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ABSTRACT 

Agarose gels are excellent candidates for tissue engineering as they are tunable, viscoelastic, and show a pronounced strain-

stiffening response. These characteristics make them ideal to create in vitro environments to grow cells and develop tissues. 

As many other biopolymers, viscoelasticity and poroelasticity coexist as time-dependent behaviors in agarose gels. While 

the viscoelastic behavior of these hydrogels has been considered using both phenomenological and continuum models, there 

remains a lack of connection between the underlying physics and the macroscopic material response. Through a finite 

element analysis and complimentary experiments, we evaluated the complex time-dependent mechanical response of 

agarose gels in various conditions. We then conceptualized these gels as a dynamic network where the global 

dissociation/association rate of intermolecular bonds is described as a combination of a fast rate native to double helices 

forming between aligned agarose molecules and a slow rate of the agarose molecules present in the clusters. Using the 

foundation of the transient network theory, we developed a physics-based constitutive model that accurately describes 

agarose behavior. Integrating experimental results and model prediction, we demonstrated that the fast 

dissociation/association rate follows a nonlinear force-dependent response, whose exponential evolution agrees with 

Eyring’s model based on the transition state theory. Overall, our results establish a more accurate understanding of the time-

dependent mechanics of agarose gels and provide a model that can inform design of a variety of biopolymers with a similar 

network topology. 
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1. INTRODUCTION 

Biopolymers are used extensively as both commodity materials and for specialized applications1–3. For example, chitin is 

important for medical devices and wound-healing dressings4, carrageenan films play an important role in extending the shelf 

life of foods5, alginate is used to prevent dehydration of meats6, and agar is common for culturing cells7–9. Biopolymers are 

selected for their ease of manufacture from natural precursor materials as well as for their ability to bear loads over long 

time scales. However, biopolymers also exhibit complex behaviors that may influence their durability and function. An 

accurate characterization of these materials is thus critical to guide material selection and design, yet many aspects of how 

biopolymers respond to loads applied over time remain poorly understood. Their physical behaviors are complex and vary 

across multiple length scales10, where many behave as semiflexible networks. Typically, these polymeric systems have 

supramolecular assemblies which can vary between about one nanometer and tens of nanometers. Of particular interest are 

agarose-based hydrogels, which are commonly used as scaffolds in tissue engineering due to their low cost, biodegradability, 

and highly controllable elastic properties11. Agarose gels are viscoelastic semiflexible biopolymer hydrogels whose 

mechanical response depends on the polymer concentration12 and has been demonstrated to exhibit a strain stiffening 

response that is likely to influence cellular responses13,14. While bulk properties are important to bear loads, cells respond 

directly to the small-length scale properties and behavior of their host scaffolds. Modulus, viscoelasticity, plasticity, and 

nonlinear elasticity of substrates and scaffolds influence cells and alter the fundamental processes of growth, proliferation, 

migration, and differentiation15,16.  

To better understand the characteristic mechanics and time-dependent response of agarose gels, let us first describe its 

network features. Below the gelation point, double helices are formed through the conglomeration of agarose molecules. 

Each agarose molecule participates in more than one double helix. Supramolecular fibers form from the aggregation of 

double helices through hydrogen bonding. These bonds govern the self-gelation of agarose gels (Figure 1.A) and enable the 

network to be dynamic through bond formation and dissociation which dissipates elastic stored energy when exposed to 

mechanical stimuli. The agarose molecules within the supramolecular fibers of the network structure thus possess a solid-

like behavior that has been proposed to be capable of fast energy dissipation. In contrast, agarose molecules present in the 

clusters or junctions and that are not aligned can dissipate energy much more easily as they slide over adjacent molecules 

thus generating a fluid-like behavior17. Hence, it has been proposed that bond exchange processes taking place in the 

junctions will correspond to longer relaxation times or slower dissipation of the stored elastic energy. Clusters formed by 

several suprafibers within agarose networks increase the number of connected bonds under deformation. The adjacent 

agarose molecules that are not part of the cluster in a stress-free configuration are then able to form new crosslinks which 

increases the size of the cluster and strengthens the network. This process enables agarose to dissipate stress when loaded 

over long time periods. Elucidating the complex behavior of agarose gels is crucial to design more controllable materials, 

but also to elucidate the factors leading to cell responses when subjected to externally applied loads. In addition, a deeper 

understanding of agarose behavior will provide novel insight into many biological materials which present similar network 

topology (i.e., actin filaments, collagen gels and fibrin gels) (Figure 1.B). 

The behavior of agarose gels, and many other biopolymers, is considered to be poroviscoelastic because of their high-water 

content18–20. Fluid movement and mass transport through the solid network influence behavior. However, existing 

poroviscoelastic models fail to connect the network topology with the mechanical response of the solid phase within 

hydrogels. Such models lack accuracy as they do not account for the movement and rearrangement of molecules within the 

polymer network. Generally, existing mathematical models used to characterize the macroscopic mechanical response of 

agarose are empirical. Most either describe the mechanical response by approximating its structure as a combination of 

simple linear elements (i.e., Maxwell or Kelvin-Voigt model) or describe the stress-strain relations from the stored elastic 

energy expressions (i.e., Neo-Hookean or Holzapfel model). Studies using a linear combination of phenomenological 

models, such as Prony series viscoelastic model21, can broadly be found in literature to describe the time-dependent response 

of agarose-based hydrogels. For example, Chen et al. (2011)22 used this approach to study the deformation of chondrocytes 

seeded in agarose gels while Pauly et al. (2017)23 investigated the effects of additives on the mechanical properties of 

agarose hydrogels. On the other hand, Caccavo and Lamberti (2017)24 used fundamental balance laws to describe the 
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poroviscoelastic behavior of hydrogels under large deformation, and applied it to agarose-based hydrogels25. This latter 

model provided an important step towards the development of refined models for biopolymers; however, this modeling 

approach is empirical which limits its use for design purposes. High-precision atomistic simulations, such as molecular 

dynamics, have been the subject of an increasing developments in the last two decades. The molecular modeling of 

hydrogels incorporates into a model every single element that is part of the system (i.e., atomic positions, velocities, and 

forces). In this context, Casalini (2013)26 developed a molecular model of an agarose-carbomer hydrogel to explore the 

effect of mesh size on solvent diffusion at low solute concentration. Although atomistic models remove all the assumptions 

that limit the application of a specific model, they are still computationally expensive and difficult to apply to polymeric 

networks models at large time scales. Thus, while viscoelasticity in agarose networks have been studied extensively, no 

studies to date evaluate if the time-dependent response of hydrogels can be accurately described by dynamic bond evolution. 

In this study, we connect the viscoelastic macroscopic response with the chain-level physics of agarose-based hydrogels. 

This work seeks to establish a fundamental understanding of mechanisms responsible for nonlinear viscoelasticity of agarose 

hydrogels by adapting the Transient Network Theory (TNT)27 to the case of agarose networks. More specifically, the TNT 

is modified to capture the force-dependent response of the fast bond dynamics observed during creep and to capture the 

nonlinear plastic flow-like behavior observed during the multi-step stress-relaxation experiment. We propose bond 

dynamics as a novel mechanism for describing strain-stiffening and force-dependent viscoelastic material behavior of 

agarose. With new data we sought to better understand the time-dependent mechanics of agarose gels to inform their design 

and to provide a model that may be extended to a range of biopolymers which share similar network topology. The 

manuscript is organized as follows. In Section 2, we present and analyze experimental results on the behavior of agarose 

subjected to unconfined compression and study the poroelastic contribution on the overall time-dependent response. In 

Section 3 we review the main elements of the TNT to model the response of dynamic polymer networks and introduce the 

nonlinear bond dynamics of agarose-based gels based on network topology. We then modify the TNT to capture the 

experimental observations reported in Section 2. Finally, in Section 4, we provide a comprehensive overview of the model.  

