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Wind estimation for small unmanned aerial vehicles (sUAVs) can not only improve their
navigation and flight performance, but also be used for environmental studies and meteorology.
In this paper, we compare a multiplicative extended Kalman filter (MEKF), a translational EKF
(TEKF), and an invariant EKF (IEKF) for quadcopter wind estimation. Through Monte Carlo
simulations, we demonstrate that the IEKF offers an improvement in transient performance over
the MEKF. We also conduct outdoor experiments to validate the effectiveness of the designed
filters. The ground truth wind data is collected via a wind velocity sensor mounted at the
top of the quadcopter. The experimental results demonstrate that the MEKF and the IEKF
outperform the TEKF and the IEKF outperforms MEKF during the transient stage.

I. Nomenclature

𝑎 = specific acceleration vector in the body frame
𝐴 = cross-sectional area of the quadcopter
𝐴𝑘 = state transition matrix of estimators
𝐵 = earth’s magnetic field expressed in the inertial frame
𝑏3 = 𝑧-axis basis of the quadcopter body frame
𝐶𝐷 = drag coefficient
𝐷 = drag parameter matrix
𝐸 = the output error
𝑓𝑑 = drag force in the body frame
𝑓𝑐 = amplitude of the thrust
𝑔 = standard gravity acceleration
𝒈 = gravity acceleration vector in the body frame
𝐻𝑘 = observation matrix of estimators
𝐾 = gain matrix of the Luenberger observer
𝑘Ω = thrust model coefficient
𝑚 = mass of the quadcopter
𝑝𝑖 = the normalized PWM command for each motor
𝑞 = unit quaternion of the quadcopter
𝑅𝑏 = orientation of the quadcopter with respect to the inertial frame
𝑆𝑂 (3) = 3-dimensional special orthogonal group
𝑆𝐸 (3) = 3-dimensional special Euclidean group
𝑈 = input vector of the quadcopter
𝑉 = the normalized battery voltage of quadcopter SK8
𝑣 = ground velocity of the quadcopter in the body frame
𝑣𝑤 = wind vector in the inertial frame
𝑣𝑟 = relative velocity of the quadcopter in the body frame
𝑣𝑟𝑠 = relative speed of the quadcopter in the body frame
𝑥 = inertial position of the quadcopter
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𝑋 = states vector of the quadcopter
𝑋̂ = estimated state vector of the quadcopter
𝑦 = measurement equation of the quadcopter
𝑧 = altitude of the quadcopter
𝑦𝑚 = measurements of the quadcopter
𝜌 = air density
𝜔 = angular velocity of the quadcopter in the body frame
Ω𝑖 = angular velocity of each rotor
𝛿 = state errors of the MEKF
𝜙 = roll angle of the quadcopter
𝜃 = pitch angle of the quadcopter

II. Introduction
Wind has a significant impact on small unmanned aerial vehicle (sUAV) flight safety and efficiency, especially for

challenging missions such as urban air mobility (UAM) flights and beyond visual line of sight (BVLOS) operations [1].
Accurate wind velocity information can be fed to specifically designed controllers that can compensate for such wind
disturbances to maintain safe and robust flight in uncertain environments [2]. The efficiency of flight can also be
improved through optimization of path planning based on wind information [3, 4]. In addition, using sUAV to estimate
wind can be used in atmospheric, meteorology research [5], and environmental studies [5, 6].

There are several conventional methods for measuring wind velocities, including ground-based systems such as
SoDAR, LiDAR, and wind towers. However, those methods are expensive, immovable or hard to move, and only provide
wind velocity estimates in a fixed point or a small area [7]. Another way is to use tethered balloons, which is expensive,
labor intensive, and hard to operate [8]. Since sUAV is affordable and flexible, it has become a popular platform for
wind measurement and estimation. UAVs can be classified into two main categories: fixed-wing UAVs and rotary-wing
UAVs. Each category possesses different advantages in the context of wind estimation [9]. A fixed-wing UAV does not
hover in place and must fly horizontally to measure wind. As a result, they are mainly utilized for long-range missions.
In comparison, a rotary-wing UAV has the capability of estimating wind profiles or temporal variability of the wind at
one location.

The current wind measurement or estimation techniques for rotary UAVs can be summarized into the following four
approaches: mounting sensors on multi-rotors [8, 10, 11], static mapping method [8, 11–14], machine learning (ML)
method [15–17] and model-based method [6, 18–20]. The first method uses rotary UAVs equipped with different types
of anemometers to estimate the wind field. However, this approach may reduce flight endurance due to the weight and
power requirements of the sensors and the platform. Obtaining the inertial measurement of the wind may be difficult
in strong winds since the motion of the quadcopter in this case is not null. In addition, accurate and reliable wind
sensors are typically expensive compared to a UAV platform. The static mapping method explores the relation between
the wind vector and the UAV’s states, such as the tilt angle or power, by using collected data. However, this method
has shown effectiveness only in slight wind fields. ML method is a data-driven method that finds the relationship
between quadcopter states/measurements and wind velocity. However, ML method may require high-quality training
data, and may be specific to the training data of a particular quadcopter and brittle to extend other quadcopters. The
model-based method employs models of the quadcopter dynamics, measurements, thrust, drag, and wind to extract the
wind information from the quadcopter’s motion.

