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Industrial data analytics and effective asset management are key for catalyzing
widespread deployment of energy storage for electrified transportation and
renewable energy. Altinpulluk et al. propose a federated battery diagnosis and
prognosis model that processes data locally, reduces communication load, and
enhances privacy, enabling scalable and secure battery management systems.
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SUMMARY

Industrial data analytics methods play a central role in improving en-
ergy storage performance and efficiency, impacting the future of
electrified transportation and renewable electricity generation.
However, significant challenges hinder the large-scale deployment
of batteries. Conventional methods rely on centralized collection
and processing of fleet-level data, leading to database size issues
and privacy concerns due to potential data breaches. To enable scal-
able deployment of battery management systems, this article pro-
poses a federated battery diagnosis and prognosis model, which
distributes the processing of battery standard current-voltage-
time-usage data in a privacy-preserving manner. Instead of transfer-
ring the raw data, this approach communicates only the locally
processed parameters, thus reducing communication load and pre-
serving data confidentiality. The federated model offers a paradigm
shift in battery health management through privacy-preserving
distributed methods for battery data processing and lifetime pre-
diction, ensuring the reliable and sustainable deployment of
lithium-ion batteries in a rapidly evolving world.

INTRODUCTION

Deeply decarbonized energy sources for transportation and electricity generation
are key components in the fight against climate change. Electrified transportation
has transitioned from a promising candidate to a globally embraced solution.
Wind and solar electricity generation can similarly be cornerstone technologies if
their intermittency issues can be adequately addressed. Lithium-ion batteries are
the key enablers for both markets, with the grid presenting especially unique chal-
lenges as it continues to evolve its design, and thus its storage requirements. In
fact, large-scale deployment of lithium-ion batteries has become paramount in forg-
ing a sustainable modern grid."? The magnitude of energy storage investments
required for the global green transformation requires a more sophisticated level
of performance prediction and monitoring than is presently available to minimize
performance and the financial risks associated with their increasing use. The primary
challenge for energy storage in general, and especially for lithium-ion, is predicting
performance throughout life, since the loss of capacity and growth of resistance is
highly path dependent, and the grid deployment scenarios (paths) are quite vari-
able. Investable large-scale lithium-ion deployment is ultimately linked to effective
battery health predictions and management strategies. Recently, artificial intelli-
gence (Al) and machine learning (ML) tools have been shown to offer a solution to
these incredibly complex problems,® but continued advancements require
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significantly more data than are broadly available. While energy storage perfor-
mance data are abundant, their availability for data science efforts is scarce due to
security concerns and infrastructure demands for transmitting large amounts of
data, specifically within the context of field deployments. Removing these two road-
blocks will release the critically needed data for the next generation of data science
tools to enable large-scale lithium-ion deployments for the modern grid.

Practical solutions to these stringent data reliability, security, and management chal-
lenges will unleash the availability of existing data and enable improved tools to
catalyze energy storage deployments by reducing performance and investment
risks.® Traditional battery diagnosis and prognosis approaches use continuous
collection and processing of comprehensive current-voltage-time-usage data in a
central server. This approach, called centralized diagnosis and prognosis (see
related surveys3’5'7'8), requires a vast amount of data transfer between batteries in
the field and a central database, which congests computation and communication
channels, and subjects the operators to significant vulnerabilities in terms of data

residency and privacy.
Current methods face three distinct challenges:

(1) Data privacy requirements: Typically, each battery operator, also referred to
asaclient, collects data locally at the battery site within a local time series data-
base. To support the discovery of fleet-level battery degradation trends, local
data from each client need to be collected in a centralized data warehouse.
These data warehouses are usually managed and maintained by the original
equipment manufacturers (OEMs) of the batteries. Data sharing between cli-
ents and the central database raises significant security concerns about and
vulnerabilities to data breach incidents.” IBM reports that in 2023, the average
cost of a data breach in the energy sector reached $4.8 million per incident.
Furthermore, when there are competing business interests, even minor data
leaks can threaten an industrial organization’s competitive edge while
unleashing devastating legal and financial consequences.'®

S

Input/output (I/O) limitations: Centralized collection of high data volumes
from a fleet of batteries increases the need for an ever-increasing capacity
for I/O channels, on the order of terabytes (TBs) for regular applications.
Trends suggest that there will be a need for an exponentially increasing
data size acquired from batteries. In the research and development sector,
a leading chemical producer generates over 70 million data points daily for
battery characterization, while an academic consortium called Energie R2SE
produces an annual output of 1 petabyte (PB) of battery data.""

