜆1, 𝜆2, and 𝜏 be some positive constants. Then the
inverse operator, [𝜆1𝛷′⊤(𝛽)𝑃𝛷′(𝛽) + 𝜆2𝛺′⊤(𝛽)𝛺′(𝛽) + 𝜏𝐿⊤𝐿]−1, exists and the following inequalities hold

‖

‖

‖

[𝜆1𝛷′⊤(𝛽)𝑃𝛷′(𝛽) + 𝜆2𝛺′⊤(𝛽)𝛺′(𝛽) + 𝜏𝐿⊤𝐿]−1‖‖
‖

≤ 1
𝜏 𝑚

, (3.5)

‖

‖

‖

[𝜆1𝛷′⊤(𝛽)𝑃𝛷′(𝛽) + 𝜆2𝛺′⊤(𝛽)𝛺′(𝛽) + 𝜏𝐿⊤𝐿]−1𝜆1𝛷′⊤(𝛽)𝑃‖‖
‖

≤ 1
2

√

𝜆1
𝜏𝑚

, (3.6)

‖

‖

‖

[𝜆1𝛷′⊤(𝛽)𝑃𝛷′(𝛽) + 𝜆2𝛺′⊤(𝛽)𝛺′(𝛽) + 𝜏𝐿⊤𝐿]−1𝜆2𝛺′⊤(𝛽)‖‖
‖

≤ 1
2

√

𝜆2
𝜏𝑚

. (3.7)

roof of Lemma 1. According to (2.9) and (3.4), for arbitrary 𝜏 > 0 and 𝛽, ℎ ∈ 𝐻 , one has
(

[𝜆1𝛷′⊤(𝛽)𝑃𝛷′(𝛽) + 𝜆2𝛺′⊤(𝛽)𝛺′(𝛽) + 𝜏𝐿⊤𝐿]ℎ, ℎ
)

≥ 𝜏𝑚‖ℎ‖2.

herefore, [𝜆1𝛷′⊤(𝛽)𝑃𝛷′(𝛽) + 𝜆2𝛺′⊤(𝛽)𝛺′(𝛽) + 𝜏𝐿⊤𝐿]−1 exists and (3.5) holds, which implies that iterations (2.10) are well-defined.
o estimate the norm of

𝑇1 ∶= [𝜆1𝛷′⊤(𝛽)𝑃𝛷′(𝛽) + 𝜆2𝛺′⊤(𝛽)𝛺′(𝛽) + 𝜏𝐿⊤𝐿]−1𝜆1𝛷′⊤(𝛽)𝑃 , (3.8)

e note that for any bounded linear operator in a Hilbert space a polar decomposition is satisfied. Hence

𝑃𝛷′(𝛽) = 𝑈 |𝑃𝛷′(𝛽)|,

here |𝑃𝛷′(𝛽)| ∶= ((𝑃𝛷′(𝛽))⊤𝑃𝛷′(𝛽))1∕2 = (𝛷′⊤(𝛽)𝑃𝛷′(𝛽))1∕2 and 𝑈 is a partial isometry:

‖𝑈𝑞‖ = ‖𝑞‖ ∀𝑞 ∈  (𝑈 )⟂ and  (𝑈 ) ∶= {𝑞 ∶ 𝑈𝑞 = 0}.

enote

𝐴 ∶= 𝛷′⊤(𝛽)𝑃𝛷′(𝛽), 𝐵 = 𝜆2𝛺
′⊤(𝛽)𝛺′(𝛽) + 𝜏𝐿⊤𝐿, and 𝐶 ∶= 𝐴1∕2𝐵−1∕2,

hen (3.8) and condition (3.4) yield

𝑇1 = (𝜆1𝐴 + 𝐵)−1𝜆1𝐴1∕2𝑈⊤ = [𝐵1∕2(𝜆1𝐵−1∕2𝐴𝐵−1∕2 + 𝐸)𝐵1∕2]−1𝜆1𝐴1∕2𝑈⊤

= 𝐵−1∕2(𝜆1𝐶⊤𝐶 + 𝐸)−1𝜆1𝐶⊤𝑈⊤. (3.9)

riting 𝐶 = 𝑉 |𝐶| = 𝑉 (𝐶⊤𝐶)1∕2, where 𝑉 is a partial isometry, and applying the spectral theorem to the self-adjoint operator 𝐶⊤𝐶,
ne concludes

‖𝑇1‖ ≤ ‖𝐵−1∕2
‖ ‖(𝜆1𝐶⊤𝐶 + 𝐸)−1𝜆1𝐶⊤‖ ‖𝑈⊤

‖ ≤ ‖𝐵−1∕2
‖ ‖(𝜆1𝐶⊤𝐶 + 𝐸)−1𝜆1(𝐶⊤𝐶)1∕2‖ ‖𝑉 ⊤

‖

≤ 1
√

𝜏𝑚
max
𝑡≥0

𝜆1
√

𝑡
𝜆1𝑡 + 1

= 1
2

√

𝜆1
𝜏𝑚

. (3.10)

his proves (3.6). Using a similar argument with 𝐴 ∶= 𝛺′⊤(𝛽)𝛺′(𝛽), 𝐵 ∶= 𝜆1𝛷′⊤(𝛽)𝑃𝛷′(𝛽) + 𝜏𝐿⊤𝐿 and 𝐶 ∶= 𝐴1∕2𝐵−1∕2, one obtains
3.7).
4
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Remark 1. A special case of IRPGN algorithm (2.10) with 𝐿 = 𝐸, the identity operator in 𝐻 , was first introduced and studied
numerically in [5]. The penalty term for 𝐿 = 𝐸 corresponds to the original Tikhonov’s 2-regularization, 𝜏𝑘‖𝛽𝑘 − 𝛽‖2. However, for
ome diseases, the inherently differing scales of biological parameters may complicate their simultaneous recovery by a regularized
ptimization algorithm based on the original Tikhonov’s functional. For example, in the case of avian influenza H5N1 virus, the
nknown transmission rate consists of two sub-vectors, the bird-to-human transmission rate, 𝛽𝑏(𝑡), and the bird-to-bird transmission
ate, 𝛽𝑟(𝑡). The bird-to-human transmission rate, 𝛽𝑏(𝑡), is of order 10−8 or 10−7, while the bird-to-bird transmission rate, 𝛽𝑟(𝑡), is
f order 10−3 [25–27] (data related to humans and poultry is in units 105 and 107 individuals, respectively; time is in months).
With these two parameters being 5 or 4 orders of magnitude apart, the sensitivities of the cost functional with respect to each
variable is also on different scales, which prevents their simultaneous recovery. This suggests that the regularization on 𝛽𝑏(𝑡) should
be appropriately weighted through a more general Tikhonov’s penalty term, ‖𝐿(𝛽𝑘 − 𝛽)‖2, to ensure convergence in both variables.
A much needed flexibility afforded by the penalty term ‖𝐿(𝛽𝑘 − 𝛽)‖2 also allows to incorporate other types of problem-specific a
priori information, which is not covered by the operators 𝛷, 𝛺, or the data, 𝜂̂ and 𝜎̂. In certain cases, 𝐿 maps spline expansion
coefficients for the discrete analog of 𝛽(𝑡) to the physical space, where the unknown solution is actually defined. In other cases, 𝐿
encodes statistical assumptions about the components of 𝛽(𝑡) based on the values of their neighbors [22].

