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Abstract

A key challenge in solving the deterministic inverse reinforcement learning (IRL) problem online and in real-time is the
existence of multiple solutions. Nonuniqueness necessitates the study of the notion of equivalent solutions, i.e., solutions that
result in a different cost functional but same feedback matrix, and convergence to such solutions. While offline algorithms
that result in convergence to equivalent solutions have been developed in the literature, online, real-time techniques that
address nonuniqueness are not available. In this paper, a regularized history stack observer that converges to approximately
equivalent solutions of the IRL problem is developed. Novel data-richness conditions are developed to facilitate the analysis
and simulation results are provided to demonstrate the effectiveness of the developed technique.
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1 Introduction

This paper concerns recovery of the cost functional be-
ing optimized by an expert through observation of their
input-output behavior. The expert is assumed to be
controlling a deterministic dynamical system. The con-
troller being implemented by the expert is assumed to be
optimal with respect to an unknown cost functional. The
objective of the learner is to estimate the cost functional
using measurements of the experts inputs and outputs.
Cost functional estimation techniques are studied in the
literature under the umbrella of inverse reinforcement
learning [16]. While IRL typically includes utilization of
the estimated cost functionals for behavior imitation us-
ing (forward) reinforcement learning, the scope of this
paper is limited to cost functional estimation.
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IRL methods are often utilized to teach an autonomous
system a specific task in an offline environment by ob-
serving repeated performance of the same task by the
expert [1, 3, 6, 7, 14, 16, 17, 19, 27]. While effective, IRL
techniques are generally offline, computationally com-
plex, require multiple trajectories or several iterations
over one trajectory, and require a greater amount of data
than is readily available in real-time (online) applica-
tions. The aforementioned limitations are addressed in
results such as [2, 4, 20] where online IRL methods that
utilize a single iteration over one continuous trajectory
are developed to learn the cost functional of the expert.
New techniques to solve the IRL problem up to a scaling
factor through non-cooperative linear quadratic differ-
ential games are also developed in [7] and [8].

Results such as [2, 4, 8, 20] (implicitly or explicitly) as-
sume that the IRL problem admits a unique solution.
Since IRL problems generally admit multiple linearly
independent solutions [9, 10], the uniqueness assump-
tion is restrictive. Non-uniqueness is studied in results
such as [9], where procedures to determine equivalent
cost functionals are developed. It is also shown that IRL
problems with multiple solutions arise naturally in state
space models that have a product structure (see [10]).
Many real-world systems have a product structure, ei-
ther in the original model or in the linearized model.
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For example, linearized dynamics of aerospace vehicles
have a product structure due to separation of longitudi-
nal and lateral dynamics [10]. The study of IRL prob-
lems that admit multiple solutions is thus indispensable
in real-world applications.

The IRL methods recently developed in results such
as [3, 15, 26] study nonuniqueness of solutions to IRL
problems and guarantee convergence to the set of equiv-
alent solutions. In [3, 26] the IRL problem is solved in
an offline setting as opposed to the online and real-time
problem under consideration in this paper. In results
such as [3, 15] equivalent solutions for the state penalty
matrix are identified, using measurements of only the
control input of the expert. However, these results do
not estimate the control penalty of the expert. The tech-
nique developed in this paper requires more information
than [3, 15] (measurements of the control input and the
output of the expert), but in contrast with [3, 15], the
entire cost functional of the expert, including state and
control penalties, is estimated.

Motivated by [20], the method developed in this paper
identifies an equivalent cost functional for the expert
given measurements of the control input and the out-
put of the expert in an observer framework. Specifically,
the History Stack Observer (HSO) from [20], originally
designed under the uniqueness assumption, is extended
to IRL problems that admit multiple solutions. The re-
designed HSO is a true extension of the HSO from [20]
in the sense that it identifies the true cost functional of
the expert, up to a scaling factor, if the IRL problem
has a unique solution. While nonuniqueness is studied in
the observer context in [25], the definition of equivalence
used in this paper is stronger than the one in [25]. As a
result, the analysis that proves convergence to equiva-
lent solutions is more involved than the analysis in [25].
In addition, the practically relevant case of convergence
to approximately equivalent solutions is studied in this
paper.

This article extends the IRL HSO in [20] to problems
where the observed trajectories can be optimal with re-
spect to multiple cost functionals. A learner with access
to the state space model, controller input, and measure-
ment data reconstructs an equivalent cost functional of
an expert. Since recovery of the true cost functional can-
not be expected in such problems, analysis of the error
between the estimated cost functional and the true cost
functional, as done in [20], is no longer useful. In this
paper, a novel analysis approach that guarantees con-
vergence of the learned solution to a neighborhood of an
equivalent solution is developed. Under sufficient data
informativity conditions, a new equivalence metric is de-
signed such that convergence of the equivalence metric
to zero implies convergence to an equivalent solution.
The developed modification to the HSO is inspired by
ridge regression, but has a surprising convergence prop-
erty. Under ideal conditions (no noise and persistently

exciting regressor), the convergence is exact, as opposed
to ridge regression, where the solutions are off by a fac-
tor proportional to the regularization coefficient.

2 Problem Formulation

The system being controlled by the expert is assumed
to be a linear system of the form

ẋ(t) = Ax+Bu, (1)

with output
y = Cx(t), (2)

where the state is x ∈ Rn and the control input is u ∈
Rm. The system matrices are given as A ∈ Rn×n and
B ∈ Rn×m, and the output and output matrix are given
as y ∈ RL and C ∈ RL×n respectively.

The expert is assumed to implement an optimal con-
troller that optimizes the cost functional

J(x0, u(·)) =
∫ ∞

0

(
x(t)⊤Qx(t) + u(t)⊤Ru(t)

)
dt, (3)

where x(·) is the system trajectory under the optimal
control signal u(·) and starting from the initial condi-
tion x0, Q ∈ Rn×n is an unknown positive semi-definite
matrix, and R ∈ Rm×m is an unknown positive definite
matrix. The following assumption ensures that the IRL
problem is well-posed.

Assumption 1 The pair (A,B) is stabilizable and the
pairs (A,C) and (A,

√
Q) are detectable.

