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1 Introduction

The resonance spectrum of QCD is an emergent feature of the theory, manifesting its non-
perturbative nature. Resonance parameters are encoded in the analytic structure of the
transition amplitudes, i.e., in the poles and residues on the unphysical Riemann sheets in the
complex energy plane. For a recent review on the subject, see e.g., ref. [1] (resonances in the
presence of anomalous thresholds are considered, e.g., in refs. [2–4]). Resonances are usually
classified as standard QCD resonances and exotic states. The former refers to the states that
can be understood within the traditional quark model [5] or self-consistent Dyson-Schwinger
approaches [6–8], both based on the quark-antiquark and three-quark picture for the mesons
and baryons, respectively. Exotic states are the ones that do not fit this picture naturally.
These are, for example, tetraquarks, pentaquarks, hadronic molecules, etc., [9–11] that emerge
in the non-perturbative interactions of mesons and baryons [12–16]. The distinction between
these categories is not always unambiguous for given quantum numbers, see e.g., ref. [17]. Fur-
thermore, there are kinematic effects in scattering that can lead to structures in the amplitudes,
cross sections and line-shapes. One example is the threshold cusp, which is directly visible in
the data (see e.g., refs. [18, 19]) or in the partial-wave analysis [20]. A similar effect is given by
the complex threshold openings, in which one or both of the scattered “particles” is a resonant
hadronic subsystem itself, also referred to as an isobar [21, 22]. One may observe this phe-
nomenon at the energy at which a resonance and a spectator particle can go on-shell. The latter
statement has to be treated with caution, and is applicable in the case of a narrow resonance
only, because resonances, strictly speaking, are not asymptotic states. Closely related to this
situation is the kinematic configuration when the isobar decays, and one of its decay products is
absorbed by the spectator. If the resonant isobar, the spectator and the exchanged decay prod-
uct of the isobar can simultaneously go on-shell, the so-called triangle singularity emerges [23–
26]. This singularity has been conjectured for a plethora of amplitude structures [27–37].

While the resonance spectrum provides direct access to QCD dynamics, the understanding
of the kinematic structures is equally important to prevent misidentifications of bumps in
experimental data as resonances, and to get insight into hadron dynamics. A prominent
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example concerns the structure in the P-wave f0π
− line shape with the a1(1260) quantum

numbers that is observed at energies well above the a1(1260) resonance [38–40] in the π−π+π−

final state. Two scenarios exist to explain this excess: an excited state of the a1(1260)-
resonance, the so-called a1(1420), or a kinematic singularity arising in the K∗K → f0π

rescattering through a K exchange, see e.g., refs. [24, 40–42]. In the following, we put the
latter scenario under a renewed scrutiny by first using Landau equations, and later the unitary
three-body framework [43, 44] referred to as IVU (Infinite Volume Unitarity). Formally, this
approach represents a re-formulation of the well-known Faddeev three-body equations [45]
with a separable two-body input and a three-body force in the field-theoretical language with
a special emphasis on two- and three-body unitarity. This framework was extended to finite
volume (FVU) [46, 47], and generalized later to coupled πρ channels in S- and D-partial
waves [44, 48], which allowed, for the first time, an extraction of a resonance pole in the
three-particle sector from the experimental/lattice input. This method was adapted recently
to extract the resonance parameters of the ω-meson from lattice QCD, extrapolating it also to
the physical point, see ref. [49]. For the discussion of the methods of solution of the integral
equations and the extraction of resonance poles, see e.g., refs. [2, 34, 44, 50–55]. Three-body
rescattering effects for the πρ system can also be studied using Khuri-Treiman equations with
the two-body input in the form of Omnès-functions, as demonstrated recently [56]. For a
discussion of the dispersion representations for the triangle diagram, see ref. [57].

In this work, we carry out a semi-quantitative study of the problem in question by
making use of the multichannel IVU framework that includes the K∗K and the f0π channels
explicitly. On the one hand, the present study provides a test of the relevance of rescattering
effects. On the other hand, it sets a stage for future analysis of experimental data that aims
to quantify both (kinematic vs. resonance) effects reliably. This is carried out through the
means of a framework which allows describing the decay process quantitatively [58]. However,
in this paper, in order to make the discussion more transparent, a toy model is utilized which
assumes the K∗ to be spinless, whereas other particles involved in the rescattering process,
i.e., K, f0, π are innately spinless. Masses of all involved particles are taken equal to their
physical values [59]. Furthermore, we only consider the isobars and spectators in relative
S-wave, and consequently the hypothetical a1(1420) meson or, better, the source with the
quantum numbers of the a1(1260), is also spinless. In the following, we refer to this simply
as the a1, and no confusion should arise in this regard. The main motivation of this mock-up
system roots in the fact that the triangle singularity arises entirely from the denominators of
the relevant internal propagators, and is unaffected by the spins of the particles involved. It
should also be pointed out that the study of the effect of final-state interactions for different
physical systems has been carried out recently, see e.g., refs. [34, 35, 37, 60, 61]. This paper,
thus, represents a complementary piece of work carried out in a different setting, with a slightly
more emphasis on the purely theoretical aspects of the problem. Hence, in the long run, the
conceptual progress discussed here can contribute to reliable identification of structures as
resonances or kinematic effects. This will become relevant in the future extensions of isobar
analyses of three-body final states in the experiments for which, usually, no explicit exchange
terms or coupled channels are included. See, for example, analyses at COMPASS [62, 63],
Crystal Barrel [64] (does include coupled channels), BESIII [65], Belle [66], or LHCb [67].
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This article is structured as follows. First, in section 2, we discuss the generalization
of the Landau equations to the case when an infinite set of rescattering terms is included
in the final state. In particular, we want to ensure that the inclusion of ladder diagrams
neither changes the position of the existing triangle singularity, nor new ones appear. Then,
in section 3 we explicitly calculate the line shapes in a mock-up model resembling the main
analytical features the a1 system. This is based on the IVU approach and, thus, includes all
the two- and three-body final-state rescattering terms and respects unitarity exactly. There,
we also discuss the implementation of the formalism and compare explicitly various solution
techniques of the three-body integral equations, see section 3.2. Quantitative comparison
is carried out and discussed in section 3.3. Conclusions of the paper and outlook for future
work are summarized in section 4.