In this paper, we consider the model-based method for wind estimation using a quadcopter. Given a sUAV’s dynamic
model and measurements, a common way to fuse their information and estimate states and wind velocity is to use
the Kalman filter or extended Kalman filter (EKF). For system dynamics which includes attitude kinematics, it is
customary to use a unit quaternion 𝑞 to represent the attitude of the aircraft instead of the rotation matrix or Euler angles.
This choice is made because a unit quaternion offers a global parameterization of the body attitude and proves to be
well-suited for computational calculations and simulations. But in this scenario, the EKF fails to uphold the geometry
of the quaternion space: the conventional linear error and correction terms do not maintain the quaternion’s norm.
Therefore, we derive a multiplicative EKF (MEKF) [21, 22] for wind estimation. The MEKF respects the geometry
of the quaternion space by computing the error equation with the error 𝑞−1 ∗ 𝑞. Another solution is to separate the
translation and orientation part of the system dynamics and design a transnational EKF (TEKF) for wind estimation
based only on the transnational dynamics. The attitude information can be obtained from an attitude and heading
reference system (AHRS). The third filter for wind estimation is an invariant EKF (IEKF). In recent years, IEKFs have
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been investigated for attitude andor pose estimation [23–25]. Reference [24] demonstrates that IEKF shows superior
convergence and robustness properties over MEKF since the error model of the IEKF does not depend on the state
estimate. Motivated by the fact that symmetry properties of a dynamical system can be leveraged to improve estimator’s
performance and stability, we design an IEKF for wind estimation in [26].

The contribution of the paper is that we design a MEKF and a TEKF and compare them with the IEKF in [26] for
wind estimation using both simulations and experimental data. Simulation results show that the IEKF outperforms
the MEKF in the transient performance. Experimental results also verify the superiority of the IEKF. The rest of the
paper is organized as follows. In Section III, we introduce the wind estimation problem which includes quadcopter
system dynamics, measurements, and thrust and drag models. In Section IV, we introduce the MEKF and the TEKF
and review the IEKF. We conduct Monte Carlo (MC) simulations for the MEKF and the IEKF under various wind fields
in Section V. Section VI provides outdoor experimental results, comparing wind estimation performance of the MEKF,
the TEKF, and the IEKF. Conclusions and future work are presented in Section VII.

III. Problem Formulation
The translational dynamics and the attitude kinematics of a quadcopter subject to a wind disturbance in the

north-east-down (NED) frame are given by [27]:

¤𝑥 = 𝑅𝑏𝑣

¤𝑣 = 𝑣 × 𝜔 + 𝑅𝑇
𝑏 𝒈 − 1

𝑚
𝑓𝑐𝑏3 +

1
𝑚
𝑓𝑑 + 𝑅𝑇

𝑏 ¤𝑣𝑤
¤𝑅𝑏 = 𝑅𝑏𝑆(𝜔)

(1)

where 𝑥 ∈ R3 is the inertial position, 𝑣 ∈ R3 is the ground velocity in the body frame, 𝑣𝑤 ∈ R3 is the wind vector
in the inertial frame, 𝑅𝑏 ∈ 𝑆𝑂 (3) is the orientation of the quadcopter with respect to the inertial frame and 𝑆𝑂 (3)
is the 3D special orthogonal group, 𝑚 ∈ R+ is the mass of the quadcopter, 𝒈 = [0, 0, 𝑔]𝑇 ∈ R3 denotes the gravity
acceleration vector in the body frame, 𝜔 ∈ R3 is the angular velocity of the quadcopter in the body frame, the function
𝑆(·) : R3 → 𝑠𝑜(3) satisfies 𝑆(𝑎)𝑏 = 𝑎 × 𝑏 for 𝑎, 𝑏 ∈ R3 where 𝑠𝑜(3) denotes lie algebra of the 𝑆𝑂 (3). 𝑓𝑐 ∈ R+ is the
amplitude of the thrust control input and 𝑓𝑐𝑏3 ∈ R3 in which 𝑏3 = [0, 0, 1]𝑇 denotes the thrust vector in body frame.
We consider a nominal thrust model in the simulation section and find that a polynomial thrust model is sufficient for
horizontal wind estimation in the experiment section. More complicated thrust models can be found in [28]. 𝑓𝑑 ∈ R3

denotes the drag force. Drag is a force that acts opposite to the relative motion of any object moving with respect to a
surrounding fluid. The drag force is an aerodynamic force that opposes an aircraft’s motion through the air. Normally
the drag equation [7, 15, 27] is given by

𝑓𝑑 =
1
2
𝜌𝐶𝐷𝐴𝑣

2
𝑟𝑠 (2)

where 𝜌 is the air density, 𝑣𝑟𝑠 is the relative speed of the aircraft to the air, 𝐴 is the cross-sectional area, and 𝐶𝐷 is
the drag coefficient which is a dimensionless number. In this paper, we adapt the above one-dimensional drag force
equation to a three-dimensional drag vector equation

