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Abstract: In this study, we investigate different epidemic control scenarios through theoretical
analysis and numerical simulations. To account for two important types of control at the early
ascending stage of an outbreak, nonmedical interventions, and medical treatments, a compartmental
model is considered with the first control aimed at lowering the disease transmission rate through
behavioral changes and the second control set to lower the period of infectiousness by means of
antiviral medications and other forms of medical care. In all experiments, the implementation
of control strategies reduces the daily cumulative number of cases and successfully “flattens the
curve”. The reduction in the cumulative cases is achieved by eliminating or delaying new cases. This
delay is incredibly valuable, as it provides public health organizations with more time to advance
antiviral treatments and devise alternative preventive measures. The main theoretical result of
the paper, Theorem 1, concludes that the two optimal control functions may be increasing initially.
However, beyond a certain point, both controls decline (possibly causing the number of newly
infected people to grow). The numerical simulations conducted by the authors confirm theoretical
findings, which indicates that, ideally, around the time that early interventions become less effective,
the control strategy must be upgraded through the addition of new and improved tools, such as
vaccines, therapeutics, testing, air ventilation, and others, in order to successfully battle the virus
going forward.
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1. Introduction

Advanced modeling and parameter estimation algorithms form a solid background
for the design of optimal strategies to control infectious diseases, which reduces illness
and mortality rates. Vaccination, isolation, and public health education are examples of
important control techniques that protect people at risk and make effective use of healthcare
resources [1–3].

Timely control measures can mitigate the impact of outbreaks, prevent widespread
transmission, and save lives. For instance, vaccination programs have been instrumental in
controlling diseases such as measles, polio, and influenza [4,5]. Quarantine and isolation
protocols were key in managing the spread of diseases like Ebola and COVID-19 [6]. Public
health campaigns promoting handwashing and sanitation have significantly reduced the
transmission of diseases such as cholera and dysentery [7,8]. The eradication of smallpox is
a prime example of how global vaccination campaigns can lead to the complete elimination
of a disease [9]. Similarly, the rapid response to the H1N1 influenza pandemic in 2009,
including the development and distribution of vaccines, helped to control the spread of the
virus and reduce its impact [10].
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By analyzing data that use different models and algorithms, epidemiologists can
forecast future incidence cases and evaluate various control strategies. Systematic pre-
ventive measures can help in reducing the spread of diseases. At first glance, choosing
healthcare policies seems obvious, but in reality, it is a very complicated task. One needs to
put forward control strategies that are practical and, at the same time, have manageable
consequences. At the onset of COVID-19, lockdowns were helpful, but they were not
sustainable long term [11–13]. Thus, choosing the best intervention at the right time is
critical [14,15].

The study in [16] introduced a two-stage epidemic model for the spread of COVID-19
and proposed optimal control strategies based on actual data and cost considerations. The
research underscores the importance of contact tracing and isolation in minimizing the
costs and effectively curbing the spread of a disease. Numerical simulations and model
analysis provide actionable recommendations for public health authorities, highlighting
the critical role of controlling the transmission rate in epidemic management.

The research in [17] modeled the spread of COVID-19 and assessed the impact of
social intervention measures during the early outbreak phase, focusing on optimal con-
trol strategies and the identifiability of model parameters. It found that optimal control
strategies, especially social distancing and self-isolation, as well as significantly reduced
transmission rates when implemented early. The study emphasized the importance of
structural identifiability for accurate parameter estimation in COVID-19 models. It shows
that implementing control measures effectively “flattens the curve” and lowers the burden
on healthcare systems.

Another study, [18], focused on an SIR model with saturated incidence and treatment
rates, analyzing equilibrium points, bifurcation, and optimal control strategies that utilize
vaccination and treatment as well as antiviral medication, in order to contain the outbreak.
The authors’ findings, derived from numerical simulations and efficiency analysis, demon-
strated that vaccination control stands to reduce the cumulative number of infections
more rapidly than control by antiviral treatment. This research underscores the value of
mathematical modeling in epidemiology and the strategic implementation of vaccination
to prevent disease transmission.

2. Control of an Emerging Disease

In the study of epidemic control, the effective management of disease spread is crucial,
particularly at the onset of an outbreak. While the importance of vaccination in fighting
infectious diseases is undeniable, it takes time to develop a vaccine for an emerging strain.
Various parameters, including environmental factors, immunity patterns, and behavioral
changes, impact the circulation of a virus. Social distancing and personal hygiene measures
(non-medical interventions) play an important role in containing the disease at an early
ascending stage. By optimizing the implementation of non-medical interventions over time,
the effectiveness of these interventions can be increased.

Another essential component of control and prevention is treatment with antiviral
medications, which makes it possible to reduce the period of infectiousness and/or reduce
the disease fatality rate. To account for these two important types of control, we consider the
following SIR (Susceptible-Infectious-Removed) model [19] for early disease transmission:

dS
dt

= −β
S(t)I(t)

N
dI
dt

= β
S(t)I(t)

N
− γI(t) (1)

dR
dt

= γI(t)

In this system (1), we assume that recovered individuals gain immunity for the duration of
the study period and do not return to the susceptible class S . Additionally, we assume that
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the natural birth and death rates balance one another, and the number of deaths due to the
disease is expected to be negligible relative to the total population, N, so that the removed
class, R, is mostly comprised of recovered individuals. Therefore, the removed class, R, is
essentially viewed as recovered, and the two disease parameters β > 0 and γ > 0 are the
transmission and recovery rates, respectively. Individuals leave the infectious class, I , after
being infected for an average time period 1/γ.

The focus of this research regards introducing optimal controls during the initial
weeks of a pandemic in order to delay and reduce the daily number of infections [20]. This
approach enables health centers and decision-making organizations to implement more
effective operations. In what follows, we incorporate two different kinds of control in the

SIR model [21], resulting in the system
dx
dt

= f (x, u), where

f1(x, u) := −β(1 − u1(t))S(t)I(t)

f2(x, u) := β(1 − u1(t))S(t)I(t)− (γ + εu2(t))I(t) (2)

f3(x, u) := (γ + εu2(t))I(t).

Here, S(t) :=
S(t)

N
, I(t) :=

I(t)
N

, and R(t) :=
R(t)

N
are the normalized susceptible,

infected, and removed compartments, respectively; N is the population of the region at the
beginning of the study period. The function u1(t) represents nonmedical controls (social
distancing, remote work, online education, restriction on travel, lockdowns, etc.), while
u2(t) stands for treatment with antiviral medications and other medical interventions. A
positive parameter, ε, is the efficacy of antiviral treatments [22]. In the above, x := [S, I, R]⊤,
u := [u1, u2]

⊤, and the admissible set for each control function is

U =
{

ui ∈ L1[0, T], 0 ≤ ui(t) < 1, i = 1, 2
}

. (3)

In (2), the first control, u1(t), aims to change the disease transmission rate from β to
β(1 − u1(t)), while the second control, u2(t), is expected to reduce the period of infectious-
ness, which is 1

γ in the initial system (1). In combination, the two controls, u1(t) and u2(t),
are meant to minimize the force of infection, β(1 − u1(t))S(t)I(t), while keeping the costs
at bay. The costs are considered in a general sense, which includes a negative impact on
mental health, education, the economy, and on the overall quality of life.

In Lemma 1 below, we show that, following the introduction of a time-dependent
transmission rate, β(t) := β(1 − u1(t)), and a time-dependent recovery rate, γ(t) :=
γ + εu2(t), the model dx

dt = f (x, u) in (2) remains well-defined in the sense that the state
variables S(t), I(t), R(t), originating in a positive octant do not leave the octant for all
values of t > 0. The proof of this lemma is similar to the argument in [23], where the system
(2) was considered with non-medical controls only (that is, u2(t) = 0).

Lemma 1 ([23]). Let ui(t), i = 1, 2 be admissible control trajectories with x(t), satisfying dx
dt =

f (x, u) given by (2) and

(S(0), I(0), R(0)) ∈ ∆2 := {(z1, z2, z3) ∈ R3 : z1 + z2 + z3 = 1, z1, z2, z3 ≥ 0},

where the probability simplex is R3. Then, (S(t), I(t), R(t)) ∈ ∆2 for all t ≥ 0.