Stabilizability of (A,B) and detectability of (A,
√
Q) is

needed for the optimal controller to exist and detectabil-
ity of (A,C) guarantees the existence of a matrix L such
thatA−LC is Hurwitz [5, Lemma 21.1]. Under Assump-
tion 1, the policy of the expert is given by u = KEpx,
where KEp ∈ Rm×n is obtained by solving the algebraic
Riccati equation (ARE) corresponding to the optimal
control problem described by the system in (1) and the
cost functional in (3).

The learning objective is to estimate, online and in real-
time, the unknown matrices in the cost functional using
knowledge of the system matrices, A, B, and C, and
input-output data. Generally, for a system (A,B,C), a
given set of input-output trajectories is optimal with
respect to multiple cost functionals. As a result, the true
cost functional cannot generally be estimated from data.
Instead, an equivalent solution to the IRL problem is
sought (see Definition 2 and [26]).

While the HSO in [20] is an effective technique to solve
the IRL problem online and in real-time, the analysis
focuses on the error between the true cost functional
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matrices and their estimates, and as such, implicitly
assumes uniqueness of solutions. As such, the method
in [20] cannot be applied to a large class of IRL problems
that admit multiple solutions. In this paper, the HSO is
extended to be applicable to IRL problems that admit
multiple solutions. While the extension is similar to the
regularization used in ridge regression, the fact that the
error between the true cost functional matrices and the
obtained estimates can no longer be used as a metric to
gauge quality of the estimates necessitates the develop-
ment of a novel analysis approach.

3 Nonuniqueness and the History Stack Ob-
server

To facilitate the discussion, this section provides a brief
summary of the HSO developed in [20] and highlights
the key problem that is resolved in this paper.

3.1 Equivalent Solutions and Equivalence Metric

If the state and control trajectories of the system are
optimal with respect to the cost functional in (3) and
Assumption 1 is met, then there exists a matrix S such
that for all t ≥ 0, the matrices Q, R, A, and B, and the
optimal trajectories x(·) and u(·) satisfy the Hamilton-
Jacobi-Bellman (HJB) equation

x(t)⊤
(
A⊤S + SA− SBR−1B⊤S +Q

)
x(t) = 0, (4)

and the optimal control equation

u(t) = u∗(x(t)) := −R−1B⊤Sx(t). (5)

The feedback matrix of the expert is then given by
KEp = R−1B⊤S. The HJB equation and the optimal
control equation facilitate the definition of an equivalent
solution.

Definition 2 A solution (Q̂, Ŝ, R̂) is called an equiva-
lent solution of the IRL problem if it satisfies the ARE
A⊤Ŝ + ŜA− ŜBR̂−1B⊤Ŝ + Q̂ = 0 and optimization of
the performance index J , with Q = Q̂ and R = R̂, re-
sults in the same feedback matrix as the one utilized by
the expert, that is, K̂P := R̂−1B⊤Ŝ = KEp.

Given an estimate x̂ of the state x, a measurement of the
control signal, u, and estimates Q̂, R̂, and Ŝ ofQ, R, and
S, respectively, (4) and (5) can be evaluated to develop
an observation error that evaluates to zero if the state
estimates are correct and (Q̂, R̂, Ŝ) is an equivalent so-
lution. The observation error is then used to improve the
estimates by framing the IRL problem as a state esti-
mation problem. The rest of this subsection is borrowed
from [20] and is included here for completeness.

To facilitate the observer design, equations (4) and (5)
are linearly parameterized as

0 = 2σR2(u)W
∗
R +B⊤ (∇xσS(x))

⊤
W ∗

S , (6)

0 = ∇x

(
(W ∗

S)
⊤σS(x)

)
(Ax+Bu)

+ (W ∗
Q)

⊤σQ(x) + (W ∗
R)

⊤σR1(u), (7)

where x⊤Sx = (W ∗
S)

⊤σS(x), x
⊤Qx = (W ∗

Q)
⊤σQ(x),

u⊤Ru = (W ∗
R)

⊤σR1(u), and Ru = σR2(u)W
∗
R, where[

W ∗⊤
S ,W ∗⊤

Q ,W ∗⊤
R

]⊤ ∈ RPS × RPQ × RM are the ideal
weights with PS , PQ, and M being the number of basis
functions in the respective linear parameterization. For
a complete characterization of the weights and the basis
functions, see [18].

Using the estimates ŴS , ŴQ, and ŴR for W ∗
S , W

∗
Q, and

W ∗
R, respectively, in (6) and (7), a control residual error

and an inverse Bellman error are defined as

∆′
u := 2σR2(u)ŴR +B⊤ (∇xσS(x))

⊤
ŴS and (8)

δ′ := ∇x

(
(ŴS)

⊤σS(x)
)
(Ax+Bu)

+ (ŴQ)
⊤σQ(x) + (ŴR)

⊤σR1(u). (9)

The scaling ambiguity inherent in linear quadratic op-
timal control, which is apparent in the fact that Ŵ ′ =
[Ŵ⊤

S , Ŵ⊤
Q , Ŵ⊤

R ]⊤ = 0 is a solution of (6) and (7), is re-
solved, without loss of generality, by assigning an arbi-
trary value to one element of Ŵ ′. Selecting the first com-
ponent of ŴR to be equal to r1 > 0 and removing it from
the weight vector Ŵ ′ in (6) and (7) yields scale-aware
definitions of the control residual error and the inverse
Bellman error, given by


 δ
(
x, u, Ŵ

)

∆u

(
x, u, Ŵ

)

=
[
σδ(x, u)

σ∆u
(x, u)

]



ŴS

ŴQ

Ŵ−
R


+




u2
1r1

2u1r1

0m−1×1


 , (10)

where Ŵ−
R is a copy of ŴR with the first element

removed, σδ is a copy of
[
(Ax + Bu)⊤(∇xσS(x))

⊤,

σQ(x)
⊤, σR1(u)

⊤], with the (PS + PQ + 1)−th ele-

ment removed, and σ∆u is a copy of
[
B⊤(∇xσS(x))

⊤,

0m×PQ
, 2σR2(u)

]
, with the (PS+PQ+1)−th column re-

moved. In this paper, the error system in (10) is used as
an equivalence metric to develop an observer-based IRL
method. The following section provides a brief overview
of the observer developed in [20].