—
@

Storage and processing limitations: Centralized processing and storage of
data places all the data management burden on a single unit, which signifi-
cantly increases the load on central servers, requiring PBs of data stored
and processed by a single entity, which extrapolates linearly with each indi-
vidual processor. These fundamental challenges amplify with increasing scale
of battery deployments and constitute significant barriers for the industrial
implementation of battery diagnosis and prognosis applications.

Another important ecosystem consideration is that these challenges disproportion-
ately impact small to medium enterprises that have limited risk tolerances and signif-
icantly lower capacities for data storage, communication, and processing. The pre-
sent resource paradigm favors the large and discriminates against the small
organizations that can often be the source of highly innovative technology solutions.
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Figure 1. Comparative analysis for the conventional centralized battery diagnosis and prognosis models and the proposed federated battery
diagnosis and prognosis models

Centralized models collect private field data from various sources, aggregating and storing it on a central server, which typically amounts to PBs of
stored data. Battery diagnosis and prognosis models are also executed within this central server. This mode of operations poses higher risks of data
leaks, as clients share their entire datasets for storage and processing in a central server. In contrast, the proposed approach offers an alternative that
keeps private field data at their source. Local models for diagnosis and prognosis are executed at the source, sharing only local model parameters with
the server. This federated structure mitigates the risk of data breaches and reduces communication load and storage burden on the server.

Federated learning (FL) is a new class of privacy-preserving ML method that has
recently appeared in other data science markets with similar challenges. FL methods
have gained momentum in recent years'? with emerging applications such as Goo-
gle GBoard'® and have found applications across many domains, including health

14,15 16 1718 and energy.'”?° FL methods show
21-26 27-29 o

care, manufacturing,
great promise for both dimensionality reduction

classical ML problems. For the prediction problem, there has been interesting
30-34

cybersecurity,
and prediction stages
emerging applications of FL for predicting battery health in recent years, where
the focus has been on the use of different neural network structures for addressing
prediction problems ranging from battery heterogeneity and clustering to
enhancing battery recycling applications. In the current approaches, we foresee
two main challenges: (1) a lack of integration across federated data dimensionality
reduction and federated prediction of remaining life, which would ensure an end-
to-end federation, and (2) a need for quantification of the costs associated with
adopting different predictive models, specifically while comparing the privacy-pre-
serving approaches with the centralized counterparts. There are additional prob-
lems related to different client configurations, which may introduce additional diffi-
culties for analysis. In industrial applications that use large-scale sensor data, both of
the dimensionality reduction and prediction stages are required, and hence, they
should be jointly federated to ensure data privacy and prediction accuracy of the re-
sulting models.

Federated battery diagnosis and prognosis, therefore, is a potential solution to the
central data-scarcity Al/ML roadblock since it builds a framework that focuses on col-
lecting data-derived insights rather than collecting the data itself. In other words, FL
data-driven insights can become the new critical asset that offers a unique and
broadly useful solution profile, as opposed to standard current-voltage-time-usage
data, which is cumbersome and can easily be compromised. A comparison of
centralized and federated battery models is shown in Figure 1. The terms KBs,
MBs, and TBs refer to kilobytes, megabytes, and terabytes, respectively. A second
key feature is that centralized battery diagnosis and prognosis have PB data storage
requirements and demand high bandwidth communication channels capable of
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streaming data on the order of TBs. In contrast, the federated framework focuses on
distributing data processing in a privacy-preserving manner to collect insights,
rather than the data itself. Federated diagnosis and prognosis use local standard
current-voltage-time-usage data to update local models for each battery (or client)
and only collect locally updated model parameters (i.e., insights) within a federated
server. This structure in our framework is called an information diode.

This proposed federated diagnosis and prognosis framework has three implementa-
tion challenges and potential solutions:

(1) Ensuring data privacy: information diodes are situated between the local data
and the local model. As with diodes in electrical applications, these informa-
tion diodes trap the raw data transfer and only enable the insights to pass
from local models that are trained using local raw data, which inherently en-
sures privacy.

