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Approximate methods to solve stochastic optimal control (SOC) problems have received significant
interest from researchers in the past decade. Probabilistic inference approaches to SOC have been
developed to solve nonlinear quadratic Gaussian problems. In this work, we propose an Expectation—-
Maximization (EM) based inference procedure to generate state-feedback controls for constrained SOC
problems. We consider the inequality constraints for the state and controls and also the structural
constraints for the controls. We employ barrier functions to address state and control constraints. We
show that the expectation step leads to smoothing of the state-control pair while the maximization
step on the non-zero subsets of the control parameters allows inference of structured stochastic
optimal controllers. We demonstrate the effectiveness of the algorithm on unicycle obstacle avoidance
and four-unicycle formation control examples. In these examples, we perform an empirical study
on the parametric effect of barrier functions on the state constraint satisfaction. We also present a
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comparative study of smoothing algorithms on the performance of the proposed approach.
© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and

similar technologies.

1. Introduction

Stochastic optimal control (SOC) is defined as the problem
of finding a controller that minimizes an expected cost in the
presence of uncertainty and dynamics constraint. The uncer-
tainty is either in the form of noisy observations or process
noise that approximates model uncertainties in the system. A
solution to the SOC problem can be found by solving the nonlin-
ear stochastic Hamilton-Jacobi-Bellman (HJB) equation (Stengel,
1994). In general, its numerical solution is computationally in-
tractable due to the curse of dimensionality resulting from the
discretization of the space and time (Todorov, 2006). A fast and
locally approximate solution to the SOC problem is the Linear
Quadratic Gaussian (LQG) case where the SOC problem is solved
for the noise-free optimal trajectory and a local LQG model is con-
structed as perturbation around this trajectory. The local linear
quadratic regulator computes a reasonable approximate solution
to the original SOC problem if the model is close to the optimal
noise-free trajectory.
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The general duality between control and estimation (Todorov,
2008) and the notion of relating the cost and log-likelihood have
motivated a new class of methods to approximately solve the SOC
problem in a non-LQG setting. These methods are often referred
to as control-as-inference methods in literature which solve the
SOC problem as an inference problem on a probabilistic graphical
model (PGM). A PGM is a graphical model encoding complex
relationships between random variables in the form of a graph.
It is widely used in statistics and machine learning to model
joint probability distributions of random variables. This graphical
representation of probability distribution is advantageous as it
allows the decomposition of the joint probability distribution as
a product of factors by exploiting the structure of the model.
Moreover, algorithms developed in this framework have shown
propitious results in real-world applications (see e.g. Itoh et al,,
2017; Rawlik, Toussaint, & Vijayakumar, 2010; Riickert & Neu-
mann, 2013; Toussaint, 2009; Watson, Abdulsamad, Findeisen, &
Peters, 2021; Watson, Abdulsamad, & Peters, 2020). A common
limitation of the above inference-based control approaches is the
restriction to linear feedback controllers to achieve closed-form
updates in a Gaussian setting. It is well known that nonlinear
systems typically admit nonlinear optimal controllers, and hence
the use of the existing linear controllers will yield sub-optimal
performance in a nonlinear setting. In our prior work (Syed &
Bai, 2023), we propose the Parameterized Input Inference for
Control (PIIC) algorithm where the controller is parameterized
by a (possibly) nonlinear basis function of the state which allows
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formulating the unconstrained SOC problem as a parameter in-
ference problem. Hence, one of the contributions of this paper is
that we employ a barrier function approach to solve constrained
SOC problems using the PIIC algorithm.

In recent years, the design of structured controllers has re-
ceived a lot of attention for applications in large-scale systems
and multi-agent systems. A structured controller reduces the
computational load by translating the topology of networked
systems to the sparsity of the controller, facilitating distributed
controls at subsystems. An example of structured control is dis-
tributed optimal control for multi-agent systems, where the con-
trol of each agent contains information only from a subset of
the agents. However, to the best of our knowledge, none of the
existing inference-based control approaches have been developed
in the structured control domain owing to the challenge of en-
coding and preserving the structure imposed on the control gain.
Hence, the main contribution of this work is that we propose a
structured-PIIC algorithm to solve structured SOC problems in an
inference-based control framework.

