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Abstract— We consider state estimation for a dynamical
system that has unknown state-dependent dynamic process and
measurement noise covariance matrices. When the noise covari-
ances are state-dependent the typical Kalman filter (KF) fails
to accurately estimate the states of the system. To estimate the
states of such a system, we model the covariance matrices via
the Wishart process and propose a novel variational Bayesian
adaptive Kalman filter (VB-AKF). The proposed VB-AKF
combines the variational Bayesian inference of the Wishart
process with the KF. The resulting VB-AKF can estimate
the states of the system together with the state-dependent
dynamic process and measurement noise covariances. Through
simulations, we show that the developed VB-AKF is effective
and achieves satisfactory performance.

I. INTRODUCTION

State estimation of dynamical systems is crucial for vari-
ous applications such as autonomous vehicles, robotics, and
process control. It allows for real-time tracking of system
states based on sensor measurements and is commonly
used for real-time decision-making, control, planning, and
monitoring system efficiency and safety.

Several approaches and techniques have been developed
for state estimation. Recursive Bayesian filters (BRF) use
Bayesian probability theory to estimate the state of a sys-
tem [1], [2]. They update the state estimate recursively as
new sensor measurements become available. Recursive least
squares estimation involves minimizing the least squares
error between the predicted and measured states [3]. Ma-
chine learning techniques such as Artificial Neural Networks
(ANNs) have also been employed for state estimation when
dealing with complex and high-dimensional systems [4].
ANNs can learn to map sensor data to state estimates through
training on historical data. Sequential Monte Carlo (SMC),
also known as particle filter, combines aspects of Bayesian
filtering and Monte Carlo techniques to estimate the states
of a system in a sequential manner [5], [6].

The most popular approach for state estimation of a linear
system is the Kalman filter (KF) [7]. The KF is a recursive
algorithm that estimates the states of a linear system with
Gaussian noise. It uses measurements from the sensors and
predictions from the dynamic model to provide an optimal
solution for the state estimation problem. Extended Kalman
Filters (EKF) and Unscented Kalman Filters (UKF) extend
this approach to nonlinear systems [8], [9].

1Mechanical and Aerospace Engineering, Oklahoma State
University, Stillwater, OK, 74078 {nahid.uzzaman,
he.bai}@okstate.edu. The work was partly supported by
the National Science Foundation (NSF) under Grant No. 1925147.

The KF and its derivatives consider that the system has
process noise as w ∼ N (0, Q) and measurement noise
v ∼ N (0, R). The process noise covariance matrix Q and
measurement noise covariance matrix R are assumed known
and independent of the states. However, there are cases
where these covariance matrices depend on the states, i.e,
Qk = Q(xk) and Rk = R(xk), where xk is the system state
at time step k. In the simulation section, we will present an
example with a state-dependent sensor noise covariance.

Several previous works in the literature address the prob-
lem of state estimation of a system with state-dependent
noise. Reference [10] presents an extended Kalman filter
algorithm that can estimate the states when the observation
noise covariance is state-dependent and a known function
of the state. They show a target-localization example where
the sensor bearing has a state-dependent noise. In [11], the
authors present an extended Kalman smoothing framework
with a generalized Gauss-Newton inference for systems with
state-dependent noise covariance. They assume that both
the process and measurement noise covariance matrices are
known functions of the states. Reference [12] proposes a
state-dependent sensor measurement model (SDSMM) that
learns the expected measurements. The learned SDSMM is
used in the EKF to solve a robot localization problem. The
authors of [12] also present a new learning method in [13]
where the SDSMM is learned from limited data and used in
the Extended Kalman Particle Filter.

Although the above references estimate the states of the
system while considering state-dependent noise covariance,
they assume that the noise covariance matrices are known
functions of the states. Although in [12] and [13], the
learned SDSMMs are used to calculate the measurement
noise covariance which is used in the EKF, they do not
provide an explicit estimate for this covariance. Moreover,
they do not provide an estimation for the unknown state-
dependent process noise covariance.