We now formulate our basic convergence result for iteratively regularized algorithm (2.10) combined with stopping rule (2.13).

heorem 1. 1. Let assumptions of Lemma 1 hold with nonlinear operators 𝛷 and 𝛺 being Fréchet differentiable in the class  (𝑀1,𝑀2),
here 𝜁 = 𝑙

√

𝜏0 and 𝑙 is given by (3.14) below.
2. The regularization sequence {𝜏𝑘} and the step size sequence {𝜇𝑘} are chosen according to (2.11) and (2.12), respectively.
3. The modified source condition [28]

𝐿∗𝐿(𝛽 − 𝛽) ∈ 𝜆2𝛺
′⊤(𝛽)𝑆, 𝑆 ∶= {𝑣 ∈ 𝐻2, ‖𝑣‖ ≤ 𝜀} (3.11)

s satisfied.
4. Exact data sets, 𝜈̂ and 𝜎̂, are given by their noise contaminated measurements, 𝜈 and 𝜎:

max{‖𝜈 − 𝜈̂‖, ‖𝜎 − 𝜎̂‖} ≤ 𝛿. (3.12)

5. Nonlinear operators 𝛷 and 𝛺 and IRPGN iterations (2.10) are constrained by the following inequalities

𝜆2𝑀2𝜀
𝑚

+ 𝜏 − 1
𝜏𝜇

+

√

√

√

√
𝜀
𝑚

{

(
√

𝜆1𝜆2 + 𝜆2)𝑀2

2
+
𝑀2

1 (2‖𝛷(𝛽)‖
√

𝜆1𝜆2 + 𝜆2)

(
√

𝜌 − 𝑐)2

}

≤ 1, (3.13)

where 𝑐 ∶= max
{

1, 2‖𝛷(𝛽)‖
}

<
√

𝜌, and the initial value of the regularization parameter, 𝜏0, is selected in such a way that

‖𝛽0 − 𝛽‖
√

𝜏0
≤

𝜀
√

𝜆2
√

𝑚
{

1 − 𝜆2𝑀2𝜀
𝑚 − 𝜏−1

𝜏𝜇

} ∶= 𝑙. (3.14)

hen
. For iterations (2.10), the following estimate holds

‖𝛽𝑘 − 𝛽‖
√

𝜏𝑘
≤ 𝑙, 𝑘 = 0, 1,… ,𝛿 , (3.15)

here 𝛿 is calculated by a posteriori rule (2.13).
. The sequence {𝛿} is admissible, i.e.

lim
𝛿→0

‖𝛽𝛿 − 𝛽‖ = 0, where 𝛽 = argmin
𝛽∈𝜁 (𝛽)

{

𝜆1
2

‖

‖

‖

𝑃𝛷(𝛽)‖‖
‖

2
+
𝜆2
2

‖𝛺(𝛽) − 𝜎̂‖2
}

. (3.16)

Proof of Theorem 1. Suppose for any 𝑗, 0 ≤ 𝑗 < 𝑘 < 𝛿 , the induction assumption is fulfilled:

𝑒𝑗 ∶=
‖𝛽𝑗 − 𝛽‖
√

𝜏𝑗
≤ 𝑙. (3.17)

Since the nonlinear operators 𝛷 and 𝛺 are in the class  (𝑀1,𝑀2) and 𝑃𝛷(𝛽) = 0, one has

𝑃𝛷𝑘 = (𝑃 − 𝑃 )𝛷(𝛽) + 𝑃𝛷′
𝑘(𝛽𝑘 − 𝛽) + 𝑃1(𝛽𝑘, 𝛽), (3.18)

𝛺𝑘 − 𝜎 = 𝜎̂ − 𝜎 +𝛺′
𝑘(𝛽𝑘 − 𝛽) + 2(𝛽𝑘, 𝛽), (3.19)

max
{

‖𝑃1(𝛽𝑘, 𝛽)‖, ‖2(𝛽𝑘, 𝛽)‖
}

≤
𝑀2

‖𝛽𝑘 − 𝛽‖2. (3.20)
5

2
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Considering that 𝑃 is an orthogonal projection and 𝑃𝛷(𝛽) = 0 according to (2.10) and (3.1), one concludes (𝑃 − 𝑃 )𝛷(𝛽) =
𝑃 (𝑃 − 𝑃 )𝛷(𝛽). Hence

𝛽𝑘+1 − 𝛽 = (1 − 𝜇𝑘)(𝛽𝑘 − 𝛽) − 𝜇𝑘
(

𝜆1𝛷
′⊤
𝑘 𝑃𝛷

′
𝑘 + 𝜆2𝛺

′⊤
𝑘 𝛺

′
𝑘 + 𝜏𝑘𝐿

⊤𝐿
)−1

{

𝜆1𝛷
′⊤
𝑘 𝑃

[

(𝑃 − 𝑃 )𝛷(𝛽)

+ 1(𝛽𝑘, 𝛽)
]

+ 𝜆2𝛺′⊤
𝑘
[

𝜎̂ − 𝜎 + 2(𝛽𝑘, 𝛽) + 𝜏𝑘𝑣
]