3.2 The History Stack Observer

Pairing the innovation y − Cx̂ with the inverse bell-
man error and control residual error from (10) yields
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the observation error ω =

[
Cx

Σu

]
−
[
Cx̂

Σ̂Ŵ

]
, where Ŵ =

[Ŵ⊤
S , Ŵ⊤

Q , (Ŵ−
R )⊤]⊤,

Σ̂ :=




σδ (x̂(t1), u(t1))

σ∆u
(x̂(t1), u(t1))

...

σδ (x̂(tN ), u(tN ))

σ∆u (x̂(tN ), u(tN ))




, and Σu :=




−u2
1(t1)r1

−2u1(t1)r1

0m−1×1

...

−u2
1(tN )r1

−2u1(tN )r1

0m−1×1




,

Using the observation error, the history stack observer
is designed in [20] as

[
˙̂x
˙̂
W

]
=

[
Ax̂+Bu

0PS+PQ+M−1

]
+K

([
Cx

Σu

]
−
[
Cx̂

Σ̂Ŵ

])
, (11)

where the gain K is selected as

K :=

[
K3 0n×N+Nm

0PS+PQ+M−1×L K4(Σ̂
⊤Σ̂)−1Σ̂⊤

]
, (12)

whereK3 is selected so that A−K3C is Hurwitz, andK4

is scalar multiple of an identity matrix of size PS +PQ+

M − 1. To facilitate the analysis, let Σ be a copy of Σ̂
where the state estimates are replaced by their true val-
ues and let W ∗ := (r1/W

∗
R(1))[W

∗⊤
S ,W ∗⊤

Q , (W−∗
R )⊤]⊤,

where W−∗
R denotes W ∗

R with the first element, W ∗
R(1),

removed.

The matrices Σ̂ ∈ RN(m+1)×PS+PQ+M−1 and
Σu ∈ RN(m+1) are constructed using the dataset
{(x̂(ti), u(ti))}Ni=1, recorded at time instances
{t1, . . . tN}, with N ≥ PS + PQ + M − 1. The dataset
is referred to hereafter as a history stack. To ensure
convergence of the weights, updated using (11), to an
equivalent solution (see Theorem 7 below), the history
stack is recorded using a condition number minimization
algorithm. At any time, two separate history stacks, H1

and H2 are maintained. The history stack H1 is used to
compute the matrices Σ̂ and Σu in (11) and H2 is pop-
ulated with current state estimates and control inputs.

Both history stacks are initialized as zero matrices of the
appropriate size. As state estimates become available,
they are added, along with the corresponding control in-
put, to H2, at a predetermined time interval until H2

is full. After H2 is full, any newly available state esti-
mates are selected to replace existing state estimates in

H2 if the condition number of Σ̂⊤Σ̂, calculated using the
post-replacement history stack, is smaller than the con-
dition number of Σ̂⊤Σ̂ before the replacement. Once the
data in H2 are such that the condition number of Σ̂⊤Σ̂
is lower than a user-selected threshold, and a predeter-
mined amount of time has passed since the last update
of H1, we set H1 = H2 and purge H2 by setting it back
to a zero matrix. Due to the purging algorithm, the time
instances ti corresponding to the data stored in the his-
tory stack H1 are piecewise constant functions of time.

The IRL method developed in this paper requires that
the behavior of the expert is optimal, which implies
that u(t) = KEpx(t) for all t. Since the true values of
the state are not accessible, KEpx̂(ti(t))− u(ti(t)) can-
not be expected to be equal to 0 for the data points
stored in the history stack H1. This discrepancy be-
tween KEpx̂(ti(t)) and u(ti(t)) results in inaccurate es-
timates of equivalent solutions. Since the state estimates
converge to the true state exponentially, the purging
process described above ensures that the discrepancy
maxi=1,··· ,N ∥KEpx̂(ti(t))− u(ti(t))∥ is bounded by an
exponentially decaying envelope, and so is the resulting
inaccuracy in the estimation of an equivalent solution.

4 Regularized History Stack Observer for IRL
Problems with Multiple Solutions

Due to purging and improved state estimates, Σ̂ being
full rank implies that Σ is eventually full rank, and as a
result, ΣW = Σu has a unique solution. As such, the ex-
plicit assumption that Σ̂ is full rank implies an implicit
assumption that the IRL problem admits a unique so-
lution. Lack of uniqueness thus necessitates algorithms
that can incorporate a rank-deficient Σ̂. To that end,
a regularized HSO (RHSO) is developed in this paper

where the termK4(Σ̂
⊤Σ̂)−1 is replaced by a generic pos-

itive definite matrix to yield

K :=

[
K3 0n×N+Nm

0PS+PQ+M−1×L K4Σ̂
⊤

]
, (13)

where K4 is a positive definite matrix of dimension
PS+PQ+M−1. In the following lemmas and theorems,
it is shown that under a novel informativity condition on
the recorded data, the modification above leads to con-
vergence to an equivalent solution when the IRL problem
admits multiple solutions and convergence to the true
cost functional of the expert, up to a scaling factor, when
the IRL problem admits a unique solution. While the
modification itself is relatively minor, the above some-
what surprising results are the key contributions of this
work. The analysis requires a data informativity condi-
tion summarized in Definition 3 below.

Definition 3 The signal (x̂, u) is called finitely infor-
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mative (FI) if there exists a time instance T > 0 such
that for some {t1, t2, . . . , tN} ⊂ [0, T ],

Span {x̂(ti)}Ni=1 = Rn, Σu ∈ Range(Σ̂), and

Span
{
x̂(ti)x̂(ti)

⊤}N
i=1

= {Z ∈ Rn×n|Z = Z⊤}. (14)

In addition, for a given ϵ > 0, if min{eig(XX⊤)} > ϵ
and min{eig(ZZ⊤)} > ϵ, where X := [x̂(t1), . . . , x̂(tN )],
Z := [uvec(x̂(t1)x̂(t1)

⊤), . . . , uvec(x̂(tN )x̂(tN )⊤)] ∈
R

n(n+1)
2 ×N , and uvec(x̂(ti)x̂(ti)

⊤) ∈ R
n(n+1)

2 denotes
vectorization of the upper triangular elements of the sym-
metric matrix x̂(ti)x̂(ti)

⊤ ∈ Rn×n, then (x̂, u) is called
ϵ−finitely informative (ϵ−FI).