Note that the argument in [23] implies that the conclusion of Lemma 1 is not limited
to β(t) := β(1 − u1(t)) and γ(t) := γ + εu2(t). It is valid for any integrable non-negative
functions β(t) and γ(t). To optimize the implementation of both controls, u1(t) and u2(t),
we consider the following objective functional:

J(x, u) : =
∫ T

0

{
(β(1 − u1(t))S(t)I(t) + λ⊤ C(u(t))

}
dt.
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According to system (2), one can integrate the first term to obtain

J(x, u) = S(0)− S(T) +
∫ T

0
λ⊤C(u(t)) dt := h(x(T)) +

∫ T

0
L(x(t), u(t)) dt, (4)

where C(u) := [C1(u1), C2(u2)]
⊤ is the assumed cost of control and λ := [λ1, λ2]

⊤, λ1, λ2 >
0, is the regularization parameter (weight). As our numerical experiments show, the choice
of the cost function, C(u), significantly influences the resulting control strategy. From a
practical standpoint, neither u1(t) nor u2(t) should take negative values. At the same time,
the cost, Ci(ui), must increase dramatically as ui(t) approaches 1, which is the upper bound
of the feasible set (3), since it is impossible to entirely eliminate the disease transmission
(u1(t) = 1). It is equally impossible to reach the full capacity of antiviral treatment
(u2(t) = 1) due to the limitations of testing and other factors. Therefore, in our approach,
we impose the following assumptions on the cost functions C1(u1) and C2(u2) [23]:

C′′
i (u) > 0, Ci(0) = 0, C′

i(u) > 0 for u > 0, (5)

C′
i(u) < 0 for u < 0 and lim

u→1−
Ci(u) = ∞, i = 1, 2.

These assumptions on the cost of control were first proposed in [23] for a special case when
u2(t) = 0. The authors of [23] employed the techniques of machine learning to show that
under assumptions (5), the global minimum of the Hamiltonian gives rise to the optimal
control strategy, u1(t), which stays within the feasible set (3) for all values of t ∈ [0, T].
Assumptions (5) are the alternative to a more traditional cost function, C(u) = u2, that
is often used in the control literature. However, C(u) = u2 does not generally prevent
the global minimum from becoming greater than 1 for some values of t, even for large
weights λ.

3. Theoretical Study and Discussion

In this section, we state and prove our main theoretical result.

Theorem 1. Let u ∈ U be an optimal control strategy with respect to the objective functional
J(x, u) defined in (4) and biological model ẋ = f (x, u), x(0) = x0, introduced in (2), with
C(u) := [C1(u1), C2(u2)]

⊤ satisfying (5) and λ := [λ1, λ2]
⊤, λ1, λ2 > 0. Then, there is

τ ∈ [0, T) such that for any t ∈ (τ, T), the derivative,
dui
dt

, i = 1, 2, exists, and
dui
dt

< 0. In other

words, there is τ ∈ [0, T) such that for any t ∈ (τ, T), both optimal controls, u1(t) and u2(t),
are decreasing.

Proof. According to the Pontryagin’s Minimum Principle [24,25], if u ∈ U is an optimal
control with respect to the objective functional J(x, u) = h(x(T)) +

∫ T
0 L(x(t), u(t)) dt and

the system ẋ = f (x, u), x(0) = x0, then there is a trajectory p(t) such that

ṗ(t) = −∂xH(x, u, p)⊤
∣∣∣
x(t),u(t),p(t)

, p(T) = ∂xh(x)⊤
∣∣∣
x(T)

, (6)

u(t) = arg min
v∈U

H(x(t), v(t), p(t)), H(x, v, p) := L(x, v) + p⊤ f (x, v). (7)

By the properties (5) of the cost, C(u), one has C′
i(u) > 0 for u > 0 and limu→1− Ci(u) = ∞,

which prevent any u = [u1, u2]
⊤, ui ≥ 1, i = 1, 2, from being the optimal of H(x, u, p) with

respect to u at any time t ∈ [0, T]. Therefore, the Karush–Kuhn–Tucker (KKT) conditions
for the optimal control problem (2)–(4) take the form
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∂uH(x, u, p)− q(t) = 0, q(t) := [q1(t), q2(t)]⊤ (K1)

ṗ(t) = −∂x H(x, u, p)⊤
∣∣∣
x(t),u(t),p(t)

, p(T) = ∂xh(x)⊤
∣∣∣
x(T)

(K2)

ẋ(t) = f (x, u), x(0) = x0 (K3)

qi(t) ≥ 0, ui(t) ≥ 0, i = 1, 2, q(t)⊤u(t) = 0 ∀t ∈ [0, T]. (K4)

As it follows from (2), (4) and (7),

∂uH(x, u, p) = ∂uL(x, u) + p⊤∂u f (x, u)

=

[
∂L
∂u1

∂L
∂u2

]
+ [p1, p2, p3]



∂ f1

∂u1

∂ f1

∂u2

∂ f2

∂u1

∂ f2

∂u2

∂ f3

∂u1

∂ f3

∂u2



=

[
λ1

dc1

du1
λ2

dc2

du2

]
+ [p1, p2, p3]


βSI 0

−βSI −εI

0 εI

, (8)

which yields

λ1
dc1

du1
− q1(t) = −β(p1 − p2)SI (9)

λ2
dc2

du2
− q2(t) = −ε(p3 − p2)I. (10)

To show that on some (τ, T) the derivative
du1

dt
exists that and

du1

dt
< 0, we follow [23].

Conditions (K2) and (K3) imply that (p1 − p2)SI is differentiable and therefore continuous
for any t ∈ [0, T]. From Lemma 1, one concludes that S(t), I(t) > 0 as long as S(0) and
I(0) are positive. On the other hand, since p1(T) = −1 < 0 = p2(T), there is τ1 ∈ [0, T)
such that p1(t)− p2(t) < 0 for all t ∈ [τ1, T). Suppose at some point t ∈ [τ1, T], where the
Lagrange multiplier, q1(t), is greater than zero. Then from (K4), it follows that u1(t) = 0.

By (5), this implies that
dc1

du1
(t) = 0, which means that in (9)

dc1

du1
(t)− q1(t) < 0, while

−β(p1 − p2)SI > 0. Hence, we arrive at the contradiction. Therefore, for any t ∈ [τ1, T],

one has q1(t) = 0 and λ1
dc1

du1
= −β(p1 − p2)SI. By the implicit function theorem, for

t ∈ (τ1, T) the derivative
du1

dt
exists, and

du1

dt
= − β[S(t)I(t)(p1(t)− p2(t))]′

λ1c′′1 (u1)
for all t ∈ (τ1, T). (11)
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Taking into consideration (2), (4), and (7), one obtains

∂x H(x, u, p) = ∂xL(x, u) + p⊤∂x f (x, u)

=

[
∂L
∂S

∂L
∂I

∂L
∂R

]
+ [p1, p2, p3]



∂ f1

∂S
∂ f1

∂I
∂ f1

∂R
∂ f2

∂S
∂ f2

∂I
∂ f2

∂R
∂ f3

∂S
∂ f3

∂I
∂ f3

∂R



=
[
0 0 0

]
+ [p1, p2, p3]


−β(1 − u1)I −β(1 − u1)S 0

β(1 − u1)I β(1 − u1)S − (γ + εu2) 0

0 (γ + εu2) 0

. (12)

Furthermore, from (4) one obtains ∂xh(x) = [−1, 0, 0]⊤. This, together with (12), implies
that p3(t) = 0, and the costate equations for p1(t) and p2(t) take the following form:

ṗ1 = β(1 − u1(t))(p1(t)− p2(t))I(t)

ṗ2 = β(1 − u1(t))(p1(t)− p2(t))S(t) + p2(t)(γ + εu2(t)) (13)

p1(T) = −1, p2(T) = 0.

Combining (2) and (13), one can rewrite [S(t)I(t)(p1(t)− p2(t))]′ as follows:

[S(t)I(t)(p1(t)− p2(t))]′ = (S′ I + SI′)(p1 − p2) + (p′1 − p′2)S(t)I(t)

=
{
−β (1 − u1)SI2 + β (1 − u1)S2 I − (γ + εu2)SI

}
(p1 − p2)

+
{

β (p1 − p2)(1 − u1)(I − S)− p2(γ + εu2)
}

SI

= −p1(γ + εu2)SI. (14)

From (14) and (11), one concludes

du1

dt
=

βp1(γ + εu2)SI
λ1c′′1 (u1)

for all t ∈ (τ1, T). (15)

Since p1(T) = −1 < 0 and S(t), I(t) > 0, while γ + εu2 > 0, λ1c′′1 (u1) > 0 for t ∈ [0, T],

there exists τ2 ∈ [0, T) such that p1(t) < 0 and
βp1(γ + εu2)SI

λ1c′′1 (u1)
< 0 for all t ∈ [τ2, T].