}

− 𝜆2𝜇𝑘𝜏𝑘
(

𝜆1𝛷
′⊤
𝑘 𝑃𝛷

′
𝑘 + 𝜆2𝛺

′⊤
𝑘 𝛺

′
𝑘

+ 𝜏𝑘𝐿
⊤𝐿

)−1 [𝛺′(𝛽) −𝛺′
𝑘
]⊤𝑣. (3.21)

Identity (3.21) along with inequalities (3.5)–(3.7) yield

‖𝛽𝑘+1 − 𝛽‖ = (1 − 𝜇𝑘)‖𝛽𝑘 − 𝛽‖ + 𝜇𝑘

√

𝜆1
𝜏𝑘𝑚

[

‖𝑃 − 𝑃‖ ‖𝛷(𝛽)‖ + ‖1(𝛽𝑘, 𝛽)‖
]

+ 𝜇𝑘

√

𝜆2
𝜏𝑘𝑚

[

‖𝜎̂ − 𝜎‖ + ‖2(𝛽𝑘, 𝛽)‖ + 𝜏𝑘‖𝑣‖
]

+
𝜆2𝜇𝑘𝜀
𝑚

‖𝛺′(𝛽) −𝛺′
𝑘‖. (3.22)

o estimate ‖𝑃 − 𝑃‖, note that according to (3.12) for any ℎ ∈ 𝐻 one has

‖(𝑃 − 𝑃 )ℎ‖ = ‖𝑣(𝑣, ℎ) − 𝑣̂(𝑣̂, ℎ)‖ ≤ ‖𝑣‖ ‖(𝑣, ℎ) − (𝑣̂, ℎ)‖ + ‖𝑣 − 𝑣̂‖ ‖(𝑣̂, ℎ)‖

≤ (‖𝑣‖ + ‖𝑣̂‖)‖𝑣 − 𝑣̂‖ ‖ℎ‖ ≤ 2𝛿‖ℎ‖. (3.23)

By stopping rule (2.13), two cases are possible:

1.
√

𝜌𝛿 ≤ ‖𝛺𝑘 − 𝜎‖ ≤ ‖𝛺𝑘 − 𝛺(𝛽)‖ + ‖𝜎 − 𝜎̂‖ ≤ 𝑀1‖𝛽𝑘 − 𝛽‖ + 𝛿. Without loss of generality one can assume 𝛿 < 1. Therefore,
√

𝜌𝛿 −
√

𝛿 ≤
√

𝜌𝛿 − 𝛿 ≤𝑀1‖𝛽𝑘 − 𝛽‖ + 𝛿 and 𝛿 ≤
𝑀2

1 ‖𝛽𝑘−𝛽‖
2

(
√

𝜌−1)2
.

2.
√

𝜌𝛿 ≤ ‖𝑃𝛷𝑘‖ ≤ ‖𝑃𝛷𝑘 − 𝑃𝛷(𝛽)‖ + ‖𝑃 − 𝑃‖ ‖𝛷(𝛽)‖ ≤𝑀1‖𝛽𝑘 − 𝛽‖ + 2𝛿 ‖𝛷(𝛽)‖. This implies 𝛿 ≤
𝑀2

1 ‖𝛽𝑘−𝛽‖
2

(
√

𝜌−2‖𝛷(𝛽)‖)2
. In either case,

𝛿 ≤
𝑀2

1‖𝛽𝑘 − 𝛽‖

(
√

𝜌 − 𝑐)2
with 𝑐 ∶= max

{

1, 2‖𝛷(𝛽)‖
}

<
√

𝜌 as in (2.13). (3.24)

rom (3.22)–(3.24) together with (2.11) one concludes

‖𝛽𝑘+1 − 𝛽‖
√

𝜏𝑘+1
≤ 𝜏

(

1 − 𝜇𝑘

(

1 −
𝜆2𝑀2𝜀
𝑚

))

‖𝛽𝑘 − 𝛽‖
√

𝜏𝑘
+

𝜇𝑘𝜏

2
√

𝑚

{

(
√

𝜆1 +
√

𝜆2)𝑀2

2

+
𝑀2

1 (2‖𝛷(𝛽)‖
√

𝜆1 +
√

𝜆2)

(
√

𝜌 − 𝑐)2

}

‖𝛽𝑘 − 𝛽‖2

𝜏𝑘
+
𝜇𝑘𝜏
2

√

𝜆2
𝑚
𝜀. (3.25)

y induction assumption (3.17) and inequality and (3.25), one has

𝑒𝑘+1 ≤ 𝜏
(

1 − 𝜇𝑘

(

1 −
𝜆2𝑀2𝜀
𝑚

))

𝑙 +
𝜇𝑘𝜏

2
√

𝑚

{

(
√

𝜆1 +
√

𝜆2)𝑀2

2
+
𝑀2

1 (2‖𝛷(𝛽)‖
√

𝜆1 +
√

𝜆2)

(
√

𝜌 − 𝑐)2

}

𝑙2

+
𝜇𝑘𝜏
2

√

𝜆2
𝑚
𝜀. (3.26)

stimate (3.26) and condition (3.13) imply (3.15). To show that the sequence  = 𝛿 is admissible we notice that, according to
2.13), 𝛿 is nondecreasing as 𝛿 → 0. If for any 𝛿 ≤ 𝛿0, the stopping time remains constant, that is, 𝛿 = 0, then by (3.12) and
2.13), one obtains

lim
𝛿→0

𝛽𝛿 (𝜈, 𝜎) = argmin
𝛽∈𝜁 (𝛽)

{

𝜆1
2

‖

‖

‖

𝑃𝛷(𝛽)‖‖
‖

2
+
𝜆2
2

‖𝛺(𝛽) − 𝜎̂‖2
}

.

f, on the other hand, 𝛿 → ∞ as 𝛿 → 0, then

‖𝛽𝛿 − 𝛽‖ ≤ 𝑙
√

𝜏𝛿 → 0 as 𝛿 → 0.

