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We propose a new estimator for average causal effects of a binary treatment with

panel data in settings with general treatment patterns. Our approach augments

the popular two-way-fixed-effects specification with unit-specific weights that

arise from a model for the assignment mechanism. We show how to construct

these weights in various settings, including the staggered adoption setting, where

units opt into the treatment sequentially but permanently. The resulting estimator

converges to an average (over units and time) treatment effect under the correct

specification of the assignment model, even if the fixed- effect model is misspeci-

fied. We show that our estimator is more robust than the conventional two-way es-

timator: it remains consistent if either the assignment mechanism or the two-way

regression model is correctly specified. In addition, the proposed estimator per-

forms better than the two-way-fixed-effect estimator if the outcome model and

assignment mechanism are locally misspecified. This strong robustness property

underlines and quantifies the benefits of modeling the assignment process and

motivates using our estimator in practice. We also discuss an extension of our es-

timator to handle dynamic treatment effects.
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1. I

Difference-in-difference (DiD) methods (e.g., Ashenfelter and Card (1985), Angrist and

Krueger (1999)) are commonly used in empirical economics to establish causal relation-

ships (see Currie, Kleven, and Zwiers (2020) for some evidence regarding the usage in

the empirical literature). In particular, researchers estimate regression functions of the

form

Yit = μ+ αi + λt +β�Xit + τWit + εit (1.1)

using ordinary least squares (OLS), treating αi and λt as fixed parameters—the fixed ef-

fects, leading to the two-way fixed-effect (TWFE) estimator. Here, Yit is the outcome

variable of interest, Wit is a binary treatment, Xit are observed exogenous characteris-

tics, and τ is the main object of interest. Practitioners routinely justify regression (1.1)

by appealing to “quasi-experimental” variation in treatment paths W i = (Wi1, � � � , WiT ).

Formal and informal arguments are invoked to make a case that this variation is not

associated with unobserved unit and time-specific components εit . In other words, to

motivate (1.1), researchers reason about the underlying model for W i. This model, how-

ever, does not explicitly enter the estimation process. Moreover, econometric assump-

tions that justify the OLS estimation apply conditionally on W i and do not appeal to

randomness in the treatment paths (e.g., Arellano (2003)).

In this paper, we develop new methods for estimating causal effects that explicitly

incorporates design assumptions on the assignment process without abandoning the

transparency and simplicity of the two-way model. We incorporate assumptions about

the assignment mechanism by augmenting the specification (1.1) with unit-specific

weights γi, leading to

τ̂(γ) = arg min
τ,μ,αi ,λt ,β

∑

it

(

Yit −μ− αi − λt −β�Xit − τWit

)2
γi. (1.2)

We compute the weights γi using the assignment model for W i.

We start our analysis by assuming that the assignment process for W i is known. In

Section 2, we show how to use this knowledge to construct oracle weights γ	 and con-

duct design-based inference. Under the correct specification of the assignment model,

our inference procedure is valid regardless of the underlying model for potential out-

comes, and in particular, we do not rely on the validity of the equation (1.1). Our results

substantially generalize the properties established in Athey and Imbens (2022), allowing

for an arbitrary assignment process (subject to overlap restrictions).

To construct γ	, we need to solve a nonlinear equation that depends on the support

of W i. Practically, this means that the construction and the values of the weights vary

across different types of assignment processes. In Supplemental Appendix C (Arkhangel-

sky, Imbens, Lei, and Luo (2024)), we provide solutions for several prominent examples,

including staggered adoption, that is, a situation where units opt into treatment sequen-

tially. Another input we need for γ	 is the probability distribution of W i (generalized

propensity score, Imbens (2000)).

After establishing design-based properties of the oracle estimator τ̂(γ	 ) based on

knowledge of the assignment process, we turn to the robustness—the behavior of the
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estimator in settings where the postulated assignment model can be incorrect. At this

point, we use the structure of the regression problem (1.2) to demonstrate that τ̂(γ	 )

has a strong double-robustness property (Robins, Rotnitzky, and Zhao (1994), Kang and

Schafer (2007), Bang and Robins (2005), Chernozhukov et al. (2018)): it has a small bias

whenever either the assignment or the regression model is approximately correct. We

view these results as the primary motivation for using our estimator in practice, where

we cannot expect either the TWFE model or the assignment model to be fully correct.

In practice, the assignment model is rarely completely known—unless W i-s are as-

signed in the controlled experiment (i.e., Attanasio, Meghir, and Santiago (2012), Broda

and Parker (2014), Colonnelli and Prem (2022)) and has to be estimated. We use the in-

sights from the known assignment setting as a building block in Section 3, where the

assignment process is unknown but can be estimated consistently from the data. In

Section 5, we use an empirical example to show how to estimate this distribution for the

staggered adoption design using duration models. This approach is connected to Shaikh

and Toulis (2019) that uses a duration model to test a sharp null hypothesis that specifies

no treatment effects. Our general strategy of explicitly using the assignment model for

estimation is directly connected to the recent literature on quasi-experimental designs

(e.g., Borusyak and Hull (2023)). Our results on robustness are especially appealing in

such contexts because in quasi-experimental settings researchers cannot rule out the

misspecification of the assignment model.

Our focus on TWFE regression (1.2) is motivated by its increased popularity in

economics (Currie, Kleven, and Zwiers (2020)). In applications, this model provides

an effective and parsimonious approximation for the baseline outcomes, allowing re-

searchers to capture unobserved confounders and to improve the efficiency of the re-

sulting estimator by reducing noise. At the same time, recent research shows that regres-

sion estimators for average treatment effects based on TWFE models might have unde-

sirable properties, particularly negative weights for unit-time specific treatment effects.

These concerns are particularly salient in settings with heterogeneity in treatment ef-

fects and general assignment patterns (e.g., De Chaisemartin and d’Haultfoeuille (2020),

Goodman-Bacon (2021), Sun and Abraham (2021), Callaway and Sant’Anna (2021),

Borusyak, Jaravel, and Spiess (2024)). Our results show that the concerns raised in this

literature regarding negative weights lose some of their force under random assignment,

or more generally once we properly reweight the observations.

Our main analysis assumes that the treatment affects only contemporaneous out-

comes, ruling out dynamic effects. We make this choice to crystallize the connection be-

tween the TWFE regression model (1.2) and the assignment process. We do not restrict

heterogeneity in contemporaneous treatment effects that can vary over units and peri-

ods. To test for, or estimate, dynamic treatment effects, one has to compare units that

receive treatment at different times. Such comparisons are justified only if we restrict

individual heterogeneity in treatment effects or treat the assignment as random. Conse-

quently, and this is of course a key insight from the causal inference literature in cross-

section settings since Rosenbaum and Rubin (1983), it is imperative to model both the

assignment mechanism and the outcome model. In Bojinov, Rambachan, and Shephard
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(2021) the authors show how to use the assignment process to estimate dynamic treat-

ment effects (see also Blackwell and Yamauchi (2021) for the related analysis in large-T

setup). Our results suggest that a fruitful approach may be to construct robust estima-

tors by combining Bojinov, Rambachan, and Shephard (2021) approach to estimation

with conventional dynamic panel regression models using the weighting methods de-

rived in the current paper for the static case. We discuss a particular realization of this in

Section 4.

Our results are related to recent literature on doubly robust estimators with panel

data. Conceptually, the closest paper to us is Arkhangelsky and Imbens (2022) that also

emphasizes the role of the assignment process in the same setting and shows double

robustness. In Arkhangelsky and Imbens (2022), the focus is on a class of estimators de-

fined as a linear function of realized outcomes, with the coefficients in that linear rep-

resentation chosen to lead to consistent estimators for average treatment effects under

either assumptions on the outcome model or on the assignment mechanism. Here, we

start with a different class of estimators, restricted to weighted versions of the TWFE esti-

mator in (1.2). We also show how to estimate a flexible class of average treatment effects

with user-specified weights over units and time. The robustness property in our paper

is distinct from the double robustness analyzed recently in the difference-in-difference

literature (e.g., Sant’Anna and Zhao (2020)): our estimator is robust to arbitrary viola-

tions of parallel trends assumptions, as long as the assignment model is correctly spec-

ified. At the same time, our estimator is not necessarily semiparametrically efficient in

environments where, as in Sant’Anna and Zhao (2020), the conditional parallel trends

assumption holds.

We also connect to recent work on the causal panel model with experimental data

(e.g., Athey and Imbens (2022), Bojinov, Rambachan, and Shephard (2021), Roth and

Sant’Anna (2023)). Similar to these papers, we establish properties of regression esti-

mators under design assumptions. Importantly, we consider a general setting without

restricting our attention to staggered adoption design. Our contribution to this litera-

ture is the characterization of the behavior of τ̂(γ) for a large class of weighting functions

and general designs. By establishing a connection between weighting functions and lim-

iting estimands, we allow users to construct consistent estimators for a pre-specified

weighted average treatment effect of interest.

Finally, the form of our estimator (1.2) connects it to the Synthetic Difference-in-

Differences (SDID) estimator introduced in Arkhangelsky, Athey, Hirshberg, Imbens,

and Wager (2021). The difference between these two procedures is in the way they con-

struct the weights γ	. The SDID estimator uses pretreatment outcomes to build a syn-

thetic control unit that follows the path of the average treated unit as closely as possible

(up to an additive shift). This strategy is infeasible if Wit varies over time. However, pre-

cisely in situations with enough variation in W i, we can estimate the assignment process

and use it to construct the weights γ	. As a result, the two estimators are complementary

and can be used in applications with different assignment patterns.

Throughout the paper, we adopt the standard probability notation O(·), o(·), OP(·),

oP(·). For any vector v, denote by v� the transpose of v, ‖v‖2 the L2 norm of v, and by

diag(v) the diagonal matrix with the coordinates of v being the diagonal elements. For a
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pair of vectors v1, v2, we write 〈v1, v2〉 for their inner product v�
1 v2. Furthermore, let [m]

denote the set {1, � � � , m}, Im the m×m identity matrix, and 1m the m-dimensional vector

with all entries 1. Finally, the support of a discrete distribution F is the set of elements

with positive probabilities under F .