2 Singularities of the ladder diagrams

When the masses of the decay products as well as the particles running in the loop obey
certain conditions, the triangle diagram leads to a logarithmic singularity. The aim of this
section is to find out, to which extent this statement remains true when this triangle diagram
is dressed by an infinite number of diagrams corresponding to two and three-body final-state
rescattering. In this section, we address this question by studying the singularities of the
relevant n-loop Feynman diagrams, where n is arbitrary, with the use of the Landau equations.

In the physical problem we consider here, one of the particles in the triangle diagram is
unstable. The decay product recombines with a spectator forming a second isobar, which can
decay and recombine again, and so on. This demonstrates that the triangle diagram is only
a substructure in an infinite rescattering series. This complicates the analysis considerably.
Here, we first consider the case when all the internal particles are treated as stable particles,
and will briefly comment on the case of unstable particles at the end of this section. For
the quantitative assessment of these effects through the 3-body unitary IVU formalism [43],
see section 3.

In the stable particles case, one has to consider only the ladder diagrams (see below),
where the analysis on the basis of Landau equations can be carried out for any number of
loops. The Landau equations, which determine the singularities of an arbitrary Feynman
integral in the external kinematic variables, are based on the observation that non-analyticities
may arise in the integrals, when the singularities of the integrand cannot be circumvented by
deforming the contour of integration. This typically happens, when one evaluates the integral
at one of its endpoints, or when the structure of the singularities of the integrand is such that
two singularities come from the opposite sides and pinch the integration contour, making
deformation impossible [23]. This may happen only for certain configurations of external
momenta, which are found by solving the Landau equations. For a recent review, see ref. [24].

Now, consider an arbitrary Feynman integral with N internal propagators with momenta
qi and L loop momenta labeled by kj . The former momenta are linear combinations of the
latter and of the external momenta, with the coefficients ±1 (in addition, one can choose
the momenta so that each loop momentum kj enters in all qi with the coefficient +1). The
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Figure 1. The first diagram shows the decay of a particle (with momentum p1) into a pair with
momenta p2, p3, which will be identified as the f0 and π mesons, respectively. Here, q1,2,3 denote the
internal momenta for the particles with the masses m1,2,3 running in the loop. Adding one loop to
the triangle diagram corresponds to a diagram with final-state rescattering, as in the second diagram.
Similarly, an arbitrary number of interactions in the final states can be considered, as shown in the
last diagram with n boxes attached to the original triangle diagram. This naming convention of the
diagrams is followed throughout.

Landau equations [68–70] then read:

αi(q2
i −m2

i ) = 0 , i = 1, . . . , N, (2.1)∑
i∈ loop j

αiq
µ
i (kj) = 0 , j = 1, . . . , L, (2.2)

where mi is the mass in the corresponding propagator and αi denotes the Feynman parameter
for the internal line i. Note that the second sum runs over all internal lines that contain a given
loop momentum (that is, dqµ

i /dk
ν
j = δµ

ν ̸= 0). Hence, there are N equations corresponding to
eq. (2.1) and L equations corresponding to eq. (2.2). The first condition translates to either the
internal propagators going on mass shell or the corresponding Feynman parameter vanishing.
The latter case occurs when the internal propagator does not contribute to the integral. One
can identify the resulting Feynman diagram as a graph with the corresponding propagator
contracted. When all the internal propagators go on mass shell, the corresponding singularity
is called the leading Landau singularity. When one or more of the Feynman parameters
vanish, the corresponding singularity is called the subleading Landau singularity. The second
condition translates to the 4-momenta of the propagators being co-planar. Furthermore,
it can be shown that all the Feynman parameters must obey the condition αi ≥ 0 for the
singularity to be present on the physical sheet [71].

For the leading Landau singularity of the triangle diagram, the Landau equations can
be written as a matrix equation by taking the dot product of eq. (2.2) with every qi. The
resulting equation reads:

Qα = 0, (2.3)

where the elements of the matrix Q are given by Qij = qi · qj and the vector α denotes
(α1, α2, . . .)T . The non-trivial solutions of eq. (2.3) can be obtained by requiring the deter-
minant to be zero, i.e., detQ = 0. Noting again that, for the leading Landau singularity,
eq. (2.1) implies that the internal propagators are on-shell, i.e., q2

i = m2
i , the solutions to

the determinant equation can be written entirely in terms of the invariant masses of the
external particles.

We are interested in a two-particle decay process where a (hypothetical) meson with the
momentum p1 decays into the f0 and π mesons with momenta p2 and p3, respectively. The
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external momenta obey the conditions given by p2
2 = σ and p2

3 = m2
π, respectively, where

σ is the square of the invariant mass of the f0 isobar. Bearing in mind that f0 is unstable,
meaning that its mass is not exactly fixed, we wish to use this freedom to scan a certain
interval in σ, looking for singularities. Similarly, the momentum of the decaying particle obeys
the relation p2

1 = s, and we scan again an interval in this variable around the singular point.
Consider the simple triangle diagram first, depicted in figure 1. In this case, the vanishing

determinant associated with the Landau equations can be written down in terms of s and σ:

y2
12 + y2

23 + r2 − 2r y12y23 − 1 = 0, (2.4)

where y12 = (m2
1 +m2

2 − s)/(2m1m2), y23 = (m2
2 +m2

3 − σ)/(2m2m3) and r = (m2
1 +m2

3 −
m2

π)/(2m1m3). The triangle singularity can occur on the physical boundary if and only if
the invariant masses are greater than or equal to the two-body thresholds of the particles
attached to them, i.e., s ≥ (m1 +m2)2 and σ ≥ (m2 +m3)2. This lower bound on one of
the invariant masses imposes an upper bound on the other invariant mass through eq. (2.4).
Equivalently, one can also derive these conditions in terms of bounds on m1:

m1,low < m1 < m1,up , m2
1,low = sm3 +m2

πm2
m2 +m3

−m2m3 , m2
1,up = (

√
s−m2)2 . (2.5)

