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Phenoclimatology: development and applications in North 
America
Mark D. Schwartz a and Theresa M. Crimminsb

aDepartment of Geography, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; bUSA National 
Phenology Network, School of Natural Resources and the Environment, University of Arizona, Tucson, 
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ABSTRACT
This paper presents a brief overview and history of “phenoclimatol
ogy”, a subdiscipline of climatology, emphasizing atmosphere- 
biosphere interactions. Here, we describe the establishment and 
recent growth in models and forecasts created using in situ phenol
ogy observations and the factors enabling these advancements, 
with focus on North America. Most notably, large-scale phenologi
cal models paved the way for development of synthetic indices. 
Such indices can supply an assessment of a location’s general 
phenological response over a standard period, context for compar
ing regional or local-scale studies, the ability to analyze changes in 
damage risks for plants, and reconstruction of the timing of events 
in years past across many regions. As such, synthetic phenological 
indices have seen wide adoption in estimating spring-season evo
lution in real time, anticipating short-term impacts of an early or 
late start to spring, and in assessing changes in the timing of 
seasonal transitions associated with climate change.
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Introduction

Phenology is the study of recurring plant and animal life cycle stages, especially their 
timing and relationships with weather and climate (Schwartz, 2003). The origins of 
phenological knowledge predate recorded history, stemming from the needs of early 
societies reliant on environmental understanding for their survival. Cave paintings in 
Europe dating 15,000 to 40,000 years ago document mating seasons of birds, bison, deer, 
fish, and horses using a lunar calendar, demonstrating that early humans recognized – 
and tracked – the cyclic nature of biological events (Bacon et al., 2023). For many 
centuries, the primary focus of the academic field of phenology was to support improved 
agricultural practices (Lieth, 1974) and local-scale research centered on establishing 
relationships between local environmental conditions and plant response.

Phenology changed rather abruptly in the late 1990s with the publication of several 
influential papers in the journal Nature, thrusting phenology into the climate change 
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spotlight (Menzel et al., 2000). Late in the decade, Myneni et al. (1997) reported 
a lengthening of the growing season during the 1980s in mid- to high latitudes based 
on remotely sensed information concordant with increases in global temperatures and 
atmospheric carbon dioxide levels. Schwartz (1998) subsequently demonstrated the need 
to evaluate short-term advancements in spring green-up within the context of changes 
over longer time periods (multiple decades to centuries) which becomes possible using 
models based on in situ observations of leaf-out and flowering in several cloned plants. 
Shortly thereafter, Menzel and Fabian (1999) and Crick and Sparks (1999) reported clear 
advancements in springtime plant and animal activity in Europe using direct observa
tions of organismal activity. The publication of these papers occurred just as satellite- 
borne sensors made tracking phenology across large areas possible. The advent of the 
LANDSAT program in the 1970s, which provided regular, repeated observations of the 
same locations, yielded dramatic visuals of spring plant green-up across the Northern 
Hemisphere, giving rise to the term “green wave” (Rouse, 1977).

These four papers (Crick & Sparks, 1999; Menzel & Fabian, 1999; Myneni et al., 1997; 
Schwartz, 1998) collectively made two pivotal contributions to the field. First, using 
a diversity of approaches, they demonstrated clear advances in springtime activity in 
plants and animals that could be attributed to increasing temperatures and atmospheric 
carbon dioxide levels, raising the profile of phenology as a climate change indicator. 
Second, these works extended the geographic scope of phenological analyses, moving 
from single sites to broad regions. The impact of these works was outsized, spawning an 
acceleration of phenological studies facilitating our understanding of changing Earth 
system interactions from local to global scales. Since the mid-1990s, the number of 
phenology publications has increased dramatically, from 50 in 1991 to over 500 in 
2016 (Chuine & Régnière, 2017; Tang et al., 2016). The value of phenology as a global 
change indicator was cemented in 2007 when the Intergovernmental Panel on Climate 
Change acknowledged that phenology “is perhaps the simplest process in which to track 
changes in the ecology of species in response to climate change” (Intergovernmental 
Panel on Climate Change (IPCC), 2007).