The main contributions of this work are as follows: (1) We en-
hance the formulation of the PIIC algorithm (Syed & Bai, 2023) to
address constrained SOC problems, where the constraints include
both state, control constraints and structural constraints on the
state-feedback controllers. Although structured optimal control
has been investigated for deterministic systems (see e.g., Fardad
& Jovanovié, 2014; Jovanovi¢ & Dhingra, 2016; Lin, Fardad, &
Jovanovié, 2011), our approach provides an effective structured
control solution for stochastic systems. The resulting algorithm
is an instance of the EM procedure which has a guaranteed
convergence to local optima. (2) We empirically demonstrate the
effectiveness of the proposed algorithm with respect to constraint
satisfaction and structured control using unicycle control prob-
lems. The algorithm outperforms the commonly-used Iterative
Linear Quadratic Gaussian (ILQG) approach (Todorov & Li, 2005)
with reduced mean cost and cost variance.

The rest of the paper is organized as follows. Section 2 re-
views the formulation of the SOC problem in an inference-based
control framework. Section 3 presents our algorithm to address
constrained SOC problems. Section 4 demonstrates the efficacy
of our approach on a unicycle model in constrained control and
structured control scenarios. Section 5 concludes the paper.

Notation: Let N(y|a, A) represent a random variable y satisfying
a Gaussian distribution in the normal form with mean a € R?

and covariance A € RY*¢ given by N(y|la,A) = —1—exp
(27)2 |AI2

(=3(y — a)’A~'(y — a)), where |A| represents the determinant of

A. We use blkdiag(Aq, A, ..., A,) to denote a block diagonal
matrix with matrices A, A,, ..., A, on its principal diagonal. T,
denotes the identity matrix of size n. ® denotes the Kronecker
product. Tr(-) denotes the trace operator, and E(-) denotes the
expectation operator. 1,5, 0% denote the m x n matrices with
entries 1 and 0, respectively.

2. Inference-based stochastic optimal control

Consider a dynamical system given by

Xer1 = F(ze) + e, (1)

where 7, = [x[,u{]" € R™%™ js the state-control vector at
time t, x; € R™ and u; € R™ denote the state and control at
time t, respectively. F: R™ x R™ — R™ is a nonlinear mapping
of X, u, and n; ~ N(1:]0, X,,) represents additive Gaussian
noise that models the uncertainty in the dynamics. For a given
finite-horizon T, and a state-control sequence [xr, To.7—1], define
the trajectory cost as C(xr, to.r—1) = cr(xr) + Z[T:_()l c¢(t¢), where
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¢ : R™™u — R is a nonlinear mapping from the state-control
space to the cost space for t < T and cr : R™ — R is a nonlinear
mapping from the state space to the cost space at the terminal
time T. The considered SOC problem is given by

min E[C(Xr, To.r—1)] (2)
Uo:T—1
such that X, 1 ~ N(xc111F(z), Xy, ),
K(z) > 0,
where K(-) € RM» is such that K;(-) : R™ x R™ — R,j =
1, ..., ny is a nonlinear mapping that defines an inequality con-

straint. We assume that the feedback controller u; at each time
step is parameterized by a (possibly nonlinear) basis function of
the state, B;(x;) € R™, and unknown parameters ®; € R™*™
such that

pluelxe) = N(ue| O Be(x¢), Zs, ), (3)

where §; represents a zero-mean Gaussian noise with covariance
X5, that models the uncertainty in control.

The PGM for the SOC problem (2) is constructed with the
state-control sequence as latent variables and the sequence of
binary random variables ©; € {0,1},t = 0, ..., T, as observed
variables. The binary random variable O; represents the notion
of optimality or task fulfillment at each time step, i.e, Oy = 1
when optimal state and action are observed at time t. Similar
to the general duality between estimation and control (Todorov,
2008), probabilistic inference approaches relate the probabilities
to cost by assuming that the negative log-likelihood of observing
the optimality/task fulfillment at time t is proportional to the
stage cost ¢, i.e.,

p(Or = 1|7¢) o< exp{—ce(te)}. (4)

Hence, the likelihood of observing optimality at each time step
is high if and only if the cost incurred is low. We have shown in
our prior work (Syed & Bai, 2023) that the parameterization in (3)
yields nonlinear controllers for the unconstrained version of (2)
using the EM procedure. The focus of this work is to extend the
formulation to constrained and structured SOC problems.

