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a b s t r a c t

Approximate methods to solve stochastic optimal control (SOC) problems have received significant
interest from researchers in the past decade. Probabilistic inference approaches to SOC have been
developed to solve nonlinear quadratic Gaussian problems. In this work, we propose an Expectation–
Maximization (EM) based inference procedure to generate state-feedback controls for constrained SOC
problems. We consider the inequality constraints for the state and controls and also the structural
constraints for the controls. We employ barrier functions to address state and control constraints. We
show that the expectation step leads to smoothing of the state-control pair while the maximization
step on the non-zero subsets of the control parameters allows inference of structured stochastic
optimal controllers. We demonstrate the effectiveness of the algorithm on unicycle obstacle avoidance
and four-unicycle formation control examples. In these examples, we perform an empirical study
on the parametric effect of barrier functions on the state constraint satisfaction. We also present a
comparative study of smoothing algorithms on the performance of the proposed approach.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and datamining, AI training, and
similar technologies.
1. Introduction

Stochastic optimal control (SOC) is defined as the problem
f finding a controller that minimizes an expected cost in the
resence of uncertainty and dynamics constraint. The uncer-
ainty is either in the form of noisy observations or process
oise that approximates model uncertainties in the system. A
olution to the SOC problem can be found by solving the nonlin-
ar stochastic Hamilton–Jacobi–Bellman (HJB) equation (Stengel,
994). In general, its numerical solution is computationally in-
ractable due to the curse of dimensionality resulting from the
iscretization of the space and time (Todorov, 2006). A fast and
ocally approximate solution to the SOC problem is the Linear
uadratic Gaussian (LQG) case where the SOC problem is solved
or the noise-free optimal trajectory and a local LQG model is con-
tructed as perturbation around this trajectory. The local linear
uadratic regulator computes a reasonable approximate solution
o the original SOC problem if the model is close to the optimal
oise-free trajectory.

✩ The work was supported by the U.S. National Science Foundation (NSF)
under Grant Nos. 1925147, 2212582, and 2241585. The material in this paper
was partially presented at the 2023 American Control Conference (ACC), May
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publication in revised form by Associate Editor Simone Formentin under the
direction of Editor Alessandro Chiuso.
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The general duality between control and estimation (Todorov,
2008) and the notion of relating the cost and log-likelihood have
motivated a new class of methods to approximately solve the SOC
problem in a non-LQG setting. These methods are often referred
to as control-as-inference methods in literature which solve the
SOC problem as an inference problem on a probabilistic graphical
model (PGM). A PGM is a graphical model encoding complex
relationships between random variables in the form of a graph.
It is widely used in statistics and machine learning to model
joint probability distributions of random variables. This graphical
representation of probability distribution is advantageous as it
allows the decomposition of the joint probability distribution as
a product of factors by exploiting the structure of the model.
Moreover, algorithms developed in this framework have shown
propitious results in real-world applications (see e.g. Itoh et al.,
2017; Rawlik, Toussaint, & Vijayakumar, 2010; Rückert & Neu-
mann, 2013; Toussaint, 2009; Watson, Abdulsamad, Findeisen, &
Peters, 2021; Watson, Abdulsamad, & Peters, 2020). A common
limitation of the above inference-based control approaches is the
restriction to linear feedback controllers to achieve closed-form
updates in a Gaussian setting. It is well known that nonlinear
systems typically admit nonlinear optimal controllers, and hence
the use of the existing linear controllers will yield sub-optimal
performance in a nonlinear setting. In our prior work (Syed &
Bai, 2023), we propose the Parameterized Input Inference for
Control (PIIC) algorithm where the controller is parameterized
by a (possibly) nonlinear basis function of the state which allows
data mining, AI training, and similar technologies.
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ormulating the unconstrained SOC problem as a parameter in-
erence problem. Hence, one of the contributions of this paper is
hat we employ a barrier function approach to solve constrained
OC problems using the PIIC algorithm.
In recent years, the design of structured controllers has re-

eived a lot of attention for applications in large-scale systems
nd multi-agent systems. A structured controller reduces the
omputational load by translating the topology of networked
ystems to the sparsity of the controller, facilitating distributed
ontrols at subsystems. An example of structured control is dis-
ributed optimal control for multi-agent systems, where the con-
rol of each agent contains information only from a subset of
he agents. However, to the best of our knowledge, none of the
xisting inference-based control approaches have been developed
n the structured control domain owing to the challenge of en-
oding and preserving the structure imposed on the control gain.
ence, the main contribution of this work is that we propose a
tructured-PIIC algorithm to solve structured SOC problems in an
nference-based control framework.