Let τ = max(τ1, τ2); then,
du1

dt
is negative in (τ, T). As noted above, p3(t) = 0; therefore,

identity (10) yields

λ2
dc2

du2
− q2(t) = εp2 I. (16)

Taking into account (13), one arrives at

d
dt

(
p2(t)e

∫ T
t (γ+εu2(µ))dµ

)
= β(1 − u1(t))(p1(t)− p2(t))S(t)e

∫ T
t (γ+εu2(µ))dµ. (17)

Integrating (17) from t to T and substituting p(T) = 0, one obtains

p2(t) = −βe−
∫ T

t (γ+εu2(µ))dµ
∫ T

t
(1 − u1(ν))(p1(ν)− p2(ν))S(ν)e

∫ T
ν (γ+εu2(µ))dµdν. (18)

As shown above, p1(t)− p2(t) is negative on [τ, T]. Thus, (3) and (18) imply that p2(t) > 0
for all t ∈ [τ, T). Using the same argument as in the case of u1(t), one can now conclude
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that q2(t) in (16) is equal to zero on [τ, T], that is, the constraint u2(t) ≥ 0 is not active

for t ∈ [τ, T), and λ2
dc2

du2
= εp2 I. By the implicit function theorem, for t ∈ (τ, T), the

derivative
du2

dt
exists, and

du2

dt
=

ε[p2 I]′

λ2c′′2 (u2)
for all t ∈ (τ, T). (19)

From (2) and (13), one has

[p2 I]′ =
{

β(1 − u1)(p1 − p2)S + p2(γ + εu2)
}

I + p2
{

β(1 − u1)SI − (γ + εu2)I
}

= βp1(1 − u1)SI < 0 on [τ, T],

since p1(t) < 0 for all t ∈ [τ2, T] and τ ≥ τ2. This implies that
du2

dt
< 0 in (τ, T), which

completes the proof.

Remark 1. According to (4), (5), and (7), ∂2
uH(x, u, p) =

λ1c′′1 (u1) 0

0 λ2c′′2 (u2)

. Therefore,

∂2
uH(x, u, p) is positive definite, and H(x, u, p) has a unique global minimum with respect to

u. From the proof of Theorem 1, it follows that both coordinates of the global minimum, u1(t)
and u2(t), are guaranteed to be less than 1 pointwisely, but they are not guaranteed to be greater
than 0 necessarily, which means that the solution to our optimal control problem can be a local
minimum rather than global. The reason that the coordinates of the global minimum, ui(t), i = 1, 2,
can potentially be less than zero for some values of t is that, counterintuitively, a smaller effective
reproduction number, r(t), in the SIR model does not always imply a smaller cumulative number
of infected people: S(0) − S(t). Hence, even though for system (2), the effective reproduction
number, r(t) = β(1 − u1(t))/(γ + εu2(t)), goes down with more control, it does not guarantee
that r(t) ≥ r̄(t) yields S(t) ≤ S̄(t) for every value of t. One can, however, show that if r(t) ≥ r̄(t)
and r(t) is non-increasing, then S(t) ≤ S̄(t). This result is important in its own right. Its proof is
given in Appendix A.

Remark 2. Despite the fact that, theoretically, the solution to our optimal control problem can be
a local minimum rather than global, in all numerical experiments presented in the next section,
the optimal strategy is a unique global minimum. In other words, in all our experiments, the
optimal control has been computed from the first-order necessary condition for unconstrained mini-
mization, and non-negativity constraints have held without being enforced. For all cost functions,
C(u(t)), satisfying (5), the global minimum of H(x, u, p) with respect to u has non-negative
coordinates ui(t), i = 1, 2. That is, u(t) = arg minv∈U H(x(t), v(t), p(t)) is equivalent to
u(t) = arg minv∈L1[0,T] H(x(t), v(t), p(t)) for all t ∈ [0, T]. This illustrates that conditions (5)
lead to a practically justified mitigation scenario. Numerical simulations have also confirmed, as
proven in Theorem 1, that both controls, u1(t) and u2(t), were decreasing toward the end of the
study period.

4. Numerical Experiments

In our numerical study, we used a second-order trust region algorithm for non-linear
optimization ‘lsqnonlin’ combined with the ode15s built-in function to approximate the
solution to an optimal control problem (4) subject to a compartmental model (2) and costate
system (13). For every value of uk, we solved system (2) forward in time (starting with
x(0) = x0), to obtain xk using ode15s. Then, system (13) was solved back in time using
ode15s to obtain pk. Given (xk, uk, pk), we found uk+1 by applying the second-order trust
region ’lsqnonlin’ algorithm.
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Following [23], we consider three different cost functions, Ci,1, Ci,2, and Ci,3, satisfying
conditions (5):

Ci,1(u) = −0.830071 ln(1 − u2), Ci,2(u) = −0.672850 u ln(1 − u)

Ci,3(u) = −u − ln(1 − u), Ci,4(u) = 1.424546 u2 i = 1, 2. (20)

In (20), the coefficients have been chosen to minimize the weighted distance [23]:∫ 1

0
w(z)|Ci,j(z)− Ci,3(z)|2 dz, w(z) =

√
1 − z2, j = 1, 2, 4. (21)

The cost of control, Ci,1(u), Ci,2(u), and Ci,3(u), is infinite as u approaches its ultimate
value 1. For comparison, we also used the cost function Ci,4(u) = u2, for which (5)
does not hold. The cost function Ci,4(u) = u2 is popular in applications of control the-
ory in epidemiology and other fields, since for this function the first-order optimality
condition is linear with respect to u. This is a useful property that simplifies numerical
algorithms. However, the cost of control, Ci,4(u), is finite at u = 1, which is not realistic in
real-world scenarios. Figures 4, 7 and 12 show that the global minimum, u(t), of the Hamil-
tonian, H(x(t), u(t), p(t)), did not stay in the range of [0, 1] when the cost was given by
Ci,4(u) = u2, especially for small values of λi, i = 1, 2. Thus, an explicit constraint ui(t) ≤ 1
must be imposed in the case of Ci,4(u). Even with the constraint ui(t) ≤ 1, the optimal
control function, u(t), often reaches the ultimate level [17], ui(t) = 1, which is not practical.

In all numerical experiments presented in this section, C1,j(u) = C2,j(u), j = 1, 2, 3, 4.
Therefore, moving forward, we omitted the first index and set Ci,j(u) := Cj(u). A compari-
son of the four cost functions in the interval [−1, 1] is illustrated in Figure 1.
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Figure 1. Comparison of the four control cost functions used in numerical experiments be-
low: C1(u) = −0.830071 ln(1 − u2), C2(u) = −0.672850 u ln(1 − u), C3(u) = −u − ln(1 − u),
C4(u) = 1.424546 u2.

In this study, numerical simulations were conducted for λ1 and λ2 equal to 0.1, 0.05,
0.01, 0.001, and 10−7. Three different scenarios have been explored. First, there is only
non-medical control, u1(t), (social distancing, behavioral changes, hand washing, etc.) in
the system, and treatment with antiviral medications, u2(t), is not available. Second, only
control u2(t), treatment with antiviral medications is applied; there is no social distancing.
And third, controls u1(t) and u2(t), medical and non-medical are used in combination.
In our experiments, the population of the region, N, was assumed to be 107. The initial
number of infected individuals on day 1 was 200, and the duration of the study period
was 120 days. The transmission rate, β, and recovery rate, γ, were assumed to be 0.3 and
0.1, respectively, leading to the basic reproduction number r = 3. The efficacy of antiviral
medication, ε, was assumed to be 0.5 when applicable.
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4.1. Scenario 1: Social Distancing Control Only

In the first scenario, only one (non-medical) control, u1(t), was applied (Figures 2–4).
As one can see in the figures, when the weight of control λ1 was increased, the effectiveness
of the control went down; see also Table 1 that illustrates how I(t) changes over time for the
cost C1(u) with different values of λ1 (find similar Tables A13–A15 for C2, C3, and C4 in the
Appendix A). One can conclude from Figure 2 that control u1(t) works by eliminating some
cases but also by delaying some of them. Therefore, even though the cumulative number of
infections in the controlled environment was significantly less than in the environment with
no control, toward the end of the study period, the daily number of infected individuals in
the controlled environment may end up being higher.
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Figure 2. Graphs of Susceptible S(t) (top on the left), Infected I(t) (top on the right), and Recovered
R(t) (bottom on the left) people, as well as control u1(t) (bottom on the right) over time for four
different cost functions C1, C2, C3, C4 versus No Control when weight is λ1 = 0.05.