3. Constrained stochastic optimal control

We consider two types of constraints in the SOC problem.
Section 3.1 addresses inequality constraints on 1, which are
particularly useful for maintaining safety of the system and cre-
ating bounded controls. Section 3.2 examines structural con-
straints on the control, which can be used for designing dis-
tributed controllers. Corresponding examples are demonstrated
in Section 4.

3.1. State and control constraints

We present an approach to embed inequality constraints on
7, into the inference-based control formulation in Section 2. We
are motivated by the barrier function method, which is a popular
approach in optimization literature to solve a constrained opti-
mization problem as a sequence of unconstrained optimization
problems by adding a high cost for approaching the boundary of
feasibility region from the interior (Bertsekas, 2016, Chapter 5). It
is also similar to the potential function approach commonly used
for collision avoidance and motion planning (Kavraki & LaValle,
2008).

Let the safe set for constraint j = {1,...,n;,} be given by
Csj = {m € R™™|Kj(z;) > 0}, where C; is assumed to be
non-empty Vj. A barrier function B(t) is continuous in the interior
of Csj and goes to oo as one of the constraints K; approaches
0 from positive values. Motivated by this approach, we define a
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relaxed barrier function for each constraint, denoted by ¢in j(7;),
that evaluates to zero if and only if 7, € Csj, and is positive
otherwise, i.e.,

0, if Tt € Cs,j
> 0, otherwise,

Cinjf(7e) = (Yj(Te)) Q, V(e { (5)
where (t;) is a (possibly) nonlinear function of 7. The ¢inj(7;)
can be considered the cost for the satisfaction of constraint j. It
is positive when the constraint is violated and zero otherwise. As
shown later, we employ a likelihood function exp(—cinj(t:)) to
encode the satisfaction of constraint j into our inference-based
control formulation. According to (5), the likelihood function
evaluates to 1 in the safe set Cyj, which is the maximum of
exp(—cin j(7¢)). Thus, satisfaction of constraint j is encoded with
a higher likelihood of occurrence.

Let OF, O™ denote the binary random variables correspond-
ing to observmg optimality in the cost, and in the satisfaction of
constraint j, respectively. We prescribe p(O; = 1|t;) o p(Of =
1]7;) H p( OmJ = 1|1;). Letting P(Om = 1t;) o< exp(—Cin,j(T¢))
we rewrlte (4) as

Nin

Zcm, 7). (6)

Suppose that the trajectory cost c:(t;) is quadratic. Adding the

p(Or = 1]7;) o< exp{—c,(7)

barrier function in (5) as a cost to ¢,(t;) yieldsVt =0,...,T,
Nin
() + Y cinj(m) = (x — X Qx — )
j=1
Nin
+ (e — R (up — uf) + Z i) Q(Yi()), (7)
where Q; = 0, R, = 0,and Q" = 0,j = 1, ..., nj,, are the cost

matrices. It then follows from (6) and (7) that
p(Or = 1|7¢) ox exp{—a(z; — h(w)) It(z — h(z))}
= Nz =z} |h(z), (@) ), (8)

where I = blkdiag(Q:, R, Q{", ..., Q}) € R™*"™ h(z) =
T

[TJ VY (Ki(z)) W(’Cnin(ft))] ER™, 7} =

[z o 0]" € R™ with ¢f" = [ (ud)], n* =

(ny + ny + ny,), and « is the scale factor (hyperparameter) intro-
duced to optimize the covariance of O; to maximize the expected
log-likelihood.

An optimal trajectory is computed as the mean of the condi-
tional or joint posterior distribution of the state-control trajectory
given that the optimality is observed throughout the entire trajec-
tory, i.e., Og.r = 1. The objective of the PIIC algorithm is to infer
the parameters ®g.r_; and « that maximize the log-likelihood,
ie.,

Op.r—1, " = argmaxlog[p(Oor = 1|@0:7—1, @)]. (9)
Oo:T—1,@
The optimization problem in (9) is generally intractable. Thus,
we resort to computing the parameters using the EM algorithm.
The EM algorithm is an iterative algorithm used to find max-
imum likelihood solutions for models with latent variables. It
performs consecutive expectation (E-step) and maximization (M-
step) steps in each iteration. The E-step computes the expected
log-likelihood over the posterior distribution of latent variables
and the consequent M-step computes the parameters that maxi-
mize this expectation. Each iteration of the EM algorithm results
in a non-decreasing expected log-likelihood, thus guaranteeing
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convergence to a local maximum. We refer interested readers
to Bishop (2006) for a detailed introduction to the EM algorithm.