Again, by making use of eq. (2.4), in terms of σ and s this translates to

(m2 +m3)2 < σ < m2
2 +m2

3 +
m2
m1

(m2
1 +m2

3 −m2
π) , (2.6)

(m1 +m2)2 < s < m2
1 +m2

2 +
m2
m3

(m2
1 +m2

3 −m2
π) . (2.7)

For the details of the derivation, we refer the reader to ref. [24].
In addition, the triangle graph has subleading singularities in the incoming and outgoing

invariant masses, which are exactly the corresponding two-body thresholds s = (m1 +m2)2

and σ = (m2 +m3)2. The two-body threshold in s corresponds to the case when the Feynman
parameter α3 vanishes, leading to a graph with a contracted m3 line. The two-body threshold
in σ corresponds to the case when α1 vanishes, leading to a graph with contracted m1 line.
The latter point means that particle 3 and particle 1 do not contribute to the Feynman
integrals in the respective cases. When the relevant amplitudes are evaluated for the incoming
and outgoing invariant masses outside the interval given in eq. (2.6) and eq. (2.7), the
subleading singularities are still present and manifest themselves as cusps.

Scrutinizing the effect of final-state interactions, we add ladder diagrams to the triangle
diagram. The diagram with a single loop added is shown in the second subfigure of figure 1.
In this case, the Landau equations that determine the leading singularity are given by

q2
i = m2

i , (2.8)

which is obtained from eq. (2.6), and ensures that all the internal propagators are on-shell.
Furthermore,

Q1α = 0 (2.9)
Q2α = 0, (2.10)
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Figure 2. All possible single contractions of the triangle + 1 box graph. The singular triangle graph
is in the black box. The notation Θi stands for a graph in which the i-th internal line is contracted
(we use this notation consistently throughout this paper.)

where the matrix elements of the block-diagonal matrix Q1 are given by (Q1)ij = qi · qj for
i, j = 1, 2, 3, resulting from applying eq. (2.2) to the first loop momentum. Analogously,
the matrix elements of Q2 are given by (Q2)ij = qi · qj for i, j = 3, 4, 5, 6. Now, one needs
to find a simultaneous solution to eq. (2.9) and eq. (2.10), and subsequently verify that all
corresponding Feynman parameters are positive.

First, we consider finding a simultaneous solution to eq. (2.9) and eq. (2.10), which
reduces to finding the simultaneous solution to detQ1 = detQ2 = 0. The first determinant
can be written down entirely in terms of s, owing to the fact that every other particle
involved here is on-shell by virtue of eq. (2.8). The second determinant depends on s and,
additionally on the Mandelstam variable t = (p2 − q2)2 with p2

2 = σ. One can express t in
terms of s and σ. Solving the first equation with respect to s, drawing then all possible
diagrams with K∗,K±, f0, π

±, running in the loops, and solving the second equation with
respect to σ (for a given s) in order to find the leading Landau singularity, we arrive at
complex-valued solutions for σ for any above choice of the particle masses in the loops. Thus,
the two-loop (triangle + 1 box) diagram, depicted in figure 1, does not possess the leading
Landau singularity on the real axis. This also eliminates the possibility of the leading Landau
singularity in two rescatterings and beyond, since any additional rescattering will add another
matrix equation that requires a simultaneous solution with all preceding matrix equations.
Hence, from now on, we can concentrate on analyzing the subleading singularities.

For the subleading singularities, we need to consider all possible contractions. There
are

(6
1
)
= 6 single contractions, see figure 2. Note that, following eq. (2.1), we have used the

on-shell masses to label the internal propagators instead of their momenta. The graphs inside
the dotted red box require a simultaneous solution to a bubble and a square graph. The
graphs inside the dashed green box require a simultaneous solution to the two triangle graphs.
For the scenario considered in this work, no combinations of masses exists such that the
above equations are fulfilled simultaneously. The graph inside the black box (Θ3) factorizes
into a bubble and a triangle graph, i.e., there is no propagator that depends on more than
one loop momentum. This case requires independent solutions to the two subgraphs. The
latter of which results in a triangle singularity for the relevant propagators.

Next, there are
(6

2
)
= 15 double contractions, see figure 3. The graphs inside the dotted

red box and the dot-dashed blue box require a simultaneous solution to a bubble and a
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Figure 3. All possible double contractions of the triangle+1 box graph. The singular triangle graphs
are in the black box.

Figure 4. Triple contractions of the triangle + 1 box graph. The two graphs in the dashed green box
correspond to the different combinations of the contracted propagators, see the text for details. The
singular triangle graph is in the black box.

triangle graph. In this case, for the various combinations of the propagators in this analysis,
a solution does not exist. The graphs inside the dashed green box factorize into two bubble
graphs. This case results in the relevant two-body thresholds. The graphs inside the black
dashed box factorize into a tadpole graph and a triangle graph. Tadpole graphs are trivial
and can be ignored when analyzing the Landau singularities. We are then left with the
triangle graph that reproduces the original triangle singularity.

Next, there are
(6

3
)
= 20 triple contractions, see figure 4, where we have omitted showing

all possible permutations of different masses for the graphs in the dashed green box explicitly
to be concise. The “coffee bean” graphs inside the dotted red box require a simultaneous
solution to two bubble graphs. In this case, for the various combinations of the propagators
considered in this analysis, a solution does not exist. The graphs inside the dashed green box
factorize into a tadpole graph and a bubble graph, which results in the relevant two-body
thresholds. Additionally, 9 graphs — {Θ124,Θ125,Θ126,Θ134,Θ135,Θ136,Θ234,Θ235,Θ236} —
are denoted as ΘX , and 4 graphs — {Θ345,Θ346,Θ356,Θ456} — are denoted as ΘY . The
graph inside the black box is the triangle graph, which again results in a triangle singularity
for the relevant propagators. Finally, there are

(6
4
)
= 15 quadruple contractions, all of which

lead to bubble graphs. And more contractions lead to trivial graphs. These observations are
essential, when we consider an arbitrary number of final-state interactions.