 
Figure 1. A. Gelation mechanism of agarose, from left to right: When water is added to agarose and it is heated up, 

agarose untangle and forms random coils. As the agarose cools, coils pair to form helices. As the temperature continues 

to drop, the helices bundle and form higher-order assemblies (suprafibers) that are coincident with water inside the gel. 

B. Schematic representation of different biopolymer network showing cluster and thick fibers structure.   
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2. CHARACTERIZATION OF THE TIME-DEPENDENT RESPONSE OF AGAROSE UNDER UNCONFINED 

COMPRESSION 

In this section, we present and analyze experimental results on the behavior of agarose subjected to unconfined compression. 

We described the time-dependent mechanical response of agarose gels for multi-step stress-relaxation and steady creep 

conditions with the objective of establishing a connection with chain-level physics. Because agarose is a biphasic material 

comprised of a solvent-filled biopolymer network, we first aimed to characterize the role of poroelastic effects, i.e., the time 

dependence of the response related to solvent transport, on the gel’s overall response. Thus, finite element analysis (FEA) 

was used to model and reproduce fluid transport in experimental specimens during loading over time.  

2.1 Experimental methodology 

Agarose Gel Fabrication. Hydrogels were prepared by dissolving 5%, 7.5% and 10%, (w/w) agarose (Sigma A9539) into 

phosphate buffered saline (PBS, pH 7.4, Invitrogen), and while stirring the agarose powder was slowly added to prevent 

clumping. The solution was weighed, covered with aluminum foil to reduce evaporation, and boiled (~95oC) and 

magnetically stirred to maintain homogeneity for 5-10 minutes until agarose was dissolved. Agarose solutions were drawn 

into 3-, 5-, and 10-ml syringes cooled at room temperature. The hydrogels were removed from the syringes and cut into 

8.66 mm, 12 mm and 16 mm lengths, respectively, to create 1:1 cylinders (height:diameter ratio).  

Unconfined Compressive Multi-step Stress-Relaxation Test. A total of 15 samples were swelled to equilibrium in PBS for 

48 h. Unconfined Compressive stress-relaxation testing (n = 3 samples/composition/dimension) was conducted on a 

Mechanical Testing System (MTS Insight II; Eden Prairie, MN; 250 N load cell; data recorded at 1 Hz) at room temperature; 

testing was performed with samples immersed in PBS. Aluminum compression platens were rigid, impermeable, and 

smooth. A minimum contact force of 30 mN ensured full contact between platen and sample (Figure 2.A). A USB-camera 

(Dino-Lite 1.3MP EdgePLUS AM4117MZT) was used to assess for full contact prior to testing as well as to evaluate 

uncompressed, fully compressed, and recovered (48 hours of swelling after testing) dimensions to calculate lateral 

expansion. The test profile included four incremental steps in strain 𝜖 = {5%, 10%, 15%, 20%}. Each of these stages was 

divided into a compression phase and a relaxation phase. Samples were deformed at a strain rate of 𝜖̇ = 0.05/s over 1 s, and 

then each strain was held for 5 h to reach an equilibrium stress state (Figure 2.B).  

Water absorption/release quantification. After swelling in PBS for 48 hours, 5% w/w samples (n = 3) were weighed for 

initial mass 𝑚0 (before mechanical testing and final mass 𝑚𝑓 (after stress-relaxation experiments). Samples were weighed 

quickly to avoid water reabsorption and minimize evaporation, and the amount Δ𝑚 of solvent exchanged with the media 

Δ𝑚 was calculated. This procedure was used for the lower agarose concentration gels since their higher porosity (Table 1) 

made them best candidates to have larger values for Δ𝑚. Samples were next re-submerged in PBS and weighed after 48 

hours to assess for mass of fluid reabsorbed.  

Unconfined Compressive Creep Test. Unconfined compressive creep tests were also conducted to evaluate short-term time-

dependent responses. Creep testing was performed in PBS at room temperature on an MTS with closed-loop load control. 

A total of 9, cylindrical, 12x12 mm samples (n = 3/group) were subjected to constant compressive stress based on the overall 

strains achieved after a fast-loading stage (𝜖𝑙̇ = 0.05/s.). The overall strains achieved during the loading stage were 𝜖𝑙  = 

{1%, 2.5%, 5%, 7.5%, 10%, 15%}. The loading stage was followed by a 120 s creep hold at 𝜖𝑙. 

2.2 Experimental approach: multi-step stress-relaxation 

The multi-step stress relaxation depicted in Figure 2. C-E shows the mean stress versus time response of the three different 

sample sizes for each of the three agarose gels compositions. At each level of applied strain, the stress increased immediately 

after the step-strain application, followed by a relaxation stage that reaches a quasi-steady value, referred to as the plateau 

stress 𝜎𝑝 in the remainder of the manuscript. We observed that this value increases with the applied strain while being 

independent of specimen size. Equilibrium values for the stress at the end of the stress-relaxation testing were determined 
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to be 0.028 ± 0.00082 MPa, 0.055 ± 0.0011 MPa and 0.083 ± 0.0005 MPa for 5% w/w, 7.5% w/w and 10% w/w respectively. 

The stress relaxation data were consistent between different samples showing a small variability. 

A similar “stress-plateau effect” behavior was observed in multi-step stress relaxation testing (with a 30 minute relaxation 

period) on the data reported by Roberts et al. (2011)12 in their comparative study of the viscoelastic mechanical behavior of 

agarose and poly(ethylene glycol) hydrogels. Because of the relatively short time used between step strains in this previous 

study, the stress does not plateau as clearly as reported here although general trends are constant between the two studies.  

2.3. Experimental approach: steady-state creep.  

When subjected to a constant compressive load, the agarose sample displayed a combination of elastic deformation and 

creep as described below and as shown in Fig. 3.A. First, following a period of fast elastic deformation, the specimen 

displayed a transitory regime where creep rate first substantially decreased with respect the loading rate 𝜖̇ = 0.05/s and then 

later increased before reaching a steady-state creep (Figure 3.C). We also observed a convergence of the strain rate to a 

constant over time, which indicated steady-state creep and not consolidation effects from fluid transport out of the gel. We 

further noted that the average creep rate increased with applied stress (Figure 3.B), suggesting that the creep response of 

 
Figure 2. A. Schematic of the unconfined compression test of a cylindrical disk of hydrated hydrogel. B. Strain vs. time 

function features multiple steps with holding times to observe relaxation. C, D, and E. Experimental results obtained 

from multi-step stress-relaxation (8.66 mm, 12 mm, and 16 mm) for 5%, 7.5%, and 10% w/w agarose compositions, 

respectively. For each dimension, the averaged data is represented. For each composition, agarose gels showed the same 

long-term stress-relaxation response independent of the sample size. The inset in C. shows the stress evolution for the 

first loading and relaxation step in a semilogarithmic scale along the x-axis. 
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agarose is force dependent. At higher loads, however, creep could only be sustained for a while before the specimen ruptures. 