The main contributions of this work are as follows: (1) We en-
ance the formulation of the PIIC algorithm (Syed & Bai, 2023) to

address constrained SOC problems, where the constraints include
both state, control constraints and structural constraints on the
state-feedback controllers. Although structured optimal control
has been investigated for deterministic systems (see e.g., Fardad
& Jovanović, 2014; Jovanović & Dhingra, 2016; Lin, Fardad, &
ovanović, 2011), our approach provides an effective structured
control solution for stochastic systems. The resulting algorithm
is an instance of the EM procedure which has a guaranteed
convergence to local optima. (2) We empirically demonstrate the
effectiveness of the proposed algorithm with respect to constraint
satisfaction and structured control using unicycle control prob-
lems. The algorithm outperforms the commonly-used Iterative
Linear Quadratic Gaussian (ILQG) approach (Todorov & Li, 2005)
ith reduced mean cost and cost variance.
The rest of the paper is organized as follows. Section 2 re-

views the formulation of the SOC problem in an inference-based
control framework. Section 3 presents our algorithm to address
constrained SOC problems. Section 4 demonstrates the efficacy
f our approach on a unicycle model in constrained control and
tructured control scenarios. Section 5 concludes the paper.

Notation: Let N (y|a, A) represent a random variable y satisfying
a Gaussian distribution in the normal form with mean a ∈ Rd

and covariance A ∈ Rd×d given by N (y|a, A) =
1

(2π )
d
2 |A|

1
2
exp

−
1
2 (y− a)⊺A−1(y− a)

)
, where |A| represents the determinant of

. We use blkdiag(A1, A2, . . . , An) to denote a block diagonal
atrix with matrices A1, A2, . . . , An on its principal diagonal. In

denotes the identity matrix of size n. ⊗ denotes the Kronecker
roduct. Tr(·) denotes the trace operator, and E(·) denotes the
xpectation operator. 1m×n, 0m×n denote the m×n matrices with
ntries 1 and 0, respectively.

. Inference-based stochastic optimal control

Consider a dynamical system given by

t+1 = F (τt )+ ηt , (1)

where τt = [x⊺t , u
⊺
t ]

⊺
∈ Rnx+nu is the state-control vector at

time t , xt ∈ Rnx and ut ∈ Rnu denote the state and control at
time t , respectively. F : Rnx × Rnu → Rnx is a nonlinear mapping
of xt , ut , and ηt ∼ N (ηt |0,Σηt ) represents additive Gaussian
noise that models the uncertainty in the dynamics. For a given
finite-horizon T , and a state-control sequence [xT , τ0:T−1], define
the trajectory cost as C(x , τ ) = c (x )+

∑T−1 c (τ ), where
T 0:T−1 T T t=0 t t

2

ct : Rnx+nu → R is a nonlinear mapping from the state-control
space to the cost space for t < T and cT : Rnx → R is a nonlinear
mapping from the state space to the cost space at the terminal
time T . The considered SOC problem is given by

min
u0:T−1

E[C(xT , τ0:T−1)] (2)

such that xt+1 ∼ N (xt+1|F (τt ),Σηt ),
K(τt ) > 0,

where K(·) ∈ Rnin is such that Kj(·) : Rnx × Rnu → R, j =

1, . . . , nin is a nonlinear mapping that defines an inequality con-
straint. We assume that the feedback controller ut at each time
step is parameterized by a (possibly nonlinear) basis function of
the state, Bt (xt ) ∈ Rnb , and unknown parameters Θt ∈ Rnb×nu

such that

p(ut |xt ) = N (ut |Θ
⊺
t Bt (xt ),Σδt ), (3)

where δt represents a zero-mean Gaussian noise with covariance
Σδt that models the uncertainty in control.

The PGM for the SOC problem (2) is constructed with the
state-control sequence as latent variables and the sequence of
binary random variables Ot ∈ {0, 1}, t = 0, . . . , T , as observed
variables. The binary random variable Ot represents the notion
of optimality or task fulfillment at each time step, i.e., Ot = 1
when optimal state and action are observed at time t . Similar
to the general duality between estimation and control (Todorov,
2008), probabilistic inference approaches relate the probabilities
to cost by assuming that the negative log-likelihood of observing
the optimality/task fulfillment at time t is proportional to the
tage cost ct , i.e.,

p(Ot = 1|τt ) ∝ exp{−ct (τt )}. (4)

Hence, the likelihood of observing optimality at each time step
is high if and only if the cost incurred is low. We have shown in
our prior work (Syed & Bai, 2023) that the parameterization in (3)
yields nonlinear controllers for the unconstrained version of (2)
using the EM procedure. The focus of this work is to extend the
formulation to constrained and structured SOC problems.

3. Constrained stochastic optimal control

We consider two types of constraints in the SOC problem.
Section 3.1 addresses inequality constraints on τt , which are
particularly useful for maintaining safety of the system and cre-
ating bounded controls. Section 3.2 examines structural con-
straints on the control, which can be used for designing dis-
tributed controllers. Corresponding examples are demonstrated
in Section 4.

3.1. State and control constraints

We present an approach to embed inequality constraints on
τt into the inference-based control formulation in Section 2. We
are motivated by the barrier function method, which is a popular
approach in optimization literature to solve a constrained opti-
mization problem as a sequence of unconstrained optimization
problems by adding a high cost for approaching the boundary of
feasibility region from the interior (Bertsekas, 2016, Chapter 5). It
is also similar to the potential function approach commonly used
for collision avoidance and motion planning (Kavraki & LaValle,
2008).