Reducing I/O requirements: I/O requirements are reduced via a two-step pro-

S

cess: (1) processing high-fidelity data locally and building local ML models
and (2) communicating only ML model parameters across channels across
batteries and the central database. This operational change enables harness-
ing of the full information contained in the data while reducing the size of the
communicated data by orders of magnitude.

Distributing data storage and processing load: the processing and storage of

—
w
=

standard current-voltage-time-usage data are distributed, and updating of
the central model occurs exclusively via structured model updates, which is
computationally efficient and requires minimal storage on the federated
server.

Thus, an end-to-end FL framework is proposed for solving the data-scarcity issue,
which impedes further progress in the prediction of battery performance before
deployment and of remaining life once the battery is in use.

This holistic FL strategy integrates two steps: (1) a federated autoencoder (FA) stage
for dimensionality reduction and (2) a federated deep neural network (DNN) step for
remaining useful life prediction. During the first step, an FA model is deployed to
reduce the dimensionality of feature set to efficiently capture the essential informa-
tion while minimizing the data transmission overhead. In the second step, the trans-
formed features are fed into a federated DNN model for predicting the remaining
useful life of lithium-ion batteries. Collectively, this framework is referred to as the
federated holistic battery prognostics and evaluation framework (HOPE-FED). It of-
fers a holistic solution that addresses the unique needs of battery prognosis in an FL
setting, providing an effective and practical approach for industry applications that
require security and efficiency. The experimental procedures offer details on the
development and implementation strategy.

Extensive experiments were conducted to evaluate the performance of the pro-
posed model using two classes of metrics. Prediction accuracy evaluates the success
of prediction as a function of deviation between predicted and realized remaining
life. Cost quantification metrics demonstrate the economic impact of different pre-
diction models as a function of battery replacement and failure costs. The proposed
models are evaluated using extensive battery datasets that incorporate accelerated
life testing data for lithium-ion batteries, with different chemistries, including
lithium iron phosphate, 0.5Li;MnOj3.0.5LiNip375Mng375Co0250, (HE5050) and
LiNio.sMno3Cop2 0z (NMC532). 7%
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RESULTS AND DISCUSSION

Framework evaluation

The performance of the proposed HOPE-FED framework was evaluated with detailed
case study experiments using two public databases: a Nature Energy database®® and
a previously published Argonne database®® (details of both are in Note S3).

In the first case study, the prediction accuracy of the proposed model at different
stages of battery life for a range of lithium-ion chemistries was demonstrated. The
remainder of the case studies compare the performance of HOPE-FED with state-
of-the-art benchmark models. In the first set of benchmarking experiments, the per-
formance of both age-based periodic replacement policy (APRP) and HOPE-FED-
based predictive replacement policy was assessed. APRP is a common approach
in the maintenance and reliability literature, where the assets are replaced when
they reach a predefined age. This age is typically optimized by minimizing the ex-
pected maintenance costs (see Note S1 for more details). The HOPE-FED-based
predictive replacement policy leverages the prediction information obtained
through the fully federated model.

In the second case study, a set of benchmarking experiments were conducted that
compared the performance of the proposed HOPE-FED approach with two bench-
mark models. The first benchmark model executes all dimensionality reduction and
remaining useful lifetime (RUL) prediction tasks using a centralized approach,
following the traditional paradigm of ML referred to as the fully centralized model.
In the second benchmark model, the computational experiments are performed
without dimensionality reduction via autoencoder to demonstrate the effect of the
autoencoder in the performance. This particular benchmark model is called the
pure FeRUL model.

Lastly, in the final benchmark model, a partial application of the FL framework was
implemented by partitioning batteries into groups and preserving the privacy of
each group, thereby representing the batch-federated approach. The batch-FL sce-
nario represents multiple companies that collaborate with a single analytics pro-
vider. In this model, the analytics provider must ensure the privacy of a subset of
client data, distinct from others, while processing and aggregating the data. This
approach strikes a balance between fully federated and centralized models, allow-
ing for efficient data sharing and analysis with tailored privacy considerations for
different client groups. The computational results of batch-federated approach
are shared in Note S5.

The performance of HOPE-FED was compared to the benchmark models using two
essential success criteria: prediction accuracy and cost quantification (see experi-
mental procedures). Prediction accuracy evaluates the percentage of deviation be-
tween the predicted and the actual remaining life. Cost quantification metrics
consider the long-run average cost of batteries as a function of replacement deci-
sions. This metric demonstrates the trade-off between early (i.e., premature)
replacement and late replacement actions.