The sub-discipline of climatology that is focused on establishing relationships between 
plant and animal seasonal activity and the environmental conditions driving them is 
recognized as “phenoclimatology.” The earliest use of this term can be traced to the 
1970s, when Sestoft established the specific weather conditions associated with plant 
development in Greenland (Sestoft, 1970), though work to match environmental condi
tions and plant response had been underway for much longer. “Phenoclimatology” 
received light usage in the agriculture and horticulture realm in subsequent years as 
researchers characterized the climatological conditions associated with seasonal activity 
in various species of plants (e.g. Eisensmith et al., 1980; Hickin & Vittum, 1976; 
E. A. Richardson et al., 1975; Tyson et al., 1975). Until recently, the term largely fell 
away from the scientific lexicon. The recent and rapid rise in research focused on 
ecological response to changing atmospheric conditions at larger geographical scales 
has led to the reappearance of this term at the intersection of ecology, climatology, and 
global change (Schwartz, 1999, 2013).

The aim of this paper is to chronicle the establishment and growth of the subfield of 
phenoclimatology, due to its importance as a climate change indicator, with focus on 
North America. This review is organized around three foci: 1) continental-scale models, 
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synthetic indices, and the data necessary for their creation; 2) phenological reconstruc
tion and forecasting: looking backward and forward; and 3) markers of seasonal lower 
atmospheric and land surface interactions. We provide a timeline of major developments 
in phenoclimatological research to assist with interpretation (Figure 1).

Continental-scale models, synthetic indices, and the data necessary for their 
creation

Phenological models spanning local to continental scales

Phenological models, which predict the timing of seasonal biological events based on 
local environmental conditions, have existed for centuries, extending back to the mid- 
18th century when French entomologist, René de Réaumur, established that plants must 
be exposed to a particular amount of warmth to flower. Réaumur’s (1735), and that of 
many of his successors, involved accumulating warmth after a start date, often set at 
January 1st in the Northern Hemisphere. Thermal units are measured in growing degree 
days (GDD) – the number of degrees the daily average air temperature exceeds a base 
temperature, below which the organism remains dormant – or growing degree hours 
(GDH) – the number of degrees the hourly average temperature exceeds a base tem
perature. Approximately a century later, Adolphe Quetelet, professor of physics and 
astronomy at Brussels, Belgium, published his “Law of Flowering Plants,” which stated 
that plants flower after exposure to a specific quantity of heat (Quetelet, 1846). Quetelet’s 
method differed from that of Réaumur’s by using degrees of Celsius squared to calculate 
thermal time, which importantly emphasizes springtime “warm spells” – notably warm 
conditions that span multiple days and appear to have outsized influence on triggering 
plant growth.

Because thermal sum models perform quite well at estimating activity in particular 
organisms where springtime growth is primarily temperature-limited, this approach has 
been widely implemented in agriculture, horticulture, and pest management applications 
(Barker & Coop, 2023; F.-M. Chmielewski, 2003; Delahaut, 2003; Schwartz, 1997). 

Figure 1. Timeline of major developments in phenoclimatological research.
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A notable limitation of these models is their difficulty in accounting for nonlinear 
responses in plants to sustained bouts of warm temperatures, given that thermal sums 
are linear and thus only indirect measures of plant metabolic processes. Further, pheno
logical model development progress has been almost exclusively related to thermally 
driven spring phenology, given that environmental factors affecting autumn phenology 
are seemingly more variable, and therefore not well understood (A. D. Richardson et al.,  
2013; Yu et al., 2016).

In recent decades, phenological models have become increasingly sophisticated, 
incorporating additional variables such as winter chill, daylength, moisture conditions, 
and employing novel predictive techniques. Many phenology models are statistically 
derived, based on correlations between environmental conditions and plant response 
(Tang et al., 2016). However, process-based models, which reflect cause–effect relation
ships between conditions and response, are increasingly being implemented (e.g. 
Caffarra et al., 2011; Chuine, 2000; Chuine & Régnière, 2017). Mechanistic, process- 
based models offer the benefit of more realistically reflecting non-linear changes that may 
arise under novel future conditions, though many of their parameters are still derived 
from statistical methods. This is why experiments are often necessary to identify the most 
accurate models (Chuine et al., 2003).