We finally did not notice major differences between the creep response of agarose with different compositions. 

 
Figure 3. A. Experimental results obtained from creep tests of 12 mm height (and diameter) samples for each of the 

agarose compositions (n = 3/composition). Data is reported using a solid blue line (average values from samples tested), 

and a blue region (± standard deviation). The red-cross indicates mechanical failure. Agarose gels showed same creep 

response independent of agarose composition. B. Evolution of the average data for the creep strain rate 𝜖𝑐̇ respect the 

average data of the constant stress applied 𝜎𝑖 (𝜎1 < ⋯ < 𝜎6) during the creep test. C. Evolution of the average data for 

the creep strain rate 𝜖𝑐̇ over time for the different constant stresses applied 𝜎𝑖. Red-cross indicates the mechanical failure. 

2.4. Poromechanical effects 

As most biopolymers, agarose can be considered as a biphasic mixture consisting of two constituents: a solid skeleton phase 

that is intermixed with a fluid phase. In the following, we therefore use superscripts 𝑠 and 𝑓 to denote the solid and fluid 

phases, respectively18,28,29. For simplicity, the solid matrix is assumed to have an isotropic and uniform pore distribution on 

the whole domain while the mixture is assumed to have reached its equilibrium swollen state so it can be considered fully 

saturated. During deformation, however, the fluid can move relative to the solid skeleton, producing an effective time-

dependence of the mixture, independently of the material response of the polymer matrix. This poroelastic effect brings a 

challenge to data interpretation as it is difficult to decouple the viscoelastic and poroelastic origins of the material’s time 

behavior30–33. The volume fraction 𝑛𝛼(𝑿, 𝑡) of phase 𝛼 (𝛼 = 𝑠 or 𝑓) is defined as 𝑛𝛼(𝑿, 𝑡) =
𝑑𝑣𝛼

𝑑𝑣
, where X is the material 

coordinate, 𝑡 is the time, and 𝑑𝑣𝛼 is the differential volume fraction of constituent 𝛼. The saturation condition implies that 

𝑛𝑠 +  𝑛𝑓 = 1 and the total Cauchy stress can be decomposed into a solid and fluid component as34: 

𝝈 =  𝝈𝒔 + 𝝈𝒇 = 𝝈𝒔 − 𝑝𝑓𝑰 1 

Here, 𝑝𝑓 stands for the fluid pressure, 𝝈𝒔 is partial stress of solid skeleton35 and 𝑰 is the identity tensor. Interstitial fluid flow 

is modeled based on isotropic Darcy’s law as ∇𝑝𝑓 = −
1

𝐾

𝑒

1+𝑒
 (𝑣𝑓 − 𝑣𝑠)36 where 𝑒 is the void ratio, 𝐾 is the hydraulic 

conductance, 𝑣𝑠 is the velocity of the solid phase and 𝑣𝑓 is the velocity of the fluid phase, as before.  
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To explore the extent of these effects on material response, we implemented the above linear poromechanics model into a 

general-purpose FEA software Abaqus 2019 (Dassault Systèmes Simulia Corp., USA). The specimen was modeled as an 

axisymmetric cylinder around its axis of revolution (r = 0) (Figure 5.B). Solvent transport was assumed isotropic and 

modeled by defining the hydraulic conductance of the fluid K, the void ratio 𝑒 and the specific weight of the fluid 𝛾𝑠. Gu et 

al. (2003)37 described the evolution of K and 𝑒 as a function of the deformation applied to agarose gels (detailed description 

on Appendix I). The compression step was run using the SOILS analysis in Abaqus, which accounts for the pore pressure 

response and permeability. Because large deformation was used on our tests, the nonlinear geometric option (NLGEOM) 

was applied. To avoid discontinuities on the step resolution, the maximum pore pressure change per increment was set to 

10 Pa. 

Regarding boundary conditions, the fluid pore pressure 𝑝𝑓 was set to zero on the cylindrical periphery (right side) to allow 

the fluid flow in the radial direction. Furthermore, to simulate the rigid and impermeable platen, all displacements and 

rotations were constrained using an encastre boundary condition on the bottom platen. The contact with the platens 

compressing the hydrogels was assumed to be perfectly lubricated and defined as a frictionless contact. Two different 

predefined fields were created on the initial step. The first one was used to initialize the internal state variables, which were 

set to zero. The second one defined the initial void ratio of the sample and was set to 𝑒0 (see Appendix I). 

Nonlinear analysis was performed using the Newton-Raphson algorithm. The hydrogel sample was modeled by the coupled 

pore-fluid/stress CAX8P elements, 8-node quadrilateral axisymmetric elements that considers biquadratic displacement and 

bilinear pore pressure. By subsequent mesh refinements, the results presented here were demonstrated to be mesh-size 

independent. 

This model was used to simulate the two different tests conducted for this study: multi-step stress-relaxation and creep. To 

simulate stress-relaxation, a displacement 𝑢𝑦 was prescribed on the top platen using a tabular amplitude to match the strain 

previously described in Section 2.1. To simulate creep, a range of pressures 𝑃𝑦 were prescribed to the top platen with its 

respective tabular amplitude as well to simulate a constant strain ratio during the compression stage. To assess the role of 

poromechanics alone, we first assumed that the solid skeleton behaves as a compressible Neo-Hookean hyperelastic solid. 

In this context, the sample deformation is measured by the deformation gradient 𝑭(𝑡) = 𝑑𝒙(𝑡)/𝑑𝑿 which represents the 

linear mapping between the position vector 𝑿 of a material point in the reference configuration and its position 𝒙(𝑡) in the 

current configuration (Figure 4). In the case of unconfined compression, this tensor takes the simple form 𝑭(𝑡) =

𝑑𝑖𝑎𝑔[𝜆, 𝜆𝑙 , 𝜆𝑙], where 0 < 𝜆 ≤ 1 is the length ratio along the vertical direction and 𝜆𝑙 ≥ 1 represents the lateral length ratio.  

 
Figure 4. Conceptual diagram of deformation gradient tensor 𝑭, the length ratio along the axial direction 𝜆 and the lateral 

length ratio 𝜆𝑙.   

The material strain is defined by the Finger deformation tensor (or left Cauchy-Green deformation tensor) 𝒃 = 𝑭𝑭𝑇, which 

may further be decomposed into a volumetric component 𝐽𝑒 = √det 𝒃 and an isochoric component 𝒃̅ = 𝐽𝑒

−
2

3 𝒃. With these 

definitions, the strain energy density (per reference volume) of our compressible Neo-Hookean model is provided by 

𝜓 = 𝑐10(tr 𝒃̅  − 3) +
1

𝐷1

(𝐽𝑒 − 1)2 
2 
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The material constant 𝑐10 and 𝐷1 can further be written in terms of the more familiar elastic modulus 𝐸𝑠 and the Poisson’s 

ratio 𝜈𝑠 of the solid network respectively: 

𝑐10 =
𝐸𝑠

4(1 + 𝜈𝑠) 
 𝑎𝑛𝑑 𝐷1 =

6(1 − 2𝜈𝑠)

𝐸𝑠
 

2.b 

The true (Cauchy) stress tensor can then be derived as:  

𝝈 =
2

𝐽𝑒
𝒃

𝜕𝜓

𝜕𝒃
 =  

2

𝐽𝑒
𝑐10Dev 𝒃̅  +

2

𝐷1

(𝐽𝑒 − 1)𝑰 

 

3 

where the deviatoric part of 𝒃̅ is given by Dev(𝒃̅) = (𝒃̅ −
tr 𝒃̅

3
𝑰). The Poisson’s ratio 𝜈𝑠 for the solid network was 

experimentally determined by imaging and measuring dimensions of each sample before compression and 50 minutes after 

the load was applied.  Poisson’s ratio was found to be 𝜈𝑠 = 0.17, which is in good agreement with previous studies19. The 

Poisson’s ratio in this study was assumed to remain constant during testing. 