Let the safe set for constraint j = {1, . . . , nin} be given by
s,j = {τt ∈ Rnx+nu |Kj(τt ) > 0}, where Cs,j is assumed to be

non-empty ∀j. A barrier function B(τ ) is continuous in the interior
of Cs,j and goes to ∞ as one of the constraints Kj approaches
0 from positive values. Motivated by this approach, we define a
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elaxed barrier function for each constraint, denoted by cin,j(τt ),
that evaluates to zero if and only if τt ∈ Cs,j, and is positive
otherwise, i.e.,

cin,j(τt ) = (ψj(τt ))⊺Q in
j ψj(τt )

{
= 0, if τt ∈ Cs,j
> 0, otherwise,

(5)

where ψ(τt ) is a (possibly) nonlinear function of τt . The cin,j(τt )
can be considered the cost for the satisfaction of constraint j. It
is positive when the constraint is violated and zero otherwise. As
shown later, we employ a likelihood function exp(−cin,j(τt )) to
encode the satisfaction of constraint j into our inference-based
control formulation. According to (5), the likelihood function
evaluates to 1 in the safe set Cs,j, which is the maximum of
exp(−cin,j(τt )). Thus, satisfaction of constraint j is encoded with
a higher likelihood of occurrence.

Let Oτ
t , O

in,j
t denote the binary random variables correspond-

ing to observing optimality in the cost, and in the satisfaction of
constraint j, respectively. We prescribe p(Ot = 1|τt ) ∝ p(Oτ

t =

1|τt )
∏

j p(O
in,j
t = 1|τt ). Letting p(Oin,j

t = 1|τt ) ∝ exp(−cin,j(τt )),
we rewrite (4) as

p(Ot = 1|τt ) ∝ exp{−ct (τt )−
nin∑
j=1

cin,j(τt )}. (6)

Suppose that the trajectory cost ct (τt ) is quadratic. Adding the
barrier function in (5) as a cost to ct (τt ) yields ∀ t = 0, . . . , T ,

ct (τt )+
nin∑
j=1

cin,j(τt ) = (xt − xdt )
⊺Qt (xt − xdt )

+ (ut − ud
t )

⊺Rt (ut − ud
t )+

nin∑
j=1

(ψj(τt ))⊺Q in
j (ψj(τt )), (7)

where Qt ⪰ 0, Rt ⪰ 0, and Q in
j ⪰ 0, j = 1, . . . , nin, are the cost

matrices. It then follows from (6) and (7) that

p(Ot = 1|τt ) ∝ exp{−α(z∗t − h(τt ))⊺Γt (z∗t − h(τt ))}

= N (zt = z∗t |h(τt ), (αΓt )−1), (8)

where Γt = blkdiag(Qt , Rt ,Q in
1 , . . . ,Q

in
nin ) ∈ Rn∗×n∗ , h(τt ) =

τ
⊺
t ψ(K1(τt )) · · · ψ(Knin (τt ))

]⊺

∈ Rn∗ , z∗t =

(τ dt )
⊺ 0 · · · 0

]⊺
∈ Rn∗ with τ dt

⊺
= [(xdt )

⊺ (ud
t )

⊺
], n∗ =

nx + nu + nin), and α is the scale factor (hyperparameter) intro-
uced to optimize the covariance of Ot to maximize the expected
og-likelihood.

An optimal trajectory is computed as the mean of the condi-
ional or joint posterior distribution of the state-control trajectory
iven that the optimality is observed throughout the entire trajec-
ory, i.e., O0:T = 1. The objective of the PIIC algorithm is to infer
he parameters Θ0:T−1 and α that maximize the log-likelihood,
.e.,
∗

0:T−1, α
∗
= argmax

Θ0:T−1,α
log[p(O0:T = 1|Θ0:T−1, α)]. (9)

he optimization problem in (9) is generally intractable. Thus,
e resort to computing the parameters using the EM algorithm.
he EM algorithm is an iterative algorithm used to find max-
mum likelihood solutions for models with latent variables. It
erforms consecutive expectation (E-step) and maximization (M-
tep) steps in each iteration. The E-step computes the expected
og-likelihood over the posterior distribution of latent variables
nd the consequent M-step computes the parameters that maxi-
ize this expectation. Each iteration of the EM algorithm results

n a non-decreasing expected log-likelihood, thus guaranteeing
3

onvergence to a local maximum. We refer interested readers
o Bishop (2006) for a detailed introduction to the EM algorithm.