𝑓𝑑 = −1
2
𝜌𝐷 |𝑣𝑟 |𝑣𝑟 , 𝐷 =

©­­«
𝐷𝑥 0 0
0 𝐷𝑦 0
0 0 𝐷𝑧

ª®®¬ , (3)

where 𝑣𝑟 ∈ R3 is the relative velocity vector given by 𝑣𝑟 = 𝑣 − 𝑅𝑇
𝑏
𝑣𝑤 , and 𝐷 ∈ R3×3 is a drag parameter matrix, which

can be regarded as the combined representation of the drag coefficient and the cross-sectional area.
We model the wind dynamics as ¤𝑣𝑤 = 0 which models a constant mean wind. In the filter implementation, we add

process noise to the 𝑣𝑤 dynamics to mitigate the effect of the turbulent component in the wind. Combining the wind
model, we rewrite the system dynamics in (1) in terms of 𝑥, 𝑣𝑟 , 𝑅𝑏, and 𝑣𝑤 as

¤𝑥 = 𝑅𝑏𝑣𝑟 + 𝑣𝑤

¤𝑣𝑟 = 𝑣𝑟 × 𝜔 + 𝑅𝑇
𝑏 𝒈 − 1

𝑚
𝑓𝑐𝑏3 +

1
𝑚
𝑓𝑑

¤𝑅𝑏 = 𝑅𝑏𝑆(𝜔)
¤𝑣𝑤 = 0.

(4)
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We assume that the quadcopter is equipped with a GPS, a 3-axis accelerometer and gyroscope, and a magnetometer.
The measured angular velocity from the gyroscope is used in the system dynamics as one of the inputs. The measurement
equation 𝑦 = (𝑦𝑇𝑥 , 𝑦𝑇𝑎 , 𝑦𝑇𝑏 )

𝑇 is given by

𝑦 =
©­­«
𝑦𝑥

𝑦𝑎

𝑦𝑏

ª®®¬ =
©­­«

𝑥

𝑎

𝑅𝑇
𝑏
𝐵

ª®®¬ (5)

where 𝐵 ∈ R3 is the earth’s magnetic field expressed in the inertial frame and 𝑎 ∈ 𝑅3 is the specific acceleration vector
in the body frame given by

𝑎 =
1
𝑚

(− 𝑓𝑐𝑏3 + 𝑓𝑑) . (6)

Biases in the angular velocity and acceleration measurements are assumed to be calibrated out.

IV. Wind Estimation Filters

A. MEKF
In this section, we introduce a multiplicative extended Kalman filter (MEKF) [21] for wind estimation. Let 𝑞 ∈ R4

be the unit quaternion representing 𝑅𝑏 and ∗ denotes the quaternion multiplication. Then the system dynamics (4)
becomes

¤𝑥 = 𝑞 ∗ 𝑣𝑟 ∗ 𝑞−1 + 𝑣𝑤

¤𝑣𝑟 = 𝑣𝑟 × 𝜔 + 𝑞−1 ∗ 𝒈 ∗ 𝑞 − 1
𝑚
𝑓𝑐𝑏3 +

1
𝑚
𝑓𝑑

¤𝑞 =
1
2
𝑞 ∗ 𝜔

¤𝑣𝑤 = 0.

(7)

In a quaternion multiplication, any vector in R3 is augmented to a quaternion with 0 being the scalar part. Similarly, the
measurement equation (5) where the rotation is represented by the unit quaternion is rewritten as

𝑦 =
©­­«
𝑦𝑥

𝑦𝑎

𝑦𝑏

ª®®¬ =
©­­«

𝑥

𝑎

𝑞−1 ∗ 𝐵 ∗ 𝑞

ª®®¬ . (8)

We define 𝑋̂ = (𝑥𝑇 , 𝑣̂𝑇𝑟 , 𝑞𝑇 , 𝑣̂𝑇𝑤)𝑇 as the estimated states vector and 𝑈 = (𝜔𝑇 , 𝑓𝑐)𝑇 as the inputs vector. The MEKF
takes the form of

¤̂𝑥 = 𝑞 ∗ 𝑣̂𝑟 ∗ 𝑞−1 + 𝑣̂𝑤 + 𝐾𝑥𝐸

¤̂𝑣𝑟 = 𝑣̂𝑟 × 𝜔 + 𝑞−1 ∗ 𝒈 ∗ 𝑞 − 1
𝑚
𝑓𝑐𝑏3 +

1
𝑚
𝑓𝑑 + 𝐾𝑣𝑟𝐸

¤̂𝑞 =
1
2
𝑞 ∗ 𝜔 + 𝑞 ∗ (𝐾𝑞𝐸)

¤̂𝑣𝑤 = 0 + 𝐾𝑣𝑤𝐸

(9)

where 𝑓𝑑 = − 1
2 𝜌𝐷 |𝑣̂𝑟 |𝑣̂𝑟 and 𝐾 = (𝐾𝑇

𝑥 , 𝐾
𝑇
𝑣𝑟
, 𝐾𝑇

𝑞 , 𝐾
𝑇
𝑣𝑤
)𝑇 is the gain matrix.