Historically, phenological modeling largely occurred at the site level. A noteworthy 
recent shift in the phenology world, spurred on by the study of global change impacts, has 
been the transition from developing models and making predictions at single locations to 
calculating them across large geographic regions (e.g. continental-scale). Several studies 
in the 1980s made the first advances in this area, predicting the timing of leaf-out in lilacs 
across the northeastern USA (Schwartz, 1985; Schwartz & Marotz, 1986, 1988). This 
work was pivotal in the field of large-scale phenological modeling, demonstrating that 
models developed using in situ observations of plant development in individual species 
can be used to predict the timing of activity in these species across large regions. The 
models that emerged exhibited error of six to 7 days, which is similar to the error rate of 
models constructed at local scales and has proven to be acceptable in a number of 
applications (Gerst et al., 2020; Schwartz, 1997, 2013; Schwartz et al., 2006). Notably, 
these models were constructed using observations of leaf and flower development on 
cloned plants. A major advantage of using phenological observations of genetically 
identical plants in model construction is that the influence of local adaptation on plant 
response is eliminated.

The Schwartz and Marotz studies advanced large-scale phenology modeling and 
a broader understanding of the impacts of global change in two other important ways. 
First, these studies demonstrated that some of the inherent non-linearities of relation
ships between air temperature and spring phenological development could be addressed 
through a more nuanced approach of temperature accumulation than is traditionally 
achieved in thermal sum models. The refined approach placed greater emphasis on 
“synoptic events” – high accumulations of warmth associated with specific synoptic 
weather systems – and “capstone events” – similar high accumulations of warmth 
associated with synoptic weather systems occurring in a specific sequence during the 
week preceding the phenological event. By incorporating synoptic events into models, 
Schwartz and Marotz (1988) demonstrated significantly improved model fits over more 
simplistic growing degree hour accumulation models as well as the tradeoffs between 
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model complexity and performance. Second, the authors demonstrated that model forms 
with simple day-of-year phenological dates originating from multiple locations across 
a large region as the dependent variables in linear regression equations can be con
structed to efficiently test the effectiveness of model performance using mean absolute 
(absolute value of predicted day of year minus observed day of year) and mean bias 
(predicted day of year minus observed day of year) errors as criteria (Schwartz, 1997; 
Willmott & Matsuura, 2005; Willmott et al., 2017).

Advancements in computer processing have dramatically increased our ability to 
make phenological predictions across large regions, and in recent years, many efforts 
have predicted the timing of seasonal events in plants and animals across the landscape. 
For example, Jochner et al. (2013) used observations of flowering in birch collected across 
rural–urban gradients in Germany to establish a predictive model based on accumulated 
chill, warmth, and daylength cues, underscoring the value of observations collected 
across geography in predicting plant activity. More recently, Crimmins, Crimmins, 
et al. (2017) developed simple thermal sum models using observations of leaf-out and 
flowering collected across the United States and then used these models to predict the 
timing of activity across the plants’ distributions. Prediction error in these models ranged 
from 6 to 20 days, demonstrating that phenology observations collected on wild plants 
can yield predictions with accuracy similar to that achieved using cloned plant observa
tions. Prevéy, Parker, Harrington, Lamb, et al (2020, 2020). similarly established growing 
degree day threshold models for several plant species in the Pacific Northwestern region 
of the USA using observations collected across a large region and employed these models 
to predict the timing of plant activity under expected future climate conditions. Likewise, 
Taylor and White (2020) established a suite of growing degree day models using 
observations of leaf-out and flowering for dozens of plants collected across the USA 
and used these models to generate real-time and long-lead forecast maps of plant 
phenology.

Continental-scale phenological models have experienced several key advancements in 
recent years. First, it is well-documented that in many wild (not cloned) plants, sensitivity 
to drivers of phenological events varies across the species’ range (Leimu & Fischer, 2008; 
Liang, 2016; Savolainen et al., 2007). While this fact is widely acknowledged, the variation 
arising from local adaptation is typically unaddressed in phenology models. However, in 
a groundbreaking study, Chuine and Beaubien (2001) incorporated differentiated para
meter estimates across the range of the species being modeled. Further, Melaas et al. 
(2013), and more recently, Liang and Wu (2021) and Liang (2023) suggested approaches 
to account for local adaptation within a species’ range. Other work has demonstrated 
additional improvements that can be garnered with the inclusion of additional data 
sources. For example, Melaas et al. (2016) combined in situ plant phenology observations 
collected across a region with remotely sensed information to develop and test models of 
spring leaf emergence.