For a graph with n + 1 rescatterings (figure 5), first note that there are contractions
that lead to the factorized graphs with non-factorizable sub-blocks. If we show that there
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Figure 5. In the triangle + n boxes diagram, the pertinent subleading singularity arises when every
propagator except the final three in the ladder is contracted, for example.

are no solutions to an arbitrary non-factorizable graph, then obviously there are also no
solutions to graphs made up of non-factorizable subgraphs. Therefore, we concentrate on the
non-factorizable subgraphs of the triangle + n boxes diagram. Now, for any non-factorizable
subgraph, one needs to find a simultaneous solution to n + 1 determinant equations. For
the first two determinant equations that correspond to the triangle and the utmost left box,
we already know that there are no singular subgraphs other than the graphs that lead to
two-body thresholds or the original triangle singularity. However, now the singular diagrams
Θ3,Θ12,Θ13,Θ23,Θ123, shown in figures (2, 3 and 4), are embedded in the diagrams with
more boxes. Consequently, their external legs corresponding to the outgoing momenta p2, p3
turn into the integration momenta and the singularity is washed out. Hence, one has to
look for the subleading singularities again, considering all possible contractions that involve
the second box to the left. Proceeding this way and eliminating all the boxes one after
another, we come to the conclusion that a generic n-box diagram reproduces original triangle
singularity as a subleading singularity — the pertinent contracted diagram is factorized into
the original triangle loop and any number of bubble and tadpole diagrams.

Before moving ahead with the investigation of the triangle singularities through the three-
body unitary formalism, we wish to remark on three issues. Firstly, final-state interactions,
in general, are not described solely in terms of the ladder diagrams. In addition, one has
four-point contact interactions, e.g., f0π → f0π scattering through a local four-point vertex.
In the three-particle equations in section 3, such an interaction is needed to ensure the
cutoff-independence of the physical amplitude. We, however, note that, inserting these
four-point vertices1 into the ladder diagrams, one arrives at diagrams whose topology is
similar to the ladder diagrams with the contracted exchange particle propagator. Thus, no
change of the singularity structure is expected from this.

Secondly, it should be noted that all considered diagrams have exactly the same structure
(strength) of singularity, since they contain the same singular triangle diagram. This means
that the singularity stays exactly at the same place after resumming all the boxes from
final-state interactions. Note that this is not the case, for example, when one considers
dressing the resonance or a bound-state pole with final-state interactions. In the perturbation
theory for the propagator of a bound state (bubble sum), one has diagrams containing n

unperturbed propagators and n− 1 bubbles (self-energy diagrams). A generic contribution in
1In case there is a nearby three-particle resonance in the s-channel, the derivative expansion of the local

isobar-spectator interaction will possess a very small radius of convergence. An obvious cure to this problem
is to introduce an s-dependent local interaction, and assume that these couplings contain a simple pole in s.
Our argument remains in place in this case as well.
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perturbation series is written as (s− s0)−nB(s)n−1, where s0 denotes the unperturbed value
of the pole position and B(s) stands for a single bubble. In other words, we have poles of
different order in different terms of the perturbative series. Furthermore, summing up the
infinite series, it can be seen that the pole position is shifted due to final-state interactions,
s0 → s0 + δs, where the shift is determined from the equation δs = B(s0 + δs). This
phenomenon does not occur in the case of triangle singularity, because all the terms in the
perturbative series have exactly the same type of singularity.

Finally, another challenging problem is related to the fact that at least one of the particles
in the triangle is unstable (see section 3). For the one-loop triangle diagram, this problem
has been investigated in detail, e.g., in ref. [21]. To briefly summarize, in this paper the
Källen-Lehmann representation for the propagator of the unstable particle was used. It was
assumed that, instead of the real axis, the propagator has a pole on the second Riemann
sheet close to the cut, which is equivalent to assuming the spectral function having a pole
exactly at the same position (on the first sheet). The full result for the triangle diagram
corresponding to summing all the bubbles in the internal line is given by a convolution of this
spectral function with the triangle diagram, in which one integrates over the mass assigned
to this internal line. It was argued then that, if the singularity of the spectral function lies
very close to the real axis, the position of the singularity in the final expression is very close
to the one obtained from a triangle diagram with the resonance mass parameter replaced
by the complex resonance pole position. Note also that, in the context of the two-body
scattering, the described behavior is known under the name of “woolly cusps” [72] or complex
threshold openings, since the resonance mass is not a sharp value but has a finite width
moving thresholds into the complex plane [22, 50].

Extending this argument to the series of ladder diagrams considered in the present
section, one needs to replace each mass of the unstable particles by their complex resonance
pole positions. This will move the triangle singularity away from the real axis. By using
numerical integration, we have explicitly checked that, in case of the two-loop diagram shown
in figure 1, the final-state interaction has small effect on the position and shape of the
leading-order triangle singularity. In the next section, we provide a more rigorous check
of this statement, using the IVU framework.

3 Singularities in the IVU framework

3.1 Formalism

In order to avoid the clutter of indices, we first briefly discuss the basis notions of the
IVU-approach [43] in the one-channel case. In this approach, one rewrites the three-body
amplitude as an infinite set of diagrams describing interactions between a two-body cluster
(sometimes referred to as the isobar or the dimer) and a third particle (sometimes referred to
as the spectator or the bachelor) through particle exchange, as well as through short-range
interactions. The isobar is represented through a bubble sum, while the spectator is on mass
shell. The amplitude is decomposed into a fully connected and disconnected parts. Since the
disconnected piece does not lead to the relevant triangle singularity, it is sufficient to discuss
only the connected piece in the following. This piece can be expressed via the isobar-spectator
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scattering amplitude which obeys the following three-dimensional integral equation:

T (
√
s, q,p) =

(
B(

√
s, q,p) + C(

√
s, q,p)

)
+

∫
d3l

(2π)3
1

2El
T (

√
s, q, l)τ(σ(l))

(
B(

√
s, l,p) + C(

√
s, l,p)

)
. (3.1)

Here, q and p are the outgoing and incoming on-shell spectator 3-momenta, respectively, and
l is the spectator 3-momentum in the intermediate state. Furthermore,

√
s is the 3-body

invariant mass, which, in the center-of-mass (CM) frame that we work in, is just the total
energy. Finally,