Denote to.r_1 by 7, Oo.r = 1 by O, and ©®y.r_1 by ®. Then the
objective in (9) is rewritten as

log[p(0]®, )] = log[/ p(xr, T, 0|©, a)drdxr]. (10)

The integrand in (10) is proportional to the joint posterior distri-

bution given by

plxr,7,0,0,a)
T-1

[ [pxealmop(or = 1z, @)pluclx, ©). (11)
t=0

= p(x0)p(Or = 1|xr, @)

Introducing q(xr,
we obtain

7), a known tractable distribution of x; and ,

,7,0|0,

. Using Jensen’s inequality, we further get

[p(xT, r,0|®,a)}
log| ———|.
q(xr, T)
Note that (12) becomes equality for q(xr, t) = p(xr, T|0). The
PIIC algorithm optimizes the right-hand side of (12) based on
the EM procedure. Hence, convergence to a local maximum is
guaranteed (Moon, 1996).
Substituting (11) in the M-step yields

T-1

log[p(0|©, )] > E

q(xT,7)

(12)

argmax E |logp(x log p(X¢41]T

gmax B [ gp(Xo) ; gP(Xeq1|Te)+

T T-1

ZIOgP(Or = 1|, o)+ ZIng(UHXr, @t)] (13)
t=0 t=0

To find @["“, we take gradient of (13) with respect to ®; and set
it to zero, which yields

-1

O = | E B(x)Bx))) | E (Be(x)uj). (14)
q(ze) q(ze)

It is straightforward to show that if the control parameter is

time-invariant i.e., ®.r_1 = ® then

T-1

=[E (D Bilx)Bx))

q() =0

@’H—l

ZBf Xt) u[ (15)

Similarly, to find o**! we take gradient of (13) with respect to «
and set it to zero, which yields

k1 _ (T — 1)n; +ng;
STl E [(zF — 2z —z)])
q(xT,T)

q(t)

(16)

where q(xr, T) = p(xt, T|O).

In this paper, we define approximate inference as the inference
of the latent variables of a PGM. Approximate inference can also
be defined as an approximation of the true posterior with a family
of distributions that minimizes the I(L divergence (Rawlik, Tous-
saint, & Vijayakumar, 2013). Let g, (t Ht 0 p(ut|xt) (Xet1]Te)s
be the state-control distribution parameterlzed by ® and gs(t) =
p(t]0O) be the smoothed state-control distribution.

Proposition 1. The minimization of the KL divergence KL(qs||q, ) is
equivalent to the minimization of the objective (13) with respect to
the parameter ©.
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Proof. From the definition, we have

q
KL(gs1g) = / g log (—) dr
T qﬂ

= lglog(qs) —gElog(qn)- (17)

To minimize (17) w.r.t. ®, we take the gradient and set it to zero,
resulting in
-1

T-1 T-1
o = [EE [Z a(xﬂ(a(x»ﬁﬂ [g@ [; Bt(xt)uzﬂ ., (18)

t=0
which is equivalent to (15). O

3.2. Structured control

Structured optimal control primarily deals with the design of
static optimal controllers for interconnected systems with topo-
logical constraints. These topological constraints are translated
as sparsity in the feedback gain. The problem of designing op-
timal controllers with structured feedback gains has been well
studied for deterministic systems (e.g., see Fardad & Jovanovi¢,
2014; Jovanovi¢ & Dhingra, 2016; Lin et al.,, 2011). However, it
has not been fully explored for stochastic systems. We impose
a structural constraint on the controller gain matrix ®;. We
assume that the state x; and the control u, are composed of
N subsystem states and M subcontrols, respectively, i.e., x; =
[xHT, ..., and ue = [(u})7, ..., @M)]". The xi and u
can be multidimensional, i = 1,...,N,j = 1,..., M. Denote
by bi(x}) € R™ and by 6/ the basis function corresponding to
xi and the submatrix of the controller gain ©; corresponding to
¥ and b'(xl), respectively. The subcontrols i}, j = 1,..., M, are
parameterized as

ui = [(erj)T (erzj)T (GINj)T]Bt(Xr) + 5];, (19)
where Bi(x;) = [(b'(x}))T (D*(xF)T -+ (BN ()T, 3{ ~ N(S’;IO,
(6])?). We assume that &, j = 1,..., M, are iid. zero mean
Gaussian noise. Following the notation in (3), we have

@M @2 CAOINN
Or=1 : :

GO ) Oy

Let F be the set of ordered pairs such that (i,j) € F if the
subcontrol u, can receive information from the subsystem state
x;. Consider the structured SOC problem:

min E[C(Xr, To.r—1)] (20)

up:T—1

such that x.11 ~ N(xe1|F(e), 2y, ),
K(t:) > 0, 0 =0y xn ;. if (i,]) & F.

