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Many excited states in the hadron spectrum have large branching ratios to three-hadron final states.
Understanding such particles from first principles QCD requires input from lattice QCD with one-, two-,
and three-meson interpolators as well as a reliable three-body formalism relating finite-volume spectra at
unphysical pion mass values to the scattering amplitudes at the physical point. In this work, we provide the
first-ever calculation of the resonance parameters of the @ meson from lattice QCD, including an update of
the formalism through matching to effective field theories. The main result of this pioneering study, the pole
position of the @ meson at /5, = (778.0(11.2) — i3.0(5)) MeV, agrees reasonably well with experiment.

In addition we provide an estimate of the @ — p mass difference as 29(15) MeV.

DOI: 10.1103/PhysRevLett.133.211906

Introduction—Quantum Chromodynamics (QCD), the
theory of the strong interactions, not only explains the
binding of quarks and gluons to protons and neutrons,
which represent most of the visible matter around us, but
also the full spectrum of the so-called hadrons. It consists in
general of baryon and meson states, most of which are
actually resonances. The @(782) meson plays a special role
in this hadron spectrum. First, it is the lightest hadron that
features a strong, isospin conserving decay into three
particles in the final state, @ — 3z. Second, within the
vector dominance picture of the photon-nucleon inter-
actions, it dominates the isoscalar response [1,2] and
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combined with the topological soliton picture of the
nucleon, it allows one to explain the difference in the
baryonic charge and the isoscalar electric radius [3.,4].
Third, in the one-boson-exchange picture of the nucleon-
nucleon interaction, it generates the observed repulsion at
distances below 1 fm; see, e.g., [5,6]. Fourth, due to strong
isospin violation, it mixes with the p(770) meson leading
to marked effects in the pion vector form factor; see,
e.g., [7,8]. Finally, the @ — p mass splitting is phenomeno-
logically interesting, for instance for the anomalous mag-
netic moment of the muon [9-11], or recently also in the
context of dark matter and so-called mirror matter [12,13].
For all these reasons, a first-principles calculation of this
intriguing state based on QCD is called for.

The by now standard approach for such a nonperturbative
calculation is represented by lattice QCD, where space-time
is discretized, and the Euclidean path integral is estimated
using Markov Chain Monte Carlo methods. While lattice
QCD has already addressed systematically the lowest
resonances, the f,(500) [14-23] and the p(770) [24-42],
which decay into two pions in the final state (for a review
see [43]), there are only investigations of repulsive three-
body systems [44-50], and only one exploratory lattice
investigation of the a;(1260) axial meson decaying into
three pions available so far [51]. In particular, there is no
calculation of the complex pole position of the @ meson

Published by the American Physical Society
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TABLE . CLQCD gauge configurations [57] used in this work
with a lattice spacing of a = 0.07746(18) fm. The quoted errors
are purely statistical.

Ensemble Volume M, /MeV Nonts
F32P21 323 x 64 206.8(2.1) 459
F48P21 483 x 96 207.58(76) 221
F32P30 323 x 96 303.61(71) 777
F48P30 48% x 96 304.95(49) 201

available, because it decays predominantly to three pions in
the final state. The reason is that only in the last decade the
required formalism for such types of lattice computations
has become available; see recent reviews [52,53]. Using one
of the three state-of-the-art formalisms [54], we report here
on the first lattice calculation of the @(782) meson, thus
filling in the gap mentioned before by providing the complex
energy, namely the mass and the width of the @. Owing to its
three-pion decay, where two pions can form a p [55], the @
cannot be considered in isolation, and we thus rely on chiral
Lagrangians with vector mesons (for a review, see [56]) in
the analysis of the w self-energy. In particular, we use
effective field theory for the extrapolation to the physical
pion mass value.

Lattice computation—The gauge configurations used in
this work were generated by the CLQCD Collaboration with
N¢ =2 + 1 flavors of dynamical quarks using the tadpole-
improved tree-level Symanzik gauge action and tadpole-
improved tree-level Wilson clover fermions [57]. The results
presented here are based on four ensembles at the same
lattice spacing 0.07746(18) fm, with two pion masses
M, =~ 208 and 305 MeV, and two volumes each. The details
of the ensembles are listed in Table 1. Specifically, the two
ensembles, F32P21/F48P21 (F32P30/F48P30), share the
same pion mass and lattice spacing but differ in volume.