Figures 2–4 with λ1 equal to 0.05, 0.001, and 10−7, respectively, show the pattern of
I(t) decreasing as the values of λ1 went down. Based on these figures and Table 1, the
“flattening of the curve” is evident.
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Figure 3. Graphs of Susceptible S(t) (top on the left), Infected I(t) (top on the right), and Recovered
R(t) (bottom on the left) people, as well as control u1(t) (bottom on the right) over time for four
different cost functions C1, C2, C3, C4 versus No Control when weight is λ1 = 0.001.
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Table 1. Comparison of I(t) for cost function C1 in case when only control u1 is applied and λ1

varies. As λ1 increases, the number of infected individuals, I(t), grows higher on most days.

Day λ1 = 10−7 No
2nd Control

λ1 = 0.001 No
2nd Control

λ1 = 0.01 No
2nd Control

λ1 = 0.05 No
2nd Control No Control

1 200 200 200 200 200

10 85 253 315 387 1237

20 34 329 527 812 9228

30 15 432 880 1691 67,606

40 7 571 1466 3514 456,639

50 4 761 2447 7267 1,985,292

60 3 1028 4089 14,927 2,987,989

70 2 1416 6873 30,388 2,015,872

80 1 2003 11,678 61,024 1,023,788

90 1 2953 20,264 120,429 474,813

100 1 4643 36,661 233,756 213,085

110 1 8190 72,008 453,110 94,393

120 1 18,714 174,758 922,708 41,578
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Figure 4. Graphs of Susceptible S(t) (top on the left), Infected I(t) (top on the right), and Recovered
R(t) (bottom on the left) people, as well as control u1(t) (bottom on the right) over time for four
different cost functions C1, C2, C3, C4 versus No Control when weight is λ1 = 10−7. For the cost
function C4, u1(t) stayed above the ultimate value, u1(t) = 1, for more than half of the study period,
which is not practical.

4.2. Scenario 2: Control with Antiviral Medication Only

For the next set of experiments, it was assumed that there was only control u2(t) in the
system. In Figures 5–7, one can see the effect of the weight, λ2, on different cost functions
and, as a result, on state variables S(t), I(t), and R(t) over time. Again, as the weight
λ2 decreases, the control played a more effective role in reducing the number of infected
people (See Tables 2 and A16–A18 for more details).
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Figure 5. Graphs of Susceptible S(t) (top on the left), Infected I(t) (top on the right), and Recovered
R(t) (bottom on the left) people, as well as control u2(t) (bottom on the right) over time for four
different cost functions C1, C2, C3, C4 versus No Control when weight is λ = 0.1.

Table 2. Comparison of I(t) for cost function C1 in case when only control u2 is applied and λ2

varies. As λ2 increases, the number of infected individuals, I(t), grows higher on most days.

Day λ2 = 10−7 No
1st Control

λ2 = 0.001 No
1st Control

λ2 = 0.01 No 1st

Control
λ2 = 0.05 No 1st

Control
λ2 = 0.1 No 1st

Control
No Control

1 200 200 200 200 200 200

10 18 181 254 318 377 1237

20 1 168 332 530 756 9228

30 0 164 437 880 1503 67,606

40 0 166 581 1456 2949 456,639

50 0 177 782 2395 5693 1,985,292

60 0 198 1073 3938 10,735 2,987,989

70 0 234 1515 6481 19,547 2,015,872

80 0 299 2226 10,735 34,005 1,023,788

90 0 420 3485 18,210 56,943 474,813

100 0 676 6092 33,048 95,559 213,085

110 0 1391 13,102 70,339 177,085 94,393

120 0 5265 49,724 244,998 499,616 41,578

Overall, the effects of controls u1(t) and u2(t) on the system, when only one control
was applied, were similar. However, as one can clearly see from Table 3, for the same cost
and over the same time interval, control u2(t) suppressed infections more aggressively
than u1(t). Also, there is a significant difference between the results for cost function C4(u)
and the rest of the cost functions. While for C1(u), C2(u), and C3(u) the maximum number
of infected people on any given day in the case of “first control only” was 923,332, this
number was 1,511,537 for C4(u). Additionally, in the case of “second control only”, the
maximum daily number of infected individuals for C4(u) exceeded the maximum daily
number for other cost functions by 154,151 cases.
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Figure 6. Graphs of Susceptible S(t) (top on the left), Infected I(t) (top on the right), and Recovered
R(t) (bottom on the left) people, as well as control u2(t) (bottom on the right) over time for four
different cost functions C1, C2, C3, C4 versus No Control when weight is λ2 = 0.05.
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Figure 7. Graphs of Susceptible S(t) (top on the left), Infected I(t) (top on the right), and Recovered
R(t) (bottom on the left) people, as well as control u2(t) (bottom on the right) over time for four
different cost functions C1, C2, C3, C4 versus No Control when weight is λ2 = 10−7.

The best performance among all cost functions can be attributed to C3(u) in both cases
where only control u1(t) or only control u2(t) was applied. For details, one can see Table 3
and Figure 8.
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Table 3. Comparison of I(t) for all cost functions in the case when only control u1 is applied
(λ1 = 0.05) or only control u2 is applied (λ2 = 0.05) over time.

Day λ1 = 0.05 No
2nd Control

No 1st Control
λ2 = 0.05

λ1 = 0.05 No
2nd Control

No 1st Control
λ2 = 0.05

λ1 = 0.05 No
2nd Control

No 1st Control
λ2 = 0.05

λ1 = 0.05 No
2nd Control

No 1st Control
λ2 = 0.05

C1 C2 C3 C4

1 200 200 200 200 200 200 200 200

10 387 318 388 317 377 308 401 349

20 812 530 816 527 766 495 918 644

30 1691 880 1706 872 1552 795 2133 1178

40 3514 1456 3557 1439 3134 1273 4939 2133

50 7267 2395 7379 2362 6302 2034 11,366 3816

60 14,927 3938 15,209 3879 12,618 3258 25,851 6733

70 30,388 6481 31,076 6381 25,120 5256 57,953 11,672

80 61,024 10,735 6,2623 10,561 49,586 8558 127,302 19,877

90 120,429 18,210 123,913 17,880 96,926 14,338 266,304 33,825

100 233,756 33,048 240,619 32,336 188,180 25,768 509,874 60,100

110 453,110 70,339 463,527 67,697 367,745 53,756 899,275 123,379

120 922,708 244,998 923,332 229,683 760,101 183,048 1,511,537 399,149

0 20 40 60 80 100 120

Days

0

0.05

0.1

0.15

Figure 8. Graphs of I(t) for different cost functions C1, C2, C3, C4 when only u1(t) is applied and
λ1 = 0.05 (shown with solid lines), as well as when only u2(t) is applied and λ2 = 0.05 (shown with
dashed line).

4.3. Scenario 3: Non-Medical and Medical Controls in Combination

For the next step, we applied two controls to the SIR system, u1(t) and u2(t), together
with the same weights, λ1 = λ2 = λ, in order to evaluate their effect on the outbreak
(See Figures 9–12). As expected, in terms of its dependence on λ, the combination of two
controls, u1(t) and u2(t), behaved pretty similar to the case of one control in a sense that
when the weight λ decreased, the controls became more effective, and the daily number of
infected humans went down.
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Figure 9. Graphs of Susceptible S(t) (top on the left), Infected I(t) (top on the right), Recovered
R(t) (bottom on the left) people, controls u1(t) shown with solid lines, and u2(t) with dashed lines
(bottom on the right) over time for four different cost functions C1, C2, C3, C4 versus No Control when
weights, λ1, and λ2, for both controls are 0.1.
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Figure 10. Graphs of Susceptible S(t) (top on the left), Infected I(t) (top on the right), Recovered R(t)
(bottom on the left) people, control u1 shown with solid lines, and u2 with dashed lines (bottom on
the right) over time for four different cost functions C1, C2, C3, C4 versus No Control when weight, λ,
for both controls is λ1 = λ2 = λ = 0.05.