In these experiments, the batteries were continuously monitored and the responses
were used in a hypothetical use scenario context—when the remaining life predic-
tions fall below a certain threshold (e.g., 2 weeks to failure), a replacement order
is placed that takes a certain time to be resolved (e.g., 1 week). Evaluation of the
metric is demonstrated in Algorithm S2 (see Note S1).
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Figure 2. Synopses of computational experiments

The computational experiments were conducted utilizing two publicly available databases: the Nature Energy database and the Argonne database. To
evaluate the effectiveness of the proposed approach, comparisons were made against different benchmark models, a federated model without
autoencoder, a fully centralized model, a batch-federated model, and an age-based periodic approach. Evaluation criteria were based on two key
metrics, prediction accuracy and cost quantification, which were used to assess the performance of each approach.

Additionally, insights into the number of early replacements and failures were pro-
vided, as well as the average unused life and average number of unavailable days.
The average unused life refers to the extent to which battery replacement occurs
before failure, indicative of the wasted potential useful life of batteries. Conversely,
the average number of unavailable days represents the average duration during
which a battery remains inactive due to replacement operations. This calculation
considers both the time required for battery replacement and the waiting time for
the crew. For a comprehensive understanding of the algorithms used to calculate
the average unused life and average number of unavailable days, please refer to Al-
gorithms S4 and S5 in Note S4.

The overview of the computational experiments is depicted in Figure 2. The ability to
implement scenario adjustments is implicit in our construct.

Predictive performance of the proposed approach in different chemistries

The HOPE-FED approach was evaluated using datasets generated from the two da-
tabases from Nature Energy and Argonne. To showcase the effectiveness of the
HOPE-FED approach, three distinct sets of results were presented, using the Nature
Energy database, Argonne database’s HE5050 chemistry, and Argonne database’s
NMC532 chemistry. The prediction error was assessed across three distinct datasets
and plotted against different percentiles of battery lifetimes; prediction error vs. the
stage of battery lifetime is crucial because remaining lifetime prediction typically is
performed continuously. Lifetime percentile refers to the percentage of the battery’s
total lifetime that has elapsed by a specific point in time. For instance, 50% lifetime
means the battery is halfway in its lifetime, 90% lifetime indicates that 10% of the bat-
tery’s lifetime is remaining until failure. Evidently, lower lifetime percentiles indicate
that the battery is in its early stages, similar to a brand-new condition. Conversely,
higher lifetime percentiles signify that the battery is approaching its end of life,

6 Cell Reports Physical Science 5, 102215, October 16, 2024
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Figure 3. Prediction error values across different lifetime percentiles for the HOPE-FED approach
The plots (A), (B), and (C) illustrate the prediction error percentages across different lifetime percentiles of lithium-ion batteries from the Nature Energy
and Argonne databases for HE5050 and NMC532 chemistries, respectively. The lifetime percentile of a battery indicates the proportion of its total

expected lifespan that has passed at a given point in time. The prediction accuracy is defined as percentage deviation across the predicted and actual
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lifetimes. In the Nature Energy database, prediction accuracy improves as batteries age, which is beneficial for optimizing replacement strategies and

balancing costs. However, no such trend is observed in the Argonne databases.

making accurate predictions and alerts more critical for effective replacement sched-
uling. However, this comes with a caveat. The alert should be close to the failure time
to ensure we can use the battery lifetime effectively, butalso give ample time for pro-
active planning of replacement decisions. Evidently, an alert that comes too late is
also no longer useful. Therefore, unsuccessful predictions at higher lifetime percen-
tiles can result in inefficiencies in replacement decisions. Figure 3 displays the pre-
diction error values across lifetime percentiles ranging from 10% to 90%. The abso-
lute average prediction errors for the Nature Energy, Argonne: HE5050, and
Argonne: NMC532 test sets are 11.3%, 13.0%, and 6.9%, respectively, indicating
the performance of the HOPE-FED approach.

In the Nature Energy database, the absolute average prediction error values
consistently decrease as the lifetime percentile increases. This trend indicates
that since the battery predictions use a history of observations, the resulting pre-
dictions improve as batteries age. Such a circumstance is advantageous for con-
ducting replacement activities efficiently, as it allows for balancing the trade-off
between battery replacement cost and the opportunity cost associated with early
battery replacements. By accurately predicting the remaining lifetime of batteries
nearing failure, decision makers can optimize their replacement strategies and
make informed choices regarding replacement. In the case of the Argonne data-
base, no specific trend is observed between the absolute average prediction error
and the lifetime percentile. The HOPE-FED approach effectively mitigates the risk
of costly failures and supports more informed decision making in replacement
operations.