Thus in both cases 𝛽𝛿 converges in the norm of 𝐻 to argmin𝛽∈𝜁 (𝛽)

{

𝜆1
2

‖

‖

‖

𝑃𝛷(𝛽)‖‖
‖

2
+
𝜆2
2

‖𝛺(𝛽) − 𝜎̂‖2
}

as 𝛿 → 0. This completes the
proof. □

4. Biological model and numerical simulations

In this section, we focus on numerical simulations that illustrate the efficiency of the proposed algorithm (2.10) in the
6

reconstruction of incidence reporting rate during the Delta wave of COVID-19 pandemic in the US. To that end, we consider
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Fig. 1. Transmission diagram of the 𝑆𝑉 𝐼𝑠𝐼𝑣𝑅𝐷 model (4.1)–(4.6).

nonlinear minimization problem (2.1) constrained by the 𝑆𝑉 𝐼𝑠𝐼𝑣𝑅𝐷 compartmental model that was first introduced in [11] and
further studied in [5] (see Fig. 1 for the transmission diagram). The model incorporates development and widespread distribution
of Moderna, Pfizer-BioNTech, and Johnson & Johnson vaccines prior to the start of SARS-CoV-2 Delta variant. The 𝑆𝑉 𝐼𝑠𝐼𝑣𝑅𝐷
odel [11] divides susceptible and infected population into vaccinated and unvaccinated categories to account for varying virus
ynamics, such as disease transmission, recovery and death rates, within these two groups [29–31]. The model has 6 compartments:
usceptible unvaccinated (𝑆), susceptible vaccinated (𝑉 ), infected unvaccinated (𝐼𝑠), infected vaccinated (𝐼𝑣), recovered (𝑅), and
eceased (𝐷). Given a relatively short period of study (from July 9, 2021, to November 25, 2021), we assume that population
hanges due to birth, immigration, death of causes rather than COVID-19, etc. are all balanced out, and that at any given time, 𝑡,
he population of the region is 𝑁 −𝐷(𝑡), where 𝑁 is the population at 𝑡 = 0, that is, 𝑁 = 𝑆(0) + 𝑉 (0) + 𝐼𝑠(0) + 𝐼𝑣(0) + 𝑅(0) +𝐷(0).

𝜕𝑆
𝜕𝑡

= −𝛽(𝑡)
𝑆(𝑡)

𝑁 −𝐷(𝑡)
(𝐼𝑠(𝑡) + 𝐼𝑣(𝑡)) − 𝑝𝑆(𝑡) + 𝛿𝑟𝑅(𝑡) + 𝛿𝑣𝑉 (𝑡) (4.1)

𝜕𝑉
𝜕𝑡

= 𝑝𝑆(𝑡) − (1 − 𝛼)𝛽(𝑡)
𝑉 (𝑡)

𝑁 −𝐷(𝑡)
(𝐼𝑠(𝑡) + 𝐼𝑣(𝑡)) − 𝛿𝑣𝑉 (𝑡) (4.2)

𝜕𝐼𝑠
𝜕𝑡

= 𝛽(𝑡)
𝑆(𝑡)

𝑁 −𝐷(𝑡)
(𝐼𝑠(𝑡) + 𝐼𝑣(𝑡)) − (𝛾𝑠,𝑟 + 𝛾𝑠,𝑑 )𝐼𝑠(𝑡) (4.3)

𝜕𝐼𝑣
𝜕𝑡

= (1 − 𝛼)𝛽(𝑡)
𝑉 (𝑡)

𝑁 −𝐷(𝑡)
(𝐼𝑠(𝑡) + 𝐼𝑣(𝑡)) − (𝛾𝑣,𝑟 + 𝛾𝑣,𝑑 )𝐼𝑣(𝑡) (4.4)

𝜕𝑅
𝜕𝑡

= 𝛾𝑠,𝑟𝐼𝑠(𝑡) + 𝛾𝑣,𝑟𝐼𝑣(𝑡) − 𝛿𝑟𝑅(𝑡) (4.5)
𝜕𝐷
𝜕𝑡

= 𝛾𝑠,𝑑𝐼𝑠(𝑡) + 𝛾𝑣,𝑑𝐼𝑣(𝑡) (4.6)

rom Eqs. (4.1) and (4.2), one concludes that the daily number of newly infected people is equal to 𝛽
(𝐼𝑠[𝛽] + 𝐼𝑣[𝛽])
𝑁 −𝐷[𝛽]

𝑆[𝛽] + (1 − 𝛼)𝑉 [𝛽]) while, according to (4.6), the daily number of individuals deceased due to COVID-19 is 𝛾𝑠,𝑑𝐼𝑠[𝛽] + 𝛾𝑣,𝑑𝐼𝑣[𝛽].
Therefore, the observation operators for incidence cases, 𝜂̂, and daily new deaths, 𝜎̂, are defined, respectively, as

𝛷(𝛽) ∶= 𝛽
(𝐼𝑠[𝛽] + 𝐼𝑣[𝛽])
𝑁 −𝐷[𝛽]

(𝑆[𝛽] + (1 − 𝛼)𝑉 [𝛽]) and 𝛺(𝛽) ∶= 𝛾𝑠,𝑑𝐼𝑠[𝛽] + 𝛾𝑣,𝑑𝐼𝑣[𝛽]. (4.7)

n our numerical experiments, the goal was to apply the novel iteratively regularized preconditioned Gauss–Newton (IRPGN)
lgorithm (2.10) along with the stopping rule (2.13) to estimate the unknown transmission rate, 𝛽(𝑡), in order to compute the

ncidence reporting rate, 𝛹 =
‖𝜂̂‖2

(𝜂̂, 𝛷(𝛽))
, and the effective reproduction number

𝑒(𝑡) =
𝛽(𝑡)

𝑁 −𝐷(𝑡)

(

𝑆(𝑡)
𝛾𝑠,𝑟 + 𝛾𝑠,𝑑

+
(1 − 𝛼)𝑉 (𝑡)
𝛾𝑣,𝑟 + 𝛾𝑣,𝑑

)

,

or model (4.1)–(4.6), which plays a crucial role in assessing the scope of the disease and the efficiency of prevention measures [11,
2–34]. When 𝑒(𝑡) > 1, each infected individual, on average, is transmitting the disease to more than one other person, i.e., the
andemic is on the rise. Conversely, when 𝑒(𝑡) < 1, the transmission is declining as each infected person is passing the disease to
ewer than one other human.
For all regions considered, the vaccination rate, 𝑝, was pre-estimated based on CDC data [11,35] by dividing the change in the

ercentage of vaccinated people at the start and at the end of the study window by the length of the study window (140 days),
ee Table 3 for details. The vaccine effectiveness, 𝛼, was set at 0.8, since the age-standardized crude vaccine effectiveness (VE) for
elta variant was reported at 80% during July–November of 2021 [11,36].
Following [11], the death rate for unvaccinated individuals, 𝛾𝑠,𝑑 , was calculated using the infectious fatality ratio 𝐼𝐹𝑅 =