√
σ(l) is the invariant mass of the 2-body subsystem (the isobar), written in

terms of the spectator momentum (El =
√

l2 +m2
l ), that is, σ(l) = (

√
s−El,−l)2 = s+m2

l −
2
√
sEl. Here and in the following we denote the mass of the particle carrying momentum

x as mx as well as x = |x| for any considered three-momentum x. The integral equation
contains the isobar propagator τ . The kernel of the equation consists of the one-particle
exchange term B and the isobar-spectator contact term C, which is discussed below. To
access the line-shapes, we integrate the isobar-spectator amplitude eq. (3.1) with respect
to the 3-momentum of the incoming state as follows:

Γ(
√
s, q) =

∫
d3p

(2π)3
1

2Ep
T (

√
s, q,p) τ(σ(p))D(

√
s,p). (3.2)

Here, D is the scalar vertex associated with the dissociation of the a1 into an isobar and a
spectator. This vertex, along with the contact term C, contains all free parameters at our
disposal which can be used to describe the three-body scattering in the channel with given
quantum numbers. In principle, these parameters should be fit to experimental data. This
is set aside for a future study, since the dynamical effect of triangle singularity shows little
sensitivity to the details of the short-range interactions. In particular, in the following, we
neglect all momentum dependence in D, taking it to be constant. With this, Γ gives the
amplitude, associated with a1 decaying into an isobar and a spectator that also includes
all final-state interactions. We note that the physical line shape can be obtained from this
quantity by adding the disconnected contribution, and then multiplying everything with the
final isobar propagator and the decay vertex into asymptotically stable states (e.g. 3π). The
details of this procedure are given in ref. [73] but are of no relevance here since Γ contains
all the relevant singularities and rescattering diagrams.

Coming back to the ingredients of eq. (3.1), we first note that the isobar-spectator contact
term C (three-body force), which ensures cutoff-independence of the physical observables
obtained from the solution of this integral equation [74], cannot produce the triangle singularity.
For this reason, we first completely neglect it, and enforce a sharp cutoff (which is equivalent to
the choice of the renormalization prescription). Next, however, we will relax this assumption
allowing it to have a pole in Mandelstam s if demanded by the data, see the discussion
in ref. [44]. This pole, however, will be irrelevant since it lies far from the energy region
that we are interested in.
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Next, we consider the isobar propagator τ in eq. (3.1), which encodes the two-body
interaction. Explicitly, for distinguishable particles in the self-energy equation, it is given by

τ(σ(p)) = 1
σ(p)−m2

bare − g2Σ(σ(p)) + iϵ
, (3.3)

Σ(σ(p)) =
∫

d3k

(2π)3
1

2E1(k)E2(k)
σ(p)

(E1(k) + E2(k))2
(E1(k) + E2(k))

σ(p)− (E1(k) + E2(k))2 + iϵ
. (3.4)

Here, the two-body self-energy Σ is written down in a once-subtracted form to ensure
convergence of the integral (note also that the self-energy for indistinguishable particles like
two pions carries another factor of 1/2). This expression is then evaluated in the isobar CM
frame. The unknown constants (g,mbare) are determined through the physical values (the
mass mphys and the width Γ of a resonance), which for narrow resonances simply yields

m2
phys = m2

bare + g2Re(Σ(m2
phys))II , (3.5a)

mphysΓ = −g2Im(Σ(m2
phys))II , (3.5b)

where the subscript II denotes that the value of the self-energy is taken on the second sheet.
It is also possible to match the isobar propagator to a more realistic two-body scattering
amplitude, including, for example, constraints from Chiral Perturbation Theory, for details
see refs. [48, 75–78].

Finally, the one-particle exchange diagram B is given by

B(
√
s, q,p) = g2

2Eq+p(
√
s− Eq − Ep − Eq+p + iϵ) , (3.6)

where the g’s denote the scalar-isobar dissociation vertex, and the angle dependence
enters through the energy of the exchanged particle Eq+p =

√
(q + p)2 +m2

pq =√
q2 + p2 + 2q · p +m2

pq. Note that mpq denotes the mass of the exchanged particle. The
analytic form of B is fixed through three-body unitarity, as shown in ref. [43] (in particular,
the quantity g in eq. (3.4)), and eq. (3.6) must be the same to ensure the two- and three-body
unitarity of the solutions of the integral equation). This form leads to the non-trivial cut
structures in the kernel of the integral equation that manifests itself after the partial-wave
expansion. More technical details about the partial-wave expansion in three-body equations
(general case) can be found in refs. [44, 73].2 In our toy model where only S-wave short-range
interactions are retained, the partial-wave expansion simplifies considerably and reduces
to the expansion of the kernel B:

B(
√
s,q,p) :=

∫
dΩB(

√
s,q,p)= πg2

2pq log

√
s−

√
p2+m2

p−
√
q2+m2

q−
√
(p+q)2+m2

pq+iϵ
√
s−

√
p2+m2

p−
√
q2+m2

q−
√
(p−q)2+m2

pq+iϵ

.
(3.7)

2It is also worth mentioning that, using partial-wave expansion in a finite-volume version of the formalism
leads to numerical instabilities for selected values of the CM energy [79]. In this case, it is more convenient to
work in the plane-wave basis and carry out the partial diagonalization of the 3-body quantization condition in
various irreps of the octahedral group of the pertinent subgroups thereof [46, 75–77, 79].
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Figure 6. On the left, the singularities of the kernel for different real outgoing spectator 3-momenta:
three representative values are taken. On the right, the branch cuts for different complex outgoing
spectator 3-momenta. Both plots are shown for

√
s = 1.42 GeV.

The kernel given in eq. (3.7) contains logarithmic singularities. When evaluating the
radial part of the integral given by eq. (3.2), one needs to account for the branch cuts
associated with the logarithmic branch points. The integral can be numerically evaluated
without any complications for invariant masses lying outside the Landau singularity regions
given by eq. (2.6) and eq. (2.7) by simply numerically integrating along a deformed contour.
However, this is no longer possible when the invariant mass lies within the Landau singularity
region given in eq. (2.6) and eq. (2.7). This complexity arises due to the circular branch
cuts shown in figure 6. One way to circumvent this problem is to promote the in/outgoing
spectator 3-momentum to complex values, and then evaluate the integral numerically along
the deformed contour, see again figure 6. After this, we still have to determine the amplitudes
for real momenta, which is discussed in the next subsection.