Denote τ0:T−1 by τ , O0:T = 1 by O, and Θ0:T−1 by Θ. Then the
bjective in (9) is rewritten as

og[p(O|Θ, α)] = log
[∫

p(xT , τ ,O|Θ, α)dτdxT
]
. (10)

he integrand in (10) is proportional to the joint posterior distri-
ution given by

(xT , τ ,O,Θ, α) = p(x0)p(OT = 1|xT , α)
T−1∏
t=0

p(xt+1|τt )p(Ot = 1|τt , α)p(ut |xt ,Θt ). (11)

ntroducing q(xT , τ ), a known tractable distribution of xT and τ ,
e obtain

og[p(O|Θ, α)] = log
[

E
q(xT ,τ )

[
p(xT , τ ,O|Θ, α)

q(xT , τ )

]]
. Using Jensen’s inequality, we further get

log[p(O|Θ, α)] ≥ E
q(xT ,τ )

log
[
p(xT , τ ,O|Θ, α)

q(xT , τ )

]
. (12)

Note that (12) becomes equality for q(xT , τ ) = p(xT , τ |O). The
PIIC algorithm optimizes the right-hand side of (12) based on
the EM procedure. Hence, convergence to a local maximum is
guaranteed (Moon, 1996).

Substituting (11) in the M-step yields

argmax
Θ,α

E
q(xT ,τ )

[
log p(x0)+

T−1∑
t=1

log p(xt+1|τt )+

T∑
t=0

log p(Ot = 1|τt , α)+
T−1∑
t=0

log p(ut |xt ,Θt )
]
. (13)

To find Θk+1
t , we take gradient of (13) with respect to Θt and set

it to zero, which yields

Θk+1
t =

[
E

q(τt )
(Bt (xt )(Bt (xt ))⊺)

]−1

E
q(τt )

(Bt (xt )u
⊺
t ). (14)

It is straightforward to show that if the control parameter is
time-invariant i.e., Θ0:T−1 = Θ then

Θk+1
=

[
E
q(τ )

(T−1∑
t=0

Bt (xt )(Bt (xt ))⊺
)]−1 E

q(τ )

(T−1∑
t=0

Bt (xt )u
⊺
t
)
. (15)

Similarly, to find αk+1 we take gradient of (13) with respect to α
and set it to zero, which yields

αk+1
=

(T − 1)nz + nzT∑T
t=0 Tr(Γt E

q(xT ,τ )
[(z∗t − zt )(z∗t − zt )⊺])

, (16)

where q(xT , τ ) = p(xT , τ |O).
In this paper, we define approximate inference as the inference

of the latent variables of a PGM. Approximate inference can also
be defined as an approximation of the true posterior with a family
of distributions that minimizes the KL divergence (Rawlik, Tous-
saint, & Vijayakumar, 2013). Let qπ (τ ) =

∏T−1
t=0 p(ut |xt )p(xt+1|τt ),

be the state-control distribution parameterized by Θ and qs(τ ) =
p(τ |O) be the smoothed state-control distribution.

Proposition 1. The minimization of the KL divergence KL(qs∥qπ ) is
equivalent to the minimization of the objective (13) with respect to
the parameter Θ .
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roof. From the definition, we have

L(qs∥qπ ) =
∫
τ

qs log
(

qs
qπ

)
dτ

= E
qs
log(qs)− E

qs
log(qπ ). (17)

o minimize (17) w.r.t. Θ , we take the gradient and set it to zero,
resulting in

Θ∗
=

[
E
qs

[
T−1∑
t=0

Bt (xt )(Bt (xt ))⊺
]]−1 [

E
qs

[
T−1∑
t=0

Bt (xt )u
⊺
t

]]
, (18)

hich is equivalent to (15). □

.2. Structured control

Structured optimal control primarily deals with the design of
tatic optimal controllers for interconnected systems with topo-
ogical constraints. These topological constraints are translated
s sparsity in the feedback gain. The problem of designing op-
imal controllers with structured feedback gains has been well
tudied for deterministic systems (e.g., see Fardad & Jovanović,
014; Jovanović & Dhingra, 2016; Lin et al., 2011). However, it
as not been fully explored for stochastic systems. We impose
structural constraint on the controller gain matrix Θt . We

assume that the state xt and the control ut are composed of
N subsystem states and M subcontrols, respectively, i.e., xt =

(x1t )
⊺, . . . , (xNt )

⊺
]
⊺ and ut = [(u1

t )
⊺, . . . , (uM

t )⊺]⊺. The xit and uj
t

can be multidimensional, i = 1, . . . ,N , j = 1, . . . ,M . Denote
y bi(xit ) ∈ Rnbi and by θ ijt the basis function corresponding to
i
t and the submatrix of the controller gain Θt corresponding to
j and bi(xit ), respectively. The subcontrols uj

t , j = 1, . . . ,M , are
arameterized as
j
t =

[
(θ1jt )⊺ (θ2jt )⊺ · · · (θNjt )⊺

]
Bt (xt )+ δ

j
t , (19)

here Bt (xt ) = [(b1(x1t ))
⊺ (b2(x2t ))

⊺
· · · (bN (xNt ))

⊺
]
⊺, δjt ∼ N (δjt |0,

σ
j
t )2). We assume that δjt , j = 1, . . . ,M , are i.i.d. zero mean
aussian noise. Following the notation in (3), we have

t =

⎡⎢⎣ (θ11t )⊺ (θ21t )⊺ · · · (θN1
t )⊺

...
...