0.5% [37] and the median time from illness onset to death  = 18.5 days [38], that is, 𝛾𝑠,𝑑 = 0.005∕18.5 = 0.00027 days−1. The
death rate for vaccinated individuals, 𝛾𝑣,𝑑 , was estimated to be much smaller, 𝛾𝑣,𝑑 = 𝛾𝑠,𝑑∕12.7 = 0.000021 days−1, since according
to [39], unvaccinated people had 12.7 times the risks for COVID-19–associated death as compared to vaccinated ones [11]. Based
7

on the values of 𝛾𝑠,𝑑 and 𝛾𝑣,𝑑 and using a recovery period of 10 days, the recovery rates for unvaccinated and vaccinated humans
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Table 1
Comparison of reconstructed reporting rates from incidence and cumulative data for SARS CoV-2 Delta variant
COVID-19 from July 9 to November 25, 2021 - IRPGN algorithm.
States Reconstructed reporting rate

from incidence data
Reconstructed reporting rate
from cumulative data

Colorado 0.242(95%CI:[0.232,0.252]) 0.249(95%CI:[0.247,0.25])
Idaho 0.166(95%CI:[0.157,0.176]) 0.150(95%CI:[0.149,0.151])
Indiana 0.212(95%CI:[0.203,0.221]) 0.203(95%CI:[0.202,0.204])
Massachusetts 0.279(95%CI:[0.266,0.294]) 0.270(95%CI:[0.268,0.273])
Michigan 0.392(95%CI:[0.377,0.41]) 0.374(95%CI:[0.371,0.377])
Minnesota 0.331(95%CI:[0.314,0.35]) 0.322(95%CI:[0.318,0.325])
Nevada 0.141(95%CI:[0.136,0.146]) 0.121(95%CI:[0.12,0.122])
New York 0.330(95%CI:[0.317,0.343]) 0.306(95%CI:[0.304,0.308])
South Carolina 0.181(95%CI:[0.176,0.187]) 0.185(95%CI:[0.184,0.185])
Tennessee 0.279(95%CI:[0.272,0.287]) 0.263(95%CI:[0.262,0.264])
Washington 0.208(95%CI:[0.202,0.215]) 0.210(95%CI:[0.209,0.211])
Wyoming 0.199(95%CI:[0.185,0.214]) 0.192(95%CI:[0.189,0.195])
USA Total 0.237(95%CI:[0.236,0.238]) 0.207(95%CI:[0.205,0.208])

Table 2
Comparison of reconstructed reporting rates using LSQCURVFIT and IRPGN algorithms with incidence and cumulative data - SARS - CoV-2 Delta variant, July
9 - November 25, 2021.
States Reconstructed reporting

rate from incidence data
(IRPGN)

Reconstructed reporting
rate from incidence data
(LSQCURVFIT)

Reconstructed reporting
rate from cumulative data
(IRPGN)

Reconstructed reporting
rate from cumulative
data (LSQCURVFIT)

Colorado 0.24225 0.25335 0.24855 0.25191
Idaho 0.16584 0.17054 0.14985 0.15191
Indiana 0.21236 0.20107 0.20281 0.21135
Massachusetts 0.27943 0.28459 0.27046 0.26989
Michigan 0.39232 0.38067 0.37366 0.37696
Minnesota 0.33070 0.33310 0.32210 0.32303
Nevada 0.14053 0.13345 0.12094 0.11997
New York 0.33017 0.3235 0.30079 0.30213
South Carolina 0.18132 0.16743 0.18451 0.18025
Tennessee 0.27947 0.28406 0.26292 0.25911
Washington 0.20808 0.20562 0.21037 0.21170
Wyoming 0.19948 0.19857 0.19187 0.19333
USA Total 0.23678 0.23306 0.20654 0.20635

Table 3
Population data as of July 1, 2021 [40], and proportion of vaccinated individuals for different states of the US [41].
States Population-Estimation

2021 as of July 1
Vaccination percentage
as of 7/9/21

Vaccination percentage as
of 11/25/21

Vaccination rate, 𝑝,
between 7/9/21-11/25/21

Colorado 5,784,865 52.6 62.9 0.000735714
Idaho 1,849,202 36.5 45.1 0.000614286
Indiana 6,788,799 42.9 50.5 0.000542857
Massachusetts 6,995,729 62.4 70.8 0.0006
Michigan 10,069,577 47.7 54.4 0.000478571
Minnesota 5,709,852 52.5 62.2 0.000692857
Nevada 3,115,648 42.7 54.2 0.000821429
New York 20,108,296 55.1 68.2 0.000935714
South Carolina 5,131,848 39.3 51.2 0.00085
Tennessee 6,925,619 37.8 49.4 0.000828571
Washington 7,724,031 55.7 64.8 0.00065
Wyoming 577,605 35.6 45.3 0.000692857
USA Total 331,893,745 47.7 60.6 0.000921429

were pre-estimated as 𝛾𝑠,𝑟 = (1−0.005)∕10 = 0.0995 days−1 and 𝛾𝑣,𝑟 = (1−0.005∕12.7)∕10 = 0.09996 days−1, respectively [11]. Finally,
the loss of immunity rate for recovered individuals, 𝛿𝑟, was set at 𝛿𝑟 = 1/90 = 0.011 days−1, and the loss of immunity rate for
vaccinated individuals, 𝛿𝑣, was set at 0 considering that in the early 2021, Moderna and Pfizer-BioNTech vaccines offered immunity
against SARS-CoV-2 Delta variant for at least 6 month and most people in the US got vaccinated shortly before the beginning of the
study period (or later) [11].

To discretize the unknown transmission rate, 𝛽(𝑡) was projected onto a finite-dimensional subspace spanned by shifted Legendre
polynomials, 𝑃1(𝑡), 𝑃2(𝑡), . . . , 𝑃𝑚(𝑡). This gives rise to a finite-dimensional approximation, 𝛽[𝜃], in the form 𝛽[𝜃](𝑡) =

∑𝑚
𝑗=1 𝜃𝑗𝑃𝑗 (𝑡).