We conclude this section by briefly considering the Born series of the decay amplitude
Γ. This series can be schematically written as

Γ = DτB︸ ︷︷ ︸
triangle

+ DτBτB︸ ︷︷ ︸
triangle+1box

+ DτBτBτB︸ ︷︷ ︸
triangle+2boxes

+ . . . . (3.8)

Note also that the isobar propagator τ includes two-body rescattering effects to all orders.
Below, we shall numerically evaluate the subleading term in this expansion and compare it
with the full solution, demonstrating the fast convergence of the Born series.

3.2 Implementation

Moving forward with the Landau singularities in the case of the a1, we discuss below the
implementation of the IVU formalism, and also the numerical values of the relevant parameters
in the formalism. The problem at hand naturally requires at least two channels, without which
there is no possibility to generate triangle singularity. These consist of the isobar-spectator
pairs K∗K and f0π, which we refer to in the following as channel 1 and channel 2. In a
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Figure 7. On the left, the two channels considered in this work, along with the relevant couplings.
Only neutral K∗ mesons are included in our toy model. Furthermore, τ denotes the isobar propagator

— see eq. (3.3) for τ1 and eq. (3.9) for τ2. On the right, the allowed transitions between the channels.
Conservation of strangeness prohibits a transition from channel 1 to itself. This is indicated by a red
dashed oval. However, the remaining transitions are allowed.

physical system, K∗K stands for isospin- and G-parity projected combinations of kaons with
zero overall strangeness and negative electric charge. A quantitative analysis including isospin
factors, spin structure and comparison to the experimental data is relegated to a future work
as discussed before. Here, within the framework of our toy model, we include the channel
with neutral K∗ only, which considerably simplifies the bookkeeping of diagrams but does
not affect the singularity structure of the amplitude in the energy region we are interested.

The quantity B corresponds to one-particle exchange between the channels. In our
toy model, strangeness conservation prohibits a transition from channel 1 to channel 1.
However, all other possible transitions are allowed as depicted in figure 7. Three coupling
constants g, gK and gπ, corresponding to the transitions K∗0 → K+π−, f0 → K+K− and
f0 → π+π−, respectively, are needed to construct the kernel of the equation. These coupling
constants, along with the bare masses of respective isobars, are fixed through the physical
masses and widths of the K∗ and f0 mesons. In this matching, we use the experimental
input [59] mf0 = 990MeV, Γf0 = 50MeV and mK∗ = 892MeV, ΓK∗ = 50MeV. It should be
noted that the width of f0 has little influence on the triangle singularity, since it does not
contribute to the singular triangle graph. However, larger values of the K∗ indeed smear
out the triangle singularity, see also ref. [24].

In the case of the f0 isobar, there are two different couplings entering the pertinent
propagator (cf. eq. (3.3))

τ(σ(p)) = 1
σ(p)−m2

bare − g2
KΣK(σ(p))− g2

πΣπ(σ(p)) + iϵ
. (3.9)

Here, ΣK and Σπ denote charged kaon and pion loops, respectively. Furthermore, in order
to fix three couplings g, gK and gπ from two decay widths, we use the input gK/gπ = 4.21
from BES [80] and BaBaR [81] collaborations. Finally, the parameters of our toy model
determined from the above input are

mbare(K∗) = 0.902GeV , g = 1.860GeV, (3.10)
mbare(f0) = 1.089GeV , gπ = 1.397GeV , gK = 5.880GeV .

What remains now is to solve the integrals given by eq. (3.1) and eq. (3.2) to obtain
the amplitudes we are interested in. eq. (3.1) is a Fredholm integral equation of the second
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kind, which can be solved through the resolvent formalism. Evaluating this equation for
real values of spectator momenta leads to a singular resolvent, as discussed above. Hence,
following seminal works [82, 83], we promote the outgoing spectator momenta to complex
values. In more details, the solution strategy is as follows:

1. Find a contour on the complex momentum-plane for which the resolvent is non-singular.
We use a hard cutoff of Λ = 1 GeV in the integrals over spectator momenta, whereas the
self-energy integral, which enters the isobar propagator, does not have a cutoff. Since
we are considering two channels, all our amplitudes are 2× 2 matrices in the channel
space, and we have to ensure that the deformed contour does not hit the singularities
of the kernel in any channel. In the integral over spectator momentum, the choice of
the contour, similar to ref. [44], is given by:

fSMC(t) = t+ ia(1− e−t/b)(1− e(t−Λ)/b) , 0 ≤ t ≤ Λ , (3.11)

where a and b are some real parameters and Λ is the cutoff. We refer to this contour as
the Spectator Momentum Contour (SMC). Crucially, this choice of the contour ensures
that the integration path, indeed, approaches the real axis again at the point l = Λ.
For the self-energy integral, the choice, again similar to ref. [44], is given by

fSEC(t) = t+ i

2c tan
−1 (dt) , 0 ≤ t <∞ , (3.12)

where c and d are, again, some real parameters. We refer to this contour as the Self
Energy Contour (SEC). In the top row of figure 8, it is verified that our choice for the
SMC avoids all singularities in the integral. To this end, we define Ba = {l | El+p = 0}
and Bb = {l |

√
s − El − Ep − El+p = 0}, see eq. (3.6). figure 8 is then obtained by

fixing p along SMC and varying −1 ≤ cos θ ≤ 1, which are given by the green and blue
markers, respectively. It is now clear that the contour, given by red markers, does not
overlap with the singularities.

Furthermore, it can be seen from eq. (3.4) that the singularities in the self-energy integral
emerge exactly for those values of k, where σ(l) equals to (

√
k2 +m2

1 +
√
k2 +m2

2)2.

To this end, we define Σa = {σ(l) | l ∈ SMC} and Σb = {(
√
k2 +m2

1 +
√
k2 +m2

2)2 |
k ∈ SEC}. These quantities are given by the cyan and orange markers in the bottom
row of figure 8, respectively. It can be seen that these curves do not intersect and,
hence, the denominator is not singular for our choice of SMC and SEC.