To address this issue, we propose a variational Bayesian
Adaptive Kalman filter (VB-AKF) that estimates the states of
a dynamical system along with the state-dependent process
and measurement noise covariance matrices. Our proposed
VB-AKF combines the Kalman filtering with the Wishart
process [14] and leverages the variational Bayesian inference
to estimate state-dependent covariance matrices. The varia-
tional Wishart process (VWP) is a powerful tool to estimate
the covariance matrices that are dependent on the inputs of
the data [15], [16]. For our algorithm, the inputs are the
system states.

The contribution of the paper includes 1) addressing
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the problem of estimating the states along with the state-
dependent process and measurement noise covariance ma-
trices; 2) introducing a novel variational Bayesian Adaptive
Kalman filter (VB-AKF); and 3) demonstrating the effective-
ness of the proposed filter to estimate the state-dependent
sensor noise covariance in simulations.

The rest of the paper is organized as follows. In Sec-
tion II, the problem formulation is presented. The variational
Wishart process (VWP) is reviewed in Section III. Section IV
presents the developed VB-AKF algorithm. Numerical simu-
lation results are provided in Section V. Section VI presents
the concluding remarks.

II. PROBLEM FORMULATION

Consider the dynamical system

xk+1 = Axk +Buk + wk (1)
yk = Cxk + vk (2)

where wk and vk are state-dependent process and mea-
surement noises satisfying wk ∼ N (0, Q(xk)) and vk ∼
N (0, R(xk)). Here, N (a, b) represents a normal distribution
with mean a and covariance b. A typical approach for
estimating the states when Q(xk) and R(xk) are known
is using the KF [7]. Given the measurements yk, the KF
estimates the states xk, assuming that Q(xk) and R(xk) are
state-independent and available. Without the knowledge of
Q(xk) and R(xk), the state estimates from the KF may not
be accurate.

In this paper, we consider that Q(xk) and R(xk) are state-
dependent and unknown. Our objective is to estimate the
state-dependent process and measurement noise covariance
matrices along with the states of the system, based on
the measurements yk and system matrices (A,B,C). We
make use of the Wishart process to model the unknown
noise covariance matrices and propose a variational Bayesian
approach to the inference of the covariance matrices. Using
the inferred covariance, we apply a Kalman filter to estimate
the system state. We next briefly review the variational
Wishart process in Section III and present our adaptive
Kalman filter in Section IV.

III. REVIEW OF VARIATIONAL WISHART PROCESS
(VWP)

Positive-definite covariance matrices can be estimated us-
ing the variational Wishart process (VWP) [15]. Let Yn ∈
RD represent a series of measurements at corresponding
input locations Xn ∈ Rp, where n = 1, · · · , N . The
conditional likelihood of Yn is described by the multivariate
Gaussian density as the following

Yn|0,Σn ∼ N (0,Σ(Xn)) . (3)

Here, Σn = Σ(Xn) ∈ RD×D is the covariance of the normal
distribution at Xn. We define an independent and identically
distributed (i.i.d.) collection of Gaussian processes (GPs)
[17]:

fd,k ∼ GP(0, k(., .; θ)), d ≤ D, k ≤ ν (4)

where θ represents the trainable parameters of the kernel
function k and ν ≥ D represents the degrees of freedom.
Denote fd,k(Xn) by Fn,d,k, and define Fn ∈ RD×ν as a
matrix whose element at the (d, k)-th position is given by
Fn,d,k. We then construct the Wishart distributed covariance
Σn as [14]

Σn = AsFnF
⊤
n A⊤

s , (5)

where As ∈ RD×D is known as a symmetric scale matrix
and AsA

⊤
s is positive definite. The collection of constructed

covariance matrices denoted as Σ := (Σ1,Σ2, . . .), is re-
ferred to as a Wishart Process. The log conditional likelihood
of such a Wishart process is given by

log p(Yn|Fn) =− D

2
log(2π)− 1

2
log |AsFnF

⊤
n A⊤

s |

− 1

2
Y ⊤
n (AsFnF

⊤
n A⊤

s )
−1Yn. (6)