At every step of the iterative process (2.10), the nonlinear ODE system (4.1)–(4.6) was solved numerically using Matlab R2023a
̃ ̃ ̃ ̃ ̃ ̃ ̃
8

built-in function ode23s with 𝛽 = 𝛽[𝜃]. In that manner, state variables, 𝑆[𝜃], 𝑉 [𝜃], 𝐼𝑠[𝜃], 𝐼𝑣[𝜃], 𝑅[𝜃], and 𝐷[𝜃], have been obtained
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Fig. 2. Data fit to incidence cases (left) and daily new deaths (right) for the state of New York - SARS - CoV-2 Delta variant, July 9 - November 25, 2021 -
IRPGN algorithm.

Fig. 3. Reconstructed effective reproduction number, 𝑒(𝑡), and disease transmission rate, 𝛽(𝑡), (left) along with the reconstructed reporting rate, 𝛹 = 1∕𝜓 ,
(right) for the state of New York - SARS - CoV-2 Delta variant, July 9 - November 25, 2021 - IRPGN algorithm.

as functions of the expansion coefficients, 𝜃, which led to discrete analogs of the observation operators, 𝛷 and 𝛺 in (4.7). In order
to quantify uncertainty in the extracted 𝛽, ̃𝑒, and 𝛹 , the model was refitted (using parallel programming parfor option in Matlab
R2023a) to 𝑀 = 100 additional data sets for incidence cases and daily deaths assuming Poisson error structure. The resulting 𝑀
best-fit parameter sets were used to plot the histograms for the reconstructed reporting rates, 𝛹 , as illustrated in Figs. 3 and 5, along
ith the 95% confidence intervals, shown in Table 1.
All experiments have been conducted based on data for daily new infections and deaths between July 9, 2021, and November

5, 2021, from the Centers for Disease Control and Prevention [9] and from Johns Hopkins University (JHU) [10]. Whenever raw
ata appeared to be corrupt due to inconsistent reporting (no reporting or under-reporting over the weekends and holidays, for
xample), a 7-day moving average has been employed by averaging data from three days before and after a specific day. A detailed
nformation on the source of each data set for all 50 states in the US is presented in Table 6.
For comparison, numerical simulations were also carried out with cumulative data of reported cases and deaths. The reporting

ates, 𝛹 , calculated from both daily and cumulative data sets for all 50 states deviated by no more than 3%. A lineup of reconstruction
esults for 12 different states with a broad range of population sizes [40] and vaccination percentages [41] is illustrated in Table 3.
verall, our experiments show that between July 9, 2021, and November 25, 2021, most states in the US had incidence reporting
ate between 15% and 25%.
To double-check the values of 𝛹 approximated by IRPGN method (2.10), Matlab R2023a built-in least square curve fitting

LSQCURVFIT) procedure has also been employed, and simulations have been carried out using both incidence and cumulative
ata sets. The estimates of 𝛹 , obtained by IRPGN and LSQCURVFIT for the same 12 states as in Table 1, are summarized in Table 2.
ur analysis indicates that the reporting rates derived from incidence and cumulative data sets are very similar for both the IRPGN
nd LSQCURVFIT algorithms. For most states, the rates, 𝛹 , based on incidence data are slightly higher, but the difference is within
%.
9
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Fig. 4. Data fit to incidence cases (left) and 7-day moving average for daily new deaths (right) for the state of Nevada - SARS - CoV-2 Delta variant, July 9 -
November 25, 2021 - IRPGN algorithm.

Fig. 5. Reconstructed effective reproduction number, 𝑒(𝑡), and disease transmission rate, 𝛽(𝑡), (left) along with the reconstructed reporting rate, 𝛹 = 1∕𝜓 ,
(right) for the state of Nevada - SARS - CoV-2 Delta variant, July 9 - November 25, 2021 - IRPGN algorithm.

An obvious argument in favor of incidence data is independence and identical distribution (i.i.d.) of errors. On the flip side,
incidence data may be a rather chaotic aggregation of multiple epidemic sub-waves, which is hard to fit. Cumulative data, on the
other hand, is smooth and easy to fit, but they suffer from the dominance of earlier cases and growing noise propagation. Taking into
account all pros and cons of both types of data sets, we believe that reconfirming estimation results with incidence and cumulative
data is the best strategy.

Reconstructions with IRPGN algorithm using data on incidence cases and daily new deaths from JHU [10] between July 9 and
November 25, 2021, for the state of New York are illustrated in Figs. 2 and 3. Simulation results for the state of Nevada with IRPGN
algorithm have been obtained with incidence data for daily new infections and 7-day moving average for daily new deaths from
CDC [9], see Figs. 4 and 5. The uphill trend in the incidence data for the state of New York towards the end of the study period is
eflected in the estimated effective reproduction number, 𝑒(𝑡).
In the state of Nevada, on the other hand, the outbreak remains contained up until the end of the study period, which is consistent

ith the reconstructed 𝑒(𝑡). A sharp increase in the number of daily new cases in the state of New York towards the end of
ovember, 2021, is probably due to the emergence of SARS-CoV-2 Omicron variant even though officially Omicron cases have not
een reported in the US until December, 2021. In terms of the estimated reporting rates, 𝛹 , the two states are on the different sides
of the spectrum, with New York reporting rate being one of the highest among all 50 states and Nevada reporting rate being one
of the lowest.

As evident from Table 2, the estimates of the reporting rate, 𝛹 , obtained with algorithms IRPGN and LSQCURVFIT are very
consistent, which makes it hard to designate the winner. The IRPGN procedure is superior when it comes to the radius of
convergence. Since a disease transmission rate, by definition, takes values from 0 to 1, a reasonable unbiased choice of 𝛽0(𝑡) was
0(𝑡) = 0.5, that is, 𝜃 = [0.5, 0, 0,… , 0]⊤. With IRPGN method, this initial approximation worked for all 50 states in the US. When
10