To obtain the elastic modulus 𝐸𝑠 of the network, an optimization algorithm was developed to directly compare the contact 

force from modeling results and the experimental data (see Appendix III). In this case, contact force obtained from first 

compression stage (𝜖 = 0.05) on the multi-step stress-relaxation on 5% w/w agarose gels was used. 𝐸𝑠 is set to be equal to 

0.81 MPa. 

Numerical simulations together with experimental findings indicate that poromechanics plays only a minor role stress 

relaxation. From simulations, we can state fluid transport occurred within the first 2000 s (~ 35 min) (Figure 5.C and 5.D); 

then stress remained constant until the end of the simulation.  

2.5. Experimental confirmation of poromechanical effects 

We next sought to experimentally confirm our finding that poroelasticity did not dominate the behavior of agarose under 

the parameters applied in our computational analysis. Mass loss from samples was performed to experimentally confirm the 

minor role of energy-dissipation from poromechanics (Table 1). The amount of water released increased with increasing 

sample diameter due to the higher water content in the initial state. In relative terms, Table 1 shows that the amount of water 

loss remained constant with respect the initial gel mass (‖Δ𝑚̅‖ = ‖
Δ𝑚

𝑚1
‖ = 10.1%), independently of sample size.  

 𝑑 [mm] 𝑚1 [g] Δ𝑚 [g]  

 8.66 0.57 ± 0.022 - 0.05 ± 0.028 (-9.34%)  

 12 1.32 ± 0.084 - 0.14 ± 0.033 (-10.7%)  

 16 3.43 ± 0.17 - 0.35 ± 0.069 (-10.3%)  

Table 1. The initial mass of the agarose gels is shown as 𝑚1. Mass variation on gels due to the water mass loss, is reported 

as Δ𝑚 and is calculated as Δ𝑚 = 𝑚2 − 𝑚1, where 𝑚1 initial mass of the sample and 𝑚2 is the mass measured after the 

experimental test.  

The effect of water loss was also assessed through the diametrical contraction of the sample during stress-relaxation testing 

(Figure 5.E). When compression is held, pressurized pore fluid slowly leaves the system in the radial direction of the sample 

while pores within it collapse reducing its volume. When diametrical contraction stops due to this phenomenon, it can be 

understood as the end of the poromechanics contribution to the energy dissipation. The experimental data recorded 

dissipated energy after the poroelastic model (Section 2.4) plateaued which increased the difference between the equilibrium 
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forces. Based on this observation, the purely poroelastic computational model was insufficient to explain the behavior of 

agarose in response to unconfined compression observed during the relaxation stage. 

 
Figure 5. A. Schematic of unconfined compression of a cylindrical agarose sample. B. The computational domain along 

with the mesh and the boundary conditions implemented. In the boundary conditions, 𝑝 is the pore pressure and 𝑢𝑦 the 

axial displacement applied when multi-step stress-relaxation is simulated or 𝑃𝑦 the axial pressure applied when creep is 

simulated. C. Abaqus poroelastic model prediction results (red dashed line) for stress-relaxation test for 16 mm, 5% w/w 

agarose gels versus experimental data (solid blue line -average value from the different samples tested- and a blue region 

-average ± standard deviation). D. Three different time frames (from top to bottom, 1 s, 200 s and 2000 s) are plotted to 

show the stress distribution in the axial direction. It is possible to observe how the poroelastic effect generates a gradient 

on the stress distribution. After the fluid transport ceased, the stress field became uniform and the solid network was the 

only part of the system dissipating energy.  E. Photographs were taken during stress-relaxation test on 16 mm, 5% w/w 

agarose gels to experimentally quantify the Poisson’s ratio of the solid skeleton and determine the order of magnitude of 

the characteristic time corresponding to the fluid leaving the system. The compression stage had a duration of 1 s where 
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the gel expanded laterally. The relaxation process was recorded while the gel contracted laterally due to the fluid leaving 

the system. The gel stopped shrinking at 3000 s after the compression stage. 

3. AGAROSE AS A NONLINEAR TRANSIENT NETWORK  

The time-dependent inelastic response of agarose samples in this study was dominated by viscoelasticity, rather than 

poroelasticity. In the literature, the mechanical behavior of agarose have generally been characterized by an elastic and a 

time-dependent or viscous component using phenomenological viscoelastic models21–23 (i.e., the simplest being the Maxwell 

model). These models however remain mostly empirical, which motivates the current work as an attempt to build a 

connection between the gel’s network topology and its mechanical response.  

3.3. Preliminaries: the transient network theory 

Let us start by introducing a theoretical framework to describe the nonlinear viscoelasticity of polymer networks, known as 

the transient network theory (TNT)27,38. Due to the presence of physical crosslinks in agarose structure39, the network is 

assumed to be dynamic, wherein the polymer chains associate and dissociate over time. 

The polymer is thus idealized as a network of polymer strands with the end-to-end vector 𝒓 which represents as the segment 

between two nodes or crosslinks. For convenience, we introduce the normalized end-to-end vector 𝝀 =
𝒓

𝑟0
 where 𝑟0 is the 

natural (force-free) length of a strand. In the TNT, a statistical description of the network is provided by the density 𝑐 of 

connected strands and the so-called strand conformation tensor, with indices 𝜇𝑖𝑗 given by 

𝝁(𝑡) = 3⟨𝝀⨂𝝀⟩  4 

where the operation ⟨ ⟩ denotes the average chain deformation of all connected strand within a representative volume 

element. If the network is initially isotropic, it verifies 𝝁(0) = 𝑰. Under the affine deformation assumption40, the change in 

stretch of a connected strand verifies 𝝀̇ = 𝑳 ⋅ 𝝀 where 𝑳 is the velocity gradient 𝑳 = 𝑭̇𝑭−1. Therefore, it is possible to 

construct an evolution equation for the strand conformation tensor if the rates of chain association and dissociation 

previously described are known27
.  