Generating real-time phenology predictions across large areas

Several efforts use temperature data and other variables to generate real-time predictions 
of phenological status across space and time that are freely and publicly available. The 
USA National Phenology Network (USA-NPN) presently generates predictions of 
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phenological transitions for nearly two dozen invasive plants, pest insects, and agricul
tural crops across the conterminous USA for the current and upcoming 6 days using 
thermal sums and other simple phenological models (Barker et al., 2023; Crimmins et al.,  
2020; Gerst et al., 2021). The Degree-Days, Risk, and Phenological event mapping 
(DDRP) platform similarly supports the creation of real-time and short-term forecasts 
of phenological status at the continental scale using thermal time models; several forecast 
maps are in production at uspest.org (Barker et al., 2020). The Spatial Analytic 
Framework for Advanced Risk Information Systems (SAFARIS) platform similarly offers 
predictions of activity in several management-relevant insect pests on a weekly basis 
(Takeuchi et al., 2023). Finally, the USA-NPN generates real-time maps of the onset of 
springtime biological activity using gridded temperature data products offered by the 
U.S. National Weather Service (Figure 2, Crimmins, Marsh, et al., 2017). These maps are 
widely referenced by the news media to communicate the risk of frost damage to plants, 
start of the allergy season, the emergence of turf, horticultural, and agricultural pests, and 
to anticipate the start of flowering in iconic cherry trees.

Moving from continental-scale phenological models to indices

The early work of Schwartz and Marotz demonstrating the ability to develop models 
using phenology observations collected across a large region paved the way for the 
development of more synthetic indices. The value of synthetic indices is that these 
measures indicate the timing of seasonal progression more generally, rather than 
reflecting biological activity of individual species. As Schwartz et al. (2006) 
described, rather than reproducing the phenology of individual species, these 

Figure 2. Extended Spring Leaf Index anomaly for the conterminous USA as of May 12, 2023, 
generated by the USA National Phenology Network (2023). Anomalies are calculated by differencing 
the day of year the index is reached in the current year to the day of year the index was reached, on 
average, over the previous three full decades (1991–2020, in this case).
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indices reflect measures of weather conditions that are related to growth and 
development of many plants. “As such, they provide baseline assessment of each 
location’s general phenological response over a standard period, supplying a needed 
context for evaluating and comparing regional or local-scale studies” (Schwartz 
et al., 2006). Further, as with single species phenological models, such indices can 
be calculated at any location where the inputs to the indices are tracked. Models 
driven by widely available data such as daily maximum-minimum temperatures 
allow for proxy analyses of much larger areas, with greater spatial density and 
temporal continuity than possible with almost any source of observed phenological 
data (Schwartz et al., 2006).

In a series of publications in the early 1990s, Schwartz demonstrated that models 
developed using observations of leaf-out in cloned plants active earliest in the spring 
season could be averaged to produce an index representing the onset of biological activity 
among early-season organisms (Schwartz, 1990, 1993, 1997). This model was termed the 
“Spring Leaf Index.” Using observations of flowering in the same plants, Schwartz created 
a companion “Spring Bloom Index,” which is reached at a location several weeks after the 
Leaf Index once additional warmth has accumulated (Schwartz, 1997). Together, these 
two models comprise the Spring Indices. The Spring Indices have been instrumental in 
demonstrating advancements in conditions associated with the start of biological activity 
in the spring (Ault et al., 2015; Izquierdo-Verdiguier et al., 2018; Mehdipoor et al., 2018). 
Because of their utility in reflecting the timing of springtime activity across large regions, 
the Spring Indices have been adopted as a climate change indicator by both the U.S. 
Environmental Protection Agency (Environmental Protection Agency, 2023) and the 
U.S. Global Change Research Program (U.S. Global Change Research Program, 2024). 
Recent analyses have confirmed that the Spring Indices accurately reflect the timing of 
spring activity in a range of plants (Gerst et al., 2020; Schwartz et al., 2013).

An important consideration in establishing phenological indices is to balance their 
fidelity toward reproducing the growth characteristics of individual species with serving 
as broader representative indices of multiple species’ responses. For example, earlier 
forms of the Spring Indices models (Spring Indices “Original,” or SI-o) were designed to 
incorporate an empirically derived chilling requirement to limit the model’s output to the 
species’ geographic ranges (Schwartz, 1997). This approach meant that SI-o outputs did 
not extend to much of the southeastern USA. The current version of the Spring Indices 
models (“Extended,” or SI-x) eliminates the chilling requirement, with little impact on 
model accuracy (Schwartz et al., 2013). Using this simpler formulation, the Extended 
Spring Indices model output extends to subtropical regions and encompasses the entire 
conterminous U.S.