...
...

(θ1Mt )⊺ (θ2Mt )⊺ · · · (θNMt )⊺

⎤⎥⎦
⊺

.

et F be the set of ordered pairs such that (i, j) ∈ F if the
ubcontrol uj

t can receive information from the subsystem state
i
t . Consider the structured SOC problem:

min
u0:T−1

E[C(xT , τ0:T−1)] (20)

uch that xt+1 ∼ N (xt+1|F (τt ),Σηt ),

K(τt ) > 0, θ ijt = 0nbi×nuj
, if (i, j) /∈ F .

ur key idea to solve the structured SOC problem is to decompose
he problem into multiple unstructured SOC problems in a lower
imensional subspace of nonzero entries corresponding to each
lement of ut . Then, the inferred parameters are mapped back
o the original vector space through an inverse transformation
hich preserves the structure during the inference procedure.
To capture the structural constraints, we define a structural

dentity (under element-wise matrix multiplication) of the feed-
ack gain Θt , denoted by Φ ∈ Rnb×nu . The Φ is a block ma-
rix whose (i, j)th block is all ones if uj

t depends on bi(xit ) and
therwise all zeros, that is, ∀ i = 1, . . . ,N , j = 1, . . . ,M ,

ij =

{
1nbi×nuj

, if (i, j) ∈ F
0 , otherwise.

(21)

nbi×nuj

4

Let up
t be the pth element of ut and Φp ∈ Rnb be the pth column

of Φ , where p = {1, . . . , nu}. For every Φp, there exists an Sp :

Rnb → Rñb that maps Φp to its lower dimensional non-zero
entries Φ̃p ∈ Rñb , where ñb ≤ nb. Hence, Sp can be applied to the
pth column of Θt , denoted by Θp

t , to extract its non-zero entries,
denoted by Θ̃p

t ∈ Rñb , i.e., Θ̃p
t = SpΘ

p
t . Similarly, we let B̃p

t (xt ) =
SpB

p
t (xt ). Also, for every Sp, there exists an S ′

p : Rñb → Rnb that
maps Θ̃p

t back to Θp
t .

For example, consider an interconnected system with four
subsystem states and three subcontrols, i.e., xt = [x1t x2t x3t x4t ]

⊺
∈

R4 and ut = [u1
t u2

t u3
t ]

⊺
∈ R3. Assume that uj

t ’s are linear func-
tions of the states. Consider the following structural constraints
on uj

t ’s: u1
t depends only on x1t and x3t , u

2
t only on x1t , x

2
t , and x4t ,

and u3
t only on x3t and x4t . Then (19) takes the form

ut =

⎡⎣θ11 0 θ31 0
θ12 θ22 0 θ42

0 0 θ33 θ43

⎤⎦
  

Θ
⊺
t

Bt (xt )  
xt

+δt ,

where δt = [δ1t δ
2
t δ

3
t ]

⊺. By definition, Φ =

[1 0 1 0
1 1 0 1
0 0 1 1

]⊺

.

Then, Φ1 =
[
1 0 1 0

]⊺, S1 =

[
1 0 0 0
0 0 1 0

]
and S ′

1 = S⊺
1 .

Therefore, Θ̃1
t = S1Θ

1
t = [θ11 θ13]⊺ and Θ1

t = S ′

1Θ̃
1
t . Similarly,

S2, S3 can be computed corresponding to Θ2
t , Θ

3
t respectively.

Using the notation Θ̃p
t and B̃p

t (xt ), taking the gradient of (13)
against Θ̃p

t , and equating it to zero yields the update equation for
Θ̃

p
t as

(Θ̃p
t )

k+1
=

[
E

q(τt )
[B̃p

t (xt )(B̃
p
t (xt ))

⊺
]

]−1

E
q(τt )

[B̃p
t (xt )(u

p
t )

⊺
]. (22)

From an implementation perspective, a time-invariant control
parameter Θ may be advantageous. Following a similar approach
to (22), we obtain the time-invariant parameter update as

(Θ̃p)k+1
=[

E
q(τ )

[T−1∑
t=0

B̃p
t (xt )(B̃

p
t (xt ))

⊺
]]−1 E

q(τ )

[T−1∑
t=0

B̃p
t (xt )(u

p
t )

⊺
]
. (23)

The covariance of the controller σ p is updated ∀ p = 1, . . . , nu
and t = 0, . . . , T − 1 using

σ
p
t = E

q(τ )
(up

t − (Θ̃p
t )

⊺B̃t (x
p
t ))(u

p
t − (Θ̃p

t )
⊺B̃t (x

p
t ))

⊺. (24)

Algorithm 1 summarizes the structured parameterized input in-
ference for control (structured PIIC) algorithm. It performs the
E-step and the M-step iteratively until convergence. The structure
imposed on the control parameter Θ is preserved by performing
updates on the non-zero subsets of each subsystem using (22)
and (24). In our implementation, we claim convergence of the
algorithm if the infinity norm of the difference between the state
trajectories in two consecutive iterations is less than a threshold.
As shown in the Appendix, Algorithm 1 recovers the Gaussian
I2C (Watson et al., 2021) for linear dynamics without any con-
straints if Bt (xt ) = [x⊺t 1]⊺, and Θt does not have a specific
structure.