𝝁̇ = 𝑳𝝁 + 𝝁𝑳𝑇 − 𝑘𝑑𝝁 + 𝑘𝑎

𝐶 − 𝑐

𝑐
𝑰 

5 

where C is the total number of strands per unit volume the network (including both connected and dangling contributions), 

and 𝑘𝑎 and 𝑘𝑑 are the kinetic rates describing polymer chains association and dissociation, respectively. For simplicity, we 

assume there is a perfect bond exchange within the network, meaning each detachment event is immediately followed by 

an attachment event41. We also consider the case of incompressible plastic flow. The evolution equation becomes the 

following42: 

𝝁̇ = 𝑳𝝁 + 𝝁𝑳𝑇 − 𝑘𝑑 (𝝁 −
3

tr 𝝁−𝟏
𝑰) 

6 

From this relation, it is straightforward to show  that for a covalently cross-linked network (𝑘𝑑 = 0) the conformation tensor 

𝝁 is equivalent to the left Cauchy-Green tensor 𝒃, i.e.  𝝁 = 𝒃 = 𝑭𝑭𝑇27. Similarly to Equation 3, the true stress tensor can 

then be derived in terms of the conformation tensor as38  

𝝈 =
2

𝐽𝑒
𝝁

𝜕𝜓

𝜕𝝁
=

2

𝐽𝑒
𝑐10Dev 𝝁̅ +

2

𝐷1

(𝐽𝑒 − 1)𝑰 

 

7 

where the deviatoric part of 𝝁̅ is given by Dev 𝝁̅ = 𝝁̅ −
tr 𝝁̅

3
𝑰. Material constants 𝑐10 and 𝐷1 were defined in Equation 2b. 

This model describes a material that displays a linear elastic response (through its Neo-Hookean form), and a linear 

viscoelastic response (since the rate constant 𝑘𝑑 remains constant). Note that this model may however still capture nonlinear 
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geometrical effects since it is valid for large strains. The viscoelasticity of agarose was however observed to be quite 

nonlinear, which motivates the development of a more physical model regarding the relaxation mechanisms occurring 

within the polymer structure. Such a theoretical improvement must therefore involve a rate constant 𝑘𝑑 that changes with 

stress as previously discussed in Hui et al. (2021)43. 

3.4. Nonlinear bond dynamics of agarose-based gels 

Hydrogen bonding not only governs the self-gelation of agarose gels, but it also facilitates the complex dynamics of the 

resulting network. Hydrogen-bonding side groups found in agarose facilitate the formation of transient supramolecular 

structures with viscoelastic responses44. It is theorized that there are two main microstructural features that contributes to 

agarose viscoelastic behavior. First, aligned agarose molecules that form double helices have a limited mobility in 

comparison with single agarose molecules. This dynamic gel structure has been proposed to occur at short relaxation times. 

In contrast, agarose molecules present in clusters that are not aligned with each other can dissipate energy much more easily 

as they slide over adjacent molecules, corresponding to a fluid-like behavior17. This behavior is illustrated in Figure 6. 

 

Figure 6. Schematic of the short relaxation time on agarose corresponding to the fast bond dynamics (𝑘𝑑
𝐼  and 𝑘𝑎

𝐼 ) of the 

strands aligned on the double helices (top) and of the long relaxation times associated to the slow bond dynamics (𝑘𝑑
𝐼𝐼 

and 𝑘𝑎
𝐼𝐼)  where agarose molecules presented in the suprafibers clusters can dissipate energy much more easily as the they 

slide over adjacent molecules (bottom). 

Our experimental results suggest that agarose networks have two different dissipation mechanisms when subjected to an 

external stress45. To construct a model for this network, we first assume each mechanism has its own characteristic 

dissociation rate such that global the kinetic rate 𝑘𝑑 is decomposed as: 

𝑘𝑑 = 𝑘𝑑
𝐼 + 𝑘𝑑

𝐼𝐼 8 

Here 𝑘𝑑
𝐼  is the fast dissociation rate associated to the rearrangement of the strands aligned forming the double helix structure 

and 𝑘𝑑
𝐼𝐼 is the slow dissociation rate associated with the bond exchange in the suprafiber junctions. A closer look at 

experimental data suggests that the transition between the above two relaxation mechanisms is smooth and a function of the 

overall stress-state of the specimen. The fast rates 𝑘𝑑
𝐼  is assumed to change with the level of stress, or alternatively, the level 

of elastic deformation while the slow constant 𝑘𝑑
𝐼𝐼 is assumed to remain constant over the time scale of the experiments. For 

simplicity, we follow classical plasticity theory and assume that volumetric deformation does not affect inelastic flow46. 

This model assumption can easily be relaxed in future implementation of the model if further experiments show it to be 

inaccurate. We can therefore define a scalar measure of the isochoric elastic deformation via an “effective elastic strain” 

defined as: 
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𝜇̅ = √
3

2
Dev(𝝁̅): Dev(𝝁̅)  , 

such that the fast relaxation rate is defined with a generic function 𝑓(𝜇̅) in the form: 

𝑘𝑑
𝐼 = 𝑘𝑑0

𝐼 𝑓(𝜇̅) 9 

The scalar function 𝑓(𝜇̅) need to be derived based on the experimental data collected. Observation of the creep test data 

suggests that agarose does not show significant creep for 𝜇̅ < 𝛽. However, for values of 𝜇̅ > 𝛽 (Figure 8.A), creep suddenly 

accelerates and the function 𝑘𝑑
𝐼  maybe assumed to follow the relation 𝑘𝑑

𝐼 = 𝑘𝑑
0exp (𝛾𝜇̅). This exponential relation is in line 

with the theoretical model presented by Eyring experiencing force-dependent bond dynamics47–49. Combining this statement 

along with the observation made from multi-step stress relaxation tests, the evolution of 𝑘𝑑 is hypothesized to follow a 

generalized logistic function with the following expression:  

𝑓(𝜇̅) =
𝑒𝛾𝜇̅

1 + 𝑒−𝛼(𝜇̅−𝛽)
 10 

where 𝛽 represents the elastic strain trigger for bond dynamics, and 𝛾 is defined as the stress-sensitivity of bond dynamics. 

In addition, as depicted in Figure 7, coefficient 𝛼 describes the sharpness of the transition between the two energy dissipation 

mechanisms; if 𝛼 → ∞, the transition is very steep and converges to a step function while 𝛼 → 0 indicates a very smooth 

transition showing a perfect coupling between the two relaxation mechanisms during the whole relaxation process. The 

coefficient 𝛽 follows the evolution of the equilibrium or plateau stress 𝜎𝑝 point seen in Figure 2.C-D-E.  

 
Figure 7. Physical interpretation of the fitting parameters used to describe the bond dynamic evolution: 𝛼 is the bond 

dynamics transition steepness, 𝛽 is the elastic strain trigger for bond dynamics, 𝛾 is the stress-sensitivity of bond dynamics 

and 𝑘𝑑0
𝐼  is the spontaneous dissociation once the stress threshold is triggered.  

3.5. Implementation and experimental validation  

The above viscoelastic model was implemented into a UMAT Abaqus subroutine requiring the calculation of the Cauchy 

stress 𝝈(𝝁̅) and tangent stiffness matrix 𝑪(𝝁̅). Using expressions provided in Appendix II, Equation 6 was invoked to 

enforce the evolution of the conformation tensor as a function of the dissociation ratio of the network. To summarize, the 

material behavior of the hydrogel depend on two physical processes that are captured by (a) a UMAT subroutine for the 

solid matrix based on the TNT to control the viscoelasticity of the skeleton, and (b) an Abaqus material library to describe 

the poroelasticity due to the pore fluid flow of the solvent. 
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Running the optimization procedure detailed on Appendix III on the creep data and, separately, on the multi-step stress-

relaxation data, it was further possible to accurate calculate model parameters 𝛼, 𝛽, 𝛾 and 𝑘𝑑0
𝐼 . Using data from the creep 

test, it was further possible to accurate calculate the exponential evolution of 𝑘𝑑
𝐼  where, independently of the concentration 

of agarose used, we found mean values of 𝑘𝑑0
𝐼 = 0.001164 1/s and 𝛾 = 2.412 (Figure 8.A); this expression accurately 

predicts the values for 𝑘𝑑
𝐼  when 𝜇̅ < 𝛽.  