An additional strength of the Spring Indices models and similar phenological 
indices (i.e. those that can be calculated from daily maximum-minimum air tempera
tures) is that they can be combined with other measures to analyze changes in spring 
frost damage risks for plants. Schwartz (1993) first suggested a simple measure 
termed the “damage index,” calculated by subtracting the day of year of the latest 
−2.2°C freeze event from the day of year the Spring Leaf Index was reached. Changes 
in the timing of these two events are anticipated to affect the chances of freeze 
damage to sensitive agricultural plants and will likely have implications for species 
survival in natural ecosystems (Schwartz et al., 2006). The spring of 2012 offered 
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a dramatic demonstration of how an exceptionally early start to the growing season, 
coupled with a “normal” last frost, can lead to significant horticultural crop damage. 
These conditions, captured in the Spring Indices, occurred across the north-central 
and eastern USA, and resulted in $500 M in horticultural crop damage in Michigan 
alone (Ault et al., 2013).

Phenology observing networks: providing critical ground observations

Calculating the timing of phenological transitions across large regions necessitates 
observations from many locations within the region to account for variation in condi
tions and plant response present across space. Historical phenology monitoring net
works, established across Europe, China, and a few other countries, mainly to support 
improved agricultural practices, enabled the first attempts at constructing phenological 
models intended to make predictions across large regions (Chen, 2013; Menzel, 2013).

Observations originating from these historical observation networks have been instru
mental in quantifying phenological change in Europe and China in recent decades (F. ‐. 
Chmielewski & Rötzer, 2001; Fu et al., 2014; Ge et al., 2014). As the appreciation of 
phenology as an indicator of global change has increased, phenology observing networks 
have been established in the USA, Bhutan, Australia, India, and several other countries 
(Schwartz, 2013). In many European countries, as well as in Japan and China, these 
networks are managed by governmental units and observations are regularly collected by 
paid professionals, ensuring consistently sampled organisms distributed evenly over 
geography and a low rate of error in species and phenophase identification (Kaspar 
et al., 2014; Nordt et al., 2021; Renner & Chmielewski, 2022; van Vliet et al., 2003). In 
other countries including the USA, the UK, Canada, Australia, Bhutan, India, Sweden, 
the Netherlands, Japan, and Ireland, observations are contributed primarily by volun
teers (Schwartz et al., 2013).

Concerns regarding the quality of volunteer-contributed data have been voiced for 
decades. Volunteer-contributed data can suffer from inconsistent sampling, a bias 
toward more populated areas, and greater error in species and phenophase identification 
than professionally collected observations (Crimmins et al., 2022; McDonough 
MacKenzie et al., 2018). Even with these limitations, networks such as the USA 
National Phenology Network generate phenology datasets that are of sufficient quality 
and quantity to be increasingly incorporated into scientific analyses and decision- 
making, in establishing how phenology is shifting, and – as demonstrated above – in 
phenology model construction and validation (Crimmins et al., 2022; Feldman et al.,  
2018; Fuccillo et al., 2014).

Phenology observations contributed by volunteers are also supporting the develop
ment of new phenological indices. The authors of this manuscript and others are 
developing a new suite of “spring development indices” using phenology observations 
contributed by USA-NPN volunteer observers and U.S. National Ecological Observatory 
Network (NEON) technicians. These indices are intended to complement and extend the 
existing Spring Indices models by encompassing more of the growth and development 
period across the spring season. Observations of activity in several insect pests, invasive 
grasses, and deciduous trees contributed by USA-NPN volunteers are also supporting 
current phenology model building and validation activities in several distinct efforts. For 
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example, volunteer-contributed observations of red brome (Bromus rubens) and cheat
grass (B. tectorum) supported the establishment of flowering and senescence models for 
these species, operationalized as new short-term forecasts on the USA-NPN website 
(https://www.usanpn.org/data/maps/forecasts).