4. Simulation examples

In this section, we demonstrate the effectiveness of the PIIC
algorithm for inference of constrained and structured stochastic
optimal controllers. In Section 4.1, we demonstrate the effec-
tiveness of the barrier function approach for a unicycle obstacle



S.P.Q. Syed and H. Bai Automatica 171 (2025) 111978

w
t
[

r
u

g
t
t
t
p
a
G
p
l
g
t

I
n
c
o

Algorithm 1 Structured PIIC algorithm
repeat
E-step: Compute

qk+1
= p(xT , τ |O,Θk, αk)

Q (Θ, α|Θk, αk) = E
(xT ,τ )∼qk+1

log[p(xT , τ ,O|Θ, α)]

M-step:
for t= 0 : T − 1 do
for p = 1 : nu do

Update Θ̃p
t , σ

p
t using (22), (24), respectively.

Θ
p
t = S ′

p(Θ̃
p
t )

end for
Update Θt =

[
Θ1

t · · · Θ
nu
t
]⊺

Update Σδt = blkdiag(σ 1
t , · · · , σN

t )
end for
Update α using (16)

until convergence

avoidance problem. We also study the performance of the PIIC for
the choice of two smoothing approaches and compare them with
the ILQG baseline. In Section 4.2, we illustrate the utility of the
PIIC for distributed formation control of four unicycle robots. The
common simulation parameters are step size dt = 0.05 sec, and
the state cost matrix Qt = I3.

4.1. Obstacle avoidance

Consider a unicycle robot whose dynamics are given as

Xt+1 = Xt + dt f (Xt , ut )+ ηt , (25)

here at any time instant t , Xt = [xt yt θt ]⊺ ∈ R3 denotes
he 2-dimensional positions and heading of the robot, ut =

vt ωt ]
⊺
∈ R2 denotes the linear and angular velocities of the

obot, ft (Xt , ut ) = [vt cos(θt ) vt sin(θt ) ωt ]
⊺ denotes the nonlinear

nicycle dynamics, ηt ∼ N (ηt |0,Σηt ) corresponds to the process
noise, and dt denotes the step size for discretization. We consider
the controller parameterization of the form (3) where B(Xt ) =

[xt yt θt 1]⊺.
The goal of the SOC problem is for the unicycle to navigate to

a desired position without collision with obstacles. Let A be the
set of obstacles. For j ∈ A, we define

Kj(τt ) = [(xt − xobs,j)2 + (yt − yobs,j)2 − (robs,j + rs)2],

where (xobs,j, yobs,j) and robs,j are the center and the radius of the
jth obstacle, respectively, and rs denotes its safety radius. Let the
unsafe set for the robot be Cu = {(x, y) ∈ R2

|Kj(x, y) < 0, ∀ j ∈
A}. Then, the safe set for the collision avoidance constraint Cs =
R2

\Cu. In our simulations, we choose ψj(τt ) in (5) as

ψj(τt ) =
{
0, if τt ∈ Cs
γ (1− tanh(ϵKj(τt ))), otherwise,

(26)

where γ , ϵ ∈ R+ are tunable parameters to vary the tightness of
the constraint and smoothness of ψj(·), respectively. For simula-
tions, we choose γ = 1 and ϵ = 1 in the barrier function (26).
Other simulation parameters are given in Table 1. Fig. 1 shows
the variation of p(Oin,j

t = 1|τt ) with respect to γ in (26). We see
that as γ increases, the constraint becomes more conservative,
resulting in a lower likelihood of constraint violation.

We investigate the effect of the choice of smoothing algorithm
on the overall performance of the PIIC algorithm. We employ un-
scented smoothing (UPIIC), and factor graph optimization (FGPIIC)
5

Fig. 1. Variation of p(Oin,j
t = 1|τt ) for Q in

j = 1 and different values of γ .

Fig. 2. Comparison of the trajectories with the feedback controllers inferred
using ILQG, PIIC with unscented smoothing, and factor graph optimization.

Table 1
Simulation parameters for the unicycle example.
Simulation parameters Value

Process noise covariance, Σηt diag(10−3, 10−3, 10−3)
Cost matrices, {Qt,obs,QT , Rt } {20, 10 I3, 0.5 I2}

in the E-step of Algorithm 1. The unscented smoothing is analo-
ous to the unscented Kalman smoothing (Särkkä, 2008) except
hat we utilize it to compute the smoothed state-control distribu-
ion rather than just the state distribution. Factor graph optimiza-
ion solves the smoothing problem as a nonlinear least squares
roblem. This is possible due to the fact that the maximum-
-posteriori (MAP) inference on a nonlinear factor graph with
aussian noise models is equivalent to nonlinear least squares
roblem (Dellaert & Kaess, 2017). We interface with the GTSAM
ibrary (Dellaert & Contributors, 2022) to implement the factor
raph generation and optimization. This approach is well known
o be computationally efficient.