2. R IPW     

We consider a setting with n units and each unit is characterized by potential out-

comes Y i(1) = (Yi1(1), � � � , YiT (1)), Y i(0) = (Yi1(0), � � � , YiT (0)) and a set of covariates

Xi = (Xi1, � � � , XiT ).1 By writing the potential outcomes in this form, we assume away

any dynamic effects of past treatments on current outcomes, thus focusing on static

models. Analysis of such models is useful both theoretically and practically. First, they

constitute a building block for more general environments, which we consider in Sec-

tion 4. Second, when the treatment is irreversible, as in staggered adoption designs, we

are likely interested in its average (over time) effect on the outcome rather than the tran-

sitory dynamics. This makes the static model a reasonable approximation for a more

complicated dynamic model. Finally, if we observe the data at a lower frequency than

the one that is relevant for dynamics (e.g., days vs. months), then the static model is the

only available option.

Given the realized treatment assignment Wit , the observed outcomes are defined in

the usual way:

Yit = Yit(1)Wit +Yit(0)(1 −Wit ). (2.1)

Throughout the paper, we treat covariates as fixed and consider {(Y i(1), Y i(0), W i ) : i ∈
[n]} as a random vector (jointly) drawn from a distribution (conditional on {Xi : i ∈ [n]}).

We let P denote the joint distribution of the entire random vector {(Y i(1), Y i(0), W i ) : i ∈
[n]} (conditional on {Xi : i ∈ [n]}) and E denote the expectation over this distribution. We

consider the asymptotic regime with n going to infinity and fixed T ≥ 2.

This structure nests the conventional sampling-based framework, which is common

in panel data analysis, going back to (Chamberlain (1984)), and which was used to es-

tablish statistical results in the recent DiD literature (e.g., Abadie (2005), Callaway and

Sant’Anna (2021)). It also extends the standard fixed-effects framework, where the distri-

bution for each unit is characterized by unit-specific parameters, but units themselves

are usually assumed independent (e.g., Neyman and Scott (1948), Lancaster (2000)).

Even in the absence of any covariates, we do not assume that unit-level observations

(Y i(1), Y i(0), W i ) are independent or exchangeable, which brings two practical advan-

tages. First, it allows us to accommodate correlated potential outcomes among units,

which is natural in applications involving networks or multilevel structures. Second, it

allows the assignments to be correlated across units, which is natural for many com-

monly used experimental designs. We elaborate on this point in the next section.

In this section, we study a special case where the assignment mechanism is known.

This assumption is natural for experimental settings (Brown and Lilford (2006), Attana-

sio, Meghir, and Santiago (2012), Broda and Parker (2014), Hemming, Haines, Chilton,

1Time-invariant covariates can be handled by letting Xi1 = · · · = XiT .
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Girling, and Lilford (2015), Chandar, Gneezy, List, and Muir (2019), Chandar, Hortaçsu,

List, Muir, and Wooldridge (2019), Colonnelli and Prem (2022)), but it has also been used

to analyze the quasi-experimental settings (e.g., Borusyak and Hull (2023)). It allows us

to derive inferential results under mild assumptions. We will consider the case of un-

known designs in Section 3 at the cost of stronger (yet standard) assumptions.

2.1 A design-based causal framework

We assume that, for any i ∈ {1, � � � , n} and w ∈ {0, 1}T ,

P
(

W i = w|Y i(1), Y i(0)
)

= πi(w), (2.2)

where πi is a distribution known to the analyst. We call it the generalized propensity

score (Imbens (2000), Athey and Imbens (2022), Bojinov, Rambachan, and Shephard

(2021), Bojinov, Simchi-Levi, and Zhao (2023))—the marginal probability of the treat-

ment path.

This structure allows for covariate-adaptive designs, where the probability of Wit de-

pends on past covariates. However, we rule out sequentially-adaptive designs where

the assignment can depend on past outcomes, even if the randomization protocol is

known.2 Furthermore, our framework places no restriction on the support of W i and

substantially generalizes the previous works that focus on simple random sampling

for nonstaggered difference-in-differences (Rambachan and Roth (2020)) and staggered

adoption (Athey and Imbens (2022), Roth and Sant’Anna (2023)).

If the treatment paths {W i, i ∈ [n]} are independent across units, then the marginal

distributions {πi(w), i ∈ [n]} characterize the joint distribution of {W i, i ∈ [n]}. However,

as discussed above, we allow the assignments to be correlated across units. In practice,

this correlation can range from being very mild, as in the case of completely randomized

experiments with a fixed share of treated units (Neyman (1923/1990)), to being sizable,

as in cases of cluster-level randomization such as cluster randomized design (Abadie,

Athey, Imbens, and Wooldridge (2023)) and two-stage randomization. We impose tech-

nical restrictions on the dependence across units in Section 2.3.

2.2 Causal estimands

We define the unit and time-specific treatment effect as

τit � E
[

Yit(1) −Yit(0)
]

. (2.3)

Note that τit can vary with both i and t since we assume neither identically distributed

units nor time-homogeneous treatment effects. For time period t, we define the time-

specific ATE as

τt �
1

n

n
∑

i=1

τit , (2.4)

2Even if units are i.i.d. and P(Wit |Yi1, � � � , Yi(t−1) ) is known, P(Wit |Yi1, � � � , YiT ) would depend on the un-

known conditional distribution of (Yit , � � � , YiT ) given Wit .
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and consider a broad class of weighted average of time-specific ATE:

τ∗(ξ) �

T
∑

t=1

ξtτt (2.5)

for some user-specified deterministic weights ξ = (ξ1, � � � , ξT )� such that

T
∑

t=1

ξt = 1, ξt ≥ 0. (2.6)

We refer to (2.5) as a doubly average treatment effect (DATE). For example, the weights

ξt = 1/T yield the usual ATE over units and time periods. In the difference-in-differences

setting with two time periods, ξt = 1t=2. In a particular application, one might also be

interested in an effect with time discounting factor that puts more weight on initial pe-

riods, that is, ξt ∝ βt for some β< 1.

R 2.1. We can further generalize DATE by allowing for unequal unit weights:

τ∗(ξ; ζ ) =
n
∑

i=1

T
∑

t=1

(ζiξt )τit , (2.7)

where ζ = (ζ1, � � � , ζn ),
∑n

i=1 ζi = 1 and ζi ≥ 0. In particular, ζi can be i-specific, for ex-

ample, a function of the ith covariates, but cannot depend on outcomes and treatment

assignments. Using appropriate propensity-based weights ζ, one can build estimands

that target a given subpopulation.

2.3 Technical assumptions

We allow W i to be dependent across units to capture different assignment processes.

Such dependence arises in applications, sometimes for technical reasons (e.g., in case

of sampling without replacement as in Athey and Imbens (2022)), and sometimes by the

nature of the assignment process (spatial experiments). To quantify this dependence

as well as the dependence among the potential outcomes, we follow Rényi (1959) and

define the maximal correlation:

ρij � sup
f ,g

{

corr
(

f
(

Y i(1), Y i(0), W i

)

, g
(

Y j(1), Y j(0), W j

))}

, (2.8)

where the supremum is taken over all real-valued measurable functions f , g.

In the standard design-based framework where potential outcomes are assumed

fixed, it reduces to the ρ-mixing coefficient between W i and W j . In the main text, we

maintain a simplified restriction on {ρij }ij leaving a more general one to Supplemental

Appendix A. The assumption is stated as follows.
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A 2.1. There exists q ∈ (0, 1], such that as n approaches infinity, the following

holds:

1

n2

n
∑

i,j=1

ρij = O
(

n−q
)

. (2.9)

By definition, 1
n ≤ (1/n2 )

∑n
i,j=1 ρij ≤ 1 with lower bound being attained if the obser-

vations are independent, and the upper bound being attained if they are perfectly de-

pendent. As a result, one can view q as measuring the strength of the correlation. When

(Y i(1), Y i(0), W i ) are independent across units, (2.9) holds with q = 1. More generally,

when {(Y i(1), Y i(0), W i ) : i ∈ [n]} have a network dependency with ρij = 0 if there is no

edge between i and j, (2.9) is satisfied if the number of edges is O(n2(1−q) ). Note that

it imposes no constraint on the maximum degree of the dependency graph. Even if the

network is fully connected, it can still hold if the pairwise dependence is weak, for exam-

ple, sampling without replacement; see Supplemental Appendix A.4. On the other hand,

(2.9) excludes the case where all units are perfectly correlated or equicorrelated with a

positive maximal correlation that is bounded away from 0.

We also impose minimal overlap restrictions on each πi.

A 2.2. There exists a universal constant c > 0 and a nonstochastic subset S∗ ⊂
{0, 1}T with at least two elements and at least one element not in {0T , 1T }, such that

πi(w) > c, ∀w ∈ S
∗, i ∈ [n]. (2.10)

Our final assumption restricts the second moment of outcomes.

A 2.3. There exists M <∞ such that maxi,t,wE[Y 2
it(w)] <M .

It is presented here only for simplicity. We relax it substantially in Supplemental Ap-

pendix A.

2.4 Reshaped IPW estimator

We consider a class of weighted TWFE regression estimators without covariates. We re-

fer to them as reshaped inverse propensity weighted (RIPW) estimators, and formally

define them as follows:

τ̂(�) � arg min
τ,μ,

∑

i αi=
∑

t λt=0

n
∑

i=1

T
∑

t=1

(Yit −μ− αi − λt −Witτ)2 �(W i )

πi(W i )
, (2.11)

where �(w) is a density function on {0, 1}T , that is,

∑

w∈{0,1}T

�(w) = 1. (2.12)
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We refer to the distribution � as a reshaped distribution, and the weight �(W i )/πi(W i )

as a RIP weight. To ensure that the RIPW estimator is well-defined, we require � to be

absolutely continuous with respect to each πi, that is,

�(w) = 0 if πi(w) = 0 for some i ∈ [n]. (2.13)

The estimator (2.11) is feasible for any such � because πi is assumed to be known.