The lattice discretization reduces the continuum rota-
tional symmetry to the cubic symmetry group O, in the rest
frame. Therefore, operators satisfying specific transforma-
tion laws of the cubic group are constructed to interpolate
the p and the ® mesons. This study focuses on the
irreducible representation (irrep) 77 for both isovector
zrw and isoscalar zzzw in the rest frame, where the zx
system predominantly involves the p in the P wave and 77z
houses the w. The constructed operators include types with
a single meson, two mesons, and three mesons, projected to
the proper isospin and the 77} irrep. For an efficient tool for
operator construction, see OpTion [58]. We emphasize
that it is necessary to have all three types of operators to
overlap with the dynamical channels and the w, and obtain
reliable and precise energy spectra with minimal pollution
from the higher energy region. The detailed form of the
operators we used can be found in the Supplemental
Material [59]. In order to extract the finite-volume spectra,
the correlation matrices of a wide range of operators O;,

W\/ﬂ' ™ T T« T T T
— AN
T T T T T —> T T T
~_ 7

T g ™ T u ur T T
~_ 7 ~_ 7

FIG. 1. A selection of diagram topologies for I =0 for
arrw — nax. All diagrams with the same source and sink are
permutations and recombination of these topologies. The other
topologies can be found in the Supplemental Material [59].

Ci;(t) = (0;1) OJI (0)); are diagonalized by solving a gen-
eralized eigenvalue problem [63-66]; see details in [59].
Lattice energy levels aE are extracted from the exponential
decay of the principal correlators in Euclidean time. We
note in passing that due to exact isospin symmetry in our
lattice calculation the channel w — z*z~ is forbidden, but
accounts only for about 2% of the @ decays in total. We
also note that there is mixing with the ¢ meson, which is,
however, too high in energy to play a role in our analysis.

The number of quark contraction diagrams emerging in
the construction of the relevant correlators grows facto-
rially with the number of scattered particles. For instance,
there are nine diagrams for zz — zz(l =0) when
both sink and source are two-body operators, but 202
in zzzm — zrx(l =0), with the topologies depicted in
Fig. 1 and the Supplemental Material [59]. Besides the
large number of diagrams, most of the diagrams include
disconnected quark annihilation subdiagrams, which are
difficult to calculate and induce a poor signal. Therefore,
we employ the distillation method [67] to compute all-to-
all quark perambulators, and construct C;; from these.

The resulting zz and zzz finite-volume spectra are
shown in Fig. 2. The ground levels appear in both zz
and zzz channels below the first noninteracting levels
indicating strong attraction in both the p and @ channel. In
the zzz channel, at M, ~ 208 MeV, the ground states are
higher than threshold, indicating a resonance with nonzero
phase space to decay; at M, ~ 305 MeV, the ground levels
are consistent between the two volumes and lower than the
zzr threshold, indicating a bound state.

Quantization conditions and resonance parameter—The
finite-volume spectra discussed above contain two- and
three-particle dynamics to be decoded through appropriate
quantization conditions. In this work, we utilize the finite-
volume unitarity (FVU) approach [54] already applied to a
variety of three-body systems [44,49,51,68-71]. It was
shown to be equivalent to the other two known three-body
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FIG. 2. Finite-volume spectra for zz(l = 1) and zzz(I = 0)
for heavy and light pion mass. Red points represent the
interacting lattice energy levels aE in units of the pion mass,
the faded of which are not included in the analysis. Dashed and
dot-dashed lines depict the noninteracting elastic and inelastic
levels. The orange bands are the solutions from the main fit.

formalisms in theory in Ref. [72] and numerically
in Ref. [70].

The dominant interaction channel of the @ system is
formalized through the zp channel in the relative P wave [55].
Thus, in the FVU formalism, the three-body finite-volume
spectrum is predicted in the center-of-mass frame as a set of
three-body energies E; = +/s for which

det{[K~"(s) == (s)]EL = [B(s) + C(5)]} 1,y =0, (1)

in the plane-wave and helicity basis (PWH) {z(p)p,(—p)
lIpL/(27)€Z3,4€{~1,0,+1}} while projecting each
element of this equation to the 777 irrep of the O, group;
see [51,73]. The matrices B (one-pion exchange) and X/"
(self-energy of the p system in finite volume) collect all on
shell configurations of the three pions and, therefore, single
out all power-law volume dependence of this system.
Together with the kinematical factor E; these matrices are
entirely fixed. Contrary to this, the matrices K~' and C are
volume-independent quantities (up to the neglected e~M~-
terms) containing information on the two- and three-body
dynamics, respectively. The exponential effects from the
small volume were examined by repeating the EFT4 fit
excluding the levels from F32P21. We found that the
difference from the original fit is of the order of the statistical
error, and it is quoted as a systematic error in the
Supplemental Material [59]. The two-body force provides
access to the two-body energy eigenvalues through
{E, eR|K™! =V p!) = 0} which is equivalent to the
usual Liischer method [74] up to exponentially suppressed
terms. While, in general, K~! and C are not known, various
choices relevant for the p and @ systems, relying on a generic

parametrization and effective field theory are discussed
below.