We consider the state error ©­­­­«
𝛿𝑥

𝛿𝑣𝑟

𝛿𝑞

𝛿𝑣𝑤

ª®®®®¬
=

©­­­­«
𝑥 − 𝑥
𝑣̂𝑟 − 𝑣𝑟
𝑞−1 ∗ 𝑞
𝑣̂𝑤 − 𝑣𝑤

ª®®®®¬
, (10)
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whose dynamics is given by

¤𝛿𝑥 = ¤̂𝑥 − ¤𝑥
= 𝑞 ∗ 𝑣̂𝑟 ∗ 𝑞−1 − 𝑞 ∗ 𝑣𝑟 ∗ 𝑞−1 + 𝑣̂𝑤 − 𝑣𝑤 + 𝐾𝑥𝐸

= 𝑞 ∗ 𝑣̂𝑟 ∗ 𝑞−1 − 𝑞 ∗ 𝛿−1
𝑞 ∗ (𝑣̂𝑟 − 𝛿𝑣𝑟 ) ∗ 𝛿𝑞 ∗ 𝑞−1 + 𝛿𝑣𝑤 + 𝐾𝑥𝐸

¤𝛿𝑣𝑟 = ¤̂𝑣𝑟 − ¤𝑣𝑟

= (𝑣̂𝑟 − 𝑣𝑟 ) × 𝜔 + (𝑞−1 ∗ 𝒈 ∗ 𝑞 − 𝑞−1 ∗ 𝒈 ∗ 𝑞) + 1
𝑚

(
𝑓𝑑 − 𝑓𝑑

)
+ 𝐾𝑣𝑟𝐸

= 𝛿𝑣𝑟 × 𝜔 + (𝑞−1 ∗ 𝒈 ∗ 𝑞 − 𝛿𝑞 ∗ 𝑞−1 ∗ 𝒈 ∗ 𝑞 ∗ 𝛿−1
𝑞 ) + 1

𝑚
𝛿 𝑓𝑑 + 𝐾𝑣𝑟𝐸

¤𝛿𝑞 = ¤𝑞−1 ∗ 𝑞 + 𝑞−1 ∗ ¤̂𝑞

= (−𝑞−1 ∗ ¤𝑞 ∗ 𝑞−1) ∗ 𝑞 + 𝑞−1 ∗ ( 1
2
𝑞 ∗ 𝜔 + 𝑞 ∗ (𝐾𝑞𝐸))

= 𝛿𝑞 × 𝜔 + 𝛿𝑞 ∗ (𝐾𝑞𝐸)
¤𝛿𝑣𝑤 = ¤̂𝑣𝑤 − ¤𝑣𝑤 = 𝐾𝑣𝑤𝐸,

(11)

where 𝛿 𝑓𝑑 = 𝑓𝑑 − 𝑓𝑑 =

(
− 1

2 𝜌𝐷
(
|𝑣̂𝑟 |𝑣̂𝑟 − |𝑣̂𝑟 − 𝛿𝑣𝑟 | (𝑣̂𝑟 − 𝛿𝑣𝑟 )

) )
. The output error is

𝐸 =
©­­«

𝑥 − 𝑥
𝑎̂ − 𝑎

𝑞−1 ∗ 𝐵 ∗ 𝑞 − 𝑞−1 ∗ 𝐵 ∗ 𝑞

ª®®¬ =
©­­«

𝛿𝑥
1
𝑚
𝛿 𝑓𝑑

𝑞−1 ∗ 𝐵 ∗ 𝑞 − 𝛿𝑞 ∗ 𝑞−1 ∗ 𝐵 ∗ 𝑞 ∗ 𝛿−1
𝑞

ª®®¬ . (12)

Then we linearize the error dynamics and the output error around (𝛿𝑥 , 𝛿𝑣𝑟 , 𝛿𝑞 , 𝛿𝑣𝑤 ) = [0, 0, 1, 0] to obtain 𝐴𝑘 = 𝜕 ¤𝛿
𝜕𝛿

and
𝐻𝑘 = 𝜕𝐸

𝜕𝛿
needed for implementing the MEKF:

𝐴𝑘 =

©­­­­­«
033 𝑅(𝑞) 𝜕(−𝑅 (𝑞̂)𝑅𝑇 (𝛿𝑞 ) (𝑣̂𝑟−𝛿𝑣𝑟 ) )

𝜕𝛿𝑞
𝐼33

033 −𝑆(𝜔) + 1
𝑚

𝜕𝛿 𝑓𝑑

𝜕𝛿𝑣𝑟

𝜕(−𝑅 (𝛿𝑞 )𝑅𝑇 (𝑞̂)𝒈)
𝜕𝛿𝑞

033

033 033 (031 𝑆(−𝜔)) 033

033 033 034 033

ª®®®®®¬
, (13)