Our key idea to solve the structured SOC problem is to decompose
the problem into multiple unstructured SOC problems in a lower
dimensional subspace of nonzero entries corresponding to each
element of u;. Then, the inferred parameters are mapped back
to the original vector space through an inverse transformation
which preserves the structure during the inference procedure.
To capture the structural constraints, we define a structural
identity (under element-wise matrix multiplication) of the feed-
back gain ©, denoted by @ € R™*™, The & is a block ma-
trix whose (i, j)th block is all ones if v, depends on b(xl) and
otherwise all zeros, thatis,Vi=1,...,N,j=1,..., M,

if (i,j) e F
otherwise.

) o
i X1

D =
y On

(21)

bixnuj’
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Let uf be the pth element of u, and @, € R™ be the pth column
of @, where p = {1, ..., n,}. For every &, there exists an S, :
R®» — R™ that maps &, to its lower dimensional non-zero
entries @p € R™, where i, < np. Hence, Sp can be applied to the
pth column of @;, denoted by @7, to extract its non-zero entries,
denoted by &f € R™, i.e, OF = 5,07. Similarly, we let 57 (x;) =
SpBY(x;). Also, for every S, there exists an S, : R — R™ that
maps @ back to ©F.

For example, consider an interconnected system with four
subsystem states and three subcontrols, i.e., x, = [x{ x? x} x/]" €
R* and u; = [u} u? u?]" € R3. Assume that u;’s are linear func-
tions of the states. Consider the following structural constraints
on u)’s: u! depends only on x! and x2, u? only on x/, x2, and x/,
and u? only on x> and x?. Then (19) takes the form

011 0 031 0
U = 912 9?2 0 042 B(x¢) +6¢,

0 0 933 043 ‘v-‘x[

B
Oy

where §; = [8] 82 53]7. By definition, @

I
1
O = =
o - O
—_ O =
—_—_- O
| S|

=

1 0 0 O
'Z1o 010
Therefore, ! = 5,0} = [0 "]" and ©} = S,6)/. Similarly,
Sy, S3 can be computed corresponding to ©2, ©? respectively.

Using the notation ® and Bf(x;), taking the gradient of (13)
against ®?, and equating it to zero yields the update equation for
oF as

Then, ®; =[1 0 1 0]'.s and S| = S].

-1
(CroE [qE)[éf(Xr)(Bf (Xr))T]] q(IEm[Bf(Xr)(uf)T]- (22)

From an implementation perspective, a time-invariant control
parameter ® may be advantageous. Following a similar approach
to (22), we obtain the time-invariant parameter update as

((:)p)k+l —

T—1 T—1

~ ~ -1 ~

LB [D_ B ea@eeor]] ™ B[ B exdy]- (23)
s L
The covariance of the controller o” is updated Vp = 1,...,n,
andt =0,...,T — 1 using
of = E (uf = (&N BN — () Bl (24)

Algorithm 1 summarizes the structured parameterized input in-
ference for control (structured PIIC) algorithm. It performs the
E-step and the M-step iteratively until convergence. The structure
imposed on the control parameter ® is preserved by performing
updates on the non-zero subsets of each subsystem using (22)
and (24). In our implementation, we claim convergence of the
algorithm if the infinity norm of the difference between the state
trajectories in two consecutive iterations is less than a threshold.
As shown in the Appendix, Algorithm 1 recovers the Gaussian
12C (Watson et al., 2021) for linear dynamics without any con-
straints if B;(x;) = [x{ 1], and ©, does not have a specific
structure.