Remark 4 The three FI conditions in Definition 3 are
utilized in the subsequent analysis to show that as the
equivalence metric converges to zero, the corresponding
weight estimates converge to an equivalent solution.

(1) The condition Span {x̂(ti)}Ni=1 = Rn is an
excitation-like condition that requires the state es-
timates stored in the history stack to be linearly in-
dependent. This condition is not restrictive in gen-
eral, however it can fail if the system has trajecto-
ries that are confined to a subspace of dimension less
than n. This condition can be monitored online by
ensuring that the minimum eigenvalue of XX⊤ is
strictly positive, and as shown in Fig. 5, it is met in
the simulation study.

(2) The condition Span
{
x̂(ti)x̂(ti)

⊤}N
i=1

= {Z ∈
Rn×n|Z = Z⊤} is a sufficient condition for
x̂(ti)

⊤Mx̂(ti) = 0, ∀i = 1, · · · , N to imply M = 0.
It is not clear how restrictive this condition is, but
it can be verified online by ensuring that the mini-
mum eigenvalue of the matrix ZZ⊤ defined above is
strictly positive. As shown in Fig. 6 this condition
is met in the simulation study.

(3) The condition Σu ∈ Range(Σ̂) is met provided at

least one set of weights Ŵ satisfies Σu = Σ̂Ŵ , and
as such, is not restrictive. If the IRL problem has
a unique solution, then this condition is trivially
met whenever N ≥ PS + PQ + M − 1 and Σ̂ is
full rank. Furthermore, this condition can be veri-
fied online using the fact that Σu ∈ Range(Σ̂) ⇐⇒
Rank

([
Σu Σ̂

])
= Rank(Σ̂). Since the expert is as-

sumed to be optimal, Σu = ΣW ∗, and as a result,
Σu ∈ Range(Σ). Due to improving state estimates

and the purging algorithm, Σ̂ converges to Σ, and as
a result, there exists T > 0 such thatΣu ∈ Range(Σ̂)
for all t ≥ T . As shown in Fig. 7 this condition is
met in the simulation study.

If the optimal trajectories of the expert do not meet the
excitation conditions, an excitation signal can be added
to the control input of the expert. As long as the excitation

signal is known to the learner, the learner can infer the
optimal control input of the expert needed to implement
the developed RHSO.

Remark 5 In the case of noisy measurements, the feed-
back gains K3 and K4Σ̂

⊤ in (13) can be replaced by
Kalman gains.While empirical evidence suggests that the
use of the Kalman gain results in improved performance
(see [24, Section 2.3.3]), the stability guarantees in this
paper are for deterministic systems with K selected ac-
cording to (12). Extension of the developed stability guar-
antees to the case where the measurements are noisy and
K is the Kalman gain is out of the scope of this paper.

The following technical lemma is needed to prove con-
vergence of the equivalence metric to zero.

Lemma 6 If Σ̂ and Σu satisfy (14), then Ω∆ ∩
Null(Σ̂⊤) = {0}, where Ω∆ :=

{
∆ ∈ RN(m+1) | ∆ =

Σu − Σ̂Ŵ , for some Ŵ ∈ RPS+PQ+M−1
}
.

PROOF. If ∆ ∈ Null(Σ̂⊤), then Σ̂⊤∆ = 0. In

addition, if ∆ ∈ Ω∆, then exists a Ŵ such that

Σ̂⊤
(
Σu − Σ̂Ŵ

)
= 0. The FI condition in (14) implies

the existence of some W ′ such that Σu = Σ̂W ′. There-

fore, Σ̂⊤
(
Σ̂W ′ − Σ̂Ŵ

)
= 0. As a result, Σ̂W ′ − Σ̂Ŵ ∈

Null(Σ̂⊤). By definition of the range space, Σ̂W ′−Σ̂Ŵ ∈
Range(Σ̂). Since Range(Σ̂) = (Null(Σ̂⊤))⊥ [22, Section

4.1], Σ̂W ′ − Σ̂Ŵ ∈ (Null(Σ̂⊤))⊥ ∩Null(Σ̂⊤). Therefore,

Σ̂W ′ − Σ̂Ŵ = 0, which implies that ∆ = 0. ✷

Theorem 7 below shows that for given fixed matrices Σ̂
and Σu that satisfy (14), if the weights Ŵ are updated
using the update law in (11), then the equivalence metric
∆ converges to the origin.

Theorem 7 Let ∆ := Σu − ΣŴ . If Σu ∈ Null(Σ̂⊤)⊥,
the gain K is selected according to (13), and the weights

Ŵ are updated using the update law in (11), then
limt→∞ ∆(t) = 0. In addition if full state information is

available (i.e., x̂ = x and as a result, Σ̂ = Σ), ∆ = 0,
Span{x(ti)}Ni=1 = Rn, Span{x(ti)x(ti)⊤}Ni=1 = {Z ∈
Rn×n|Z = Z⊤}, and if the matrix R̂, extracted from Ŵ , is

invertible, then the matrices Q̂, Ŝ, and R̂, extracted from
Ŵ , constitute an equivalent solution of the IRL problem.

PROOF. Using the update law in (11), the time-
derivative of ∆ can be expressed as

∆̇ = −Σ̂K4Σ̂
⊤∆. (15)
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Consider the positive definite and radially unbounded
candidate Lyapunov function V : RN(m+1) → R defined
as

V (∆) =
1

2
∆⊤∆. (16)

The orbital derivative of V along the solutions of (15) is
given by

V̇ (∆) = −∆⊤Σ̂K4Σ̂
⊤∆. (17)

Note that all points in null space of Σ⊤ are equilibrium
points of (15). Since Σ⊤ is not assumed to be full rank,
Null(Σ⊤) ̸= {0}. As a result, if Σ⊤ is not full rank, then
the origin cannot be an asymptotically stable equilib-
rium point of (15). The analysis thus requires the invari-
ance principle.