0(𝑡) = 0.5 was not close to the unknown minimizer, one had to select a larger value of 𝜏0. However, since 𝜏𝑘 → 0 as 𝑘 → ∞, this
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Table 4
Regularization sequences, {𝜏𝑘}, and stopping times, 𝛿 , for different states in the US - IRPGN algorithm.
States Regularization sequence {𝜏𝑘}

for incidence data
Stopping time 𝛿 for
incidence data

Regularization sequence {𝜏𝑘}
for cumulative data

Stopping time 𝛿
for cumulative data

Colorado 𝜏𝑘 = 5 × 10−2∕(𝑘 + 1)6 𝛿 = 15 𝜏𝑘 = 3∕(𝑘 + 1)3.5 𝛿 = 15
Idaho 𝜏𝑘 = 10−5∕(𝑘 + 1)0.7 𝛿 = 10 𝜏𝑘 = 10−1∕(𝑘 + 1)0.1 𝛿 = 15
Indiana 𝜏𝑘 = 3 × 10−8∕(𝑘 + 1)0.7 𝛿 = 15 𝜏𝑘 = 3 × 10−4∕(𝑘 + 1)0.1 𝛿 = 15
Massachusetts 𝜏𝑘 = 9 × 10−8∕(𝑘 + 1)1.09 𝛿 = 15 𝜏𝑘 = 4 × 10−4∕(𝑘 + 1)1.4 𝛿 = 15
Michigan 𝜏𝑘 = 103∕(𝑘 + 1)7 𝛿 = 15 𝜏𝑘 = 10∕(𝑘 + 1)3 𝛿 = 15
Minnesota 𝜏𝑘 = 8 × 10−8∕(𝑘 + 1)0.9 𝛿 = 18 𝜏𝑘 = 4 × 10−4∕(𝑘 + 1)1.2 𝛿 = 15
Nevada 𝜏𝑘 = 10−5∕(𝑘 + 1)1.2 𝛿 = 10 𝜏𝑘 = 1∕(𝑘 + 1)1.9 𝛿 = 10
New York 𝜏𝑘 = 103∕(𝑘 + 1)4 𝛿 = 10 𝜏𝑘 = 3 × 103∕(𝑘 + 1)6 𝛿 = 10
South Carolina 𝜏𝑘 = 20−4∕(𝑘 + 1)1.5 𝛿 = 20 𝜏𝑘 = 2∕(𝑘 + 1)0.4 𝛿 = 15
Tennessee 𝜏𝑘 = 10−5∕(𝑘 + 1)3.9 𝛿 = 20 𝜏𝑘 = 1∕(𝑘 + 1)5 𝛿 = 15
Washington 𝜏𝑘 = 10−8∕(𝑘 + 1)1.5 𝛿 = 10 𝜏𝑘 = 5∕(𝑘 + 1)6 𝛿 = 15
Wyoming 𝜏𝑘 = 10−5∕(𝑘 + 1)0.3 𝛿 = 15 𝜏𝑘 = 1∕(𝑘 + 1)0.6 𝛿 = 15
USA Total 𝜏𝑘 = 9∕(𝑘 + 1)2.7 𝛿 = 15 𝜏𝑘 = 50∕(𝑘 + 1)1.3 𝛿 = 35

Table 5
Weighting coefficients, 𝜆1 and 𝜆2, for LSQCURVFIT and IRPGN algorithms using incidence and cumulative data.
States Weighting coefficient of

incidence data IRPGN
Weighting coefficient of
incidence data LSQCURVFIT

Weighting coefficient of
cumulative data IRPGN

Weighting coefficient of
cumulative data LSQCURVFIT

Colorado 𝜆1 = 10−8 , 𝜆2 = 5 × 10−6 𝜆1 = 3, 𝜆2 = 4000 𝜆1 = 10−7 , 𝜆2 = 2.5 × 10−5 𝜆1 = 0.34, 𝜆2 = 100

Idaho 𝜆1 = .33 × 10−7 , 𝜆2 = .33 ×
10−4

𝜆1 = 0.22, 𝜆2 = 170 𝜆1 = 5 × 10−7 , 𝜆2 = 10−5 𝜆1 = 0.18, 𝜆2 = 30

Indiana 𝜆1 = 10−9 , 𝜆2 = 2 × 10−7 𝜆1 = 0.25, 𝜆2 = 50 𝜆1 = 2.5 × 10−9 , 𝜆2 = 2.5 × 10−7 𝜆1 = 0.27, 𝜆2 = 100
Massachusetts 𝜆1 = 10−8 , 𝜆2 = 2.5 × 10−6 𝜆1 = 0.4, 𝜆2 = 80 𝜆1 = 1.67 × 10−9 , 𝜆2 = 1.25 × 10−6 𝜆1 = 0.37, 𝜆2 = 230
Michigan 𝜆1 = 3.33 × 10−8 , 𝜆2 = 2 × 10−5 𝜆1 = 0.6, 𝜆2 = 150 𝜆1 = 10−7 , 𝜆2 = 3.33 × 10−5 𝜆1 = 0.61, 𝜆2 = 200

Minnesota 𝜆1 = 3.33 × 10−10 , 𝜆2 = 3.33 ×
10−7

𝜆1 = 0.5, 𝜆2 = 350 𝜆1 = 1.67 × 10−9 , 𝜆2 = 3.33 × 10−6 𝜆1 = 0.48, 𝜆2 = 300

Nevada 𝜆1 = 2 × 10−8 , 𝜆2 = .25 × 10−4 𝜆1 = 0.13, 𝜆2 = 30 𝜆1 = 1.67 × 10−7 , 𝜆2 = 1.67 × 10−4 𝜆1 = 0.14, 𝜆2 = 130
New York 𝜆1 = 3.33 × 10−8 , 𝜆2 = 2 × 10−5 𝜆1 = 0.45, 𝜆2 = 120 𝜆1 = 5 × 10−8 , 𝜆2 = 1.43 × 10−5 𝜆1 = 0.44, 𝜆2 = 260
South Carolina 𝜆1 = 1.43 × 10−7 , 𝜆2 = 2 × 10−5 𝜆1 = 0.2, 𝜆2 = 30 𝜆1 = 10−6 , 𝜆2 = 10−5 𝜆1 = 0.22, 𝜆2 = 40
Tennessee 𝜆1 = 2 × 10−9 , 𝜆2 = 3.33 × 10−7 𝜆1 = 0.4, 𝜆2 = 70 𝜆1 = 3.33 × 10−9 , 𝜆2 = 3.33 × 10−7 𝜆1 = 0.35, 𝜆2 = 60

Washington 𝜆1 = 1.25 × 10−11 , 𝜆2 = 3.03 ×
10−8

𝜆1 = 0.2, 𝜆2 = 300 𝜆1 = 5 × 10−9 , 𝜆2 = 1.11 × 10−6 𝜆1 = 0.27, 𝜆2 = 60

Wyoming 𝜆1 = 5 × 10−7 , 𝜆2 = 5 × 10−5 𝜆1 = 0.25, 𝜆2 = 30 𝜆1 = 3.33 × 10−6 , 𝜆2 = 5 × 10−5 𝜆1 = 0.24, 𝜆2 = 40
USA Total 𝜆1 = 33 × 10−9 , 𝜆2 = 17 × 10−6 𝜆1 = 0.27, 𝜆2 = 90 𝜆1 = 33 × 10−9 , 𝜆2 = 33 × 10−8 𝜆1 = 0.26, 𝜆2 = .5

did not have any negative impact on the accuracy of the reconstruction. In the case of LSQCURVFIT, the value 0.5 did not work for
all states (even with large initial damping) and a broad range of values from [0.1, 0.5] had to be adopted.