Adding covariates to the objective function (2.11) is relatively straightforward. How-

ever, it considerably complicates the notation without contributing substantially to the

primary narrative. We will explicitly incorporate covariates in the objective function in

Section 3. Note that the covariates still play a role in the RIPW estimator through πi for

covariate-adaptive designs.

The reshaped distribution � can be interpreted as an experimental design. If W i ∼
�, then πi = � and (2.11) reduces to the standard unweighted TWFE regression. If this

is not the case, then �(W i )/πi(W i ) acts like a likelihood ratio that changes the original

design to one provided by �. For cross-sectional data, we would like to shift the distri-

bution to uniform {0, 1}, making the weights equal to 1/2πi(W i ) if the fixed effects are

not included. This would yield the standard IPW estimator. However, as we alluded to in

the Introduction, the situation is more complicated with panel data, and shifting toward

the uniform design might not deliver consistent estimators for the DATE of interest. We

explore this formally in the next section, where we characterize the set of � that one can

use. This interpretation of � has one caveat: RIP weights only shift the marginal distribu-

tion of W i to �, but they do not say anything about the joint distribution of {W i, i ∈ [n]},

which can remain complicated.

2.5 DATE equation and consistency of RIPW estimators

We now derive sufficient conditions under which the RIPW estimator is a consistent es-

timator for a given DATE of interest. The following theorem presents a precise condition

for consistency of τ̂(�) for τ∗(ξ).

T 2.1. Let J = IT − 1T 1�
T /T and τ i = (τi1, � � � , τiT )�; fix ξ that satisfies (2.6). Un-

der Assumptions 2.1–2.3, for any reshaped distribution � with support S∗ defined in As-

sumption 2.2, as n tends to infinity,

τ̂(�) − τ∗(ξ) = OP

(

Biasτ(ξ)
)

+ oP(1),

where

Biasτ(ξ) =
〈

EW∼�

[(

diag(W ) − ξW�)J
(

W −EW∼�[W ]
)]

,
1

n

n
∑

i=1

(

τ i − τ∗(ξ)1T

)

〉

,

and 〈v1, v2〉 denotes their inner product v�
1 v2.
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This result has two user-specified parameters: time weights ξ, and the reshaped dis-

tribution �. They are naturally connected; to guarantee consistency for τ∗(ξ), we can

select � such that the following holds:

EW∼�

[(

diag(W ) − ξW�)J
(

W −EW∼�[W ]
)]

= 0. (2.14)

Alternatively, for a given �, we can look for ξ such that (2.14) is satisfied. We call (2.14)

the DATE equation hereafter. For a fixed ξ, it is a quadratic system with {�(w) : w ∈
{0, 1}T } being the variables. Together with the density constraint (2.12) and the support

constraint in Theorem 2.1 that �(w) = 0 for w /∈ S
∗, there are T + 1 + 2T − |S∗| equality

constraints and |S∗| inequality constraints that impose the positivity of �(w) for each

w ∈ S
∗. We will show in Supplemental Appendix C that the DATE equation has closed-

form solutions in various examples and provide a generic solver based on nonlinear pro-

gramming in Supplemental Appendix C.5.

Without further restrictions on τ i, we can show that the DATE equation is also a

necessary condition for consistency of τ̂(�) for τ∗(ξ). To see this, assume that

EW∼�

[(

diag(W ) − ξW�)J
(

W −EW∼�[W ]
)]

= z. (2.15)

for some vector z that is not proportional to ξ. Because we can vary individual treatment

effects without changing the average one, we can find a set {τ i : i ∈ [n]} that yields the

same DATE but 〈z, (1/n)
∑n

i=1(τ i − τ∗(ξ)1T )〉 �= 0, leading to inconsistency. For z = bξ,

we get that the inner product of the LHS of (2.15) and 1T is 0 because 1�
T (diag(W ) −

ξW� ) = W �(1 − 1�
T ξ) = 0, while that of the right-hand side and 1T is equal to b. This

implies that z has to be equal to zero, thus proving the necessity of DATE equation.

Notably, when the DATE equation has a solution, our estimator is consistent without

any restrictions on the potential outcomes, except Assumption 2.3. This is in sharp con-

trast to usual results about TWFE estimators, which typically require the trends to be

parallel among units, at least conditionally on observed covariates (e.g., Callaway and

Sant’Anna (2021), Sant’Anna and Zhao (2020)). Theorem 2.1 shows that if the assign-

ment process is known and the DATE equation has a solution, we can correct the po-

tentially misspecified TWFE regression model by simply reweighting the objective func-

tion. We want to stress that this result relies on the knowledge of the assignment process,

whereas the analysis based on conditional parallel trends does not require such knowl-

edge.

To further parse the DATE equation, we discuss two alternative interpretations. First,

fix ξ and let � be the solution of the DATE equation. Then consider a class of complete

randomized experiments where all propensity scores πi are identical and are equal to

�. Then, by definition, the RIPW estimator with reshaped distribution � reduces to

the standard (unweighted) TWFE estimator. Theorem 2.1 guarantees that this estimator

converges to τ∗(ξ). Since the DATE equation is a necessary condition, all experimen-

tal designs that do not satisfy this restriction cannot lead to a consistent estimator for

τ∗(ξ). As a result, DATE equation characterizes all complete randomized experiments

under which the unweighted two-way estimator converges to a given estimand. This
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can be interpreted as a general converse of the results established in Athey and Imbens

(2022).

As an alternative interpretation, consider a fixed � instead. For any such �, the

equation (2.14) can be rewritten as

(

EW∼�

[

W�J
(

W −EW∼�[W ]
)])

ξ = E
[

diag(W )J
(

W −EW∼�[W ]
)]

. (2.16)

It is easy to see that

EW∼�

[

W�J
(

W −EW∼�[W ]
)]

= EW∼�

[(

W −EW∼�[W ]
)�

J
(

W −EW∼�[W ]
)]

= EW∼�

[∥
∥W̃ −EW∼�[W̃ ]

∥
∥

2

2

]

, (2.17)

where W̃ = JW . Since the support of � involves a point w /∈ {0T , 1T }, for which w′ �= 0

the quantity in (2.17) is strictly positive. Therefore, (2.16) implies that

ξ =
EW∼�

[

diag(W )J
(

W −EW∼�[W ]
)]

EW∼�

[∥
∥W̃ −EW∼�[W̃ ]

∥
∥

2

2

] . (2.18)

By Theorem 2.1, in a randomized experiment with πi � � (Athey and Imbens (2022),

Roth and Sant’Anna (2023)), the effective estimand of the unweighted TWFE regression

is the DATE with weight vector ξ.

R 2.2. To illustrate this result, we consider the experiment conducted by Uber

in 2017 to test the effect of in-app tipping on labor supply (Chandar et al. (2019,?)).

They introduced the in-app tipping feature in a staggered fashion across 209 opera-

tional cities in the United States and Canada to avoid bugs in the product. Three cities

were randomized to launch this feature on June 20, 2017, followed by 103 cities on

July 6, 2017, and the remaining 103 cities on July 17, 2017. We can treat it as a two-

period experiment, with June 20–July 5 being the first period and July 6–July 16 being

the second period. The possible assignments include {1, 1}, {0, 1}, {0, 0} and πi({1, 1}) =
3/209, πi({0, 1}) =πi({0, 0}) = 103/209. By (C.1) in Supplemental Appendix C, (2.18) im-

plies that ξ1 = 3/106, ξ2 = 103/106 for the unweighted TWFE regression, which they ap-

plied to estimate the treatment effect. Thus, their analysis is essentially focused on the

second period.

The following result shows that the induced weights are guaranteed to be nonnega-

tive for arbitrary design.

P 2.1. Let ξ be defined in (2.18). Then for any � on {0, 1}T , ξt ≥ 0 for all t.

This result generalizes the conventional cross-sectional logic that says that in ran-

domized experiments, regression estimators are consistent for average effects (e.g., Lin

(2013)). However, in the case of the TWFE regression, the situation is more nuanced.

While the resulting estimand always corresponds to a weighted average effect with non-

negative weights, it still depends on the experimental design. As a result, if two analysts
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were to split a given population into two random subpopulations and conduct two ex-

periments with different designs on each part, the resulting estimands would have been

different.

There are two reasons for this unusual behavior. First, in the cross-sectional case, W i

has two points of support, while in the panel case the support of W i ranges from 2 to

2T points (as long as Assumption 2.2 is satisfied). For example, if none of the units are

treated in the first period, it is impossible to identify any DATE that puts positive weight

on the first period. Second, fixed effects lead to a familiar incidental parameter problem

(Neyman and Scott (1948)), albeit in a mild form. To see this, consider πi = � ∝ 1, in

which case the RIPW estimator corresponds to the conventional TWFE regression. The

effective estimand for this regression is equal to the solution of (2.18) and is different

from the effective estimand for the regression without the unit fixed effects.

R 2.3. To estimate the generalized DATE defined in (2.7), we only need to mildly

adjust the RIPW estimator:

τ̂(�; ζ ) � arg min
τ,μ,

∑

i αi=
∑

t λt=0

n
∑

i=1

T
∑

t=1

(Yit −μ− αi − λt −Witτ)2 ζi�(W i )

πi(W i )
. (2.19)

In Supplemental Appendix A.7, we prove that the adjusted RIPW estimator τ̂(�; ζ ) con-

sistently estimates τ∗(ξ; ζ ) under the same set of assumptions as in Theorem 2.1, pro-

vided that n‖ζ‖∞ =O(1), namely that all entries of ζ are on the same scale.

2.6 Inference on RIPW estimators

To enable statistical inference of DATE, we first present an asymptotic expansion show-

ing the asymptotic linearity of RIPW estimators.