𝐻𝑘 =

©­­­«
𝐼33 033 034 033

033
1
𝑚

𝜕𝛿 𝑓𝑑

𝜕𝛿𝑣𝑟
034 033

033 033
𝜕(−𝑅 (𝛿𝑞 )𝑅𝑇 (𝑞̂)𝐵)

𝜕𝛿𝑞
033

ª®®®¬ (14)

where 0𝑚𝑛 is the 𝑚 by 𝑛 zero matrix, 𝐼33 is the 3 by 3 identity matrix, and 𝑅(𝑞) and 𝑅(𝛿𝑞) denote the rotation matrices
represented by the estimated quaternion 𝑞 and the quaternion error 𝛿𝑞 , respectively. The MEKF algorithm is given in
Algorithm 1 below.

B. TEKF
Motivated by [29], we also design and implement a translational EKF (TEKF) for wind estimation. Such TEKF

only considers the translational dynamics of the system

¤𝑥 = 𝑞 ∗ 𝑣𝑟 ∗ 𝑞−1 + 𝑣𝑤

¤𝑣𝑟 = 𝑣𝑟 × 𝜔 + 𝑞−1 ∗ 𝒈 ∗ 𝑞 − 1
𝑚
𝑓𝑐𝑏3 +

1
𝑚
𝑓𝑑

¤𝑣𝑤 = 0

(15)

and the measurement equation is 𝑦 = 𝑥. The TEKF is based on the ease of design, tuning, and the better computational
efficiency compared to the full-state MEKF. The attitude information 𝑅𝑏 can be obtained from an attitude and heading
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Algorithm 1: MEKF
1 Initialize 𝑋0, 𝑃0
2 for 𝑘 = 1 to 𝑛 do
3 Prediction: in between measurements (𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘])
4 Propagate ¤̂𝑋 = 𝑓 ( 𝑋̂,𝑈) according to (9) with 𝐾𝑘 = 0 to get 𝑋̂−

𝑘

5 Compute 𝐴𝑘 from (13)
6 Propagate ¤𝑃 = 𝐴𝑘𝑃 + 𝑃𝐴𝑇

𝑘
+𝑄𝑘 to get 𝑃−

𝑘

7 Correction: at the 𝑘 𝑡ℎ sensor measurement (𝑡 = 𝑡𝑘)
8 Compute 𝐻𝑘 from (14)
9 𝐾𝑘 = 𝑃−

𝑘
𝐻𝑇

𝑘
(𝐻𝑘𝑃

−
𝑘
𝐻𝑇

𝑘
+ 𝑅𝑘)−1

10 𝑋̂+
𝑘
= 𝑋̂−

𝑘
+ 𝐾𝑘 (𝑦𝑚,𝑘 − ℎ( 𝑋̂−

𝑘
,𝑈))

11 𝑃+
𝑘
= (𝐼 − 𝐾𝑘𝐻𝑘)𝑃−

𝑘

12 end

reference system (AHRS) or a built-in filter from an autopilot (e.g., the Ardupilot). The TEKF is cascaded to the attitude
filter. The corresponding TEKF takes the form of

¤̂𝑥 = 𝑞 ∗ 𝑣̂𝑟 ∗ 𝑞−1 + 𝑣̂𝑤 + 𝐾𝑥𝐸

¤̂𝑣𝑟 = 𝑣̂𝑟 × 𝜔 + 𝑞−1 ∗ 𝒈 ∗ 𝑞 − 1
𝑚
𝑓𝑐𝑏3 +

1
𝑚
𝑓𝑑 + 𝐾𝑣𝑟𝐸

¤̂𝑣𝑤 = 0 + 𝐾𝑣𝑤𝐸.

(16)

We define 𝑋̂ = (𝑥𝑇 , 𝑣̂𝑇𝑟 , 𝑣̂𝑇𝑤)𝑇 as the estimated states vector and 𝑈 = (𝑞𝑇 , 𝜔𝑇 , 𝑓𝑐)𝑇 as the inputs vector for the TEKF.
Consider the state error ©­­«

𝛿𝑥

𝛿𝑣𝑟

𝛿𝑣𝑤

ª®®¬ =
©­­«

𝑥 − 𝑥
𝑣̂𝑟 − 𝑣𝑟
𝑣̂𝑤 − 𝑣𝑤

ª®®¬ , (17)

whose error dynamics is as follows

¤𝛿𝑥 = 𝑞 ∗ 𝛿𝑣𝑟 ∗ 𝑞−1 + 𝛿𝑣𝑤 + 𝐾𝑥𝐸

¤𝛿𝑣𝑟 = 𝛿𝑣𝑟 × 𝜔 + 1
𝑚
𝛿 𝑓𝑑 + 𝐾𝑣𝑟𝐸

¤𝛿𝑣𝑤 = 𝐾𝑣𝑤𝐸

(18)

where 𝛿 𝑓𝑑 =

(
− 1

2 𝜌𝐷
(
|𝑣̂𝑟 |𝑣̂𝑟 − |𝑣̂𝑟 − 𝛿𝑣𝑟 | (𝑣̂𝑟 − 𝛿𝑣𝑟 )