For computational efficiency, sparse GP with M inducing
points denoted by Z := (Z1, Z2, ..., ZM ) is used, where Z
and X are in the same space. To obtain sparse approxima-
tions of the Gaussian processes we may choose M ≪ N .
Let Um,d,k := fd,k(Zm) for m ≤ M, d ≤ D, and k ≤ ν
and define Ud,k := (Um,d,k, m ≤ M) ∈ RM×D×ν and
Fd,k := (Fn,d,k, n ≤ N) ∈ RN×D×ν . The joint distribution
is given by

p(Y, F, U) =

N∏
n=1

[p(Yn|Fn)]

D∏
d=1

ν∏
k=1

[p(Fd,k|Ud,k)p(Ud,k)],

(7)
where

p(Fd,k|Ud,k) = N (KxzK
−1
zz Ud,k,Kxx −KxzK

−1
zz K⊤

xz),
(8)

p(Ud,k) = N (0,Kzz), (9)

in which Kxx ∈ RN×N has (n, n)-th element as
k(Xn, Xn; θ), Kxz ∈ RN×M has (n,m)-th element as
k(Xn, Zm; θ), and Kzz ∈ RM×M has (m,m)-th element
as k(Zm, Zm; θ).

A variational approximation to the posterior of Ud,k is
introduced as

q(Fd,k, Ud,k) = p(Fd,k|Ud,k)q(Ud,k), (10)

where q(Ud,k) ∼ N (µd,k, Sd,k), with the variational param-
eters µd,k ∈ RM and a symmetric positive definite matrix
Sd,k ∈ RM×M . The marginal distribution q(Fd,k) is obtained
as

q(Fd,k) =

∫
p(Fd,k|Ud,k)q(Ud,k)dUd,k

=N (K̃µd,k , Kxx + K̃(Sd,k −Kzz)K̃
⊤) (11)

where K̃ := KxzK
−1
zz . Now, we can lower-bound the

measurement likelihood as

log p(Y ) ≥
N∑

n=1

Eq(Fn) log(p(Yn|Fn))

−
D∑

d=1

ν∑
k=1

KL[q(Ud,k||p(Ud,k)]. (12)
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The inequality (12), known as the evidence lower bound
(ELBO) [18], is the objective function in the variational
Bayesian inference. Here, KL is the Kullback-Leibler diver-
gence. The inference of the parameters Θ := (Z,As, µ, S, θ)
is performed by maximizing the ELBO in (12) via a stochas-
tic gradient ascent algorithm.

IV. A VARIATIONAL BAYESIAN KF

We propose a variational Bayesian adaptive Kalman filter
(VB-AKF) that estimates the states xk, process noise Q(xk)
and measurement noise R(xk) of the dynamical system in
(1)-(2) given the measurements yk ∈ R. We first model
the state-dependent noise covariance matrices with the VWP.
Consider two GPs f and g as

f ∼ N (0, kf (., ., θf )) (13)
g ∼ N (0, kg(., ., θg)) (14)

where θf and θg denote the parameters of the kernels kf and
kg , respectively. Let Fk = f(xk) and Gk = g(xk). Then, we
construct the Wishart distributed process noise covariance
Q(xk) and measurement noise covariance R(xk) as

Q(xk) = AqFkF
⊤
k A⊤

q (15)

R(xk) = ArGkG
⊤
k A

⊤
r , (16)

respectively. Here, Aq and Ar are the scale matrices. Sim-
ilar to the VWP, we assume M inducing points Z :=
(Z1, Z2, ..., ZM ) and consider Um = f(Zm) and Vm =
g(Zm), where m ≤ M . Denote U := (Um, m ≤ M),
V := (Vm, m ≤ M), F := (Fl, l ≤ k), G := (Gl, l ≤ k),
x := (xl, l ≤ k), and y := (yl, l ≤ k).