Since Ω∆ = {Σu} ⊖ Range(Σ̂), where ⊖ denotes the
Minkowski difference, it is easy to see that provided (14)
holds, Ω∆ is a subspace of RN(m+1). Indeed, given α, β ∈
R and ∆1,∆2 ∈ Ω∆, with ∆i = Σu − Σ̂Ŵi for i = 1, 2,
we have α∆1 + β∆2 = Σ̂u + (α+ β − 1)Σu − Σ̂(αŴ1 +

βŴ2). If (14) holds, then Σu ∈ Range Σ̂, and as a result,
α∆1 + β∆2 ∈ Ω∆. Since Ω∆ is a subspace of a finite
dimensional topological space, it is also closed.

If ∆0 ∈ Ω∆ then there exists Ŵ0 such that ∆0 =
Σu − Σ̂Ŵ0. Let t 7→ Ŵ∆0

(t) be a solution of (11) start-

ing from Ŵ0 with the interval of existence I. For almost

all t ∈ I, we have
˙̂
W∆0

= K4Σ̂
⊤(Σu − Σ̂Ŵ∆0

), which

implies d
dt (Σu − Ŵ∆0

) = −K4Σ̂
⊤(Σu − Σ̂Ŵ∆0

). Letting

∆∆0 = Σu − Σ̂Ŵ∆0 , it can be concluded that for almost

all t ∈ I, ∆̇∆0
(t) = −K4Σ̂

⊤∆∆0
(t). That is, t 7→ ∆∆0

(t)
is a solution of (15) on ∈ I, starting from ∆0. Unique-
ness of solutions then implies that t 7→ ∆∆0

(t) is the
only solution of (15) on ∈ I starting from ∆0. Using
continuity of t 7→ ∆∆0

(t) along with the facts that Ω∆

is closed and ∆∆0
(t) ∈ Ω∆ for almost all t ∈ I, it can be

concluded that ∆∆0(t) ∈ Ω∆ for all t ∈ I. As a result,
Ω∆ is positively invariant with respect to (15).

For any c > 0, the sublevel set Ωc := {∆ ∈
RN(m+1)|V (∆) ≤ c} is compact. From (17), we conclude
that Ωc is positively invariant with respect to (15). As
a result, Ω := Ωc ∩ Ω∆ is also positively invariant with
respect to (15). Since Ωc is compact and Ω∆ is closed, Ω
is also compact. The invariance principle [12, Theorem
4.4] can thus be invoked to conclude that all trajectories
starting in Ω converge to the largest invariant subset of
{∆ ∈ Ω | V̇ (∆) = 0}.

The set {∆ ∈ Ω|V̇ (∆) = 0}, is equal to Null(Σ̂⊤)∩Ω as

Σ̂⊤∆ = 0 only when ∆ ∈ Null(Σ̂⊤). Furthermore, from

Lemma 6, provided Σu ∈ (Null(Σ̂⊤))⊥, the only ∆ that

can be a member of Null(Σ̂⊤) ∩ Ω∆ is ∆ = 0. Since the
set {0} is positively invariant with respect to (15), it is

also the largest invariant subset of {∆ ∈ Ω|V̇ (∆) = 0}.

As a result, by the invariance principle, all trajectories
that start in Ω converge to the origin. Since V is radi-
ally unbounded, Ωc can be selected to be large enough to
include any initial condition in Ω∆. Thus, all solutions
of (15) that start in Ω∆ converge to the origin. In par-
ticular, ∆ converges to zero along the solutions of the
update law in (11).

To prove equivalence when ∆ = 0, the equality
R̂−1B⊤Ŝ = KEp must be established. Indeed, if
{x(ti)}Ni=1 spans Rn there is a unique matrix K that
satisfies u(ti) = Kx(ti) for all i = 1, . . . , N . Letting
U = [u(t1), . . . , u(tN )] and X = [x(t1), . . . , x(tN )], this
unique matrix is given byK = UX⊤(XX⊤)−1. It is also
known that because the behavior of the expert is opti-
mal, the observed data satisfy u(ti) = −KEpx(ti) for all
i = 1, . . . , N . Since ∆ = 0, the observed data points sat-
isfy u(ti) = −R̂−1B⊤Ŝx(ti) for all i = 1, . . . , N . Since
there is only one matrixK that satisfies u(ti) = −Kx(ti)
for all i = 1, . . . , N , all three of the matrices above must
be equal, i.e., K = KEp = R̂−1B⊤Ŝ.

The fact that if ∆ = 0 then
x(ti)

⊤
(
A⊤Ŝ + ŜA− ŜBR̂−1B⊤Ŝ + Q̂

)
x(ti) = 0

holds for all points inH1 is immediate from the construc-
tion of ∆. Furthermore, with a slight modification of the
proof from [21], (Q̂, Ŝ, R̂) can be proven to satisfy the
ARE if ∆ = 0 and {x(ti)x(ti)⊤}Ni=1 spans all symmetric
matrices. To that end, let ei be the basis vector of zeros
with a one in the ith position such that eje

⊤
k + eke

⊤
j =∑N

i=1 αix(ti)x(ti)
⊤ for some α1 · · ·αN ∈ R. Rewrit-

ing (4) with M̂ =
(
A⊤Ŝ + ŜA− ŜBR̂−1B⊤Ŝ + Q̂

)
,

∑N
i=1αix(ti)

⊤M̂x(ti)=
∑N

i=1

∑n
p=1

∑n
q=1αixi,pM̂p,qxi,q =∑N

i=1

∑n
p=1 M̂p,q

∑n
q=1 αixi,pxi,q. Now, for

any fixed j, k, select {αi}Ni=1 such that∑N
i=1 αix(ti)x(ti)

⊤ = eje
⊤
k + eke

⊤
j , where

∑N
i=1 αix(ti)x(ti)

⊤ =





1 if p = j, q = k,

1 if p = k, q = j,

0 otherwise.