4. Simulation examples

In this section, we demonstrate the effectiveness of the PIIC
algorithm for inference of constrained and structured stochastic
optimal controllers. In Section 4.1, we demonstrate the effec-
tiveness of the barrier function approach for a unicycle obstacle
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Algorithm 1 Structured PIIC algorithm

repeat
E-step: Compute

g = p(xr, 710, ©F, o)
Q. a0, d" )= E loglp(xr, 7, 0]®,a)]

(XT,r)'Vq’H'l
M-step:
fort=0:T —1do
forp=1:n,do
Update &F, o using (22), (24), respectively.
OF = S,(6r)

end for

Update ©; = O] o]

Update X5, = blkdiag(s,!, ---, o)
end for

Update « using (16)
until convergence

avoidance problem. We also study the performance of the PIIC for
the choice of two smoothing approaches and compare them with
the ILQG baseline. In Section 4.2, we illustrate the utility of the
PIIC for distributed formation control of four unicycle robots. The
common simulation parameters are step size dt = 0.05 sec, and
the state cost matrix Q; = Is.

4.1. Obstacle avoidance

Consider a unicycle robot whose dynamics are given as
Xep1 = Xe +dt f(Xe, ue) + nes (25)

where at any time instant t, X, = [x; y; 6;]7 € R? denotes
the 2-dimensional positions and heading of the robot, u; =
[vi w]" € R? denotes the linear and angular velocities of the
robot, fi(X:, ur) = [v cos(6;) v sin(6;) w;]T denotes the nonlinear
unicycle dynamics, n; ~ N (1|0, X,,) corresponds to the process
noise, and dt denotes the step size for discretization. We consider
the controller parameterization of the form (3) where B(X;) =
[Xc ye 6: 17.

The goal of the SOC problem is for the unicycle to navigate to
a desired position without collision with obstacles. Let A be the
set of obstacles. For j € A, we define

’Cj(tt) = [(Xt - xobs,j)z + (yt __yobs.j)2 - (robs,j + rs)z]s

where (Xops j, Yobs j) and 7ops j are the center and the radius of the
jth obstacle, respectively, and r; denotes its safety radius. Let the
unsafe set for the robot be ¢, = {(x,y) € R2|/c,-(x, y) <0, Vje
A}. Then, the safe set for the collision avoidance constraint C; =
R?\C,. In our simulations, we choose Yi(te) in (5) as

0 if Tt ECS

yi(n) = y’(l_tanh(e;gj(ft))), otherwise,

(26)
where y, € € R, are tunable parameters to vary the tightness of
the constraint and smoothness of ;(-), respectively. For simula-
tions, we choose y = 1 and € = 1 in the barrier function (26).
Other simulation parameters are given in Table 1. Fig. 1 shows
the variation of p(0;"™ = 1|t;) with respect to y in (26). We see
that as y increases, the constraint becomes more conservative,
resulting in a lower likelihood of constraint violation.

We investigate the effect of the choice of smoothing algorithm
on the overall performance of the PIIC algorithm. We employ un-
scented smoothing (UPIIC), and factor graph optimization (FGPIIC)
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Fig. 1. Variation of p(0™ = 1|r,) for Q" =1 and different values of y.

1 -
0 -
1F
—_
g
2|
31 [ lobsl
obs2
4t ——unscented
ilqg
sle = | | - — factor graph
-6 -4 -2 0 2

x (m)

Fig. 2. Comparison of the trajectories with the feedback controllers inferred
using ILQG, PIIC with unscented smoothing, and factor graph optimization.

Table 1
Simulation parameters for the unicycle example.

Simulation parameters

Value

diag(10-3, 1073, 1073)
{20, 10 I3, 0.5 I}

Process noise covariance, X,
Cost matrices, {Qt obs, Qr, Rt}

in the E-step of Algorithm 1. The unscented smoothing is analo-
gous to the unscented Kalman smoothing (Sarkkd, 2008) except
that we utilize it to compute the smoothed state-control distribu-
tion rather than just the state distribution. Factor graph optimiza-
tion solves the smoothing problem as a nonlinear least squares
problem. This is possible due to the fact that the maximum-
a-posteriori (MAP) inference on a nonlinear factor graph with
Gaussian noise models is equivalent to nonlinear least squares
problem (Dellaert & Kaess, 2017). We interface with the GTSAM
library (Dellaert & Contributors, 2022) to implement the factor
graph generation and optimization. This approach is well known
to be computationally efficient.