Using data from the multi-step stress-relaxation and our optimization algorithm, the parameters 𝛼 and 𝛽 were empirically 

fitted for various agarose composition and applied strain (see Figure 8.B). Different initial guess values were used as an 

input to the optimization algorithm. 

 
Figure 8. A. Dissociation rate exponential evolution obtained from the optimization algorithm ran on the experimental 

creep test data on 12 mm, 5% w/w agarose gels. Graphing the results shows three different zones: slow relaxation domain 

(blue zone), fast relaxation domain (green zone) and the elastic strain trigger, 𝛽, zone for bond dynamic activation (red 

zone). B. For 𝛼 = 500, average values for the different agarose concentrations of the evolution of the elastic strain trigger 

for bond dynamics 𝛽 at different applied strains during the multi-step unconfined compression test. C. For 10% w/w 

agarose, evolution of the bond exchange rate as a function of 𝜇̅. Vertical lines represent the values for the bond dynamic 

trigger parameter 𝛽.  

 

This data suggests that while the sharpness of the bond dynamics transition remains constant across the multiple 

compression steps, the elastic strain trigger, 𝛽, changes its values to account for the stress plateauing during the whole test 

(Figure 8.B). Therefore, 𝛽 follows the plateau point evolution. For the 5% w/w case, 𝛽 decreases for the last stress-relaxation 

step. This agrees with the experimental data of Figure 2.C where the plateau stress 𝜎𝑝 measured in the last compression step 
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(20% strain), is below the one measured for 15% strain. For 7.5% and 10% w/w agarose, the same fitting parameter were 

used for strains > 5%. In these cases, the sharpness of the transition remains constant, but 𝛽 slightly increases its value at 

each deformation step. Taken together, these results suggest that the evolution of bond dynamics is independent of agarose 

concentration. 

The dissociation constant 𝑘𝑑
𝐼𝐼 of the cluster was obtained using the optimization algorithm. We found that 𝑘𝑑

𝐼𝐼 is generally 

insensitive to stress and agarose concentration which confirms it can be kept constant. We estimated the mean rate constant 

as 𝑘𝑑
𝐼𝐼 = 2.76E-6 1/s (i.e., 𝑘𝑑

𝐼𝐼 ≪ 𝑘𝑑
𝐼 ). In the remainder of our analysis (i.e., that concentrates on shorter time scales), this 

rate can therefore be neglected compared to 𝑘𝑑
𝐼 , and a general evolution equation for the general kinetic rate is 𝑘𝑑 ≈ 𝑘𝑑

𝐼 =

𝑘𝑑0
𝐼 𝑓(𝜇̅). Therefore, as an input for the UMAT subroutine five parameters are necessary to describe the solid matrix 

behavior: the elastic modulus 𝐸𝑠 of the solid network, Poisson’s ratio 𝜈𝑠 of the solid matrix and the empirical variables 𝛼, 

𝛽, 𝛾 and 𝑘𝑑0
𝐼 .  

Figure 9. demonstrates agreement between the poroviscoelastic model and the time-dependent mechanical response of 

agarose gels during experimental creep (5% w/w agarose) and multi-step stress relaxation (5, 7.5, 10% w/w agarose) testing. 

Figure 8.B. and Figure 9.B-D. also verify the evolution of bond exchange rate behaves independently of agarose 

concentration. Inset plot in panel A in Figure 9 corroborates the model captures the three creep regimes (primary, secondary 

and tertiary creep) in experimental data. Insets plots in panels B-D in Figure 9, shows the model captures the short-term 

experimental response of agarose gels. We notice that experimental data dissipates energy faster than the computational 

model, yet it does not affect the equilibrium response.   
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Figure 9. Comparison of the prediction from finite element predictions against experimental measurements for tested 

samples. Abaqus simulation results are represented by red dotted line, and experimental results are reported as a blue 

solid line (mean values from experimental tests) and blue region (average ± standard deviation). A. Results of creep test 

for 12mm, 5% w/w agarose gels. The inset in A. shows creep test results in a semilogarithmic scale along the x-axis. B., 

C., and D. Results of multi-step stress relaxation tests for 5%, 7.5% and 10% w/w agarose gels respectively. The inset in 

B-D. shows the stress evolution for the first loading and relaxation step in a semilogarithmic scale along the x-axis. 

 

  



16 
 

4. DISCUSSION 

We developed a physically based model to describe and predict the time-dependent behavior of agarose networks under 

unconfined compression. Unlike prior phenomenological and continuum models describing viscoelasticity, our approach 

considers the time-dependent evolution of the stress-dependent variables that result from bond-exchange within the polymer 

network. This work provides a reinterpretation of agarose network viscoelastic behavior using the transient network theory 

(TNT). Using the characterization of the two main microstructural features that contribute to agarose viscoelastic behavior, 

which are based on dissociation and reassociation of molecular bonds within agarose, we demonstrated that the network 

deforms over time through non-linear force-dependent evolution of bond dynamics.  

Agarose gels are formed from hydrogen (e.g., dynamic) bonds that re-attach after disengaging which imparts gels with 

viscoelastic behavior. Here, viscoelasticity was assumed to follow the two main characteristic microstructures of the gel 

network described by Labropoulos et al. (2001)45. Assuming perfect bond exchange, we hypothesized that the overall 

dissociation rate (𝑘𝑑) results from a linear combination of the dissociation rate corresponding to double helices forming 

between aligned agarose molecules (𝑘𝑑
𝐼 ) and the dissociation rate of the agarose molecules present in the clusters (𝑘𝑑

𝐼𝐼). Due 

to the degree of mobility of the agarose, these factors are responsible for the short (1/𝑘𝑑
𝐼 ) and longer (1/𝑘𝑑

𝐼𝐼) relaxation times, 

respectively. The present work incorporated these topologically based phenomena into a mathematical model, the TNT, 

thus enabling a novel quantitative understanding of the relationships between molecular physics and overall mechanical 

response. This methodology may be extrapolated to other biopolymer networks with similar topologies (i.e., collagen and 

fibrin networks) to predict their emerging material response as a function of bond kinetics. 

The fast bond dynamics of agarose network (𝑘𝑑
𝐼 ) associated to the aligned agarose molecules exhibited significant force-

sensitive dynamics. In the creep test, we observed that the magnitude of the applied stress had the effect of weakening the 

solid-like behavior of the network associated to the fast energy dissipation mechanism. We interpreted this behavior as a 

reorientation of the agarose network along the direction of applied compression which is a particular property of semiflexible 

networks. Our model suggested an exponential force-dependent response of the fast dissociation rate, which agrees with 

Eyring’s theory47. Capturing this phenomenon revealed a novel insight in agarose viscoelastic properties: i.e., the lifetime 

of a bond depends on the force applied to that bond. 