Overall, the ability to choose the regularization sequence, {𝜏𝑘}, makes the IRPGN algorithm user-friendly and rather easy to
implement, even for heavily noise contaminated data. The regularization sequences presented in Table 4 are near optimal. However
a wide range of parameters can be utilized to ensure convergence. For example, the regularization sequence for COVID-19 daily
incidence cases and deaths in Massachusetts is 𝜏𝑘 = 9 × 10−8∕(𝑘 + 1)1.09, but the power of denominator can be replaced by any
alue in [0.1, 3]. For all 50 states in the US, in the case of IRPGN scheme, numerical experiments were carried out with 𝐿 = 𝐸, the
identity operator in the Hilbert space 𝐻 . This choice of 𝐿 produced the most stable results. At the same time, mapping 𝜃 to the
corresponding function, 𝛽[𝜃](𝑡) = ∑𝑚

𝑗=1 𝜃𝑗𝑃𝑗 (𝑡), that is, 𝐿 ∶ 𝜃 → 𝛽[𝜃], also worked.
Furthermore, the problem-specific nature of IRPGN method made it easier to adjust the weights assigned to incidence cases, 𝜆1,

and daily new deaths, 𝜆2; see Table 5. In general, states with similar populations had very similar values of 𝜆1 and 𝜆2. On the other
hand, finding the best weights, 𝜆1 and 𝜆2, when using LSQCURVFIT was a more tricky and time-consuming endeavor and made the
algorithm harder to implement as compared to IRPGN (see Table 5).

5. Conclusions and discussion

To be strategic and efficient in our responses to future epidemic outbreaks, it is important to develop biological models and
numerical algorithms for stable estimation of crucial disease parameters such as transmission and reporting rates. These parameters
are influenced by multiple genetic, environmental, and social factors, which makes it impossible to assess their values through any
direct computation. Thus a carefully regularized optimization procedure needs to be used to estimate transmission and reporting
rates from noise-contaminated data. In this paper, we present a robust iteratively regularized computational algorithm applicable
to a broad class of nonlinear minimization problems constrained by various disease-specific (networked) compartmental models.
A rigorous theoretical analysis of the proposed numerical scheme coupled with an a posteriori stopping rule has been conducted.
11
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Table 6
Sources of SARS-CoV-2 Delta variant COVID-19 data on daily new cases and deaths by state.
State Incidence data source Death data source

Alabama Daily incidence [9] Daily death [9]
Alaska 7-day average [9] 7-day average [9]
Arizona Daily incidence [9] Daily death [9]
Arkansas Daily incidence [9] Daily death [9]
California 7-day average [11] 7-day average [11]
Colorado Daily incidence [9] Daily death [9]
Connecticut 7-day average [9] 7-day average [9]
Delaware Daily incidence [9] Daily death [9]
Florida Daily incidence [9] Daily death [9]
Georgia Daily incidence [9] Daily death [9]
Hawaii 7-day average [9] 7-day average [9]
Idaho Daily incidence [9] 7-day average [9]
Illinois 7-day average [9] 7-day average [9]
Indiana 7-day average [9] 7-day average [9]
Iowa 7-day average [9] 7-day average [9]
Kansas 7-day average [9] 7-day average [9]
Kentucky Daily incidence [9] Daily death [9]
Louisiana 7-day average [9] 7-day average [9]
Maine 7-day average [9] 7-day average [9]
Maryland Daily incidence [9] Daily death [9]
Massachusetts 7-day average [9] 7-day average [9]
Michigan 7-day average [9] 7-day average [9]
Minnesota 7-day average [9] 7-day average [9]
Mississippi 7-day average [9] 7-day average [9]
Missouri 7-day average [9] 7-day average [9]
Montana 7-day average [9] 7-day average [9]
Nebraska 7-day average [9] 7-day average [9]
Nevada Daily incidence [9] 7-day average [9]
New Hampshire 7-day average [9] 7-day average [9]
New Jersey Daily incidence [9] Daily death [9]
New Mexico 7-day average [9] 7-day average [9]
New York Daily incidence [10] Daily death [10]
North Carolina Daily incidence [9] Daily death [9]
North Dakota 7-day average [9] 7-day average [9]
Ohio Daily incidence [9] 7-day average [10]
Oklahoma 7-day average [9] 7-day average [9]
Oregon 7-day average [9] 7-day average [9]
Pennsylvania Daily incidence [9] Daily death [9]
Rhode Island 7-day average [9] 7-day average [9]
South Carolina 7-day average [9] 7-day average [9]
South Dakota 7-day average [9] 7-day average [10]
Tennessee 7-day average [9] 7-day average [9]
Texas Daily incidence [9] Daily death [9]
Utah 7-day average [9] 7-day average [9]
USA Daily incidence [10] Daily death [10]
Vermont 7-day average [9] 7-day average [9]
Virginia 7-day average [9] 7-day average [10]
Washington Daily incidence [9] Daily death [9]
West Virginia 7-day average [9] 7-day average [9]
Wisconsin 7-day average [9] 7-day average [9]
Wyoming 7-day average [9] 7-day average [9]

Numerical simulations carried out with a 𝑆𝑉 𝐼𝑠𝐼𝑣𝑅𝐷 biological model [11] and real data for Delta variant of COVID-19 pandemic
in different states of the US [9,10] confirm our theoretical findings and illustrate practical advantages of the proposed algorithm.

The immediate goal for our future research is to introduce optimal forecasting and control strategies that would capitalize on
parameter estimation results afforded by algorithm (2.10), (2.13). The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Data availability

Data will be made available on request.
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