We next develop the joint probability as

P (y, x,G, V, F, U)

=P (x0)P (U)P (V )

k∏
l=1

P (yl|xl, Gl)P (xl|xl−1, Fl−1)

P (Fl−1|xl−1, U)P (Gl|xl, V ). (17)

We introduce the variational distribution for P (U), P (V ),
and P (x0) as q(U) ∼ N (µq, Sq), q(V ) ∼ N (µr, Sr) and
q(x0) ∼ N (mx0 , Px0), respectively, and define

q(x,G, V, F, U) =q(x0)q(U)q(V )
k∏

l=1

P (xl|xl−1, Fl−1)

P (Gl|xl, V )P (Fl−1|xl−1, U), (18)

which is the variational distribution for the joint distribution
p(x,G, V, F, U).

We now derive the ELBO as

logP (y) ≥

=
k∑

l=1

Eq(Gl,xl) logP (yl|xl, Gl) +KL [q(U)||P (U)]

+KL [q(V )||P (V )] +KL [q(x0)||P (x0)] . (19)

The first term in (19) is known as the expectation of the
log-likelihood of the data. From the Gaussian density, we get
the log-likelihood as

logP (yk|xk, Gk) = −D

2
log(2π)− 1

2
log |ArGkG

⊤
k A

⊤
r |

− 1

2
(yk − Cxk)

⊤(ArGkG
⊤
k A

⊤
r )

−1(yk − Cxk). (20)

The second, third, and fourth terms in (19) are the Kullback-
Leibler divergences. Although x0 and U do not appear
explicitly in the first term of the ELBO, they are used in
the calculation of the states x. The marginal distributions for
F and G is obtained from the learned q(U) and q(V ) as

q(F ) =

∫
p(F |U)q(U)dU (21)

q(G) =

∫
p(G|V )q(V )dV. (22)

First, using q(U) and x values from the past iterations (or the
initial values for the first iteration), F is sampled from (21).
Then using (15), Q(xk) is calculated. The initial state x0 is
sampled from q(x0). From x0, states are propagated using (1)
which provides xl with l = 1, . . . , k. Using q(V ) and x, G is
sampled from (22). Thus, we obtain all the required variables
for calculating the ELBO. Since the first term in (19) is an
expectation with respect to Gl and xl, we collect multiple
samples of Gl and xl and approximate the expectation based
on the samples.

By maximizing the ELBO, we infer the trainable param-
eters to perform estimations on state x, covariance matrices
Q(x), and R(x). The trainable parameters for the varia-
tional inference are Θ := (mx0

, Px0
, µq, Sq, µr, Sr, Aq, Ar),

where q(x0) ∼ N (mx0 , Px0), q(U) ∼ N (µq, Sq) and
q(V ) ∼ N (µr, Sr), and Aq and Ar are the scale matrices
used in the Wishart processes. From the trained q(U) and
q(V ) and the corresponding scale matrices Aq and Ar, we
obtain the learned Q(x) and R(x) using (15) and (16),
respectively. Once Q(x) and R(x) are learned, we estimate
the system state using the Kalman filter equations [7] as

x̂k+1|k = Axk +Buk (23)

P̂k+1|k = APkA
⊤ +AqFkF

⊤
k A⊤

q (24)

Sk+1 = CP̂k+1|kC
⊤ +ArGk+1G

⊤
k+1A

⊤
r (25)

Kk = P̂k+1|kC
⊤S−1

k+1 (26)

xk+1 = x̂k+1|k +Kk

(
yk+1 − Cx̂k+1|k

)
(27)

Pk+1 = (I−KkC) P̂k+1|k. (28)

The proposed VB-AKF algorithm is shown in Algorithm 1.

V. NUMERICAL SIMULATIONS

A. Target tracking problem

In this section, we apply Algorithm 1 for a target tracking
example. We assume that the target is moving in a constant
circular motion. In this example, the process has a fixed
state-independent covariance while the measurement noise
covariance R is state-dependent. The measurements are the
range and bearing of the target from the sensor location.