T 2.2. Let Y i be the vector (Yi1, � � � , YiT ). Further, let 
i = �(W i )/πi(W i ), and

�θ �
1

n

n
∑

i=1


i, �ww �
1

n

n
∑

i=1


iW
�
i JW i, �wy �

1

n

n
∑

i=1


iW
�
i JY i,

and

�w �
1

n

n
∑

i=1


iJW i, � y �
1

n

n
∑

i=1


iJY i.

Under the same settings as Theorem 2.1,

D ·
√
n
(

τ̂(�) − τ∗(ξ)
)

= 1√
n

n
∑

i=1

(

Vi −E[Vi]
)

+OP

(

n1/2−2q
)

,

where D = �ww�θ − ��
w�w, and

Vi = 
i

{(

E[�wy ] − τ∗(ξ)E[�ww]
)

−
(

E[� y ] − τ∗(ξ)E[�w]
)�

JW i

+E[�θ]W�
i J
(

Y i − τ∗(ξ)W i

)

−E[�w]�J
(

Y i − τ∗(ξ)W i

)}
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Note that the asymptotic linear expansion holds under a fairly general dependency

structure in the treatment assignments. Below, we derive a valid confidence interval for

τ∗(ξ) when {(Y i(1), Y i(0), W i ) : i ∈ [n]} are independent. The general case is discussed

in Supplemental Appendix A.4. If {Vi : i ∈ [n]} are well-behaved Theorem 2.2 implies that

D ·
√
n
(

τ̂(�) − τ∗(ξ)
)

σ∗
n

≈ N(0, 1), where σ∗2
n = (1/n)

n
∑

i=1

Var(Vi ),

where D is known by design.3 If {Vi : i ∈ [n]} were known, a natural estimator for σ∗2
n

would be the empirical variance:

σ̂∗2
n = 1

n− 1

n
∑

i=1

(Vi − V̄ )2, where V̄ = 1

n

n
∑

i=1

Vi.

We should not expect the difference between σ̂∗
n and σ∗

n to converge to zero since E[Vi]

in general varies over i. Nonetheless, σ̂∗
n is an asymptotically conservative estimate of σ∗

n

since

E
[

σ̂∗2
n

]

≈ 1

n

n
∑

i=1

E

[(

Vi −
1

n

n
∑

i=1

E[Vi]

)2]

≈ σ∗2
n + 1

n− 1

n
∑

i=1

(

E[Vi] − 1

n

n
∑

i=1

E[Vi]

)2

︸ ︷︷ ︸

empirical variance of E[Vi]

, (2.20)

where the second term measures the heterogeneity of E[Vi] and is always nonnegative,

implying that σ̂∗2
n is a conservative estimator for σ∗2

n . This is unsurprising because even

in the cross-section case, the asymptotic design-based variance is only partially identi-

fiable due to the unknown correlation structure between two potential outcomes; see,

for example, Neyman’s variance formula (Neyman (1923/1990), Rubin (1974)).

In general, Vi is unknown due to τ∗(ξ) and the expectation terms. Nonetheless, we

can estimate Vi by replacing each expectation with the corresponding plug-in estimate,

that is,

V̂i =
i

{

(�wy − τ̂�ww ) − (� y − τ̂�w )�JW i

+ �θW
�
i J(Y i − τ̂W i ) − ��

wJ(Y i − τ̂W i )
}

, (2.21)

and use them to compute the variance:

σ̂2 = 1

n− 1

n
∑

i=1

(V̂i − ¯̂
V )2, where

¯̂
V = 1

n

n
∑

i=1

V̂i. (2.22)

This yields a Wald-type confidence interval for τ∗(ξ) as

Ĉ1−α =
[

τ̂(�) − z1−α/2σ̂/(
√
nD), τ̂(�) + z1−α/2σ̂/(

√
nD)

]

, (2.23)

3By well-behaved Vi, we mean that they are sufficiently regular for the appropriate version of the central

limit theorem to hold. In the simplest case, when data is i.i.d., this reduces to standard moment restrictions.
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where zη is the ηth quantile of the standard normal distribution. Properties of this con-

fidence interval are established in the next theorem.

T 2.3. Assume that {(Y i(1), Y i(0), W i ) : i ∈ [n]} are independent with

1

n

n
∑

i=1

Var(Vi ) ≥ v0, for some constant v0 > 0. (2.24)

Then under Assumptions 2.2 and 2.3, for any α ∈ (0, 1),

lim inf
n→∞

P
(

τ∗(ξ) ∈ Ĉ1−α

)

≥ 1 − α.

In Supplemental Appendix A.4, we discuss a generic result for general dependent as-

signments (Theorem A.6), which covers completely randomized experiments, blocked

and matched pair experiments, two-stage randomized experiments, and so on. We

present a detailed result (Theorem A.7) for completely randomized experiments where

potential outcomes are fixed and W i’s are sampled without replacement from a user-

specified subset of {0, 1}T .4 This substantially generalizes the setting of Athey and Im-

bens (2022) and Roth and Sant’Anna (2023), where the assignments are sampled without

replacement from the set of T +1 staggered assignments. At the same time, compared to

Roth and Sant’Anna (2023), we cannot provide efficiency guarantees for our estimator.

2.7 Discussion

Theorem 2.1 and Proposition 2.1 might appear counterintuitive given well-understood

problems of TWFE estimators (e.g., De Chaisemartin and d’Haultfoeuille (2020),

Goodman-Bacon (2021), Sun and Abraham (2021)). To put our result in context, we em-

phasize two important features of the setup. First, we restrict attention to static models,

and second, we use the randomness that is coming from W i. Both of these restrictions

play a key role in Theorem 2.1. The absence of dynamic effects implies that we can

meaningfully average units with different histories of past treatments. A version of this

assumption is inescapable if we want the method to work for general designs where con-

trolling for past history is practically infeasible. As we explain below, the randomness of

assignments helps to resolve the issue that TWFE estimators put negative weights on

some individual treatment effects.

In De Chaisemartin and d’Haultfoeuille (2020), Goodman-Bacon (2021), Sun and

Abraham (2021), the authors show that treated units are averaged with potentially neg-

ative weights, but these results are conditional on the assignments W = (W1, � � � , Wn )

being fixed. Let ξit(γ; W ) be these weights for the general weighted least squares esti-

mator τ̂(γ) defined in (1.2) such that

E
[

τ̂(γ)|W
]

=
n
∑

i=1

T
∑

t=1

ξit(γ; W )τit ,

4Specifically, given any support S∗ and a prespecified vector {nw : w ∈ S
∗} with

∑

w∈S∗ nw = n, the experi-

menter sample assignments (W1, � � � , Wn ) with probability
∏

w∈S∗ nw!/n!.
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F 1. Effect weights for the unweighted TWFE estimator.

where we now explicitly allow the weights to depend on W . When the assignments are

treated as random, the large sample limit of τ̂(γ) is

E
[

τ̂(γ)
]

=
n
∑

i=1

T
∑

t=1

ξit(γ)τit ,

where ξit(γ) = EW [ξit(γ; W )]. While {(i, t ) : ξit(γ; W ) < 0} is nonempty almost surely for

every realization of W , it is still possible that all ξit(γ) are positive due to the averaging

over W . For illustration, we consider a simulation study with n = 100, T = 4, and other

details specified in Section 5.1. We consider the conditional and unconditional weights

induced by the unweighted and RIP-weighted TWFE estimator in Figure 1 and Figure 2,

respectively. We plot the histograms of {(nT ) · ξit(γ; W ) : i ∈ [n], t ∈ [T ]} for three real-

izations of W and the histogram of {(nT ) · ξit(γ) : i ∈ [n], t ∈ [T ]}, approximately by av-

eraging over a million realizations of W , where the multiplicative factor nT is chosen

to normalize the weights into a more interpretable scale. Clearly, despite the large frac-

tion of negative weights in each realization, their averages do not have any negatives.

Therefore, the criticism on TWFE estimators does not apply in this case. Indeed, it never

applies to the RIPW estimator by Proposition 2.1. In this study, all weights are designed

to be 1/nT > 0 when � is a solution of the DATE equation with ξ = 1T /T , as shown in

Figure 2(b), regardless of the data generating process.

The discussion above demonstrates that while for each cell (i, t ), a particular real-

ization of weights can be negative, this fact is not systematic. If we use the RIPW estima-

tor designed for the equally weighted DATE, then all cells will receive the same weight

on average. An alternative description of the same phenomenon is that once correctly

weighted, the realized treatment paths W i are independent of potential outcomes. This

independence implies that there cannot be systematic differences in treatment effects

among units with distinct assignment paths, and thus negative weights do not create

complications for the interpretation of the estimates. As we illustrate in Section 4, this

interpretation remains valid even when certain dynamic effects are present.
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F 2. Effect weights for our RIPW estimator.

R 2.4. One might ask if Figure 1(b) presents a general feature of unweighted

TWFE estimators with random assignments. For completely randomized experiments

where πi ≡ �, the standard TWFE estimator is equivalent to the RIPW estimator with

reshaped distribution �. By Proposition 2.1, all weights are guaranteed to be nonneg-

ative. When πi varies across units, the weights are not guaranteed to be nonnegative.

Consider the extreme case where πi assigns 1 − ε mass on one assignment pass and ε

mass on all others. As ε → 0, this approaches the case of fixed-treatment assignments,

for which the unconditional weights are almost the same as the conditional weights,

which always include negative ones.

3. R IPW     

In this section, we move to nonexperimental settings where the assignment mechanism

is not controlled by the researcher and is unknown. We assume that researchers con-

structed unit-level estimates {π̂i, i ∈ [n]}. In addition, we assume that the researchers

have access to a set of estimates {(μ̂i(0), μ̂i(1)) : i ∈ [n]} of {(E[Y i(0)], E[Y i(1)]) : i ∈ [n]}.