Phenological reconstruction and forecasting: looking backward and forward

Reconstructing historical phenology

A major strength of phenological models and indices is that they can be used to estimate 
when seasonal events occurred at any location or point in time, if model inputs repre
senting the independent variables are available at the appropriate temporal and spatial 
resolutions. A growing number of studies have used phenological models to reconstruct 
the timing of past events, though studies that calculate these changes across space are 
fewer in number. Crimmins and Crimmins (2019) estimated the timing of when various 
biologically relevant growing degree day thresholds were met across the conterminous 
U.S. from 1948 to 2016. Their findings demonstrated varying rates of advancement in the 
timing of various springtime heat accumulation thresholds in the conterminous USA, 
with the consequence that in some locations, the duration between thresholds being 
reached is becoming compressed and in others, it is lengthening.

Synthetic indices such as the Spring Indices have also been key in establishing how 
phenological activity has changed in recent decades, including North America (Ault 
et al., 2015; Mehdipoor et al., 2018; Schwartz & Reiter, 2000; Schwartz et al., 2013), China 
(Schwartz & Chen, 2002), Europe (Wu et al., 2016), and most temperate areas of the 
Northern Hemisphere (Schwartz et al., 2006). A major contribution of these studies is the 
depiction of varying rates of change across geographic regions. By reconstructing the 
Spring Indices (SI) across North America each year from 1900 to 2010, Schwartz et al. 
(2013) showed that springtime activity in the southeastern states appear to come into 
phase with the rest of the conterminous U.S. during the early 1980s, while a break occurs 
in the conterminous USA time series, resulting in the timing of spring’s onset averaging 
3–4 days earlier after that period (Figure 3). Comparison of changes in the southeastern 
states to the rest of coterminous USA provide important information regarding possible 
changes in the position and amplitude of the long upper-level wave (ridge in west/trough 
in east) pattern (Harman, 1991). Further, this SI break appears to align with a “regime 
change” noted in many other natural phenomena during the 1980s (Reid et al., 2016). 
Additionally, two recent studies utilized the Spring Indices as a proxy of phenological 
change to examine the impact of climate change on USA National Parks and Fish and 
Wildlife Refuges (Monahan et al., 2016; Waller et al., 2018).

When applied to climate model outputs, phenological indices offer an advantage by 
characterizing projected changes across Earth system models uniformly, as well as 
providing an independent indicator of climate change influences on ecosystems (X. Li, 
Ault, et al., 2023). For example, a recent study showed that models of advancement in the 
onset of the spring season derived from measures of plant growth such as leaf area index 
(LAI) are weaker than estimates calculated using the Spring Indices (X. Li, Ault, et al.,  
2023). This finding highlights the magnitude of uncertainty associated with projections 
of start of spring changes. Reconstructions using phenological indices can also be 
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combined with satellite-derived information to fill spatial and temporal gaps, integrating 
spatial and temporally discontinuous phenological data into a more useful form (Zhao 
and Schwartz, 2003). When combined in this way, these data provide even more robust 
estimates of how phenology has changed in recent decades.

Phenological forecasts and projections

Several recent efforts have used the Spring Indices models to predict how the timing of 
spring might change in future decades and the consequences of such changes. As part of 
a comprehensive evaluation of change in climate, hydrology, and biophysical indicators 
in the Northeastern USA, Hayhoe et al. (2007) estimated changes in the start of the spring 
growing season in recent decades and projected changes in the phenomenon through the 
end of the century. More recently, Allstadt et al. (2015) predicted an advancement in the 
start of spring of 23 days by 2100 across the conterminous U.S. under the Representative 
Concentration Pathway (RCP) 8.5 pathway, with an increased risk of false spring events – 
early, sustained springtime warmth that prompt biological activity, putting plants at risk 
to subsequent freeze events – in the Great Plains and Midwest. Labe et al. (2016) similarly 
evaluated the increased risk of damaging freeze events in the USA following the onset of 

Figure 3. Smoothed (nine-point moving average) extended Spring Leaf Index departures from the 
1981–2010 average for the Southeastern USA (blue) and the rest of the lower-48 USA states (red) over 
1904–2018 (modified and updated from Figure 2 in Schwartz et al., 2013).
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plant growth under future climate change scenarios. This team’s projections estimated 
conditions like those experienced in 2012 occurring as frequently as once every 3 years by 
the middle of the 21st century, with clear negative consequences for agriculture. 
Martinuzzi et al. (2019) likewise estimated increases in false spring risk in future decades 
with implications for ecosystem services and societal benefits derived from public lands.