As a result,

∑N
i=1

∑n
p=1 M̂p,q

∑n
q=1 αixi,pxi,q = e⊤k M̂ej + e⊤j M̂ek =

M̂j,k + M̂k,j = 2M̂j,k = 0. Since j and k were arbi-

trary, M̂ = 0. That is, the tuple (Q̂, Ŝ, R̂) satisfies the
ARE and constitutes an equivalent solution of the IRL
problem. ✷

Remark 8 The matrix R̂ needs to be invertible for K̂P

to be well-defined. While invertibility of R̂ is difficult
to ensure a priori in general, it can be guaranteed in
the specific case where R̂ is diagonal by using a pro-
jection operator to ensure that all diagonal elements of
R̂ remain positive. In this case, the weights can be up-

dated using the update law
˙̂
W = Proj

(
K4Σ̂

⊤∆
)
, where

Proj(·) denotes smooth projection (see Appendix E of
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[13]) onto the convex set RPS × RPQ × Rm−1
≥κ , where

Rm−1
≥κ denotes the set of (m − 1)−dimensional vectors

that are element-wise larger than κ and κ > 0 is a lower
bound for the diagonal entries of R. The resulting Lya-

punov derivative is V̇ (∆) = −∆⊤Σ̂ Proj
(
K4Σ̂

⊤∆
)
. In-

voking Lemma E.1 from [13], it can be concluded that

V̇ (∆) ≤ −∆⊤Σ̂K4Σ̂
⊤∆. The rest of the analysis then

remains unchanged.

Theorem 7 can be used to obtain the final result sum-
marized in the definition and the theorem below.

Definition 9 Given ϖ ≥ 0 A solution (Q̂, Ŝ, R̂) to the
IRL problem is called an ϖ−equivalent solution of the

IRL problem if
∥∥∥M̂

∥∥∥ ≤ ϖ, where M̂ = A⊤Ŝ + ŜA −
ŜBR̂−1B⊤Ŝ + Q̂, and optimization of the performance
index J , with Q = Q̂ and R = R̂, results in a feedback

matrix, K̂p := R̂−1B⊤Ŝ, that satisfies
∥∥∥K̂p −KEp

∥∥∥ ≤
ϖ.

Due to the purging algorithm described in Section 3.2,
the time instances ti corresponding to the data stored in
the history stack H1 are piecewise constant functions of
time, where t1(t) denotes the time instance when the old-
est datum in the history stack was recorded. The corol-
lary below requires lim inft→∞t1(t) to be large enough,
which translates into the requirement that the excita-
tion in the trajectories of the expert lasts long enough
to allow sufficiently many purging events.

The exact lower bound on lim inft→∞t1(t) needed for
convergence to a ϖ−equivalent solution is characterized
in the proof of Theorem 10 below. The lower bound de-
pends on the value of ϖ, the norm of the feedback gain
KEp of the expert, the user-selected poles ofA−K3C, the
user-selected gain matrix K4, the condition numbers of
the data matrices X and Z introduced in Definition 3. If
(x̂, u) is ϵ-FI, the lower bounds min{eig(X(t)X(t)⊤)} >
ϵ and min{eig(Z(t)Z(t)⊤)} > ϵ, for some ϵ > 0 and all
t ≥ T , can be easily ensured using a modified history
stack management algorithm that maximizes the mini-
mum eigenvalues of X(t)X(t)⊤ and Z(t)Z(t)⊤.

Theorem 10 Let T ≥ 0 denote the first time instant
when H1 is updated. Given ϖ > 0 if lim inft→∞t1(t)

is large enough, Σu(t) ∈ Null(Σ̂⊤(t))⊥ for all t ≥
T , K3 is selected so that A − K3C is Hurwitz,
min{eig(X(t)X(t)⊤)} > ϵ and min{eig(Z(t)Z(t)⊤)} >
ϵ, for some ϵ > 0 and all t ≥ T , with X and Z as in-
troduced in Definition 3, and if there exist a constant
0 ≤ R < ∞ such that the matrix R̂(t), extracted from

Ŵ (t) is invertible with ∥R̂−1(t)∥ ≤ R for all t ≥ T , then

the matrices Q̂, Ŝ, and R̂, extracted from Ŵ , converge to
a ϖ−equivalent solution of the IRL problem.

PROOF. The dynamics in (15) ensure that
∆(t) is bounded for all t. The control resid-
ual error established in (8) can be manipulated

into the form σ∆′
u
(x̂(ti(t)), u(ti(t))) Ŵ

′(t) =

R̂(t)
(
K̃P (t)x̂(ti(t)) +KEpx̃(ti(t))

)
, where K̃P (t) :=

R̂−1(t)B⊤Ŝ(t)−KEp and x̃(ti(t)) := x(ti(t))− x̂(ti(t)).

Using the triangle inequality
∥∥∥K̃P (t)x̂(ti(t))

∥∥∥ ≤∥∥∥R̂−1(t)σ∆′
u
(x̂(ti(t)), u(ti(t))) Ŵ

′(t)
∥∥∥+ ∥KEpx̃(ti(t))∥.

Note that if Span{x̂(ti(t))Ni=1} = Rn, and in particular, if
min{eig(X(t)X(t)⊤)} > ϵ then ∃c > 0, independent of t,

such that
∥∥∥K̃P (t)x̂(ti(t))

∥∥∥ ≤ ϖ
c , ∀i, implies

∥∥∥K̃P (t)
∥∥∥ ≤

ϖ. Select T 1 large enough such that the equivalence met-

ric ∆(t) satisfies
∥∥∥σ∆′

u
(x̂(ti(t)), u(ti(t))) Ŵ

′(t)
∥∥∥ ≤ ϖ

2cR ,

for all i and for all t ≥ T 1. Such a T 1 exists since by The-
orem 7, limt→∞ ∆(t) = 0. Select T 2 large enough so that
the state estimation error x̃(ti(t)) satisfies ∥x̃(ti(t))∥ ≤

ϖ
2c∥KEp∥ for all t ≥ T 2. Since limt→∞ x̃(t) = 0, existence

of of such a T 2 follows if t1(T 2) is large enough. Letting
T = max{T1, T 2}, it can be concluded that for all t ≥ T ,∥∥∥K̃P (t)x̂(ti(t))

∥∥∥ ≤ ϖ
c , which implies

∥∥∥K̃P (t)
∥∥∥ ≤ ϖ.