Generic method (GEN): the two-body force is para-
metrized as (K™, ,; = 81,8y, > ;0! for the two-
body invariant mass o, =5+ Mz —2\/s\/p* + M3 (E, =
/o) and a spectator momentum p. We found that N = 1 is
entirely sufficient to describe the available lattice input, and
this is also mathematically equivalent to the usual Breit-
Wigner form. Similarly, the three-body force C is para-
metrized through a general expansion in the orbital angular
momentum (JLS) basis (zp inrelative P wave) ¢, = (co/s —
M?2) + ¢y + ... and then mapped to the PWH [71,75,76].
Here again, the order of the expansion depends on the
availability and precision of the input. In the current case a
two-parameter fit (¢, M, ) turned out as sufficiently flexible.

Effective field theory (EFT): The GEN methodology
does not allow for chiral extrapolation to the physical point
which can be circumvented through EFTs as widely used in
the two-body sector [53,77] but not yet in studies of three-
hadron resonances from the lattice. Still, continuum results
on w — zzzw and p — 7z have existed for several decades;
see the review [56]. Using the results quoted in that review
we perform a matching on the level of 2 - 2 and 3 — 3
scattering amplitudes. A somewhat lengthy but straightfor-
ward calculation at the tree-level yields

- —M?

-1 _ %p P

[K ]p’l’.p/l - 62’/151)’[7 ng,

65(M}—0,+64°f7) (M} —0,+64°f7)
647 S (s — M)

11 =

- (2

where the latter is expressed in the JLS basis, projected
to the PWH basis [71,75,76]. Throughout this derivation,
we have assumed that two- and three-pion interactions
are saturated by the s-channel resonance exchange (jus-
tified by the narrow width of the p and @ mesons) and
St Yprr = Yupr = g following [56]. Thus far, the
matching relations of Eq. (2) provide access to the two-
and three-body force for given (g,M,,M,). The
Kawarabayashi-Suzuki-Fayyazuddin-Riazzudin ~ (KSFR)
relation [78,79] allows one to reduce this set further
through M, = V2gf,. Indeed, this specifies already a
chiral (M) extrapolation through the f,(M,) from chiral
perturbation theory [80]. Using the generalized KSFR
relation but allowing for a pion-mass independent shift
M, =M,+8=2gf,+¢ defines the EFT2 method
referring to free parameters (g,5). Abandoning the
KSFR relation entirely we define the EFT4 method by
M, =My +aM32, M, = My + aM3 + 5 [81,82], leaving
us with four free parameters (g, My,a,d). Clearly, the
proposed EFT methods only represent a larger class of
EFTs with heavy degrees of freedom [3]. Ultimately, the
defined method will be tested against lattice QCD results.
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The three-body parameters obtained through a fit to the
lattice spectra will be used to obtain the universal param-
eters of the p and @ mesons through their pole positions on
the second Riemann sheet. The necessary framework is
provided through the infinite-volume unitarity (IVU)
approach [54,83] corresponding to the above quantization
conditions. The part of the scattering amplitude relevant to
the emergence of resonance poles is obtained through an
integral equation,

&l B+C .
(2z)32E, (K" =2IV)

T=B+C+ / (3)
where we have suppressed kinematic arguments for brevity;
see Eq. (1) and [51,71,84]. Here, 'V denotes the usual p
self-energy integral. The corresponding integral equation
can be solved through a complex contour deformation in the
JLS basis [71,76,85], and pole positions extracted as shown
in [51,70,84]. The corresponding procedure for finding two-
body resonance poles boils down to finding solutions
{E, €C|K~! = 2!V} on the second Riemann sheet.

The three-body quantization condition is necessarily
formulated [53] as an infinitely dimensional determinant
equation (PWH). Throughout this work we assume all
momenta up to py. = (27)/L(0,1,1) for computational
reasons. Related to this is also the fact that for smaller
volumes the spectator momentum cutoff leads to negative
values of the two-body invariant mass. Since the exact form
of the K~! is not known in this (unphysical) region we
cut it off with a simple form factor replacing K~!
(14 e~(e=0)/MYR=1 50 =2M2. We have tested other
functional forms and values of o, and p,,.., finding no
relevant effect on the extracted observables. For further
details on cutoff effects in the context of three-body
systems see [44,71,76].

Results and discussion—The two-body finite-volume
spectra consist of three energy eigenvalues located below
the first inelastic threshold considering that two pions need
to have one unit of momentum for the 7'7. In the three-body
spectra, we restrict ourselves to the analysis of the ground
states and the first excited state for larger-volume ensem-
bles as shown in Fig. 2. While qualitatively also higher
levels seem to be predicted by the approach, their quanti-
tative study requires a larger set of lattice operators as well
as a formalism update with more free parameters due to the
close proximity of the next excited state of the @ meson,
the w(1420).