Long-term forecasts, predicting the timing of conditions associated with plant and 
animal activity months, rather than days, into the future have strong value in planning 
and management applications (Bradford et al., 2018; Dietze et al., 2018). For the most 
part, phenology forecasts are short term in nature, predicting activity only days into the 
future (Crimmins et al., 2020; Crimmins, Marsh, et al., 2017; Gerst et al., 2021). However, 
recent work has enabled long-lead (3-month) forecasts for the Spring Indices. Carrillo 
et al. (2018) developed an approach to generate long-lead forecasts of daily maximum- 
minimum air temperatures. These are then used to drive the Spring Indices models to 
produce the expected timing of spring’s onset across the conterminous USA. These 
products can be issued every 2 weeks from mid-January to the end of March each year 
and are expected to soon be available operationally (Carrillo et al., 2018).

Markers of seasonal lower atmospheric and land surface interactions

While numerous research efforts have addressed the impacts of weather and climate on 
seasonal plant growth, a relatively modest number have addressed the reverse. The onset 
of spring plant growth in temperate climates has direct effects on lower atmospheric 
characteristics through changes in transpiration, surface roughness, and albedo 
(A. D. Richardson et al., 2013). However, impacts of these changes are typically obscured 
in temperature (and other) observations by the variable year-to-year nature of these 
events, which can differ in timing at many locations by a month or more. Fortunately, 
using spring phenological events to align multiple locations and year’s temperature 
records into relative “phenological time” makes these impacts of spring plant growth 
detectable (Schwartz & Karl, 1990). Spring phenology, measured using either direct 
observations or Spring Indices model output, reveals related seasonal changes in multiple 
lower atmospheric variables including lapse rate, vapor pressure, visibility, relative 
humidity, and wind direction (Schwartz, 1992). Subsequent studies examining variations 
in diurnal temperature ranges across phenological time confirmed the separability of the 
effects of transpiration from other phenomena like last snow cover and last frost dates. 
Further, this research confirmed the relationship of phenology to changes in mean ceiling 
height, mean sky cover, and other variables, as well as defining the “. . . onset of spring in 
midlatitudes as a modally abrupt rather than gradual seasonal transition . . .” (Durre & 
Wallace, 2001; Schwartz, 1996).

Additional research has linked the increase in spring lower atmospheric moist
ure (related to the onset of plant transpiration) to a wide range of phenomena, 
such as increased instability leading to increased chances of thunderstorm devel
opment (Fitzjarrald et al., 2001; Sakai et al., 1997). Further, recent work has 
demonstrated that spring phenology variations have implications for summer 
soil moisture availability (Denham et al., 2023). Also, phenological measurements 
can identify changes in the surface energy balance related to the onset of spring 
plant growth. With the onset of plant transpiration, the partitioning of net 
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radiation near the surface switches from being dominated by sensible heat to 
being overwhelmingly latent heat, in moist temperate regions (Schwartz & 
Crawford, 2001). Finally, it is important to acknowledge that numerous studies 
of how phenological changes feedback into the atmosphere (facilitated by tower- 
based measurements in FLUXNET, AmeriFlux, and other similar networks around 
the world) have greatly enhanced our understanding of atmosphere–biosphere 
interactions. While even a brief discussion of these contributions is beyond the 
scope of this review, some selected recent papers are provided here (Beamesderfer 
et al., 2023; X. Li, T. R. Ault, et al., 2023; Moon et al., 2020; Young et al., 2021,  
2022; Ziegler et al., 2023).

Looking forward

Dramatic advancements of computational capacity and the Internet, the availabil
ity of remotely sensed data and information, and public engagement and partici
pation in phenology data collection in recent decades have all enabled growth in 
phenological models and forecasts and their use. Continued – and expanded— 
in situ phenology observation will remain crucial for documenting changes in 
phenology and in the establishment of new predictive models, forecasts, and 
indices (Schwartz, 1999).

The development of reliable continental-scale phenological models, driven by 
widely available simple environmental data, will facilitate the creation of various 
“seasonal development indices” designed to represent broad aspects of the overall 
temperate plant community, and tailored to specific research objectives. Such new 
indices will be used to expand our ability to: 1) understand changes in plant 
phenology related to climate change since the early 1900s; 2) implement operational 
systems to issue advanced forecasts and track seasonal plant growth annually in real- 
time; and 3) project and anticipate changes in plant phenology because of future 
climate change. Together, these applications will continue to expand the vital con
tributions of phenoclimatology in global change research and applications.
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