The inverse Bellman error estab-
lished in (9) can be manipulated into

σδ′ (x̂(ti(t)), u(ti(t))) Ŵ
′(t) = x̂(ti(t))

⊤M̂x̂(ti(t)) +

g
(
K̂P (t), x̂(ti(t)),KEp, x(ti(t))

)
, where the func-

tion g satisfies 1 g = O
(∥∥∥K̃P (t)

∥∥∥+ ∥x̃(ti(t))∥
)
.

Using the triangle inequality,∣∣∣x̂(ti(t))⊤M̂(t)x̂(ti(t))
∣∣∣ ≤

∣∣∣σδ′ (x̂(ti(t)), u(ti(t))) Ŵ
′
∣∣∣ +∣∣∣g

(
K̂P (t), x̂(ti(t)),KEp, x(ti(t))

)∣∣∣, where M̂(t) =

A⊤Ŝ(t) + Ŝ(t)A− Ŝ(t)BR̂−1(t)B⊤Ŝ(t) + Q̂(t)

Since g = O
(∥∥∥K̃P (t)

∥∥∥+ ∥x̃(ti(t))∥
)

and∣∣∣σδ′ (x̂(ti(t)), u(ti(t))) Ŵ
′
∣∣∣ ≤ ∥∆(t)∥, a construction

similar to the one in the previous paragraph can be
used to show that given any ε > 0, that there exists
a T such that for all t ≥ T and for all i = 1, . . . , N ,∣∣∣x̂(ti(t))⊤M̂(t)x̂(ti(t))

∣∣∣ ≤ ε.

Equivalence of matrix norms implies that there exists

c > 0, independent of t, such that if
∣∣∣M̂j,k(t)

∣∣∣ ≤ ϖ/c

for all j, k = 1, · · · , n, then
∥∥∥M̂(t)

∥∥∥ ≤ ϖ. As a result, to

complete the proof of the theorem, it suffices to construct

1 For a positive function g, f = O(g) if there exists a con-
stant M such that ∥f(x)∥ ≤ Mg(x), ∀x
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a T such that for all t ≥ T and for all j, k = 1, · · · , n,∣∣∣M̂j,k(t)
∣∣∣ ≤ ϖ

c . To construct such a T , an ε is constructed

such that
∣∣∣x̂(ti(t))⊤M̂(t)x̂(ti(t))

∣∣∣ ≤ ε, i = 1, . . . , N im-

plies
∣∣∣M̂j,k(t)

∣∣∣ ≤ ϖ
c , ∀j, k = 1, · · · , n. Existence of the

required T then follows from the discussion in the pre-
vious paragraph.

Let ei be the basis vector of zeros with a one
in the ith position. For a fixed j and k, select-
ing constants α1,j,k · · ·αN,j,k ∈ R and rewriting

(4), we have
∑N

i=1 αi,j,kx̂(ti(t))
⊤M̂(t)x(ti(t)) =∑N

i=1

∑n
p=1

∑n
q=1 αi,j,kx̂p(ti(t))M̂p,q(t)x̂q(ti(t)) =∑N

i=1

∑n
p=1 M̂p,q(t)

∑n
q=1 αi,j,kx̂p(ti(t))x̂q(ti(t)). If

Span{x̂(ti(t))x̂(ti(t))⊤}Ni=1 = {Z ∈ Rn×n|Z = Z⊤},
then for any fixed j, k, we can select {αi,j,k(t)}Ni=1 such

that
∑N

i=1 αi,j,k(t)x̂(ti(t))x̂(ti(t))
⊤ = eje

⊤
k + eke

⊤
j , that

is, the (p, q) element of
∑N

i=1 αi,j,k(t)x̂(ti(t))x̂(ti(t))
⊤

is 1 if p = j and q = k, it is also 1 if p = k
and q = j, and it is zero otherwise. As a result,∑N

i=1

∑n
p=1 M̂p,q(t)

∑n
q=1 αi,j,k(t)x̂p(ti(t))x̂q(ti(t)) =

e⊤k M̂(t)ej + e⊤j M̂(t)ek = M̂j,k(t) + M̂k,j =

2M̂j,k(t). If min{eig(Z(t)Z(t)⊤)} > ϵ then
the coefficients αi,j,k are bounded such that

supt≥T maxi,j,k({|αi,j,k(t)|}N,n,n
i,j,k=1) ≤ α < ∞ for some

α > 0.

Select ε = 2ϖ
cαN and note that

∥∥∥x̂(ti(t))⊤M̂(t)x̂(ti(t))
∥∥∥ ≤

2ϖ
cαN , ∀i = 1, · · · , N implies that for all j, k = 1, . . . , n,∣∣∣2M̂j,k(t)

∣∣∣ =
∣∣∣
∑N

i=1 αi,j,k(t)x̂(ti(t))
⊤M̂(t)x̂(ti(t))

∣∣∣ ≤

αN maxi

({∥∥∥x̂(ti(t))⊤M̂(t)x̂(ti(t))
∥∥∥
}N

i=1

)
≤ 2ϖ

c ,

which implies that for all j, k = 1, . . . , n,
∣∣∣M̂j,k(t)

∣∣∣ ≤ ϖ
c ,

which completes the proof of the theorem. ✷

5 Simulations

5.1 Methods and Results

To demonstrate the ability of the developed method to
obtain equivalent solutions to IRL problems that admit
multiple solutions, an IRL problem that has a product
structure is constructed and linearly transformed. The
results in [10] ensure that the resulting transformed IRL
problem admits multiple solutions.