Further, let m̂it be the double-centered version of μ̂it(0) and ν̂it be a shifted version of

μ̂it(1) − μ̂it(0):

m̂it � μ̂it(0) − 1

n

n
∑

i=1

μ̂it(0) − 1

T

T
∑

t=1

μ̂it(0) + 1

nT

n
∑

i=1

T
∑

t=1

μ̂it(0), (3.1)

ν̂it �
(

μ̂it(1) − μ̂it(0)
)

−
T
∑

t=1

ξt

n

n
∑

i=1

(

μ̂it(1) − μ̂it(0)
)

. (3.2)

For notational convenience, we write m̂i for the vector (m̂i1, � � � , m̂iT ) and ν̂i for the vec-

tor (ν̂i1, � � � , ν̂iT ). Given a set of estimates {(π̂i, m̂i, ν̂i ) : i ∈ [n]}, we define the RIPW esti-
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mator as

τ̂(�) � arg min
τ,μ,

∑

i αi=
∑

t λt=0

n
∑

i=1

T
∑

t=1

(

(Yit − m̂it − ν̂itWit ) −μ− αi − λt −Witτ
)2 �(W i )

π̂i(W i )
. (3.3)

The above estimator generalizes (2.11) by allowing for regression adjustment. Through-

out the rest of the paper, we will abuse the notation by denoting it as τ̂(�). This two-

stage formulation replaces the regression with covariates by regression on the modified

outcome (Yit − m̂it − ν̂itWit ) without covariates, yielding a simplified structure, which

allows us to use previously established results. In the rest of this section, we discuss for-

mal properties they need to satisfy to guarantee consistency and asymptotic normality

of τ̂(�).

In the previous section, we assumed that the researcher controlled the assignment

process, which led to the restriction (2.2). In observational studies, the assignment pro-

cess is unknown, and we must substitute this restriction with a different assumption.

Throughout this section, we impose a high-level restriction on the relationship between

unit-specific potential outcomes and assignment paths.

A 3.1. (-  )

E
[(

Y i(1), Y i(0)
)

|W i

]

= E
[(

Y i(1), Y i(0)
)]

, i = 1, � � � , n. (3.4)

Recall that we do not assume that (Y i(1), Y i(0), W i ) are identically distributed across

units. As a result, Assumption 3.1 imposes n separate restrictions, one for each unit. It

follows the tradition of the part of the panel data literature that treats unit-specific un-

observables as fixed parameters (e.g., Lancaster (2000), Hahn and Newey (2004)), rather

than random variables as in (Chamberlain (1984)). It is trivially satisfied in an extreme

case where (Y i(1), Y i(0)) has a degenerate distribution for each i ∈ [n], which corre-

sponds to the finite population analysis (e.g., Abadie, Athey, Imbens, and Wooldridge

(2020)). In applications where (Y i(1), Y i(0)) is random, this assumption imposes a strict

exogeneity restriction. It describes the average behavior of the outcomes conditional on

the whole treatment path and does not allow the current treatment to depend on past

outcomes. To illustrate this connection, consider the classical linear TWFE model where

Yit = μ+ αi + λt +X�
it β+ τWit + εit , where

n
∑

i=1

αi =
T
∑

t=1

λt = 0. (3.5)

Assumption 3.1 is equivalent to E[εit|W i] = 0 for t = 1, � � � , T , which is a strict exogeneity

restriction. In contrast, if {εit : i ∈ [n], t ∈ [T ]} only satisfies contemporaneous restric-

tions E[εit|Wit ] = 0, Assumption 3.1 does not necessarily hold. We want to note that in

the DiD literature, it is common to impose restrictions only on Y i(0), while Assump-

tion 3.1 restricts both potential outcomes. This is necessary given our focus on the ATE,

defined in Section 2.2.

Assumption 3.1 is also related to the recent cross-sectional literature on quasi-

experimental designs (e.g., Borusyak and Hull (2023)). A typical restriction in that lit-

erature is that while the distribution of the treatment of interest varies over units in a
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complicated way, it still can be estimated and then used to construct counterfactuals.

For this approach to be valid, one needs to impose a version of Assumption 3.1. In the

panel data literature, this type of quasi-experimental variation was also exploited. For

example, Wojtaszek and Kofoed (2022) studied the effect of military bonuses on chari-

table giving and found that the timing of receiving the bonus is (nearly) as-if random.

Depending on the choice of outcome variable, the bonus can be viewed as a staggered

or one-off treatment with a uniform generalized propensity score.

To construct estimators {(π̂i, m̂i, ν̂i ) : i ∈ [n]}, we use the observed covariates {Xi, i ∈
[n]}. Our assumptions implicitly restrict the set of feasible covariates. In particular to

respect Assumption 3.1, we do not allow any parts of the observed outcomes Y i to be

used as covariates. The situation is more delicate for W i, and we allow functions of W i

to be part of Xi as long as Assumption 2.2 holds. We elaborate on this in the next two

sections.

3.1 Assignment model estimation

In strictly exogenous panel models, the distribution of W i is commonly left unspeci-

fied and the analysis is based on the outcome model alone. In particular, the distribu-

tion of W i can be degenerate for each i ∈ [n], which is another extreme case where As-

sumption 3.1 trivially holds. However, researchers often informally appeal to random or

quasi-random variation in W i as a source of identification, even though they continue

using outcome-based methods, such as the TWFE regression. We interpret these infor-

mal statements as statistical restrictions on {πi, i ∈ [n]} that go beyond Assumption 3.1.

Precisely, because the arguments used in the applied work are often informal, we

cannot offer and analyze a general methodology of how to use them to construct {π̂i, i ∈
[n]}. Instead, we discuss several strategies that are potentially relevant for a large class of

applications. Our goal is to demonstrate how to utilize the information used to construct

the outcome-based estimators, and thus is readily available. In practice, researchers can

have other sources of information that we do not incorporate in our analysis. After this

discussion, we continue our formal analysis under high-level assumptions on {π̂i, i ∈
[n]}.

We use {(W i, Xi ) : i ∈ [n]} to estimate πi. At first glance, it might appear to be chal-

lenging to estimate the distribution of the whole vector. Nevertheless, treatment paths

often have restricted support with a size much smaller than 2T , such as staggered adop-

tion and/or special structures that reduce the complexity of the distribution, such as the

Markov structure. We present a few examples below for illustration.

In the staggered adoption designs, W i is equivalent to an adoption time Ai ∈
{1, � � � , T , ∞}, where Ai = ∞ for never-treated units and Ai = t for units initially treated

at time t. Then Ai can be viewed as an event or during outcome, and one can apply any

survival or duration model, such as the Cox proportional hazard model and accelerated

failure time model, to estimate its distribution which yields πi by taking the difference

between the consecutive points; see Section 5.2 for an empirical illustration that uses

this strategy and additional discussion. For transient treatments that occur at most once

during the study period, W i can be expressed by the adoption time Ai ∈ {1, � � � , T , ∞} as

above. The propensity score πi can then be estimated via a discrete choice model.
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For general designs where the treatment can be alternated on and off, πi can be

reparametrized as a sequence of conditional distributions P(Wit|Wi(t−1), � � � , Wi1, Xi )

and estimated by a Markov model. In particular, Arkhangelsky and Imbens (2022) show

that if Xi incorporates appropriate sufficient statistics, then conditioning on Xi elimi-

nates the ex ante present unobserved heterogeneity from the distribution of W i. Aguir-

regabiria, Gu, and Luo (2021) show that these assumptions are satisfied by a large class

of models that are widely used in economic applications, including structural models

with forward-looking agents as well as myopic (backward-looking) dynamic logit mod-

els. They also provide explicit characterizations for sufficient statistics in such models.

These results can be directly applied in our setting.

Given an estimate π̂i, we say that it estimates the assignment model well if π̂i is close

to πi in L2 distance. Specifically, for each unit i we define the accuracy of π̂i as

δπi �

√

E
[(

π̂i(W i ) −πi(W i )
)2]

. (3.6)

Here, the expectation is taken over both W i and π̂i (conditional on {Xi : i ∈ [n]}). In the

setting of Section 2, δπi = 0 because π̂i =πi.

3.2 Outcome model estimation

In this section, we discuss the construction of the terms {(m̂i, ν̂i ) : i ∈ [n]}, which we use

to build the estimator (3.3). We start with unit specific quantities (μ̂i(0), μ̂i(1)), which

we view as estimators for (E[Y i(0)], E[Y i(1)]). There are many ways of constructing such

estimators, and our results require only high-level restrictions on these objects. For ex-

ample, one can consider a generalization of the linear TWFE model (3.5):

E
[

Yit(w)
]

= μ+ αi + λt +X�
it β+

(

τ +X�
it φ
)

w, where

n
∑

i=1

αi =
T
∑

t=1

λt = 0. (3.7)

Then (μ̂it(0), μ̂it(1)) can be chosen as

μ̂it(w) = μ̂+ α̂i + λ̂t +X�
it β̂+

(

τ̂ +X�
it φ̂
)

w, (3.8)

where the parameters are estimated by regressing Yit onXit , Wit , the covariate-treatment

interaction XitWit , and a set of fixed effects. When we estimate μ̂it(w) for a new unit

whose unit fixed effect is not estimated, we can simply set μ̂it(w) = μ̂+ λ̂t +X�
it β̂+ (τ̂+

X�
it φ̂)w.

In the cross-sectional case, an estimate (μ̂i(0), μ̂i(1)) is considered an accurate esti-

mate of (E[Y i(0)], E[Y i(1)]) if {‖μ̂i(0) −E[Y i(0)]‖2 +‖μ̂i(1) −E[Y i(1)]‖2 : i ∈ [n]} is small

on average (e.g., Robins, Rotnitzky, and Zhao (1994), Kang and Schafer (2007)). Con-

structing such estimators for panel models with fixed effects and a finite number of pe-

riods is impossible. Thus, the standard approach of measuring accuracy does not apply

in our setting, and we need to consider alternative measures.
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We start by defining the estimands (mit , νit ) that (m̂it , ν̂it ) attempt to estimate:

mit = E
[

Yit(0)
]

− 1

n

n
∑

i=1

E
[

Yit(0)
]

− 1

T

T
∑

t=1

E
[

Yit(0)
]

+ 1

nT

n
∑

i=1

T
∑

t=1

E
[

Yit(0)
]

(3.9)

νit � τit − τ∗(ξ). (3.10)

To measure the degree of mispecification of the outcome model, we introduce the fol-

lowing quantity:

δyi �

√

E
[

‖m̂i −mi‖2
2

]

+E
[

‖ν̂i − νi‖2
2

]

. (3.11)

The first term captures the estimation accuracy of mi, and the second term captures

the estimation accuracy of τ i. By definition, δyi is invariant if we replace E[Yit(0)] by

E[Yit(0)]+μ′ +α′
i +λ′

t and τit by τit +τ′ for any μ′, τ′, {α′
i : i ∈ [n]}, and {λ′

t : t ∈ [T ]}. Thus,

requiring δyi to be small is strictly less stringent than requiring the standard measure of

outcome model accuracy for cross-sectional data to be small.