) )
and the output error is 𝐸 = 𝑥 − 𝑥 = 𝛿𝑥 . Then we linearize the

error dynamics and the output error around (𝛿𝑥 , 𝛿𝑣𝑟 , 𝛿𝑣𝑤 ) = [0, 0, 0] to obtain 𝐴𝑘 = 𝜕 ¤𝛿
𝜕𝛿

and 𝐻𝑘 = 𝜕𝐸
𝜕𝛿

as

𝐴𝑘 =

©­­­«
033 𝑅(𝑞) 𝐼33

033 −𝑆(𝜔) + 1
𝑚

𝜕𝛿 𝑓𝑑

𝜕𝛿𝑣𝑟
033

033 033 033

ª®®®¬ , (19)

𝐻𝑘 =

(
𝐼33 033 033

)
. (20)

Similar to MEKF, the 𝐴𝑘 and 𝐻𝑘 will be used for propagation and correction of the TEKF.

C. IEKF
In [26], we design an invariant EKF (IEKF) for wind estimation. The IEKF leverages symmetries in the system

dynamics associated with the special Euclidean group 𝐺 = 𝑆𝐸 (3). We construct transformations on states, inputs and
the measurement equation such that the system dynamics is invariant and the measurement equation is equivariant.
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The IEKF design follows the method outlined in [23], and [26] provides the detailed derivation. Note that the IEKF
is designed based on an invariant state error rather than the state error of the MEKF. We employ the nominal thrust
model in Section V and a polynomial thrust model as in Section VI. The thrust is treated as one of the inputs to the
system. For more advanced thrust models, the transformations may need to be specially designed for an IEKF and we
refer to [28] for details.

V. Simulations
In this section, we conduct simulations and compare the estimation performance of the quadcopter states and the

wind between the MEKF and the IEKF for different wind fields. The first one is a constant wind equal to (3, 2, 0)𝑇
m/s. The second and third wind fields are generated from a large eddy simulation (LES) [30] capturing the low-altitude
turbulence effect. Both LES wind fields have a mean wind of approximately (3, 2, 0)𝑇 m/s at different altitudes. The
wind field at 50 meters is much more turbulent than at 8 meters. We construct a quadcopter simulink model which
consists of the quadcopter dynamics, position controllers, attitude controllers, a motor model, a rotor model, a wind
model, and a sensor model. The sensor model simulates that the quadcopter is equipped with a GPS, an accelerometer,
a gyroscope, and a magnetometer.

We conduct Monte Carlo (MC) simulations of 50 runs. For each MC run, the quadcopter flies from a random
starting point around the origin in the inertial frame to a goal point and then hovers at that point. The thrust model is the
nominal thrust model 𝑓𝑐 = 𝑘Ω

∑4
𝑖=1 Ω

2
𝑖

where 𝑘Ω is the thrust model coefficient and Ω𝑖 is the angular velocity of the
rotor. We test the three wind fields for the comparison of the MEKF and the IEKF. All the simulation results show
that the IEKF has better transient estimation performance compared to the MEKF. For example, Fig. 1 is the wind
estimation results from one run of the MC simulations. We observe that the estimated wind of the IEKF has a much
smaller error at the beginning and converges more quickly compared to the wind estimates of the MEKF. At the steady
state, the wind estimation of both filters shows similar performance. Meanwhile, from the constant wind test to the LES
wind (8m) test and the LES wind (50m) test, the superiority of the IEKF gradually decreases. This can be explained by
that the LES wind, especially at 50 meters, contains more turbulence, which degrades the symmetry of the system. In
Fig. 2, we show the root mean square error (RMSE) of the position estimates in the north direction, the relative velocity
estimates in the 𝑥 direction, the roll angle estimates, and the wind velocity estimates in the north direction between the
MEKF and the IEKF for the first 30 seconds. The RMSE used in MC simulations is defined as

𝑅𝑀𝑆𝐸𝑖 (𝑘) =

√︄∑𝑛
𝑗=1 (𝑋𝑖, 𝑗 (𝑘) − 𝑋̂𝑖, 𝑗 (𝑘))2

𝑛
(21)

where 𝑋𝑖, 𝑗 (𝑘) represent the 𝑖th element of states at time 𝑘 in the 𝑗 th run and 𝑋̂𝑖, 𝑗 (𝑘) represents the estimates of 𝑋𝑖, 𝑗 (𝑘).
From the simulation results, we observe that the IEKF has better transient performance compared to the MEKF. In this
section, we compare only the MEKF and the IEKF as they both estimate the full state vector, including the translational
states and the attitude. The performance of the TEKF depends on the attitude filter performance. We choose to compare
the performance of the TEKF using only experimental data as the attitude filter is readily available from the onboard
autopilot.
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Fig. 1 The MEKF and the IEKF wind estimation performance under various wind fields.
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Fig. 2 RMSE of MEKF and IEKF estimates for LES wind at 8 meters.