0 50 100 150 200 250 300
10−12

10−4

104

t [s]

∥∆
(t
)∥

Fig. 1. A log-scale plot of the 2-norm of ∆ as a function of
time.
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p
(t
)
−
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Fig. 2. A log-scale plot of the induced 2-norm of the error
between the estimated feedback gain and the feedback gain
of the expert as a function of time.
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t [s]

Ridge regression
RHSO

Fig. 3. A log-scale plot of the 2-norm of the error between the
state trajectory of the expert and the state trajectory of the
learner under the learned feedback gain for a problem that
admits multiple solutions. The red trajectory corresponds
to the feedback gain learned using the RHSO and the blue
trajectory corresponds to the feedback gain computed using
offline ridge regression.

The state space model is given by

A=


−0.2 0.4 1.6

3.7 1.6 −3.1

−3.2 0.4 4.6

, B=


1 2 −1

−1 3 4

1 2 −3

, C=


1.7 −0.4 −1.1

−0.1 0.2 0.3

0.5 0 −0.5

 .

The expert implements a feedback policy that mini-
mizes the cost functional in (3) with 2

Q =


12.32 −2.74 −8.26

−2.74 0.68 1.82

−8.26 1.82 5.68

 , R =


1 0 0

0 4 0

0 0 7

 . (18)

To ensure that the history stack satisfies the sufficient
condition in (14), an excitation signal comprised of a
sum of 20 sinusoidal signals is added to the input of the

2 The notation diag(v) represents a diagonal matrix with
the elements of the vector v along the diagonal.
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Fig. 4. A plot of the induced 2-norm of the error between

the estimated Q̂ (red) and R̂ (blue) matrices and the Q and
R matrices of the expert as a function of time.

expert in (1). The magnitudes are set to 0.5 and the
frequencies and phases are randomly selected from the
ranges 0.001Hz to 1Hz and 0 rad to π rad, respectively.
Since the regressor Σ̂ is a nonlinear function of x̂, an a
priori characterization of the excitation signal needed
to satisfy the finite informativity conditions in Defini-
tion 3 is difficult to obtain. Drawing inspiration from
persistence of excitation results for linear regressors, the
number of frequencies is selected to be higher than the
number of unknown parameters, which in this example
is 14. The excitation signal is assumed to be known to
the learner, so it can be subtracted from the total input
of the expert to infer the optimal input of the expert.
To examine whether the sufficient conditions detailed in
Definition 3 hold, stem plots are generated that equal 1
when the conditions hold and 0 when they do not (see
Figs. 5, 6, and 7).

To facilitate comparison with ridge regression, the ma-
trix K4 is selected as K4 = (Σ̂⊤Σ̂ + ϵI)−1. Data are
added to the history stack every 0.05 seconds and the
history stack is purged if it is full and either the con-
dition number of Σ̂⊤Σ̂ + ϵI is smaller than 1 × 105, or
2 seconds have elapsed since the last purge [11] . The

weights are Ŵ are randomly sampled from a standard
normal distribution.

A Luenberger observer is utilized for state estimation by
selecting the gain K3 to place the poles of (A−K3C) at
p1 = −0.1, p2 = −1.5 and p3 = −2 using the MATLAB
“place” command. These values are selected by trial and
error to achieve a sufficiently fast convergence rate for
the Luenberger observer. The parameters of the RHSO
are held constant for all simulations in this paper unless
otherwise stated.

Fig. 1 demonstrates the convergence of ∆ to the origin
as per Theorem 7 and Fig. 2 demonstrates the conver-
gence of the estimated feedback gain to a neighborhood
of the feedback matrix of the expert, as per Theorem
10. Finally, Fig. 4 indicates that the cost functional con-
verges to a functional that is different from that of the
expert, confirming that the IRL problem under consid-
eration admits multiple equivalent solutions.

0 50 100 150 200 250 300
0

0.5

1

t [s]

Fig. 5. This plot is equal to 1 if Span{x̂(ti(t))}Ni=1 = Rn and
0 otherwise.
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Fig. 6. This plot is equal to 1 if
Span{x̂(ti)x̂(ti)⊤}Ni=1 = {Z ∈ Rn×n | Z = Z⊤} and 0
otherwise.
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Fig. 7. This plot is equal to 1 if Σu(t) ∈ Range(Σ̂(t)) and 0
otherwise.

5.2 Discussion

Each simulation shows the convergence of ∆ to zero and
the convergence of the estimated feedback matrix, K̂P ,
to the feedback matrix KEp of the expert. In all simula-
tions, the RHSO converges to either an equivalent solu-
tion or the true cost functional of the expert. Therefore,
the RHSO is a complete extension to the HSO [20] as it
solves IRL problems with unique and non-unique solu-
tions. The particular equivalent solution that the RHSO
converges to depends on the initial estimates of the un-
known weights Ŵ .

As demonstrated by Fig. 4, convergence to an approxi-
mate equivalent solution is achieved in spite of failure to
meet the FI condition throughout the simulation. The
condition is met, however, at the end of the simula-
tion. Fig. 4 thus indicates that the FI condition is suffi-
cient but not necessary for the RHSO to converge to ap-
proximate equivalent solutions. When K4 is selected as
(Σ̂⊤Σ̂ + ϵI)−1, ∆ converges to zero and either a unique
or an equivalent solution is obtained, regardless of the
magnitude of ϵ. This result is at odds with regulariza-
tion used in ridge regression, where convergence with an
ϵ−dependent bound is obtained. Especially interesting
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is the fact that offline ridge regression [23] using matri-

ces Σu and Σ̂ that contain all of the available data fail
at finding a Ŵ that constitutes an equivalent solution
to the IRL problem.

6 Conclusion

In this paper, a novel framework for the estimation of a
cost functional is developed for IRL problems with mul-
tiple solutions. The developed technique is a modifica-
tion of the HSO in [20]. This modification, while simple,
requires a novel analysis approach. The analysis reveals
new data-informativity conditions required for conver-
gence of the update laws to an equivalent solution when
multiple solutions are present. It is further shown that
the RHSO is a proper extension of the HSO, in the sense
that it converges to the true cost functional of the expert
when the IRL problem has a unique solution.

Simulations demonstrate that the developed adaptive
update laws result in convergence to equivalent solutions
in IRL problems where offline ridge-regression fails to
generate useful solutions. Future research will include
applications of the developedmethod to real-world prob-
lems such as learning cost functions that pilots optimize
when flying unmanned air vehicles.
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