Tables 4 and 5 show the daily number of infected individuals, I(t), and the cumulative
number of infected individuals up to day t, N − S(t), for different control scenarios. This
gives an insight into how the two controls, u1(t) and u2(t), compare individually and
in combination when subject to the same cost, C1(u), and the same weight, λ1 = λ2 =
λ = 0.05. Table 5 illustrates that the cumulative number of infections after applying both
controls for 120 days was 454,205, while the “no control” counterpart was 9,397,865. And
in the case of the control with antiviral medication, u2(t), after 120 days, there were more
than the times fewer cases compared to the case of social distancing control, u1(t) (692,160
vs. 2,256,854). Similar tables related to the cost functions C2(u), C3(u), and C4(u) can be
found in Appendix A (Tables A1–A6).
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Figure 11. Graphs of Susceptible S(t) (top on the left), Infected I(t) (top on the right), Recovered
R(t) (bottom on the left) people, controls u1(t) shown with solid lines, and u2(t) with dashed lines
(bottom on the right) over time for four different cost functions C1, C2, C3, C4 versus No Control when
weight, λ, for both controls is λ1 = λ2 = λ = 0.001.

Table 4. Comparison of I(t) for cost function C1 when there is only u1, only u2, and both u1, u2

applied versus No Control case over time when λ = 0.05.

Day No Control λ1 = 0.05 No 2nd

Control
No 1st Control

λ2 = 0.05
λ1 = 0.05
λ2 = 0.05

1 200 200 200 200

10 1237 387 318 300

20 9228 812 530 472

30 67,606 1691 880 743

40 456,639 3514 1456 1167

50 1,985,292 7267 2395 1834

60 2,987,989 14,927 3938 2897

70 2,015,872 30,388 6481 4625

80 1,023,788 61,024 10,735 7522

90 474,813 120,429 18,210 12,727

100 213,085 233,756 33,048 23,355

110 94,393 453,110 70,339 50,792

120 41,578 922,708 244,998 173,543

In the next series of experiments, controls u1(t) and u2(t) had different weights, λ1
and λ2, applied to their respective cost functions. We considered two cases. First, for the
cost function C1(u), the weight of control u1(t) was less than the weight of control u2(t)
(λ1 < λ2). Table 6 shows the changes in the daily numbers of infected people, I(t), for the
cost function C1(u), in the case of fixed weight (λ1 = 0.05) for control u1(t) and different
weights for control u2(t) (Tables A7–A9 for cost functions C2(u), C3(u), and C4(u) can be
found in Appendix A). As it follows from Table 6, adding the second control, u2(t), with
any weight, λ2, helped to better contain the outbreak and to decrease the daily number
of infected people, as well as the cumulative number of cases. Even for a high effort case
of λ2 = 0.1, the number of daily infections was 624, 040 cases less than the daily number
of infected individuals in the case when there was no control: u2(t). However, when the
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weight of the second control λ2 increased, the effort required to implement that measure
also rose, making it increasingly challenging to execute. When the roles were reversed, that
is, for the cost function C1(u), the weight, λ2 = 0.05, of the second control u2(t) was fixed,
and the sensitivity of the system to the first control u1(t) was observed, the pattern ended
up being similar. Namely, adding a non-medical control, u1(t), reduced the daily number
of infected people. Even though it was not as consequential as in the case when control
u2(t) was added, there were still fewer infected people in all cases with two controls as
opposed to the case of u2(t) only. At the same time, it is evident that the second control,
u2(t), is more efficient. Indeed, for the high effort case of λ1 = 0.1, the number of daily
infections was only 44, 983 cases less than the daily number of infected individuals in
the case when there was no control u1(t) (as opposed to a 624, 040 reduction when u2(t)
was added with the same effort of 0.1). The difference in the daily number of infected
individuals between the case of no u1(t) (i.e., u2(t) only with weight λ1 = 0.05) and the
case of u2(t) with λ1 = 0.05 and u1(t) with varying weights ranged from 244, 998 to 16, 608.
See Tables 7 and A10–A12 for more details.
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Figure 12. Graphs of Susceptible S(t) (top on the left), Infected I(t) (top on the right), Recovered
R(t) (bottom on the left) people, controls u1(t) shown with solid lines, and u2(t) with dashed lines
(bottom on the right) for four different cost functions C1, C2, C3, C4 versus No Control when weight,
λ, for both controls is λ1 = λ2 = λ = 10−8. Control u2 for cost function C4 takes unrealistic values
above 1 at the early period of the study.

Figures 13 and 14 show the behaviors of the controls and their effects on the graphs of
I(t) for different cost functions and different weights. As is evident from the graphs, when
λ1 = 0.05 and λ2 = 0.01, the second control, u2(t), was dominant and very efficient. At
the same time, when λ1 = 0.05 and λ2 = 0.1, the two controls, u1(t) and u2(t), were about
the same, and there were more infected people toward the end of the study period, that is,
the control strategy in Figure 14 is less efficient compared to the case of Figure 13. The two
figures, once again, underline the significance of the second control u2(t).
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Table 5. Cumulative number of infections up to day t, N − S(t) for cost function C1 when there is
only u1, only u2, and both u1, u2 versus No Control case over time when weight λ1 = λ2 = λ = 0.05.

Day No Control λ1 = 0.05 No 2nd

Control
No 1st Control

λ2 = 0.05
λ1 = 0.05
λ2 = 0.05

1 200 200 200 200

10 1756 643 898 772

20 13,747 1649 2156 1761

30 101,568 3735 4239 3312

40 697,572 8067 7686 5748

50 3,338,392 17,006 13,356 9562

60 7,032,920 35,334 22,686 15,568

70 8,627,485 72,609 37,993 25,108

80 9,121,747 147,335 63,222 40,496

90 9,292,217 294,458 105,246 66,067

100 9,358,556 579,209 178,417 111,270

110 9,386,082 1,130,270 320,258 202,389

120 9,397,865 2,256,854 692,160 454,205

Table 6. Comparison of the daily number of infected people, I(t), for the cost function C1 with the
weight λ1 = 0.05 for u1(t). The weights for the control u2(t) are λ2 = 0.001, 0.01, 0.05, and 0.1 for the
second, third, and fourth columns, respectively, and the fifth column shows the case of No Control
u2(t) over time.

Day λ1 = 0.05
λ2 = 0.001

λ1 = 0.05
λ2 = 0.01

λ1 = 0.05
λ2 = 0.05

λ1 = 0.05
λ2 = 0.1

λ1 = 0.05 No 2nd

Control

1 200 200 200 200 200

10 180 251 300 321 387

20 167 323 472 545 812

30 163 421 743 925 1691

40 165 554 1167 1561 3514

50 175 737 1834 2629 7267

60 195 1002 2897 4428 14,927

70 231 1404 4625 7481 30,388

80 291 2049 7522 12,748 61,024

90 403 3188 12,727 22,274 120,429

100 646 5554 23,355 41,465 233,756

110 1306 11,909 50,792 89,010 453,110

120 4879 44,363 173,543 280,668 922,708
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Table 7. Comparison of the daily number of infected people, I(t), for the cost function C1 with the
weight λ2 = 0.05 for u2(t). The weights for the control u1(t) are λ1 = 0.001, 0.01, 0.05, and 0.1 for the
second, third, and fourth columns, respectively, and the fifth column shows the case of No Control
u1(t) over time.

Day λ1 = 0.001
λ2 = 0.05

λ1 = 0.01
λ2 = 0.05

λ1 = 0.05
λ2 = 0.05

λ1 = 0.1
λ2 = 0.05

No 1st Control
λ2 = 0.05

1 200 200 200 200 200

10 245 281 300 306 318

20 308 411 472 492 530

30 390 604 743 791 880

40 500 890 1167 1268 1456

50 649 1318 1834 2028 2395

60 857 1976 2897 3253 3938

70 1159 3016 4625 5258 6481

80 1621 4732 7522 8613 10,735

90 2383 7788 12,727 14,602 18,210

100 3777 13,962 23,355 26,759 33,048

110 6844 29,381 50,792 57,816 70,339

120 16,608 90,271 173,543 200,015 244,998

20 40 60 80 100 120

t(days)

0

0.1

0.2

I(
t)

20 40 60 80 100 120

t(days)

0

0.1

0.2

0.3

u
(t

)

Figure 13. The proportion of infected people, I(t), for different cost functions and No Control case
when λ1 = 0.05, λ2 = 0.01 (on the top) and controls u1(t) shown with solid lines, with u2(t) shown
with dashed lines (on the bottom).
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Figure 14. The proportion of infected people, I(t), for different cost functions and No Control case
when λ1 = 0.05, λ2 = 0.1 (on the top) and controls u1(t) shown with solid lines, with u2(t) shown
with dashed lines (on the bottom).