In the simplest TWFE model (3.5) without covariates, δyi = 0 if we choose μ̂it(0) =
μ̂it(1) = 0. For the more general TWFE model (3.7), regardless whether unit i is used for

fitting the TWFE regression,

δyi =

√
√
√
√
√E

[
T
∑

t=1

{

(Xit − X̄i· − X̄·t + X̄·· )�(β̂−β)
}2 +

{(

Xit −
T
∑

t=1

ξtX̄·t

)�

(φ̂−φ)

}2]

,

Standard assumptions (e.g., Arellano (2003), Wooldridge (2010)) guarantee that (β̂, φ̂)

are consistent for (β, φ) even with a finite number of periods. We can further generalize

the model by replacing X�
it β and X�

it φ with nonlinear functions g(Xit ) and τ(Xit ) and

estimate them by nonparametric TWFE regressions (Boneva, Linton, and Vogt (2015)).

The requirement that δyi ≈ 0, at least on average, puts restrictions on the treatment

effects. These requirements, however, can be redundant, depending on the structure of

Xi. For example, Wooldridge (2021) shows that the problems with heterogeneous treat-

ment effects can be solved, under conditional parallel trends and linearity, by including

a sufficiently rich set of controls, which includes functions of W i. In the staggered adop-

tion case, one needs to include interactions with all the adoption dates. Unfortunately,

including such interactions into Xi violates the overlap Assumption 2.2.

3.3 Consistency of RIPW estimators

In this and the next subsection, we consider a simplified case where the estimates

{(π̂i, m̂i, ν̂i ) : i ∈ [n]} are independent of the data (e.g., obtained from external data).

While this is not always possible in practice, the theory of consistency and asymptotic

normality can be stated without much mathematical complication. Moreover, these re-

sults are building blocks for the theory of cross-fitting estimator described at length

in Supplemental Appendix B. To ease implementation, we provide a self-contained de-

scription of the (derandomized) cross-fitting RIPW estimator in Algorithm 1 at the end

of the next subsection.
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A 3.2. There exists c > 0 such that, for the same S∗ defined in Assumption 2.2,

π̂i(w) ≥ c, ∀w ∈ S
∗, i ∈ [n], almost surely.

A 3.3. There exists M <∞ such that maxi,t,wE[m̂2
it + ν̂2

it ] ≤M .

Theorem 2.1 implies that the RIPW estimator with � being a solution of the DATE

equation, if any, is a consistent estimator of DATE without any outcome model when

π̂i = πi is known. On the other hand, when the outcome model is correctly specified,

Yit − m̂it − ν̂itWit ≈ Yit −mit − (τit −τ∗(ξ))Wit is a linear model with two-way fixed effects

and a single predictor Wit and τ̂ is approximately a weighted least squares estimator,

which is consistent under mild conditions on the weights (e.g., Wooldridge (2010)). This

shows a weak double robustness property that τ̂(�) is consistent if either the outcome

model or the assignment model is exactly correct.

For cross-sectional data, the augmented IPW estimator enjoys a strong double ro-

bustness property, which states that the asymptotic bias is the product of estimation er-

rors of the outcome and assignment models (e.g., Robins, Rotnitzky, and Zhao (1994),

Kang and Schafer (2007), Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and

Newey (2017), Chernozhukov et al. (2018)). Clearly, this implies the weak double robust-

ness. It further implies the estimator has higher asymptotic precision than estimators

based on merely the outcome or assignment modeling when both models are estimated

well. The next result provides a sufficient condition for strong double robustness of τ̂(�)

when the estimated treatment and outcome models are independent of the data.

T 3.1. Assume that {(π̂i, m̂i, ν̂i ) : i ∈ [n]} are independent of the data. Under As-

sumptions 2.1–2.3 and 3.1–3.3, conditional on the estimates,

τ̂(�) = τ∗(ξ) +OP(δ̄π δ̄y ), where δ̄π =

√
√
√
√

1

n

n
∑

i=1

δ2
πi, δ̄y =

√
√
√
√

1

n

n
∑

i=1

δ2
yi.

In particular, τ̂(�) is a consistent estimator of τ∗(ξ) if δ̄π δ̄y = o(1).

Assumptions 2.3 and 3.3 guarantee that δ̄y is bounded. Thus, the RIPW estimator is

consistent whenever πi is consistently estimated without any requirement on the rate of

convergence. On the other hand, under the TWFE model (3.7) or nonparametric TWFE

models discussed in the last subsection, δ̄y = o(1) and the estimator is consistent even

if the assignment model is globally misspecified.

3.4 Inference with independent model estimates

Similar to Theorem 2.2, we can derive an asymptotic linear expansion for D · √n(τ̂(�) −
τ∗(ξ)).
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T 3.2. Assume that {(π̂i, m̂i, ν̂i ) : i ∈ [n]} are independent of the data. Let

�θ, �ww, �w, and D be defined as in Theorem 2.2 with π̂i in the definition of 
i. Rede-

fine �wy , � y , and Vi by replacing (Y i(0), Y i(1)) with (Ỹ i(0), Ỹ i(1)) = (Y i(0) − m̂i, Y i(1) −
m̂i − ν̂i ). Under Assumptions 2.1–2.3 and 3.1–3.3,

D ·
√
n
(

τ̂(�) − τ∗(ξ)
)

= 1√
n

n
∑

i=1

(

Vi −E[Vi]
)

+OP

(

n1/2−2q + δ̄π δ̄y
)

. (3.12)

In particular, the last term is oP(1/
√
n) if q > 1/2 and δ̄π δ̄y = o(1/

√
n).

Similar to Section 2, we can estimate V̂i and the asymptotic variance via (2.22) and

construct the Wald-type confidence interval as (2.23) when units are independent. This

is a special case of Theorem A.6 in Supplemental Appendix A.4 for general dependent

designs.

T 3.3. Assume that {(Y i(1), Y i(0), W i ) : i ∈ [n]} are independent. Under the same

settings as in Theorem 3.2,

lim inf
n→∞

P
(

τ∗(ξ) ∈ Ĉ1−α

)

≥ 1 − α,

if, further, (2.24) holds.

Under Assumption 3.1, Theorem 3.2 and Theorem 3.3 strictly generalize Theo-

rem 2.2 and Theorem 2.3—when πi is known, δ̄π = 0, and hence δ̄π δ̄y = 0 = o(1/
√
n)

regardless of the accuracy of the outcome model estimates. When πi is unknown, δ̄π
and δ̄y are typically no less than O(1/

√
n) without external data. As a result, both mod-

els should be consistently estimated to achieve δ̄π δ̄y = o(1/
√
n) though the estimates

can have a slower convergence rate than O(1/
√
n). For example, it would be satisfied

if δ̄π , δ̄y = o(n−1/4 ). We emphasize that this rate requirement is standard for inference

with cross-sectional data (Chernozhukov et al. (2017, 2018)). Under this rate condition,

by virtue of the asymptotic linear expansion in Theorem 3.2, the researcher can safely

ignore the variability of the model estimates and use them in the variance calculation as

if they are the truth.

Even when condition δ̄π δ̄y = o(1/
√
n) is violated, the asymptotically valid inference

is still possible at the cost of more involved variance estimation. Doubly robust infer-

ence in this regime is generally hard (e.g., Benkeser, Carone, Vanm Der Laan, and Gilbert

(2017)). We consider the setting where parametric models are used to fit the general-

ized propensity score and regression adjustment. This setting has been studied in the

literature for cross-sectional data (e.g., Cao, Tsiatis, and Davidian (2009)). Our formal re-

sults are deferred in Supplemental Appendix A.5 due to the mathematical complication.

Roughly speaking, if the estimators {(π̂i, m̂i, ν̂i ) : i ∈ [n]} come from a smooth paramet-

ric model, then one can use their asymptotic expansion (around their limits, which do

not necessarily correspond to the true parameters) to compute the asymptotic variance.

Similar to the case discussed Section 2 and this section, we can obtain an asymptotically

conservative variance estimator without knowing which model is misspecified apriori.
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Algorithm 1 RIPW estimator with derandomized cross-fitting.