We compare the performance of the UPIIC, FGPIIC with the
LQG algorithm (Todorov & Li, 2005). The ILQG algorithm does
ot accommodate state constraints. Hence, we use the modified
ost (7) with the barrier function candidate (26) to impose the
bstacle avoidance constraint for a fair comparison. Fig. 2 shows

the trajectories for 50 MC simulations with the corresponding
covariance ellipses for T = 200 steps.

The mean and standard deviation of the incurred trajectory
cost are shown in Table 2. We observe that the FGPIIC has the
superior performance followed by UPIIC and ILQG. This can be
attributed to the fact that each iteration of the FGPIIC performs
multiple iterations of factor graph optimization until a level of
convergence is reached whereas the UPIIC performs only one pass
of the smoothing step per iteration, yielding in sub-optimal tra-
jectories compared to FGPIIC. We also observe that the ILQG ap-
proach suffers from poor convergence, leading to higher variance
in the trajectories and a greater number of constraint violations.
We have repeated the same comparison for a target reaching
problem without obstacles and the resulting trend was similar.
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Fig. 3. Comparison of the trajectories of unicycle model with covariance ellipses
for γ = 0.5 and γ = 100.

Table 2
Comparison of the average cost and standard deviation for 50 MC simulations
with the feedback controllers inferred using ILQG, UPIIC, and FGPIIC for unicycle
target reaching example with and without obstacles.

Without obstacles With obstacles

UPIIC 64.12 ± 4.26 92.26 ± 31.39
FGPIIC 58.69 ± 3.18 61.89 ± 4.61
ILQG 79.16 ± 19.02 189.02 ± 196.68

Table 3
Comparison of the number of constraint violations occurred in 50 MC
simulations for various values of γ .
γ 1 2 5 ≥10

# of constraint violations 38 56 11 0

We also perform an empirical study on the effect of γ in the
arrier function (26) on the inferred controller and the trajectory
f the unicycle robot. We restrict to a single obstacle to visualize
more pronounced effect. Fig. 3 shows the two trajectories

esulting from controllers inferred using different values of γ . We
bserve that for higher values of γ , the minimum distance of the
rajectory from the obstacle increases, i.e., the controller becomes
ore conservative. Due to the presence of process noise there is

inite probability of constraint violation. However, for higher val-
es of γ , the conservatism of the controller yields less constraint
iolations, i.e., the deviations from the inferred trajectory exist
ut remain in the safe set Cs, resulting in satisfaction of the actual
onstraint with a higher probability. We corroborate the claim in
able 3, which shows that the number of constraint violations
ecreases as γ increases.

.2. Formation control

We consider formation control of four unicycle robots mod-
led as (25). The objective is to find a stochastic optimal controller
hat navigates to desired goal positions with minimal control
nergy applied by each agent while closely maintaining a desired
quare formation and avoiding collision with obstacles. We define
he individual cost of robot i as Ci

x,al(τ
i
t ) = (X i

t − X i
d)

⊺Q i
t (X

i
t −

i
d) +

∑nin
j=1 ψ

⊺
j (τ

i
t ) Q i,in

j ψj(τ it ), C
i
u,al(τ

i
t ) = (ui

t )
⊺Ri

t (u
i
t ), where at

ime t , X i
t and X i

d denote the state and the desired state of agent
, respectively, ui

t denotes the control input of agent i, and ψj(·) is
he barrier function as in (26). Let Xt = [(X1

t )
⊺ (X2

t )
⊺
· · · (XN

t )⊺]⊺
RNnx be the state of all the agents i ∈ V in the formation. We

ssume a linear controller for each agent of the form E(ui
t ) =

i
tXt + kit . Let B ∈ RN×M denote the incidence matrix of an
ndirected graph G = {V, E} corresponding to the formation,
6

able 4
imulation parameters for the formation control example.
Simulation parameters Value

Process noise covariance, Σ i
ηit

diag(10−3, 10−3, 10−4)

Linear velocity limits, vit [0, 8] m/s
Angular velocity limits, ωi

t [−1.5, 1.5] rad/s
{Q i

t ,Q
i
t,obs,Q

i
t,lim,Q

i
T , R

i
t ,Qt,f } {I3, 50 I4, 50 I4, 50 I3, I2, 50 I12}

Fig. 4. Snapshots of X-Y trajectory of the unicycle formation with corresponding
covariance ellipses.

where M is the cardinality of the edge set E . Define the formation
ost as Cnl(τt ) = ((B ⊗ Inx )