5. Conclusions

To summarize, in this study, we investigated different control scenarios through theo-
retical analysis and numerical simulations. To account for two important types of control,
social distancing and treatment with antiviral medications, the SIR (Susceptible-Infectious-
Removed) model [19] for an early ascending stage of an outbreak has been considered
with the first control u1(t)—aimed at lowering the disease transmission rate—and the
second control u2(t)—aimed at lowering the period of infectiousness. In all experiments,
the implementation of control strategies reduced the daily cumulative number of cases,
N − S(t), and successfully “flattened the curve”, I(t). The reduction in the cumulative
cases was achieved by eliminating or delaying new cases. This delay is incredibly valuable,
as it provides public health organizations with more time to advance antiviral treatments
and devise alternative preventive measures.

The main theoretical result of this paper, Theorem 1, concludes that the optimal control
functions, ui(t) and i = 1, 2, may be increasing until some moment τ ∈ [0, T). However, for

all t ∈ [τ, T], the derivatives,
dui
dt

, become negative, and both controls, ui(t), decline as t ap-
proaches T (possibly causing the number of newly infected people to grow). The numerical
simulations presented in Section 4 confirm our theoretical findings. So ideally around the
time t = τ, preventive measures have to be upgraded, and vaccination campaigns need to
start to ensure that the epidemic wave does not rebound. The period from 0 to τ must be
used by scientists and public health professionals to effectively implement early control
strategies but also to develop new and improved tools, such as vaccines, therapeutics,
testing, air ventilation, and others, to successfully battle the virus beyond the point t = τ.
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Appendix A

Appendix A.1. Properties of SIR Model with Time-Dependent Coefficients

In Section 3, it has been pointed out that even though for system (2), the effective
reproduction number, r(t) = β(1 − u1(t))/(γ + εu2(t)), reduces with more control, it does
not guarantee that r(t) ≥ r̄(t) yields S(t) ≤ S̄(t) for every value of t. One can, however,
show that if r(t) ≥ r̄(t) and r(t) are non-increasing, then S(t) ≤ S̄(t). The proof of this
result is given below.

Theorem A1. Assume that
dx
dt

= f (x, β, γ), x(0) = x0, where x(t) = [S(t), I(t), R(t)]⊤,

f1(x, β, γ) := −β(t)S(t)I(t)

f2(x, β, γ) := β(t)S(t)I(t)− γ(t)I(t) (A1)

f3(x, β, γ) := γ(t)I(t),

and x0 ∈ ∆2 := {(z1, z2, z3) ∈ R3 : z1 + z2 + z3 = 1, z1, z2, z3 ≥ 0}. (A2)

Let x(t) and x̂(t) satisfy
dx
dt

= f (x, β, γ) and
dx̂
dt

= f (x̂, β̂, γ̂), respectively, with the same

initial condition x0 = x̂0 = [S0, I0, R0]
⊤, R0 ≥ 0, S0, I0 > 0, β(t), γ(t), β̂(t), γ̂(t) > 0 for any

t ∈ [0, T], and β(0) > β̂(0) > 0. Suppose that r(t) := β(t)/γ(t), r̂(t) := β̂(t)/γ̂(t), and
r(t) ≥ r̂(t) for all t ∈ [0, T]. If r(t) ∈ L1[0, T] and r(t) are non-increasing, then S(t) ≤ Ŝ(t) for
any t ∈ [0, T].

Proof. Since x0 = x̂0, S0, I0 > 0 and β(0) > β̂(0), so one concludes that S0 = Ŝ0 > 0,
I0 = Î0 > 0, and β(0)S0 I0 > β̂(0)Ŝ0 Î0. Therefore, according to (A1), S′(0) < Ŝ′(0), and
there exists ϵ > 0 such that S(t) < Ŝ(t) for any t ∈ (0, ϵ]. If the claim does not hold, then
there is µ > ϵ such that S(µ) > Ŝ(µ). According to the intermediate value theorem, there
exists τ ∈ (ϵ, µ) such that

S(t) < Ŝ(t) for any t ∈ (0, τ)

S(τ) = Ŝ(τ) and S′(τ) ≥ Ŝ′(τ). (A3)

From (A3), one obtains

S′(τ) = −β(τ)S(τ)I(τ) > −β̂(τ)Ŝ(τ) Î(τ) = S′(τ), (A4)

that is,
I(τ) ≤ Î(τ). (A5)

On the other hand, according to (A2),

I(τ)− Î(τ) = 1 − S(τ)− R(τ)− (1 − Ŝ(τ)− R̂(τ)) = R̂(τ)− R(τ). (A6)

As it follows from (A1),

(ln S(t))′ = −β(t)I(t) = − β(t)
γ(t)

R′(t) = −r(t)R′(t). (A7)

This yields

R(τ) = R0 +
∫ τ

0
R′(t)dt = R0 −

∫ τ

0

(ln S(t))′

r(t)
dt. (A8)
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Identities (A7) and (A8) imply that

I(τ)− Î(τ) =
∫ τ

0

{
(ln S(t))′

r(t)
− (ln Ŝ(t))′

r̂(t)

}
dt =

∫ τ

0

(ln S(t))′ − (ln Ŝ(t))′

r(t)
dt

=
∫ τ

0

{
1

r(t)
− 1

r̂(t)

}
(ln Ŝ(t))′dt := T1 + T2. (A9)

Since r(t) ∈ L1[0, T] is non-increasing, S(t) < Ŝ(t) for any t ∈ (0, τ), S(0) = Ŝ(0), and
S(τ) = Ŝ(τ); according to the intermediate value theorem for the first term in (A9), one has

T1 =
∫ τ

0

(ln S(t))′ − (ln Ŝ(t))′

r(t)
dt =

ln S(t)− ln Ŝ(t)
r(t)

∣∣∣∣∣
τ

0

+
∫ τ

0

{
ln S(t)− ln Ŝ(t)

} r′(t)
r2(t)

dt

= − r′(ν)
r2(ν)

∫ τ

0

{
ln Ŝ(t)− ln S(t)

}
dt ≥ 0, (A10)

where ν ∈ [0, τ]. Furthermore, according to Lemma 1, S(t), I(t) > 0 and (ln S(t))′ < 0 for
any t ∈ [0, T]. Hence, from r(t) ≥ r̂(t), it follows that

T2 =
∫ τ

0

{
1

r(t)
− 1

r̂(t)

}
(ln Ŝ(t))′dt =

{
1

r(σ)
− 1

r̂(σ)

} ∫ τ

0
(ln Ŝ(t))′dt

=

{
1

r̂(σ)
− 1

r(σ)

}
Ŝ(0)
Ŝ(τ)

> 0. (A11)

Combining (A10) and (A11), one concludes that I(τ) > Î(τ), which contradicts (A5). This
completes the proof.

Appendix A.2. Additional Tables

Table A1. Comparison of I(t) for cost function C2 when there is only u1, only u2, and both u1, u2

applied versus No Control case over time when λ = 0.05.

Day No Control λ1 = 0.05 No 2nd

Control
No 1st Control

λ2 = 0.05
λ1 = 0.05
λ2 = 0.05

1 200 200 200 200

10 1237 388 317 298

20 9228 816 527 464

30 67,606 1706 872 725

40 456,639 3557 1439 1132

50 1,985,292 7379 2362 1765

60 2,987,989 15,209 3879 2772

70 2,015,872 31,076 6381 4403

80 1,023,788 62,623 10,561 7122

90 474,813 123,913 17,880 11,975

100 213,085 240,619 32,336 21,814

110 94,393 463,527 67,697 46,675

120 41,578 923,332 229,683 156,190
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Table A2. Comparison of I(t) for cost function C3 when there is only u1, only u2, and both u1, u2

applied versus No Control case over time when λ = 0.05.