2. Discretize the integration interval and solve the integral equation. The latter step boils
down to solving the matrix equation

T = B(1 − τB)−1 (3.13)

for complex spectator momenta on the SMC.

3. Carry out the integral in eq. (3.2) to obtain Γ(
√
s, q ∈ C). For momenta on the SMC,

this amounts to evaluating the matrix equation

Γ = TτD , (3.14)
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Figure 8. In the top row, the singularities of the exchange term B with respect to the integration
momentum l are shown, with the other momentum p fixed on the SMC and −1 ≤ cos θ ≤ 1. The first,
second and third columns correspond to the matrix elements B12, B21 and B22 in the channel space.
In the bottom row, the quantities σ(l) and (

√
k2 +m2

1 +
√
k2 +m2

2)2 (on a generic complex z-plane)
are shown. The first, second and third rows correspond to the Kπ, KK̄ and ππ loops.

where Γ is a vector of the dimension equal to the number of discrete points chosen in
step 2.

4. Determine Γ for real momenta. This is an unavoidable step when comparing with
experimentally accessible line-shapes. Various methods exist to achieve this goal [82–86].
We will concentrate on two of them which we find the most convenient: the Rational
Analytic Continuation (RAC) method (section 3.2.1) and the Cahill & Sloan (CS)
method (section 3.2.2). For a discussion and comparison of these and other methods,
see also [78].

3.2.1 Rational Analytic Continuation (RAC) method

A very transparent and flexible method to obtain the decay amplitudes for real momenta
relies on the analyticity of the decay amplitudes in complex momenta. Specifically, the
obtained result in the complex momentum-plane is analytically continued to the real axis
using an analytic function. Typically, for the latter, Padé-approximants are chosen with
coefficients fit to the values Γ(q ∈ SMC), and then evaluated for real momenta. Obviously,
one needs to ensure that no singularities are located in the extrapolation region (SMC → R).
For recent applications see, e.g., refs. [44, 73].
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In our case, we found that even though Padé-approximants lead to reasonable results, it
lacked the ability to reproduce sharp structures, like cusps, in the amplitude. We found that
(generalized) continued fractions are better at reproducing the above-mentioned singularities.
For relations between Padé-approximants and continued fractions, see refs. [87, 88]. Here,
we make use of Thiele’s interpolation formula, which for amplitudes evaluated at complex
outgoing spectator momenta z1, . . . , zn, takes the following form [89]:

T (z) = ρ0(z1) +
z − z1

ρ1(z1, z2) +
z − z2

ρ2(z1, z2, z3)− ρ0(z1) +
z − z3

ρ3(z1, z2, z3, z4)− ρ1(z1, z2) + · · ·

,

(3.15)
where the reciprocal differences denoted by ρ are given by

ρ0(z1) = T (z1),

ρ1(z1, z2) =
z1 − z2

ρ0(z1)− ρ0(z2)
,

ρ2(z1, z2, z3) =
z1 − z3

ρ1(z1, z2)− ρ1(z2, z3)
+ ρ0(z2),

... (3.16)

ρn(z1, z2, · · · , zn+1) =
z1 − zn+1

ρn−1(z1, z2, · · · , zn)− ρn−1(z2, z3, · · · , zn+1)
+ ρn−2(z2, z3, · · · , zn) .

Note that the last term of the continued fraction contains the reciprocal difference ρn−1,
in our case. Now, the amplitude given by eq. (3.15) is, in principle, valid for all complex
values of outgoing spectator momentum q, including real values. This reveals another
technical advantage of using continued fraction, namely that no interim fit is required, but
rather an exact form of the constants ρn is available. This improves the performance and
allows one to explore systematic uncertainties by increasing, for example, the number of
discretization points.

3.2.2 Cahill & Sloan (CS) method

This method was first introduced in ref. [83]. One begins with the quantity Γ(
√
s, q) again,

given by eq. (3.2), for values q on the SMC, which again avoids the singularities as described
before. Then one uses the integral representation given by eq. (3.2) and analytically continues
to the real axis by using Cauchy’s theorem. Following the discussion in section 3.1, three
different scenarios are possible, depending on the numerical value of the momentum q after
the continuation, see figure 6. Namely, if q < q0, where q0 is a critical value expressed through
the masses and external kinematic variables, then the kernel has linear cuts shown by the solid
blue lines on the left panel of this figure. The analytic continuation is then straightforward —
one merely substitutes real value of q in this integral representation. When q ≥ q0, circular
cuts are formed that touch the real axis (orange dots on the same figure). This continues until
q ≤ q1, where q1 is another critical value. After which, the circular cuts are pushed away and
do not touch the real axis anymore. In this case, again, the analytic continuation is trivial —
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Figure 9. For q < q0 for q > q1, the integral given in eq. (3.2) can be evaluated along a simple
deformed contour shown on left panel. For q0 < q < q1, one has to travel along the contour shown in
the right panel that lies, in part, on the second Riemann sheet (indicated by the dashed line).

one merely assumes q to be real in the integral representation again. The situation for q < q0
and q > q1 is shown in the left panel of figure 9. It is seen that the integration along the
original SMC contour is allowed, since it never crosses the singularities. Also note that, for
any particular choice of SMC, the contour does not cross the branch cut after q > q1 + δ,
where δ is finite. This quantity can be made arbitrarily small, choosing SMC very close to
the real axis. For a detailed discussion, see refs. [78, 90].

Thus, only the region q0 < q < q1 is problematic. The original integration contour has
to be deformed, avoiding the singularities of the kernel, and also accommodate the different
Riemann sheets corresponding to the logarithmic branch cut arising from eq. (3.7). The
deformed contour is shown in the right panel of figure 9. It goes from the origin up to the
branch point, after which one moves to the second sheet and goes back to origin. This is
followed by moving along the original SMC up to the branch cut, after which one moves to
the first sheet again. Note that, in order to evaluate this integral, one needs the values of
the integrand on the real axis for values below the branch point. Still, these can be easily
calculated, since the analytic continuation in this region does not encounter any singularity.
More information about this method can be found in the original paper [83] as well as in the
textbook [84]. For a recent application and further details, see refs. [78, 90].