VI. Experiments

A. Experimental Setup
We design and develop a large size quadcopter SK8 as shown in Fig. 3, which is used to perform hover tests and

collect data in an outdoor environment. SK8 is a self-built quadcopter from Oklahoma State University Unmanned
Systems Research Institute (USRI). There is a TriSonica Mini anemometer mounted on the top of a gimbal to collect
measured wind data for comparison.

We have conducted three separate outdoor experiments and seven datasets of hover tests are collected. For each
experiment, the experimental locations (Oklahoma State University (OSU) Unmanned Aircraft Flight Station (UAFS)
and OSU campus) and dates (Oct. 17, 2022, Dec. 1, 2022 and May 31, 2023) are carefully selected based on the
safety and suitability of the wind field. We use a logging tool provided by Pixhawk4 to log the GPS data at 5𝐻𝑧, IMU
(including gyroscope, accelerometer and magnetometer) data at 200𝐻𝑧, in-built EKF estimated states at 10𝐻𝑧 and
PWM data at 10𝐻𝑧 separately. Also, we use an Arduino board to log the Anemometer data at 5𝐻𝑧.

B. Calibration Methodology
To estimate the wind, a thrust model is required. For the large scale quadcopter SK8 equipped with large-sized

blades, building a thrust stand and conducting the wind tunnel test is challenging and expensive. Instead, we use a
polynomial thrust model to obtain the thrust from a calibration dataset. We first define 𝑧 as the altitude of the quadcopter
and 𝑅𝑏,3 as the third row of the rotation matrix 𝑅𝑏. Consider the translational dynamics of the quadcopter in the 𝑧
direction in the inertial frame

¥𝑧 = 1
𝑚
𝑅𝑏,3 𝑓𝑐𝑏3 − 𝒈 − 1

𝑚
𝑅𝑏,3 𝑓𝑑 . (22)
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Fig. 3 SK8 quadcopter. Fig. 4 SK8 in a hover experiment.

We make the assumption that the drag force in 𝑧 direction of the body frame is small compared to the thrust. Thus we
ignore the drag force term in (22) to obtain

¥𝑧 ≈ 𝑓𝑐

𝑚
cos 𝜃 cos 𝜙 − 𝑔 (23)

where 𝜙 and 𝜃 are roll and pitch angles of the quadcopter respectively. Assume that there is little vertical motion when
the quadcopter is hovering. We obtain the simple projection thrust via

𝑓𝑐 =
𝑚𝑔

cos 𝜃 cos 𝜙
. (24)

For the polynomial thrust model, we use the thrust data obtained from (24) based on the calibration dataset and fit a
polynomial thrust model [31]

𝑓𝑐 = 𝑓 (𝑉, 𝑝𝑖) = 𝑎1 − 𝑎2

4∑︁
𝑖=1

𝑝𝑖 − 𝑎3𝑉 + 𝑎4

4∑︁
𝑖=1

𝑝2
𝑖 + 𝑎5

4∑︁
𝑖=1

𝑝𝑖𝑉,

where 𝑉 is the normalized battery voltage, 𝑝𝑖 is the normalized PWM command for motor 𝑖 (𝑖 = 1, 2, 3, 4), and
[𝑎1 𝑎2 𝑎3 𝑎4 𝑎5] = [78.2270 1.0525 0.6386 0.8445 1.1095].

Using the calibration test data, a linear regression with the basis function below is used to find the drag parameter
matrix

𝑓𝑑 = 𝐷Φ(𝑣𝑟 ) (25)

where Φ(𝑣𝑟 ) = − 1
2 𝜌 |𝑣𝑟 |𝑣𝑟 and the drag force vector in the body frame is obtained as

𝑓𝑑 = 𝑅𝑇
𝑏 (𝑅𝑏 ¤𝑣𝑟 − 𝑚𝒈 − 𝑅𝑏 ( 𝑓𝑐𝑏3)). (26)

Through the linear regression, the drag parameter matrix is identified as 𝐷 = 𝑑𝑖𝑎𝑔( [0.36 0.28 0.35]) for the quadratic
drag model. The IMU biases are calibrated by the Mission Planner before every tests.

C. Experimental Results
We trim the data during the take-off and landing stages of all tests before using our estimators. The TEKF, MEKF

and IEKF consider the system dynamics with a polynomial thrust and a quadratic drag model. The initial states
estimate and the corresponding covariance for the MEKF and the IEKF is 𝑋̂0 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]𝑇
and 𝑃0 = 𝑑𝑖𝑎𝑔(12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12). Table 1 shows the RMSE of the estimators based on six
datasets (as one dataset is used as the calibration dataset). We observe that the TEKF’s performance is significantly
worse compared to the MEKF/IEKF for most tests. The performance of the IEKF is better compared to the MEKF
in most tests. We take test3 as the example. Fig. 5 shows the horizontal wind speed estimation of various estimators
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Table 1 Horizontal wind speed estimation.

estimator error metric test1 test2 test3 test4 test5 test6

TEKF RMSE 1.3910 1.3905 2.3445 2.6582 1.2406 1.4602
MEKF RMSE 1.2649 1.0237 1.4799 1.2073 1.1963 1.5602
IEKF RMSE 1.1201 0.9908 1.3953 1.2296 0.9774 1.5127

Fig. 5 Horizontal wind speed estimation of various estimators based on test3. Note that the ‘meas’ in the legend
denotes the measured wind speed from the anemometer.

from test3. The IEKF and the MEKF perform similarly and they are both better than the TEKF. The wind estimation
performance of the IEKF and the MEKF shows difference mainly in the transient stage.