We further demonstrated the non-linear viscoelasticity of agarose hydrogels throughout the implementation of a non-

constant dissociation rate. In our study, the nonlinear viscoelasticity could be observed by a stress-plateauing effect during 

a multi-step stress relaxation test. In particular, the equilibrium stress at the end of the relaxation phase plateaued and reached 

the same value independent of the applied deformation. We developed a master equation to describe the bond exchange 

(Equation 10) based on physics-based parameters such as the elastic strain trigger for bond dynamics and the stress-

sensitivity of the bond rate. The same behavior was observed in multi-step stress relaxation testing (with a 30 minute 

relaxation period) reported by Roberts et al. (2011)12 in their comparative study of the viscoelastic mechanical behavior of 

agarose and poly(ethylene glycol) hydrogels. Because of the relatively short time used between step strains in their study, 

the stress did not plateau as reported herein; however, the trends in both studies are consistent.  

Following the stability of adhesion clusters model presented by Erdmann and Schwarz (2004)50, we hypothesized that the 

clusters formed by several suprafibers within agarose networks increased the number of connected bonds during the 

deformation process (Figure 10). Briefly, Erdmann and Schwarz postulated a detailed theoretical analysis of the stochastic 

dynamics of a cluster of parallel bonds under shared constant loading and with rebinding. The adjacent agarose molecules 

that are not part of the cluster in a stress-free configuration may be available to later form new crosslinks with the initial 

components of the cluster. This theory provides a mechanism for increasing cluster size and a strengthening of the network. 

Following this theory, we found the elastic modulus of agarose slightly increased with elastic deformation which indicated 

a mild strain stiffening effect during sustained compression (Appendix IV). Future investigations should further evaluate 

our hypothesis for a potential relationship between the elastic strain trigger for bond dynamics and cluster size. 
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Figure 10. Schematic representation of the number of bonds 𝑁𝑖 within a cluster in agarose network before and after a 

stress field is applied. Unbonded agarose molecules join the cluster as the external force increases. Variable 𝜂 is defined 

to represent the cluster bond saturation plateauing after the force 𝑓 held by the cluster exceed a certain threshold value.  

 

Poromechanical effects in agarose did not significantly contribute to energy dissipation during stress-relaxation. These 

results followed the well-studied poroelastic material behavior of agarose in the literature37,51–55. We observed that the 

influence of time-dependent fluid displacement on the gel’s response to be small. However, we still incorporated it in our 

analysis for the following reasons. First, we observed a reduction of the initial hydrogel mass during long-duration 

compression tests; this effect can only be captured by poromechanics. Second, the incorporation of fluid transport during 

loading allowed for a more general formulation that may explain coupling of poromechanics with network relaxation; this 

point can be used to better understand poroviscoelastic behavior of agarose gels. Demonstrating the minor role of 

poromechanics in agarose supported the use of the TNT to control and predict the macroscopical time-dependent response 

of physically crosslinked gels.  

Unlike prior applications of the TNT in 2D38, our study demonstrated the application of the TNT into a commercial FEA 

software. This approach will allow for future 3D modeling of complex polymer behavior (i.e., crack propagation or cavity 

generation) using an underlying mechanism-based material model. We also demonstrated an initial step that will enable a 

continuum approach of the TNT to be applied to more complex geometries (i.e., 3D printed hydrogels) than the cylindrical 

geometry presented in this study. The computational implementation of the TNT into a commercial FEA package, combined 

with experimental testing, allowed us to assess the influence of poroelastic and viscoelastic effects in the overall 

macroscopic response of agarose to time-dependent experiments.  

Finally, we emphasize that the model presented in this study can be used to provide control guidance on the material design 

in numerous applications, many of which are applicable to bioengineering, that necessitate the use of agarose and similar 

gels. The TNT model also offers the possibility to design and fabricate gels based on their bond dynamic to obtain a specific 

time-sensitive behavior. One important future effort is to extend the current model to different biopolymers with similar 

network topology and to determine if the TNT can be universally applied to describe behavior of similar biopolymers. 

Finally, our work may also support a variety of tissue engineering applications and provide physical insights to understand 

the force-dependent viscoelastic behavior. For instance, understanding how the yielding behavior of agarose gels may be 

crucial for a wide range of biomedical applications where gels are subjected to loads over long periods of times. 
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APPENDIX I: INTRINSIC PERMEABILITY AND VOID RATIO EVOLUTION IN AGAROSE GELS 

The intrinsic permeability 𝜅 for agarose gels was defined using the evolutions equations described by Gu et al. (2003)37.  

𝜅 = 𝜅0 (
𝐽𝑒 − 𝜙0

1 − 𝜙0
)

𝑛

, 𝜙 =
𝜙0

𝐽𝑒
  

11 

Therefore, in this study, the intrinsic permeability 𝜅 and the solid volume fraction 𝜙 were assumed to be a function of the 

macroscopic deformation applied on the gel, in this case using the Jacobian 𝐽𝑒 of the elastic deformation gradient tensor 𝑭𝒆. 

The initial permeability was defined as 𝜅0 = 𝑝1 (
1−𝜙0

𝜙0
)

𝑝2
 where 𝑝1 and 𝑝2 were fitting parameters. Here, the initial solid 

volume fraction 𝜙0 was obtained using the relationship established by Pluen et al. (1999)51; 𝜙0 =
1

𝜌𝑎𝑔𝑎𝑟𝑜𝑠𝑒𝜔𝑎𝑔𝑎𝑟𝑜𝑠𝑒
𝑐𝑜 where 

𝑐𝑜 is the agarose concentration, 𝜌𝑎𝑔𝑎𝑟𝑜𝑠𝑒 = 1.64 g/ml is the dry agarose density52
 and 𝜔𝑎𝑔𝑎𝑟𝑜𝑠𝑒 = 0.625 is the mass fraction 

of agarose in a fiber53. 

The initial hydraulic conductance 𝐾 was defined as 𝐾 =
𝛾𝑠

𝜇
𝜅 where 𝜇 is the dynamic viscosity of the fluid and 𝛾𝑠 is the 

specific weight of the fluid. Since the fluid was a PBS solution, 𝜇 = 1E-9 N.s/mm2 and 𝛾𝑠 = 9.81E-06 N/mm3. Once 𝜙 was 

calculated and assuming the porosity 𝜃 = 1 − 𝜙, the void ratio was defined as 𝑒0 =
𝜃0

1−𝜃0
=

𝐽𝑒

𝜙0
− 1. Values were 

summarized in Table 2 and assumed to remain constant during the whole deformation process.  

𝑐o[%] 𝜙0[%] 𝑒0 𝜅0 [mm2] 𝐾0 [mm/s] 

5 4.88 19.5 2.32E-11 2.56E-07 

7.5 7.32 12.67 1.22E-11 1.22E-07 

10 9.76 9.25 7.75E-12 7.60E-08 

Table 2. Parameters used to describe poromechanics for each agarose composition 

used in the study.  