1194

Authorized licensed use limited to: He Bai. Downloaded on December 05,2024 at 22:47:18 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Variational Bayesian learning of KF states,
covariance Q(x), and R(x)

1: Initialize the trainable parameters Θ
2: Provide data D = {y1:k}
3: while Number of iterations ≤ Maximum iterations do
4: Sample x0 from q(X0) ∼ N (mx0 , Px0)
5: while l = 1 : k do
6: Using xl−1 and q(U) sample Fl−1 from (21)
7: Sample wl−1 from N (0, AqFl−1F

⊤
l−1A

⊤
q )

8: Calculate xl from xl = Axl−1 +Bu+ wl−1

9: end while
10: Using x and q(V ) sample G from (22)
11: Compute the log-likelihood in (20)
12: Compute the ELBO in (19)
13: Compute gradients of the ELBO
14: Update Θ from gradient-ascent
15: end while
16: Sample x0 from learned q(X0)
17: while l = 1 : k do
18: Using xl−1 and q(U) sample Fl−1 from (21)
19: Using xl = x̂k+1|k and q(V ) sample Gl from (22)
20: Using equations (23)-(28) calculate xl

21: end while

Specifically, the bearing measurement has state-dependent
and the range has state-independent Gaussian noise.

The dynamics of the target moving in a circular motion
are derived as

xk+1,1

xk+1,2

xk+1,3

xk+1,4

 =


1 0 ∆t 0
0 1 0 ∆t
0 0 cos∆θ − sin∆θ
0 0 sin∆θ cos∆θ



xk,1

xk,2

xk,3

xk,4

+ wk.

(29)
where xk,1 and xk,2 are the positions in a 2-D Cartesian
plane, xk,3 and xk,4 are the 2-D velocities, and wk is a
state-independent Gaussian white noise with wk ∼ N (0, Q).
In this example, we assume that Q is known and state-
independent and focus on estimating R(x).

The measurements are range y1 and bearing y2 given by

yk,1 =
√

x2
k,1 + x2

k,2 + ϵk,1 (30)

yk,2 = arctan(xk,2/xk,1) + ϵk,2 (31)

where ϵk,1 and ϵk,2 are sensor noises. ϵk,1 ∼ N (0, r1)
is state-independent but ϵk,2 ∼ N (0, r2(xk)) is state-
dependent. We use the following variance model for
r2(xk) [10]:

r2(x) = σR(x) = K
g(y1)

cos2(y2)
= K

g
(√

x2
k,1 + x2

k,2

)
cos2(arctan(xk,2/xk,1))

,

(32)
where

g(y) = a0 + a1(a2 − y)2, (33)

K is a constant and a0, a1, a2 are some scalar parameters.

Converting the bearing-range measurements at time step
k into the Cartesian coordinates yields

yk = (yk,1 cos(yk,2) yk,1 sin(yk,2))
T (34)

=

(
1 0 0 0
0 1 0 0

)
xk + ϵ̄k (35)

where ϵ̄k ∈ R2 is a state-dependent noise. If r1 and r2(xk)
are available, the covariance for ϵ̄k is approximated as

cov(ϵ̄k) = W

(
r1 0
0 r2(xk)

)
WT (36)

where

W =

(
cos(yk,2) −yk,1 sin(yk,2)
sin(yk,2) yk,1 cos(yk,2)

)
. (37)

In our simulations, we assume no knowledge of r1 and
r2(x) and apply Algorithm 1 to estimate the covariance
matrix for ϵ̄k.

B. Simulation results

We first use the data for a target moving in a circular
motion at a certain location to learn R(xk) and then test the
learned R(xk) to estimate the states of the target when it is
circling at a different location.