⊺Xt − δ∗)⊺Qf ((B ⊗ Inx )
⊺Xt − δ∗), where

∗ = [δ1
∗

⊺
δ2
∗

⊺
· · · δM

∗

⊺
]
⊺
∈ RMnx represents the vector of formation

argets along each edge e ∈ E , and Qf is a positive semi-definite
lock diagonal cost matrix. For the unit square formation in the
imulation, V = {1, 2, 3, 4}, E = {(2, 1), (4, 1), (2, 3), (4, 3)}, and
∗ = [0 1 0 − 1 0 0 0 1 0 1 0 0]⊺. The total trajectory cost for the
ptimal formation control problem is given by C(x0:T , u0:T−1) =
T
t=0 Cnl(τt )+

∑4
i=1[

∑T
t=0 C

i
x,al(τ

i
t )+

∑T−1
t=0 Ci

u,al(τ
i
t )], where T is the

ime horizon set to 100 steps. Additional simulation parameters
re given in Table 4.
We impose a 3-agent partially decentralized structure on the

ontroller wherein each agent has access to the state information
f itself and two other agents in the formation. Fig. 4 shows the
ormation trajectory of the robots with covariance ellipses using
lgorithm 1. We observe that the agents reach close to their
arget positions while avoiding the obstacles and respecting the
quare formation as closely as possible.
We next investigate this problem under three additional con-

roller structures. A centralized structure is where each agent has
access to the state information of all the agents in the formation,
a 2-agent partially decentralized structure is where each agent has
access to the state information of itself and the agent diagonally
opposite to it in the formation, and a decentralized structure is
where each agent has access to only its own state information.
Table 5 shows the average cost and standard deviation for 50
MC simulations. The centralized structure incurs the least average
cost owing to its full information of the global state of the agents.
It is followed by the 3-agent and 2-agent partially decentralized
structures, respectively. The decentralized structure incurs the
highest average cost. The increase of the cost is correlated to
the decrease in the information available to each agent, yielding
controllers with degrading performance.

5. Conclusions and future work

We present a parameterized inference-based approach to ap-
proximate constrained SOC. Our approach employs a barrier func-
tion to impose inequality constraints on the states and controls,
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able 5
omparison of the average cost and standard deviation for 50 MC simula-
ions with different controller structures for the 4-unicycle formation control
xample.
Controller structure Average cost

Centralized 664.67 ± 120.61
Partially decentralized (3-agent) 713.21 ± 116.82
Partially decentralized (2-agent) 728.88 ± 128.41
Decentralized 749.22 ± 135.88

and creates controllers satisfying given structural constraints. We
establish that our approach encompasses existing algorithms as
special cases, such as the LQR and the I2C algorithm. The nu-
merical simulations demonstrate that our approach outperforms
the ILQG for constrained control and that using factor graph
optimization incurs lower average cost than unscented smooth-
ing. Our approach can also optimize control performance while
satisfying structural constraints. Future work includes investigat-
ing structured control in a model-free setting for multi-agent
systems.

Appendix. Equivalence of PIIC and I2C

We suppress the notation q(τ ) under the expectation for
revity. Using the block matrix inversion identity in Petersen and
edersen (2008), the inverse term in (14) yields

[Bt (xt )Bt (xt )⊺]−1
=

[
Σ−1

xt −Σ−1
xt µxt

−µ
⊺
xtΣ

−1
xt 1+ µ⊺

xtΣ
−1
xt µxt

]
, (27)

where µxt and Σxt represent the mean and covariance of xt in
the smoothed state-control distribution, respectively. The second
term in (14) can be expressed as[

Bt (xt )u
⊺
t
]
=

[
Σxtut + µxtµ

⊺
ut

µ
⊺
ut

]
, (28)

here Σxtut ∈ Rnx×nu is the cross-covariance between xt and
t , and µut is the mean of ut in the smoothed state-control
istribution. Substituting (27) and (28) in (14) yields

Θk+1
t =

[
Σ−1

xt Σxtut

−µ
⊺
xtΣ

−1
xt Σxtut + µ

⊺
ut

]
. (29)

Comparing (29) and Θt =
[
Kt kt

]⊺ yields

Kt = Σ⊺
xtutΣ

−T
xt = Σ⊺

xtutΣ
−1
xt ,

kt = µut −Σ⊺
xtutΣ

−T
xt µxt = µut − Ktµxt . (30)

The covariance Σδt can be written as

Σδt = E[(ut − Ktxt − kt )(ut − Ktxt − kt )⊺]. (31)

Substituting (30) in (31) and rearranging yields

Σδt = Σut −Σ⊺
xtutΣ

−1
xt Σxtut . (32)

Note that (30) and (32) correspond to the parameter update
equations for the conditional control distribution in Watson et al.
(2021). Hence, for the given assumptions on Bt (xt ) and Θt , the
PIIC and the Gaussian-I2C formulations are equivalent. Since Wat-
son et al. (2020) guarantees the equivalence of I2C to LQR for lin-
ear deterministic dynamics with infinitely broad priors (i.e., Σηt
→ 0, Σ−1

δt
→ 0), we omit details of the derivation and extend

the claim to the PIIC.
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