With respect to these data, the method GEN yields best
fits with »3_; (GEN,305) = 1.3, 43, (GEN,208) = 1.6
including cross-correlations. For more details of the fit results
and the obtained parameters, see [59]. Global EFT?2 fits yield
X305 (EFT2,305/208) = 3.2. Provided the precision level
of our data, it is noticeable that the EFT2 model is also
excessively rigid. Furthermore the corresponding pole

-

0.00 — } w %
M, = 305MeV @

M, = 208MeV

-0.01- \

&
=
E -0.02-
|
EFT2
23 - EFT4 Afphys.
0.0: . QEN Mzhy
~ PDG
-0.04 -
3 4 5 6
Re B3 /M
FIG. 3. Pole positions of the @ meson at varying pion mass

from the IVU approach using generic and effective field theory
form of the two- and three-body force. The points are the pole
position for each bootstrap sample, whereas the ellipses re-
present the one- and two-sigma confidence levels. Parameters
are fixed by fitting to the available lattice results at M, = 208
and M, = 305 MeV allowing one to extrapolate to the physical
point. Particle data group (PDG) results are quoted by the green
error bars for comparison [87-89].

positions at the physical point exhibit discrepancies with
the empirical data. The EFT4 fit provides a much better
description of the finite-volume spectrum y3 , ; (EFT4, 208/
305) = 2.3 for ggpra = 5.96(17), Sgprs = 38.8(6.9) MeV,
MVAEFM» = 737(12) MeV, AEFT4 — 096(14) GeV‘l,
which are, indeed, quite close to the phenomenological
values [3,86]. We consider EFT4 as our main result, with
GEN and EFT?2 results providing a measure for systematic
uncertainties.

The resulting w-pole positions using the IVU formalism
Eq. (3) with respect to the discussed methods are shown in
Fig. 3 (for p see [59]). In both cases and for each pion mass,
we observe 1o agreement between all methods regarding
the real part of the pole position, while the imaginary part
agrees on the level of 2¢. For the heavier pion mass value,
the @ meson is indeed a bound state (binding energy
~80 MeV). We note that the GEN results for the @ have to
be taken with caution since for each pion mass only two
volumes are available for the @ channel with one data point
in the relevant energy region, leading possibly to a residual
mass-width dependence. Because EFT results connect
different pion masses this is not an issue there. The
EFT2 pole positions are narrowed to a small region being
parametrized only by two parameters (g,5). The EFT4
agrees much better with the lattice results on the level of the
finite-volume spectra as well as the corresponding GEN
pole positions. Extrapolated to the physical pion mass it
agrees astonishingly well (< 1¢) with the phenomenologi-
cal p and @ masses [87] and within 20 also with their
widths. The numerical results in physical units read as
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5, = [748.9(10.0) — i63.5(1.8)] MeV,  (4)
V5 = [778.0(11.2) — i3.0(5)] MeV, (5)

implying for instance also an @ — p mass difference of 29
(15) MeV, which agrees surprisingly well with the result
obtained in [90]. The small deviation from the empirical
value could be mitigated by taking into account the fact that
in some cases too small volumes (see Table I) could give
non-negligible exponential effects and discretization errors.

Conclusions—We have reported the first-ever lattice
QCD estimates of the w meson mass and width. One
challenge in this calculation consists in particular in the
precise estimation of finite-volume spectra from lattice
QCD. In resolving the complete low-lying spectrum of
states, multihadron operators prove to be essential [33]. The
three-particle operators we use (see [59]) require a signifi-
cant computational effort to compute all the relevant
fermion contractions, a task which has only recently
become feasible due to advances in algorithms, methods,
and computational power. Another challenge concerns the
formalism development to not only map the finite-volume
results to the infinite-volume transition amplitudes but to
also establish a reliable connection to the pertinent effective
field theories, allowing us to perform the so far unprec-
edented chiral extrapolation of three-body resonance
parameters to the physical point. The final results show
a good agreement of this theoretical multistep procedure
with the empirical values [87] regarding the mass of both p
and @ mesons. The @ width turns out slightly smaller than
the experimental value, but still agrees within 26 uncer-
tainties. We refer here to an ongoing discussion on the
current empirical values [91-95].

The presented study marks a new milestone in hadron
spectroscopy from lattice QCD, paving the way toward
understanding more complex systems. For closer to physi-
cal pion mass lattice setups the kinematic window to study
resonance properties shrinks due to the proximity of the
next inelastic thresholds (e.g., 5z). Thus, it may be
advantageous to use more stable and widely available
results at unphysical pion mass values and extrapolate to
the physical point by making use of robust EFT method-
ology. While standard in two-body studies, such a treat-
ment of resonant three-body systems has not yet been
available. Future steps include the assessment of discreti-
zation errors as well as the inclusion of larger volumes to
reduce the systematic uncertainties further. Applications
toward the Roper resonance and 7', are also planned.
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