For training, the target is moving in a circular motion
with the origin of the circle at (4, 4) meters and the radius
of the circle being 2 meters. The sensor is located at
the origin of the 2-D plane, i.e., the sensor’s location is
(0, 0) meters. The distribution for the initial state q(x0) is
initialized as q(x0) ∼ N (y11 , y

2
1 , 4, 4), where y11 , y

2
1 are the

first measurement of the target position in the 2-D Cartesian
plane. The prior for the initial state’s distribution is chosen
as P (x0) ∼ N (y11 , y

2
1 , 0, 0). The true initial states of the

target are x0 = (6, 4, 2, 2). For the kernel in (14) we use a
squared exponential (SE) function. We set K = 0.0001 and
a0 = a1 = a2 = 1. To calculate the numerical expectation
in (19), we use 5 samples of xl and 10 samples of Gl.
A learning rate of 0.01 is used with 20000 iterations. All
the training data is utilized in each iteration. We use the
following Q for our simulations

Q =


p2 0 0 0
0 p2 0 0
0 0 p 0
0 0 0 p

 (38)

where p = 0.001. The data generation process for training
and test data is shown in Algorithm 2.

For test, the target is moving in a circular motion with
the center of the circle at (5, 5) meters and the radius of
the circle being 2 meter. The algorithm uses the previously
learned R(x) to perform state estimation from the new
measurements.

We compare the state estimation performance of our
developed VB-AKF with two other KFs. First, we consider
the KF with the true measurement noise covariance (KF-
TMC). In KF-TMC, the true covariance from (36) is used
in the standard Kalman filter equations. Second, we consider
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Algorithm 2 Data generation for target tracking problem
1: while l = 1 : k do
2: Sample wl−1 from N (0, Q))
3: Calculate xl from (1)
4: Sample ϵ1,l ∼ N (0, 1)
5: Calculate r2(xl) = σR(xl) from (32)
6: Sample ϵ2,l from N (0, r2(xl))

7: Calculate yl =

[
y1,l
y2,l

]
=

[ √
x2
k,1 + x2

k,2 + ϵ1,l

arctan(xk,2/xk,1) + ϵ2,l

]
8: Convert y1,l, y2,l into Cartesian position measure-

ments yl =

[
y1,l cos(y2,l)
y1,l sin(y2,l)

]
9: end while

10: Provide data D = {y1:k}

a nominal KF that also uses (36) as the measurement noise
covariance. However, in the nominal KF the r2(xk) has a
fixed value, i.e. r2(xk) = r2 . We first choose r2 = 0.007
for the nominal KF as this is the average value of the varying
r2(xk) for the test data. Later we will show how changing
this value affects the nominal KF.

The 2-D circular motion of the target at test locations
estimated by the KF-TMC, VB-AKF, and the nominal KF
(with r2 = 0.007) are shown in Figure 1. The individual
state estimations are shown in Figure 2. Figure 3 shows the
root mean square error (RMSE) of the estimated states by
the three filters from 100 Monte-Carlo simulations. From the
figures, we observe that the state estimation by the proposed
VB-AKF is comparable to that of the KF-TMC and the
nominal KF. However, for the nominal KF we assume that it
has access to the covariance model in (36) with r2(xk) being
a fixed value. Moreover, we have provided the nominal KF
with the average of the true r2(xk) values.

We now change r2 = 0.007 to r2 = 0.5. The RMSEs for
state estimation on the test data are shown in Figure 5. We
observe that the RMSE for the nominal KF is worse than
before. This shows that the nominal KF is sensitive to the
choice of r2. Also, in practice, the true covariance model (36)
may not be available for the nominal KF, which will further
degrade its performance. In contrast, our developed VB-AKF
does not require any knowledge of the true covariance. It
learns the covariance from raw measurements and performs
state estimation based on that. Figure 4 shows the covariance
values estimated by the VB-AKF on the test data locations.

VI. CONCLUSIONS

We present a VB-AKF algorithm that performs state
estimation of a dynamical system when the system has an
unknown state-dependent process and measurement noise.
The presented VB-AKF combines the traditional Kalman
filter with variational Bayesian inference of the Wishart
process. From the measurements, the algorithm estimates
the states together with the state-dependent process and
measurement noise covariance matrices. We validate the
proposed algorithm and demonstrate its effectiveness using a
target-tracking simulation example. Ongoing work is focused

Fig. 1. Circular motion of the target in the 2-D plane for test data locations.

Fig. 2. States of the target estimated by the three filters for test data
locations.

on employing Kalman smoothing in the VWP learning to
further improve the performance of the VB-AKF.
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