Day No Control λ1 = 0.05 No 2nd

Control
No 1st Control

λ2 = 0.05
λ1 = 0.05
λ2 = 0.05

1 200 200 200 200

10 1237 377 308 289

20 9228 766 495 437

30 67,606 1552 795 662

40 456,639 3134 1273 1003

50 1,985,292 6302 2034 1524

60 2,987,989 12,618 3258 2333

70 2,015,872 25,120 5256 3624

80 1,023,788 49,586 8558 5751

90 474,813 96,926 14,338 9523

100 213,085 188,180 25,768 17,140

110 94,393 367,745 53,756 36,352

120 41,578 760,101 183,048 121,390

Table A3. Comparison of I(t) for cost function C4 when there is only u1, only u2, and both u1, u2

applied versus No Control case over time when λ = 0.05.

Day No Control λ1 = 0.05 No 2nd

Control
No 1st Control

λ2 = 0.05
λ1 = 0.05
λ2 = 0.05

1 200 200 200 200

10 1237 417 349 323

20 9228 942 644 550

30 67,606 2150 1178 935

40 456,639 4890 2133 1581

50 1,985,292 11,061 3816 2663

60 2,987,989 24,982 6733 4478

70 2,015,872 55,154 11,672 7537

80 1,023,788 113,747 19,877 12,760

90 474,813 214,937 33,825 22,145

100 213,085 393,864 60,100 41,039

110 94,393 765,135 123,379 88,776

120 41,578 1,493,486 399,149 292,220
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Table A4. Cumulative number of infections up to day t, N − S(t) for cost function C2 when there is
only u1, only u2, and both u1, u2 versus No Control case over time when weight λ1 = λ2 = λ = 0.05.

Day No Control λ1 = 0.05 No 2nd

Control
No 1st Control

λ2 = 0.05
λ1 = 0.05
λ2 = 0.05

1 200 200 200 200

10 1756 644 897 767

20 13,747 1657 2149 1738

30 101,568 3762 4215 3249

40 697,572 8148 7626 5604

50 3,338,392 17,229 13,223 9267

60 7,032,920 35,913 22,418 15,000

70 8,627,485 74,051 37,492 24,055

80 9,121,747 150,774 62,328 38,584

90 9,292,217 302,212 103,637 62,591

100 9,358,556 595,429 175,436 104,787

110 9,386,082 1,158,900 313,167 188,825

120 9,397,865 2,283,654 665,799 416,713

Table A5. Cumulative number of infections up to day t, N − S(t) for cost function C3 when there is
only u1, only u2, and both u1, u2 versus No Control case over time when weight λ1 = λ2 = λ = 0.05.

Day No Control λ1 = 0.05 No 2nd

Control
No 1st Control

λ2 = 0.05
λ1 = 0.05
λ2 = 0.05

1 200 200 200 200

10 1756 629 885 754

20 13,747 1575 2078 1677

30 101,568 3482 3988 3067

40 697,572 7331 7047 5170

50 3,338,392 15,051 11,930 8358

60 7,032,920 30,487 19,736 13,210

70 8,627,485 61,195 32,284 20,701

80 9,121,747 121,742 52,562 32,483

90 9,292,217 239,921 85,884 51,635

100 9,358,556 469,095 143,369 84,866

110 9,386,082 916,823 253,443 150,547

120 9,397,865 1,846,297 536,094 328,156
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Table A6. Cumulative number of infections up to day t, N − S(t) for cost function C4 when there is
only u1, only u2, and both u1, u2 versus No Control case over time when weight λ1 = λ2 = λ = 0.05.

Day No Control λ1 = 0.05 No 2nd

Control
No 1st Control

λ2 = 0.05
λ1 = 0.05
λ2 = 0.05

1 200 200 200 200

10 1756 685 937 803

20 13,747 1863 2398 1927

30 101,568 4545 5068 3835

40 697,572 10,636 9909 7055

50 3,338,392 24,388 18,614 12,483

60 7,032,920 55,445 34,055 21,602

70 8,627,485 123,916 60,931 36,924

80 9,121,747 264,191 106,859 62,740

90 9,292,217 525,613 184,436 106,949

100 9,358,556 1,000,085 317,429 186,138

110 9,386,082 1,928,590 565,198 344,961

120 9,397,865 3,757,435 1,169,728 768,757

Table A7. Comparison of the daily number of infected people, I(t), for the cost function C2 with the
weight λ1 = 0.05 for u1(t). The weights for the control u2(t) are λ2 = 0.001, 0.01, 0.05, and 0.1 for the
second, third, and fourth columns, respectively, and the fifth column shows the case of No Control
u2(t) over time.

Day λ1 = 0.05
λ2 = 0.001

λ1 = 0.05
λ2 = 0.01

λ1 = 0.05
λ2 = 0.05

λ1 = 0.05
λ2 = 0.1

λ1 = 0.05 No 2nd

Control

1 200 200 200 200 200

10 183 251 298 317 388

20 171 324 464 532 816

30 168 422 725 892 1706

40 171 556 1132 1490 3557

50 182 740 1765 2483 7379

60 203 1006 2772 4143 15,209

70 240 1408 4403 6949 31,076

80 302 2046 7122 11,770 62,623

90 415 3162 11,975 20,464 123,913

100 656 5454 21,814 37,902 240,619

110 1290 11,440 46,675 80,593 463,527

120 4634 41,179 156,190 251,157 923,332
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Table A8. Comparison of the daily number of infected people, I(t), for the cost function C3 with the
weight λ1 = 0.05 for u1(t). The weights for the control u2(t) are λ2 = 0.001, 0.01, 0.05, and 0.1 for the
second, third, and fourth columns, respectively, and the fifth column shows the case of No Control
u2(t) over time.

Day λ1 = 0.05
λ2 = 0.001

λ1 = 0.05
λ2 = 0.01

λ1 = 0.05
λ2 = 0.05

λ1 = 0.05
λ2 = 0.1

λ1 = 0.05 No 2nd

Control

1 200 200 200 200 200

10 179 245 289 308 377

20 165 309 437 498 766

30 160 394 662 807 1552

40 161 508 1003 1305 3134

50 168 662 1524 2107 6302

60 185 884 2333 3416 12,618

70 216 1217 3624 5586 25,120

80 267 1739 5751 9264 49,586

90 361 2647 9523 15,856 96,926

100 560 4497 17,140 29,108 188,180

110 1074 9247 36,352 61,700 367,745

120 3747 32,698 121,390 194,169 760,101

Table A9. Comparison of the daily number of infected people, I(t), for the cost function C4 with the
weight λ1 = 0.05 for u1(t). The weights for the control u2(t) are λ2 = 0.001, 0.01, 0.05, and 0.1 for the
second, third, and fourth columns, respectively, and the fifth column shows the case of No Control
u2(t) over time.

Day λ1 = 0.05
λ2 = 0.001

λ1 = 0.05
λ2 = 0.01

λ1 = 0.05
λ2 = 0.05

λ1 = 0.05
λ2 = 0.1

λ1 = 0.05 No 2nd

Control

1 200 200 200 200 200

10 185 263 323 351 401

20 177 357 550 658 918

30 177 490 935 1227 2133

40 185 675 1581 2274 4939

50 202 937 2663 4178 11,366

60 232 1326 4478 7610 25,851

70 284 1929 7537 13,717 57,953

80 373 2911 12,760 24,464 127,302

90 540 4681 22,145 43,673 266,304

100 907 8432 41,039 80,621 509,874

110 1955 18,778 88,776 166,824 899,275

120 7639 71,495 292,220 482,565 1,511,537
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Table A10. Comparison of the daily number of infected people, I(t), for the cost function C2 with
the weight λ2 = 0.05 for u2(t). The weights for the control u1(t) are λ1 = 0.001, 0.01, 0.05, and 0.1
for the second, third, and fourth columns, respectively, and the fifth column shows the case of No
Control u1(t) over time.

Day λ1 = 0.001
λ2 = 0.05

λ1 = 0.01
λ2 = 0.05

λ1 = 0.05
λ2 = 0.05

λ1 = 0.1
λ2 = 0.05

No 1st Control
λ2 = 0.05

1 200 200 200 200 200

10 244 279 298 304 317

20 308 406 464 485 527

30 391 593 725 773 872

40 501 869 1132 1232 1439

50 650 1280 1765 1957 2362

60 859 1908 2772 3124 3879

70 1163 2896 4403 5028 6381

80 1628 4517 7122 8203 10,561

90 2393 7382 11,975 13,833 17,880

100 3793 13,124 21,814 25,193 32,336

110 6858 27,281 46,675 53,697 67,697

120 16,447 82,599 156,190 181,647 229,683

Table A11. Comparison of the daily number of infected people, I(t), for the cost function C3 with
the weight λ2 = 0.05 for u2(t). The weights for the control u1(t) are λ1 = 0.001, 0.01, 0.05, and 0.1
for the second, third, and fourth columns, respectively, and the fifth column shows the case of No
Control u1(t) over time.