Input: data {(Xi, W i, Y i ) : i ∈ [n]}, number of folds K, number of data splits B,

reshaped distribution �

procedure

for b = 1, � � � , B do

Randomly split [n] into K folds I1, � � � , IK with |Ij| ∈ {�n/K�, �n/K�}

for k = 1, � � � , K do

Fit the assignment model π̂(w; x) using data in
⋃

j �=k Ij

Fit the outcome model (m̂t(x), ν̂t(x)) using data in
⋃

j �=k Ij

for i ∈ Ik do

π̂i(w) ← π̂(w; Xi )

(m̂it , ν̂it ) ← (m̂t(Xi ), ν̂t(Xi )) for each t ∈ [T ]

Compute τ̂(b)(�) via (3.3)

Compute D(b) defined in Theorem 3.2

Compute {V̂ (b)
i : i ∈ [n]} based on (2.21)

τ̂(�) ←
∑B

b=1 D
(b)τ̂(b)(�)/

∑B
b=1 D

(b)

¯̂
Vi ←

∑B
b=1 V̂

(b)
i /

∑B
b=1 D

(b) for each i ∈ [n]

σ̂2 ← sample variance of {
¯̂
Vi : i ∈ [n]}

Ĉ1−α ← [τ̂(�) − z1−α/2σ̂/
√
n, τ̂(�) + z1−α/2σ̂/

√
n],

Output: the derandomized cross-fitting estimator τ̂(�) and confidence interval Ĉ1−α

In practice, it is uncommon to obtain estimates of (π̂i, m̂i, ν̂i ) that are independent

of the data, except in the design-based inference where π̂i = πi and m̂i = ν̂i = 0T , or

when external data is available. Usually, these parameters need to be estimated from

the data. The resulting dependence invalidates the assumptions of Theorem 3.2 and

3.3. However, as we show in Supplemental Appendix B similar results hold if we use a

particular version of cross-fitting. Note that this implies that π̂i, m̂i, ν̂i cannot contain

unit-specific fixed effects. Moreover, we propose a simple approach to mitigate the ran-

domness introduced by sample splitting. We describe the estimator in Algorithm 1. More

details can be found in Supplemental Appendix B. We implemented this method in an R

package ripw that is available at https://github.com/lihualei71/ripw.

4. D-   

A key limitation of our analysis in previous sections is the focus on static models. This is

important both theoretically and practically. Theoretically, some policies of interest are

transient in nature, for example, a large infrastructure investment, but policymakers ex-

pect them to have a lasting impact, which requires a dynamic model. Practically, a large

part of applied work in economics uses regression models that explicitly incorporate

lags of treatment variables.
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We consider a relatively simple class of linear potential outcome modes to address

these concerns. For every i and t, we specify the potential outcomes as a function of the

current treatment w and its p lags:

E
[

Yit(w0, w−1, � � � , w−p )
]

= μit +
p
∑

l=0

τi,−lw−l. (4.1)

As in Section 3, the expectation is conditional on covariates, and we do not require the

units to be independent or identically distributed. This model does not restrict the base-

line outcomes but puts structure on the dynamic effects of the treatment. First, the effect

of the treatment is present only for p periods after it is implemented. Second, the effect

is linear, that is, the causal effect of being treated one period ago, w−1, does not depend

on whether the unit was treated two periods ago w−2. Finally, the effects are homoge-

nous over time, meaning that τi,l do not depend on calendar time t. These restrictions

are important: the first eliminates the possibility of long-term effects, while the other

two eliminate state dependence. Still, we think this model is flexible enough to be useful

for a large class of empirical applications.

Interestingly, if the treatment timing is fixed and common across units, and p is large

enough, then (4.1) is a parametrization of all realizable potential outcomes, and thus

does not impose any testable restrictions. To see this, let q+ 1 denote the adoption time

and set p = T − q + 1. Then each unit i has T + (T − q) potential outcomes {Yit(0T ) :

t ∈ [T ]} and {Yit(0q, 1T−q ) : t ∈ {q + 1, � � � , T }}. It is easy to see that (4.1) holds with μit =
E[Yit(0T )], τi,0 = E[Yi(q+1)(0q, 1T−q )] −E[Yi(q+1)(0T )], and

τi,−� = E
[

Yi(q+�+1)(0q, 1T−q )
]

−E
[

Yi(q+�+1)(0T )
]

−
(

E
[

Yi(q+�)(0q, 1T−q )
]

−E
[

Yi(q+�)(0T )
])

, � ∈ [p].

Similar logic extends to staggered adoption designs as long as we treat the assignment

as fixed. However, it breaks if we assume that the adoption time is randomly assigned.

In this case, we can test the static model from Section 2 and the dynamic model (4.1) by

comparing outcomes across units that were previously treated at different periods. This

emphasizes the importance of the assignment model for the analysis of dynamic effects.

In this case, it is natural to consider the RIPW estimator coupled with an event-study

regression model, that is,

(τ̂0, τ̂−1, � � � , τ̂−p )

= arg min
τ0,τ−1, ���,τ−p,μ,

∑

i αi=
∑

t λt=0

n
∑

i=1

T
∑

t=1

(

Yit −μ− αi − λt −Witτ0 −
p
∑

j=1

Wi(t−j)τ−j

)2

× �(W i )

πi(W i )
(4.2)

where Wit is defined as 0 whenever t ≤ 0. Our next result describes the probability limit

of (τ̂0, τ̂−1, � � � , τ̂−p ). The proof is presented in Supplemental Appendix A.8.
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T 4.1. Assume that Yit(w0, w−1, � � � , w−p ) satisfies (4.1) and the generalized

propensity score πi(w) � P(W i = w|{Yit(w̃) : t ∈ [T ], w̃ ∈ {0, 1}T }) is known. Further as-

sume that EW∼�[(W ex −EW∼�[W ex])J(W ex −EW∼�[W ex])] is positive definite, where

W ex = (W , W−1, � � � , W−p ) ∈ {0, 1}T×(p+1), W−k = (0, � � � , 0, W1, � � � , WT−k )�,

and W = (W1, � � � , WT ) denote a generic random vector drawn from the distribution �.

Then, under Assumptions 2.1–2.3 (with Yit(w) replaced by Yit(w0, w−1, � � � , w−p )),

τ̂−k = 1

n

n
∑

i=1

τi,−k + oP(1), k= 0, 1, � � � , p.

This result justifies using the RIPW estimator in a large class of applications. If πi-s

are unknown, then one can estimate them using one of the strategies discussed in the

previous section. Similarly, one can introduce covariates in this model in the same way

as before. Also, applied researchers often consider leads in addition to lags in their re-

gressions, especially in the context of staggered adoption designs. To incorporate this

practice into our framework, one simply needs to shift the treatment path W i appropri-

ately. The resulting estimators for the leads can then be used to test for the validity of the

underlying model.

We do not establish analogs of Theorems 3.1–3.3 for this estimator, but we expect

them to hold under appropriate technical conditions. In particular, under (4.1), if the

TWFE model holds for the baseline potential outcomes such that μit = μ + αi + λt
and τi,−� = τ−�, then (4.2) is consistent for (τ0, τ−1, � � � , τ−p ) since it is a weighted

least squares estimator for a correctly specified linear model. Compared to our anal-

ysis in previous sections, the reshaping distribution � does not play a major role in

these results. The reason for this behavior is that the model for treatment effects is

time-homogeneous. If we relax this assumption and allow for time-varying dynamic ef-

fects τi,−l,t , then the distribution � becomes important again. The corresponding DATE

equation for this problem is more complicated than the one presented in Section 2, and

its analysis is beyond the scope of this paper.

5. N 

In this section, we investigate the properties of our estimator in simulations and show

how to apply it to real data sets. The R programs to replicate all results in this section is

available at https://github.com/xiaomanluo/ripwPaper.

5.1 Synthetic data

To highlight the central role of the reshaping function in eliminating the bias, we focus

on inference with known assignment mechanisms. Put another way, in such settings,

the bias of the unweighted or IPW estimators is purely driven by the wrong reshaping

function rather than other sources of variability. We consider the DATE with ξ = 1T /T

for simplicity. We also design a simulation study with unknown assignment mechanisms
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and present the results in Supplemental Appendix D, which involves all 2-by-2 settings

with correct/incorrect assignment/outcome model and a detailed comparison between

the RIPW estimator and several other competing estimators.

We consider a short panel with T = 4 and sample size n = 1000. We generate a single

time-invariant covariate Xit = Xi with P(Xi = 1) = 0.7 and P(Xi = 2) = 0.3 and a single

time-invariant unobserved confounder Uit =Ui with Ui ∼ Unif({1, � � � , 10}). Within each

experiment, the covariates and unobserved confounders are only generated once and

then fixed to ensure a fixed design. For treatment assignments, we consider a staggered

adoption design, that is, W i ∈ Wsta. We assume that W i is less likely to be treated when

Xi = 1. In particular,

(

πi(w(0) ), πi(w(1) ), πi(w(2) ), πi(w(3) ), πi(w(4) )
)

=
{

(0.8, 0.05, 0.05, 0.05, 0.05) (Xi = 1),

(0.1, 0.1, 0.2, 0.3, 0.3) (Xi = 2).

The potential outcome Yit(0) and the treatment effect τit are generated as follows:

Yit(0) = μ+ αi + λt +mit + εit , mit = σmXiβt , τit = στaibt ,

where μ = 0, βt = t − 1, αi = 0.5Ui, λt
i.i.d.∼ N (0, 1), bt

i.i.d.∼ N (0, 1), and εit
i.i.d.∼ N(0, 1).

For ai, we consider two settings: we either set ai = 1, thus making τit unit-invariant; or

ai
i.i.d.∼ Unif([0, 1]), in which case τit varies over units and periods. As with the covariates

Xi, the time fixed effects λt and factors ai, bt are generated once for each setting and

then fixed over runs. In contrast, εit will be resampled in every run as the stochastic

errors. Note that both mit and τit are generated from rank-one factor models.

The parameters σm and στ measure two types of deviations from the TWFE model:

σm measures the violation of parallel trend because we will not adjust for Xi in the

design-based inference, and στ measures the violation of constant treatment effects.

We consider two settings: we either set σm = 1, στ = 0—a model without parallel trends,

but constant treatment effects; alternatively, we set σm = 0, στ = 1—a TWFE model with

heterogeneous effects, but parallel trends. In the first setting, τit = 0 regardless of the

model for ai, thus we have 3 different scenarios in total.