To further verify the effectiveness of the TEKF/MEKF/IEKF, we conduct Monte-Carlo (MC) tests of 50 runs
based on each experimental dataset. The following parameters are used in the MEKF/IEKF MC tests: 𝜇0 =

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]𝑇 , 𝑃0 = 𝑑𝑖𝑎𝑔(12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12), and 𝑋̂0 ∼ N(𝜇0, 𝑃0) where
𝑋̂0 represents the initial states for the MEKF and the IEKF and 𝑋̂0 ∼ N(𝜇0, 𝑃0) means that the initial state is sampled
from a Gaussian distribution with the mean 𝜇0 and the covariance matrix 𝑃0. For the TEKF, since we do not consider
the quaternion as one of the states, the initial states are given by 𝑋̂0 ∼ N(𝜇0, 𝑃0) where 𝜇0 = [0, 0, 0, 0, 0, 0, 0, 0, 0]𝑇
and 𝑃0 = 𝑑𝑖𝑎𝑔(12, 12, 12, 12, 12, 12, 12, 12, 12).

Table 2 and Table 3 show wind estimation RMSE of the three estimators at the full range and for the first 30 seconds
of each dataset, respectively. From Table 2, we see that the RMSE of the TEKF is significantly greater than that of
MEKF/IEKF for all the tests, which proves that the TEKF is not an optimal estimator compared to the MEKF/IEKF. For
the IEKF, the RMSE is smaller than that of the MEKF, which is explained by the superiority of the IEKF’s transient
stability. Since Table 3 shows the first 30 seconds of estimators, we also observe such trend more clearly: the IEKF is
more stable at the transient stage compared to the MEKF. From Fig. 6, we observe the above properties intuitively: (1)
The RMSE of the TEKF is greater than the MEKF/IEKF; (2) The MEKF has a larger transient RMSE compared to the
IEKF but behaves similarly to the IEKF in the steady state.

VII. Conclusion
We investigate the model-based wind estimation method for a quadcopter and focus on comparison of three

estimators: TEKF, MEKF and IEKF. We conduct simulations and demonstrate that the IEKF outperforms the MEKF at
the transient stage. We also perform outdoor experiments and collect relevant data to compare the filters. Our results
from the experimental data indicate that the MEKF and the IEKF have better overall perform when compared to the
TEKF. In addition, the IEKF shows less transient error and converges faster when compared to the MEKF. Future work
includes estimating a spatial-temporal wind field and fusing wind information from multiple quadcopters.
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Fig. 6 RMSE comparison of the TEKF/MEKF/IEKF for test3. (a): RMSE 𝑣𝑤𝑥
. (b): RMSE 𝑣𝑤𝑦

.

Table 2 Wind estimation RMSE (full range) of the estimators with the polynomial thrust model and the
quadratic drag model.

estimator type wind vector test1 test2 test3 test4 test5 test6

TEKF 𝑣𝑤𝑥 1.3022 1.7990 2.1862 2.3399 1.6611 2.6559
TEKF 𝑣𝑤𝑦 2.2238 2.2079 1.6496 1.8295 1.6789 2.3767
MEKF 𝑣𝑤𝑥 1.2356 1.1113 1.1408 1.6020 1.4033 1.6052
MEKF 𝑣𝑤𝑦 2.0424 1.8063 1.2156 1.5077 1.0682 1.5115
IEKF 𝑣𝑤𝑥 0.9032 0.8841 1.0796 1.2158 1.2044 1.4727
IEKF 𝑣𝑤𝑦 1.5912 1.3280 1.1290 1.5789 0.9503 1.3987

Table 3 Wind estimation RMSE (first 30 seconds) of the estimators with the polynomial thrust model and the
quadratic drag model.

estimator type wind vector test1 test2 test3 test4 test5 test6

TEKF 𝑣𝑤𝑥 2.1014 1.3174 2.4701 2.6738 1.0027 1.1061
TEKF 𝑣𝑤𝑦 1.1762 0.5855 1.2491 1.9580 1.0982 1.4921
MEKF 𝑣𝑤𝑥 2.6493 1.2992 2.3885 4.3157 3.4127 2.8852
MEKF 𝑣𝑤𝑦 3.5733 3.1335 1.6772 3.8600 2.3752 2.2005
IEKF 𝑣𝑤𝑥 2.2375 1.2773 1.8341 2.4171 1.5852 1.7356
IEKF 𝑣𝑤𝑦 2.3161 2.5511 1.0920 4.3197 1.4576 1.4606
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