Day λ1 = 0.001
λ2 = 0.05

λ1 = 0.01
λ2 = 0.05

λ1 = 0.05
λ2 = 0.05

λ1 = 0.1
λ2 = 0.05

No 1st Control
λ2 = 0.05

1 200 200 200 200 200

10 241 274 289 295 308

20 299 388 437 456 495

30 375 546 662 705 795

40 475 772 1003 1090 1273

50 609 1116 1524 1682 2034

60 795 1636 2333 2617 3258

70 1065 2421 3624 4119 5256

80 1473 3676 5751 6596 8558

90 2138 5900 9523 10,976 14,338

100 3349 10,387 17,140 19,806 25,768

110 5944 21,561 36,352 41,897 53,756

120 13,985 65,461 121,390 141,870 183,048
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Table A12. Comparison of the daily number of infected people, I(t), for the cost function C4 with
the weight λ2 = 0.05 for u2(t). The weights for the control u1(t) are λ1 = 0.001, 0.01, 0.05, and 0.1
for the second, third, and fourth columns, respectively, and the fifth column shows the case of No
Control u1(t) over time.

Day λ1 = 0.001
λ2 = 0.05

λ1 = 0.01
λ2 = 0.05

λ1 = 0.05
λ2 = 0.05

λ1 = 0.1
λ2 = 0.05

No 1st Control
λ2 = 0.05

1 200 200 200 200 200

10 243 295 323 331 349

20 305 458 550 581 644

30 386 711 935 1016 1178

40 493 1105 1581 1765 2133

50 642 1723 2663 3040 3816

60 857 2705 4478 5206 6733

70 1181 4303 7537 8876 11,672

80 1688 7008 12,760 15,100 19,877

90 2559 11,918 22,145 26,079 33,825

100 4271 21,947 41,039 47,785 60,100

110 8353 47,241 88,776 101,665 123,379

120 22,600 146,614 292,220 334,465 399,149

Table A13. Comparison of I(t) for cost function C2 in case when only control u1 is applied and λ1

varies. As λ1 increases, the number of infected individuals, I(t), grows higher on most days.

Day λ1 = 10−7 No
2nd Control

λ1 = 0.001 No
2nd Control

λ1 = 0.01 No
2nd Control

λ1 = 0.05 No
2nd Control No Control

1 200 200 200 200 200

10 88 255 317 388 1237

20 36 334 533 816 9228

30 15 441 894 1706 67,606

40 6 586 1498 3557 456,639

50 3 786 2512 7379 1,985,292

60 1 1068 4219 15,209 2,987,989

70 0 1479 7126 31,076 2,015,872

80 0 2101 12,151 62,623 1,023,788

90 0 3105 21,130 123,913 474,813

100 0 4883 38,221 240,619 213,085

110 0 8576 74,708 463,527 94,393

120 0 19,158 177,113 923,332 41,578
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Table A14. Comparison of I(t) for cost function C3 in case when only control u1 is applied and λ1

varies. As λ1 increases, the number of infected individuals, I(t), grows higher on most days.

Day λ1 = 10−7

No 2nd Control
λ1 = 0.001 No

2nd Control
λ1 = 0.01 No

2nd Control
λ1 = 0.05 No
2nd Control No Control

1 200 200 200 200 200

10 86 254 314 377 1237

20 35 332 522 766 9228

30 15 437 867 1552 67,606

40 8 579 1438 3134 456,639

50 4 773 2388 6302 1,985,292

60 2 1044 3972 12,618 2,987,989

70 1 1437 6644 25,120 2,015,872

80 1 2025 11,220 49,586 1,023,788

90 0 2963 19,303 96,926 474,813

100 0 4592 34,478 188,180 213,085

110 0 7879 66,265 367,745 94,393

120 0 16,955 153,051 760,101 41,578

Table A15. Comparison of I(t) for cost function C4 in case when only control u1 is applied and λ1

varies. As λ1 increases, the number of infected individuals, I(t), grows higher on most days.

Day λ1 = 10−7 No
2nd Control

λ1 = 0.001 No
2nd Control

λ1 = 0.01 No
2nd Control

λ1 = 0.05 No
2nd Control No Control

1 200 200 200 200 200

10 28 248 319 401 1237

20 4 315 542 918 9228

30 1 405 917 2133 67,606

40 0 527 1550 4939 456,639

50 0 696 2623 11,366 1,985,292

60 0 936 4447 25,851 2,987,989

70 0 1296 7593 57,953 2,015,872

80 0 1865 13,135 127,302 1,023,788

90 0 2840 23,348 266,304 474,813

100 0 4726 43,733 509,874 213,085

110 0 9137 91,108 899,275 94,393

120 0 24,025 240,585 1,511,537 41,578



Mathematics 2024, 12, 2811 29 of 31

Table A16. Comparison of I(t) for cost function C2 in case when only control u2 is applied and λ2

varies. As λ2 increases, the number of infected individuals, I(t), grows higher on most days.

Day
λ2 = 10−7

No 1st

Control

λ2 = 0.001
No 1st

Control

λ2 = 0.01
No 1st

Control

λ2 = 0.05
No 1st

Control

λ2 = 0.1
No 1st

Control
No Control

1 200 200 200 200 200 200

10 17 183 255 317 369 1237

20 1 172 335 527 722 9228

30 0 169 444 872 1404 67,606

40 0 173 592 1439 2701 456,639

50 0 185 797 2362 5115 1,985,292

60 0 207 1095 3879 9510 2,987,989

70 0 245 1546 6381 17,215 2,015,872

80 0 311 2267 10,561 30,078 1,023,788

90 0 437 3527 17,880 51,136 474,813

100 0 695 6103 32,336 87,648 213,085

110 0 1398 12,821 67,697 164,273 94,393

120 0 5103 46,967 229,683 464,307 41,578

Table A17. Comparison of I(t) for cost function C3 in case when only control u2 is applied and λ2

varies. As λ2 increases, the number of infected individuals, I(t), grows higher on most days.

Day
λ2 = 10−7

No 1st

Control

λ2 = 0.001
No 1st

Control

λ2 = 0.01
No 1st

Control

λ2 = 0.05
No 1st

Control

λ2 = 0.1
No 1st

Control
No Control

1 200 200 200 200 200 200

10 17 180 250 308 347 1237

20 1 166 321 495 636 9228

30 0 161 417 795 1159 67,606

40 0 163 546 1273 2096 456,639

50 0 171 723 2034 3752 1,985,292

60 0 189 978 3258 6656 2,987,989

70 0 219 1359 5256 11,661 2,015,872

80 0 274 1962 8558 20,100 1,023,788

90 0 377 3014 14,338 34,531 474,813

100 0 587 5134 25,768 61,227 213,085

110 0 1147 10,559 53,756 120,600 94,393

120 0 4067 37,929 183,048 365,469 41,578
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Table A18. Comparison of I(t) for cost function C4 in case when only control u2 is applied and λ2

varies. As λ2 increases, the number of infected individuals, I(t), grows higher on most days.

Day
λ2 = 10−7

No 1st

Control

λ2 = 0.001
No 1st

Control

λ2 = 0.01
No 1st

Control

λ2 = 0.05
No 1st

Control

λ2 = 0.1 No
1st Control No Control

1 200 200 200 200 200 200

10 2 185 265 349 381 1237

20 0 177 364 644 767 9228

30 0 177 501 1178 1531 67,606

40 0 186 695 2133 3019 456,639

50 0 204 972 3816 5908 1,985,292

60 0 235 1384 6733 11,591 2,987,989

70 0 288 2021 11,672 22,889 2,015,872

80 0 382 3067 19,877 45,018 1,023,788

90 1 559 4960 33,825 86,814 474,813

100 1 949 8995 60,100 165,937 213,085

110 0 2069 20,200 123,379 338,415 94,393

120 0 8174 78,701 399,149 878,072 41,578
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