We consider three estimators: the unweighted TWFE estimator, the IPW estimator,

and the RIPW estimator with � given by (C.5). For each of the three experiments, we

resample Wit ’s and εit ’s, while keeping other quantities fixed, for 1000 times and collect

the estimates and the confidence intervals. Figure 3 presents the boxplots of the bias

τ̂(�) − τ∗(ξ). In all settings, the unweighted estimator is clearly biased, demonstrat-

ing that both the parallel trend and treatment effect homogeneity are indispensible for

classical TWFE regression. In contrast, the IPW estimator is biased when the treatment

effects are heterogeneous, but unbiased otherwise even if the parallel trend assumption

is violated. This is by no means a coincidence; in this case, τ i = τ∗(ξ)1T for all i and, by

Theorem 2.1, the asymptotic bias �τ(ξ) = 0 for RIPW estimators with any reshaped func-

tion including the IPW estimator. Finally, as implied by our theory, the RIPW estimator

is unbiased in all settings. Moreover, the coverage of confidence intervals for the RIPW
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F 3. Boxplots of bias across 10,000 replicates for the unweighted, IPW, and RIPW estima-

tors under (left) violation of parallel trend (σm = 1, στ = 0), (middle) heterogeneous treatment

effect with limited heterogeneity (σm = 0, στ = 1, ai = 1), and (right) heterogeneous treatment

effect with full heterogeneity (σm = 0, στ = 1, ai ∼ Unif([0, 1])).

estimator is 94.6%, 95.2%, and 94.6% in these three settings, respectively, confirming the

inferential validity stated in Theorem 2.3.

5.2 Analysis of OpenTable data in the early COVID-19 pandemic

On February 29, 2020, Washington declared a state of emergency in response to the

COVID-19 pandemic. A state of emergency is a situation in which a government is em-

powered to perform actions or impose policies that it would normally not be permitted

to undertake. It alerts citizens to change their behaviors and urges government agencies

to implement emergency plans. As the pandemic has swept across the country, more

states declared a state of emergency in response to the COVID-19 outbreak.

The state of emergency restricts various human activities. It would be valuable for

governments and policymakers to get a sense of the short-term effect of this urgent ac-

tion. Since mid-February 2020, OpenTable has been releasing daily data of year-over-

year seated diners for a sample of restaurants on the OpenTable network through online

reservations, phone reservations, and walk-ins. This provides an opportunity to study

how the state of emergency affects the restaurant industry in a short time. The data

covers 36 states in the United States, which we will focus our analysis on. Policy eval-

uation in the pandemic is extremely challenging due to the complex confounding and

endogeneity issues (e.g., Chetty, Friedman, Hendren, and Stepner (2020), Chinazzi et al.

(2020), Goodman-Bacon and Marcus (2020), Holtz et al. (2020), Kraemer et al. (2020),

Abouk and Heydari (2021)). Fortunately, compared to the policies later in the pandemic,

the state of emergency suffered from less confounding since it was the first policy that

affected the vast majority of the public in the US. On the other hand, the restaurant in-

dustry is responding to the policy swiftly because the restaurants are forced to limit and

change operations, thereby eliminating some confounders that cannot take effect in a

few days.

Despite being more approachable, the problem remains challenging due to the ef-

fect heterogeneity and the difficulty of building a reliable model for the dine-in rates

in a short time window. In contrast, the declaration time of the state of emergency is
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F 4. Treatment paths of each state. The darker color marks the treated days.

arguably less complex to model because it is mainly driven by the progress of the pan-

demic and the authority’s attitude towards the pandemic.

We demonstrate our RIPW estimator on this data, which can be accessed through

our R package ripw. The summary statistics and detailed descriptions of data sources

(OpenTable, Perper, Cranley, and Al-Arshani, Dong, Du, and Gardner (2020), MIT Elec-

tion Data and Science Lab (2018), Zemel, Eldridge, Bracco, King, and Siemer) can be

found in Supplemental Appendix E. The outcome variable is the daily state-level year-

over-year percentage change in seated diners provided by OpenTable. The treatment

variable is the indicator of whether the state of emergency has been declared. We also

include the state-level accumulated confirmed cases to measure the progress of the pan-

demic, the vote share of Democrats based on the 2016 presidential election data to mea-

sure the political attitude toward COVID-19, and the number of hospital beds as a proxy

for the amount of regular medical resources. For demonstration purposes, we restrict

the analysis to February 29–March 13, the first 14 days since the first declaration by

Washington. As of March 13, 34 out of 36 states have declared a state of emergency; thus,

the declaration times are right-censored. The treatment paths are plotted in Figure 4.

For the treatment model, we fit a Cox proportional hazard model on the declaration

date to derive an estimate of the generalized propensity scores. Specifically, letting Ti be

declaration time of state i, a Cox proportional hazard model with time-varying covari-

ates Xit assumes that

hi(t|Xit ) = h0(t ) exp
{

X�
it β
}

,

where hi(t|·) denotes the hazard function for state i, and h0(t ) denotes a nonparametric

baseline hazard function. The estimates ĥ0 and β̂ yield an estimate F̂i(t ) of the survival
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T 1. Parameter estimates and standard errors of parameter estimates (in parentheses) for

the Cox regression with and without region fixed effects.

w/o Region FE w/ Region FE

log(confirmed cases) 0.225 0.166

(0.257) (0.245)

vote share 0.071 0.050

(0.029) (0.036)

log(beds) −0.162 0.193

(0.282) (0.342)

region (South) −0.884

(0.810)

region (North Central) −0.389

(0.731)

region (West) 0.396

(0.613)

function P(Ti ≥ t ) for state i, differencing which yields an estimate of the generalized

propensity score5

π̂i(W i ) =

⎧

⎪
⎪
⎪
⎪
«

⎪
⎪
⎪
⎪
¬

F̂i(Ti ) − F̂i(Ti + 1)

(State i declared state of emergency no later than 03/13),

1 − F̂i(03/13)

(otherwise).

Here, we include as the time-varying covariates the logarithms of the accumulated con-

firmed cases and as the time-invariant covariates the logarithms of the number of hos-

pital beds and the vote share. Note that fixed effects cannot be added into the Cox model

because each state has only one outcome. To address unobserved heterogeneity, we in-

clude region fixed effects (Northeast, North Central, South, and West). While we will

cross-fit the Cox model for the RIPW estimator, we fit the model on the entire data to

illustrate the effect of covariates on the adoption time. Table 1 summarizes the expo-

nentiated parameter estimates along with their standard errors with and without region

fixed effects. It also reports the p-value of the joint significance test for the null hypoth-

esis that all coefficients are zero. While most of the coefficients are not significant indi-

vidually, they are jointly significant, suggesting that the generalized propensity score is

nonconstant.

The proportional hazard assumption imposed by the Cox model is often controver-

sial. Here, we apply the standard statistical tests based on Schoenfeld residuals (Schoen-

feld (1980)) as a specification test for the Cox model. Figure 5 presents the p-values

yielded by Schoenfeld’s test. Clearly, none of them show evidence against the propor-

tional hazard assumption. The p-value of Schoenfeld’s test is 0.311, suggesting no evi-

dence against the specification.

5For discrete event times, an alternative is the discrete Cox model introduced in Section 6 of Cox (1972).

Here, we stick with the standard Cox model for simplicity.
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F 5. Diagnostics for the Cox proportional hazard model on adoption times.

For the outcome model, we fit an interacted TWFE regression in the form of (3.7)

with the same set of covariates. Since unit fixed effects are included, no time-invariant

covariate can be added to the main effects due to perfect collinearity. Thus, we add log

confirmed cases, treatment, and the interactions between treatment and all variables,

including region fixed effects, into the TWFE regression. Table 2 summarizes the results.

The first row gives the treatment effect estimates by the TWFE regressions, though these

estimates are irrelevant in the regression adjustment for our RIPW estimator, which only

depends on the other rows. Table 1 reports the p-value of the joint significance test for

the null hypothesis that all coefficients other than the two-way fixed effects are zero.

Again, the null hypothesis that mit = 0 for all (i, t ) is rejected in both settings.

Finally, we compute the RIPW estimator for equally-weighted DATE with the re-

shaped distribution (C.5) in Supplemental Appendix C for staggered adoption and 10-

fold cross-fitting that is described in Algorithm 1 and discussed at length in Supple-

mental Appendix B. Since this problem has a small sample size, the estimate exhibits

large variation across different data splits. We thus apply the derandomization proce-

dure discussed in Supplemental Appendix B.2 with 10,000 splits (i.e., B = 10,000 in Algo-

rithm 1). Our derandomized cross-fitted RIPW estimate is reported in Table 3, together

with the estimates obtained using the TWFE regressions reported in Table 2. It is sig-

nificant at the 10% level and the magnitude is larger than that given by the unweighted
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T 2. Parameter estimates and standard errors (in parentheses) for the unweighted TWFE

regression with and without region fixed effects.

w/o Region FE × Treat w/ Region FE × Treat

treat −0.641 −0.619

(1.640) (1.640)

log(confirmed cases) −3.022 −2.896

(1.230) (1.232)

log(confirmed cases) × treat 0.580 0.662

(2.466) (2.491)

vote share × treat −0.251 −0.217

(0.115) (0.134)

log(beds) × treat −0.925 −0.125

(1.288) (1.440)

region (South) × treat 4.813

(3.477)

region (North Central) × treat 2.681

(3.617)

region (West) × treat 7.316

(3.219)

TWFE regressions shown in Table 2. Recall that the joint F-test p-value for the assign-

ment model presents strong evidence of selection, and hence the difference between

the RIPW estimator and the unweighted TWFE regression are likely due to the bias of

the latter.

6. C

We demonstrate both theoretically and empirically that the unit-specific reweighting of

the OLS objective function improves the robustness of the resulting treatment effects

estimator in applications with panel data. The proposed weights are constructed us-

ing the assignment process (either known or estimated), and thus appropriate in situ-

ations with substantial cross-sectional variation in the treatment paths. Practically, our

results allow applied researchers to exploit domain knowledge about outcomes and as-

signments, thus resulting in a more balanced approach to identification and estima-

tion.

T 3. Treatment effect estimates, standard errors (in parentheses), and confidence intervals.

TWFE (w/o Region FE) TWFE (w/ Region FE) RIPW

Estimate −0.641 −0.619 −3.403∗

(1.640) (1.640) (2.047)

90% CI [−3.34, 2.06] [−3.32, 2.08] [−6.77, −0.04]

95% CI [−3.86, 2.57] [−3.83, 2.60] [−7.42, 0.61]
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