APPENDIX II: CAUCHY STRESS AND TANGENT STIFFNESS MATRIX DERIVATION 

To derive the required expressions for the implementation of the TNT into Abaqus, we first rewrote the elastic energy as:  

 𝜓 = 𝑐10(𝐼1̅ − 3) +
1

𝐷1

(𝐽𝑒 − 1)2 
12 

We here assumed elastic compressibility but inelastic incompressibility (from Equation 6). Consequently, in the remainder 

of our derivations, 𝐽𝑒 = 𝐽. The constitutive equation for the Cauchy stress can be written directly in terms of the deformation 

gradient:  
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𝜎𝑖𝑗 =
2

𝐽
𝜇𝑖𝑘

𝜕𝜓

𝜕𝜇𝑘𝑗
 

13 

Now we compute the derivatives of the invariants 𝐼1̅, 𝐼2̅ and 𝐽 with respect to the conformation tensor 𝝁 components  

𝜕𝜓

𝜕𝜇𝑖𝑗
=

𝜕𝜓

𝜕𝐼1̅

𝜕𝐼1̅

𝜕𝜇𝑖𝑗
+

𝜕𝜓

𝜕𝐼2̅

𝜕𝐼2̅

𝜕𝜇𝑖𝑗
+

𝜕𝜓

𝜕𝐽

𝜕𝐽

𝜕𝜇𝑖𝑗
, 

14 

 and obtain the stress expression  

𝜎𝑖𝑗 =
2

𝐽
[

1

𝐽
2
3

(
𝜕𝜓

𝜕𝐼1̅

+ 𝐼1̅

𝜕𝜓

𝜕𝐼2̅

) 𝜇𝑖𝑗 −
1

3
(𝐼1̅

𝜕𝜓

𝜕𝐼1̅

+ 2𝐼2̅

𝜕𝜓

𝜕𝐼2̅

) 𝛿𝑖𝑗 −
1

𝐽
4
3

𝜕𝜓

𝜕𝐼2̅

𝜇𝑖𝑘𝜇𝑘𝑗 ] +
𝜕𝜓

𝜕𝐽
𝛿𝑖𝑗  

15 

In our case 

𝜎𝑖𝑗 =
2

𝐽
𝑐10 (𝜇̅𝑖𝑗 −

1

3
𝛿𝑖𝑗𝜇̅𝑘𝑘) +

2

𝐷1

(𝐽 − 1)𝛿𝑖𝑗 
16 

 To obtain the tangent stiffness matrix we first need to define virtual rate of deformation  

𝛿𝐷𝑖𝑗 =
1

2
(𝛿𝐹𝑖𝑚 𝐹𝑚𝑗

−1 + 𝐹𝑖𝑚
−1 𝛿𝐹𝑗𝑚) =

1

2
(𝐿𝑖𝑗 + 𝐿𝑗𝑖) 

17 

 The Kirchhoff stress is 

𝜏𝑖𝑗 = 𝐽 𝜎𝑖𝑗 18 

The material Jacobian derives from the variation in Kirchhoff stress. 

𝜏𝑖𝑗 = 𝐽 𝐶𝑖𝑗𝑘𝑙  𝛿𝐷𝑘𝑙 19 

 then 

𝐶𝑖𝑗𝑘𝑙 =
2

𝐽
𝑐10 [

1

2
(𝛿𝑖𝑗 𝜇̅𝑗𝑙 + 𝜇̅𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝜇̅𝑗𝑘 + 𝜇̅𝑖𝑙𝛿𝑗𝑘) −

2

3
(𝛿𝑖𝑗𝜇̅𝑘𝑙 + 𝜇̅𝑖𝑗𝛿𝑘𝑙 +

1

3
𝛿𝑖𝑗𝛿𝑘𝑙𝜇̅𝑚𝑚)] +

2

𝐷1

(𝐽𝑒 − 1)𝛿𝑖𝑗𝛿𝑘𝑙 

𝑐10 =
𝐸

4(1 + 𝜈) 
 and 𝐷1 =

6(1 − 2𝜈)

𝐸
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APPENDIX III: FITTING PROCEDURE LINKING ABAQUS AND MATLAB 

To estimate the input material parameters (𝑘𝑑
𝐼 , 𝑘𝑑

𝐼𝐼, 𝛼, 𝛽, 𝛾 and 𝑘𝑑0
𝐼 ) of agarose gels, an optimization procedure linking 

Abaqus and MATLAB (MathWorks, Natick, MA, USA) was developed. Briefly, initial guess values of the material 

parameters were assigned in the input file model and the Abaqus run was executed to compute the system contact force 

response 𝐹𝑠𝑖𝑚. Then, the sum of root-mean-square error in the contact force was defined as 

𝑆𝐸  = 𝑚𝑖𝑛 ∑(𝐹𝑖
𝑡𝑒𝑠𝑡 − 𝐹𝑖

𝑠𝑖𝑚)
2

𝑛

𝑖=1 
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where 𝑛 is the number of iterations. Subsequently, an optimization algorithm was used to iteratively calculate the value of 

the input variables by minimizing the objective function 𝑆𝐸. For solving the optimization problem, the in-house code was 

used based on the MATLAB function fminsearch. The lower and upper bounds in the function were properly chosen to 

accommodate a wide range of values for each of the material properties. 
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APPENDIX IV: ELASTIC MODULUS OF THE SOLID NETWORK 𝑬𝑺 AND AGGREGATE MODULUS 𝑯𝑨  

Once the Poisson’s ratio was properly determined and set to 𝜈𝑠 = 0.17; the elastic modulus of the solid network 𝐸𝑠 was 

obtained using the fitting procedure described on Appendix III. This procedure was repeated for each of the four loading 

steps for every sample. Fully swollen agarose gels exhibited an elastic response with a strong correlation between 

stress/strain (𝑅2 ≈ 1). Most studies in the literature report the aggregate modulus 𝐻𝐴 instead of the elastic modulus of the 

solid network. The aggregate modulus for different agarose composition can however be obtained directly from 𝐸𝑠 and 𝜈𝑠 

as: 

𝐻𝐴 =
3

2

(1 − 2𝜈𝑠)

(1 − 𝜈𝑠)
𝐸𝑠 
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At 5% strain and before relaxation, the mean aggregate modulus values could therefore be estimated as 0.97 MPa, 1.7 MPa, 

and 2.43 MPa for 5%, 7.5% and 10% w/w agarose respectively. These results were in excellent agreement with the 

previously reported by Normand et al. (2000)56. During the compressive stage that followed stress relaxation, we further 

observed an increase in the aggregate modulus with respect to its initial value. In this study, 𝐻𝐴 was observed to 

exponentially increase with applied deformation in the following fashion (𝑅2 ≈ 1) (Figure 11): 

𝐻𝐴 = 𝑎(𝜇̅)𝑏 + 𝑐 23 

Values for fitting parameters were summarized in Table 3. 
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Table 3. Control parameters a, b, and c as a function of 

the agarose concentration 𝑐o used in the samples. 

Figure 10. Evolution of the aggregate modulus 𝐻𝐴 as a 

function of the second invariant of the conformation tensor 𝜇̅.  

 

The parameter 𝑐 was directly related to the elastic modulus found at 5% strain (𝐻𝐴
0) before the network had time to relax. 

This fact motivated the idea of finding the following master equation as a function of the agarose concentration 𝑐o. 

𝐻𝐴 = 𝐻𝐴
0 [

3

2
106𝑐𝑜(𝜇̅)𝑏 + 1]  

24 

The master Equation 27 shows that agarose network becomes stiffer as the overall deformation is increased and held during 

large periods of time. Parameter 𝑏 increases as the concentration of agarose in the samples increases. However, we found 

that assuming parameter 𝑏 constant and equal to the average of the values shown on Table 3 (𝑏̅ = 11.3) did not have major 

differences in the fitted curves shown in Figure 9. 
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