We compare the performance of the UPIIC, FGPIIC with the
ILQG algorithm (Todorov & Li, 2005). The ILQG algorithm does
not accommodate state constraints. Hence, we use the modified
cost (7) with the barrier function candidate (26) to impose the
obstacle avoidance constraint for a fair comparison. Fig. 2 shows
the trajectories for 50 MC simulations with the corresponding
covariance ellipses for T = 200 steps.

The mean and standard deviation of the incurred trajectory
cost are shown in Table 2. We observe that the FGPIIC has the
superior performance followed by UPIIC and ILQG. This can be
attributed to the fact that each iteration of the FGPIIC performs
multiple iterations of factor graph optimization until a level of
convergence is reached whereas the UPIIC performs only one pass
of the smoothing step per iteration, yielding in sub-optimal tra-
jectories compared to FGPIIC. We also observe that the ILQG ap-
proach suffers from poor convergence, leading to higher variance
in the trajectories and a greater number of constraint violations.
We have repeated the same comparison for a target reaching
problem without obstacles and the resulting trend was similar.
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Fig. 3. Comparison of the trajectories of unicycle model with covariance ellipses
for y = 0.5 and y = 100.

Table 2

Comparison of the average cost and standard deviation for 50 MC simulations
with the feedback controllers inferred using ILQG, UPIIC, and FGPIIC for unicycle
target reaching example with and without obstacles.

Without obstacles

With obstacles

UPIIC 64.12 + 4.26 92.26 + 31.39

FGPIIC 58.69 + 3.18 61.89 + 4.61

ILQG 79.16 + 19.02 189.02 + 196.68
Table 3

Comparison of the number of constraint violations occurred in 50 MC

simulations for various values of y.
y 1 2 5 >10

# of constraint violations 38 56 11 0

We also perform an empirical study on the effect of y in the
barrier function (26) on the inferred controller and the trajectory
of the unicycle robot. We restrict to a single obstacle to visualize
a more pronounced effect. Fig. 3 shows the two trajectories
resulting from controllers inferred using different values of y. We
observe that for higher values of y, the minimum distance of the
trajectory from the obstacle increases, i.e., the controller becomes
more conservative. Due to the presence of process noise there is
finite probability of constraint violation. However, for higher val-
ues of y, the conservatism of the controller yields less constraint
violations, i.e., the deviations from the inferred trajectory exist
but remain in the safe set C;, resulting in satisfaction of the actual
constraint with a higher probability. We corroborate the claim in
Table 3, which shows that the number of constraint violations
decreases as y increases.

4.2. Formation control

We consider formation control of four unicycle robots mod-
eled as (25). The objective is to find a stochastic optimal controller
that navigates to desired goal positions with minimal control
energy applied by each agent while closely maintaining a desired
square formation and avoiding collision with obstacles. We define
the individual cost of robot i as ¢} ,(z/) = (X| — X)TQ/(X{ —
XD+ 2w () Q" i(ed), €l o) = (uf)Ri(ul), where at
time t, X! and X} denote the state and the desired state of agent

i, respectively, ui denotes the control input of agent i, and ;(-) is
the barrier function as in (26). Let X; = [(X})T (X3)T --- (XN)1]"
€ RN be the state of all the agents i € V in the formation. We
assume a linear controller for each agent of the form IE(ui) =
KX, + ki. Let B € RN*M denote the incidence matrix of an
undirected graph G = {V, &} corresponding to the formation,
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Table 4

Simulation parameters for the formation control example.
Simulation parameters Value
Process noise covariance, Z‘;[i diag(1073, 1073, 107%)
Linear velocity limits, v; [0, 8] m/s

Angular velocity limits, o}

{Qti’ Q{i,obs’ Q{i,]im’ Q‘;' Ri’ Q-ff}

[—1.5,1.5] rad/s
{I3, 50 T4, 50 14, 50 I3, I, 50 I15}

0 L
AR A
\]
~ \
Eap !
> —
3t — [ lobs1
’ ‘ obs2
——Agent 1
4} —— Agent 2
Agent 3
——Agent 4
_5 S 1 1 1

5 4 3 2 4 0 1
x (m)

Fig. 4. Snapshots of X-Y trajectory of the unicycle formation with corresponding
covariance ellipses.

where M is the cardinality of the edge set £. Define the formation
cost as Cui(7) = ((B ® I, )Xy — 8,)7Qr((B ® I, )™X; — 8), where
8x = [817 827 ... SMT]T € RM™ represents the vector of formation
targets along each edge e € &, and Qs is a positive semi-definite
block diagonal cost matrix. For the unit square formation in the
simulation, v = {1, 2, 3,4}, £ = {(2, 1), (4, 1), (2, 3), (4, 3)}, and
3, =[010 —100010 10 0]". The total trajectory cost for the
optimal formation control problem is given by C(xo.r, Up.r—1) =
>0 CailT)+ Y [ Ci,a,(ff)+zttol ch y(ti)], where T is the
time horizon set to 100 steps. Additional simulation parameters
are given in Table 4.