We note one drawback of the CS method. Namely, when there are two or more channels,
there might be an overlap of the singularity region of a particular channel with the small
3-momenta region of another channel. Problems arise, when the calculations are done for the 3-
momenta values in the overlapping regions. Fortunately, this is not the case here in the region
of energies we are interested in. Still, in general, this method is not well suited for systems
with multiple channels and certain care is needed to implement it in this case. For further
discussions of different methods, we refer the interested reader again to the recent work [78].
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Figure 10. The numerical oscillations in the full solution in RAC and CS methods. We plot the
ratio |Γ/Γ△|2, both the exact and the smoothed versions. It is seen that the oscillations are indeed
small and do not affect the conclusions.

Additionally, we would like to emphasize that both the presented methods boil down to
numerical evaluations. Thus, some instabilities due to finite resolution are to be expected.
Interestingly, we found that both methods show similar performance in this regard, see
figure 10, where we show the ratio of the “naked” (Γ△) and “fully dressed” (Γ) amplitudes
calculated with both methods. As the calculations become quite time-consuming for a large
number of mesh points, we have opted to display the “smoothed” results everywhere in
the following to make the interpretation of the figures easier. The smoothed results are
obtained by convolving the obtained final amplitudes with a Gaussian kernel of varying
standard deviations of 2 to 5.

3.3 Results

We now discuss the main results of this work, namely the study of final-state interactions in
relation to the triangle singularity. The result including all final-state interactions is shown
in figure 11, which shows the full decay amplitudes squared |Γ(

√
s, q)|2 as a function of the

variables s and σ. There, both the methods (RAC and CS) are very similar to each other,
except the fact that the RAC method is slightly smeared out in the immediate vicinity of
singularities. Overall, it is safe to say that the triangle singularity persists, as expected, when
all final-state interactions are taken into account. At first glance, it might seem surprising
that there is no unitary cusp in the variable s (the right panel of figure 11). A close scrutiny
of the problem reveals the reason for it: the unitary cusp is completely overshadowed by the
huge triangle singularity, with both effects being smeared out by the finite width of the K∗.
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Figure 11. On the left, comparison of the decay amplitudes squared as a function of the outgoing
isobar invariant mass

√
σ for a fixed incoming invariant mass

√
s = 1.42 GeV between RAC and CS

methods. On the right, the comparison for a fixed
√
σ = 0.99 GeV and varying

√
s.
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Figure 12. On the left, the decay amplitudes squared for the triangle diagram as a function of the
outgoing isobar invariant mass

√
σ for a fixed incoming invariant mass

√
s = 1.42 GeV. On the right,

the same quantity for
√
σ = 0.99 GeV and varying

√
s. The plots show the amplitudes for the triangle

and the fully dressed diagrams. For simplicity, we restrict ourselves to the RAC method.

To quantify the effect of final-state interactions, we plot in figure 12 the “naked” (|Γ△|2)
and “fully dressed” (|Γ|2) full decay amplitudes squared as functions of incoming invariant
mass

√
s for a fixed outgoing isobar invariant mass

√
σ, and vice versa. We observe that

the rescattering corrections are rather small. This suggests that the Born series eq. (3.8) is
converging fast, and justifies truncating the series at the leading order. More generally, the
rapidity of the convergence of the Born series can be seen in figure 13. There we plot the full
decay amplitude squared of the a1 as well as the triangle diagram plus one box normalized
by the “naked” amplitude, i.e., the triangle diagram without final-state interactions. It
shows that (a) the corrections to the decay amplitude are of the order of 10% (in our toy
model), and (b) the Born series is converging very fast, the first Born approximation almost
coinciding with the final result.

At this point, we mention that a preliminary study of the same system with particles
carrying spin and isospin has been carried out, using the methods from refs. [44, 73]. The
results of these studies confirm the results obtained in our toy model. The suppression of the
rescattering effects is still present, albeit not so pronounced as before.
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Figure 13. The ratio |Γ/Γ△|2 for the first Born approximation (triangle plus one box) and the full
solution. It is seen that the results in both the RAC and CS methods are very similar, and the first
approximation is almost the same as the full solution.

4 Conclusions

In the present paper, we have studied the effect of the infinite two- and three-body rescattering
on the triangle singularity. Such singularity arises for certain configurations of masses of
involved particles and in some specific kinematic conditions. The formalism used for this
study was completely general. We chose to work with the toy model that mimicked the
essential features of the decay of the would-be a1(1420) meson, see ref. [40].

In the beginning, using Landau equations, we have shown that the triangle singularity on
the real axis also arises in the multiloop ladder diagrams that describe final-state interactions.
This can be understood by considering multiple contractions of internal propagators in the
ladder diagrams attached to the triangle. Either such contractions lead to non-singular
configurations or provide a subleading singularity through a factorization into the triangle
diagram and the rest that is non-singular. Thus, the singularity arises exactly at the same
place as in the simple triangle diagram.

The analysis through Landau equations is quite general. Still, it provides one only with
the location of the singularity and does not give access to its strength or corresponding
line-shapes. In the second part of the paper, we have carried out a full-fledged analysis of a
problem involving unstable particles (isobars). To this end, the unitary three-body formalism
(IVU) [43] has been used, which was previously applied to the analysis of the a1(1260) in
refs. [44, 48, 73]. At the first step, we have ignored the spin and isospin of all particles
involved, albeit extended our toy model to the multichannel case that is essential to allow the
emergence of the triangle singularity. Within the approximations made, we have found that
the Born series converges rather rapidly, leaving final-state interactions as sub-dominant to the
triangle diagram. We emphasize again that our aim here was not to give an exact quantitative
calculation of the effect of final-state rescattering in this particular physical system, but
rather to set and to test a framework for such calculations that are planned in the near future.
Still, one might expect that the results obtained within the toy model qualitatively describe
the gross picture that emerges, if all neglected effects are taken into account.

Last but not least, let us note that the development of a quantitative framework which
describes the system in question allows one, eventually, to reformulate the framework in
a finite volume. This, in its turn, could be useful for the analysis of lattice data in the
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channel with quantum numbers of the a1, extending the energy region beyond a1(1260)
which was studied already in ref. [48].
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