We impose a 3-agent partially decentralized structure on the
controller wherein each agent has access to the state information
of itself and two other agents in the formation. Fig. 4 shows the
formation trajectory of the robots with covariance ellipses using
Algorithm 1. We observe that the agents reach close to their
target positions while avoiding the obstacles and respecting the
square formation as closely as possible.

We next investigate this problem under three additional con-
troller structures. A centralized structure is where each agent has
access to the state information of all the agents in the formation,
a 2-agent partially decentralized structure is where each agent has
access to the state information of itself and the agent diagonally
opposite to it in the formation, and a decentralized structure is
where each agent has access to only its own state information.
Table 5 shows the average cost and standard deviation for 50
MC simulations. The centralized structure incurs the least average
cost owing to its full information of the global state of the agents.
It is followed by the 3-agent and 2-agent partially decentralized
structures, respectively. The decentralized structure incurs the
highest average cost. The increase of the cost is correlated to
the decrease in the information available to each agent, yielding
controllers with degrading performance.

5. Conclusions and future work
We present a parameterized inference-based approach to ap-

proximate constrained SOC. Our approach employs a barrier func-
tion to impose inequality constraints on the states and controls,
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Table 5
Comparison of the average cost and standard deviation for 50 MC simula-
tions with different controller structures for the 4-unicycle formation control
example.

Controller structure

Average cost

664.67 + 120.61
713.21 + 116.82
728.88 + 128.41
749.22 + 135.88

Centralized

Partially decentralized (3-agent)
Partially decentralized (2-agent)
Decentralized

and creates controllers satisfying given structural constraints. We
establish that our approach encompasses existing algorithms as
special cases, such as the LQR and the 12C algorithm. The nu-
merical simulations demonstrate that our approach outperforms
the ILQG for constrained control and that using factor graph
optimization incurs lower average cost than unscented smooth-
ing. Our approach can also optimize control performance while
satisfying structural constraints. Future work includes investigat-
ing structured control in a model-free setting for multi-agent
systems.

Appendix. Equivalence of PIIC and 12C

We suppress the notation q(r) under the expectation for
brevity. Using the block matrix inversion identity in Petersen and
Pedersen (2008), the inverse term in (14) yields

! — X

E[Bt(xt)Bt(Xt)T]il = _ _
_I'L;t Ext1 1+ H’;[ Ext]l’LX[

; (27)

where u,, and X, represent the mean and covariance of x; in
the smoothed state-control distribution, respectively. The second
term in (14) can be expressed as

T

EX[U[ + MX[MU[]

T )
Muy

where Xy, € R™*™ js the cross-covariance between x; and

u;, and p,, is the mean of u; in the smoothed state-control
distribution. Substituting (27) and (28) in (14) yields

-1
Ex[ Extut

E[Bt(xt)ul] = |: (28)

Ok = (29)
‘ _:u/)T(t E)glzxﬂlt + :u/iTlt

Comparing (29) and ©; = [K;  k]" yields

Ke = E?Itur ZQT = E;rut 2?;]’

ke = pug — 270 T e = Mg — Kels, (30)

The covariance X5, can be written as

s, = El(ur — Kexe — ke )J(ur — Kexe — ke )T]. (31)

Substituting (30) in (31) and rearranging yields

s = Zu — 230, T Exeu - (32)

Note that (30) and (32) correspond to the parameter update
equations for the conditional control distribution in Watson et al.
(2021). Hence, for the given assumptions on B(x;) and &, the
PIIC and the Gaussian-12C formulations are equivalent. Since Wat-
son et al. (2020) guarantees the equivalence of 12C to LQR for lin-
ear deterministic dynamics with infinitely broad priors (i.e., X,
— 0, X5 LN 0), we omit details of the derivation and extend
the claim to the PIIC.
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