Comparative analysis with APRP

This section compares an optimal replacement policy based on the proposed HOPE-
FED approach with a corresponding replacement model based on age-based
replacement.

(1) APRP performs the replacement activities for all of the batteries following a
pre-specified frequency, without considering any prediction information to
determine the replacement trigger time. To establish the threshold age t*
for triggering replacement, the long-run average cost for training set is mini-
mized by following the steps of Algorithm S3 (see Note S1). For each potential

Cell Reports Physical Science 5, 102215, October 16, 2024 7
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Table 1. Comparison of periodic replacement vs. fully federated prediction-based replacement

approaches
Nature Energy Argonne: HE5050 Argonne: NMC532
APRP HOPE-FED APRP HOPE-FED APRP HOPE-FED
No. of preventive 29 30 10 10 18 19
No. of corrective 2 1 9 9 7 6
Unused life 444.5 20.3 262.9 114.2 551.8 95.8
Unavailable days 1.3 1.2 3.4 3.4 2.4 2.2
Average cost, $/day 20.3 12.6 32.5 25.7 26.5 19.1

replacement trigger time t*, the long-run average costs over all training bat-
teries are calculated. The long-run average costs are computed in the same
manner as the long-run average cost calculation in the predictive replacement
policy, as described in Algorithm S2 (see Note S1), which include both failure
and early replacement costs. The t* value that minimizes the long-run average
cost is selected as the optimal replacement trigger time, and all battery
replacement activities for the test datasets are scheduled to occur at time t*.

(2) In contrast, HOPE-FED-based replacement policy schedules maintenance as
a function of the remaining lifetime predictions. More specifically, while the
threshold for the APRP policy is based on the age of the component (and
hence, not dependent on predictions), the HOPE-FED policy threshold is
based on the remaining life predictions from the model. HOPE-FED policy
triggers maintenance when the remaining lifetime prediction for a battery
reaches a certain threshold. It ensures proactive replacement strategies
that find an optimal balance between mitigating the risk of failures and pro-
longing the lifespan of batteries.

The performance of age-based periodic replacement and predictive replacement
policies were compared in Table 1 for the Nature Energy database and the Argonne
database for chemistries HE5050 and NMC532, respectively. The best-performing
thresholds are reported in Table 1, while more detailed results across various
threshold levels are provided in Tables S3-S5 in Note S5.

Table 1 presents the replacement trigger time, the number of preventive and
corrective replacements, the average unused life, the average number of days un-
available due to replacement activities, and the long-run average costs across
various policies and datasets. The best-performing HOPE-FED-based predictive
replacement policy demonstrated a long-run average cost improvement of 38%,
21%, and 22% compared to the APRP for the Nature Energy database, Argonne
database with HE5050 chemistry, and Argonne database with NMC532 chemis-
tries, respectively. For the Nature Energy database, the number of failures,
average unused life, and average number of unavailable days were significantly
reduced compared to the APRP. For the HE5050 chemistry in the Argonne data-
base, the HOPE-FED-based predictive replacement policy exhibited the same
number of failures, number of early replacements, and average number of unavai-
lable days as the periodic replacement policy. However, the average unused life
improved drastically, indicating that the customized predictions per battery helped
in preventing premature replacements and enabled the effective use of equipment
lifetime. For NMC532 chemistry, the number of failures increased by 1, whereas
average unused life improved significantly, which paves the way for improving
the long-run average cost and the associated environmental impact of the
batteries.

8 Cell Reports Physical Science 5, 102215, October 16, 2024
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Table 2. Comparison of performance measures for benchmark policies and HOPE-FED on Nature
Energy and Argonne databases

Fully centralized Pure FeRUL Fully federated
Nature Energy database
Optimal threshold 25 25 25
No. of preventive 30 25 30
No. of corrective 1 6 1
Unused life 22.3 711 20.3
Unavailable days 1.03 2.0 1.2
Average absolute % error 11.80 13.73 11.31
Average cost, $/day 123 16.5 12.6
Argonne Database: HE5050
Optimal threshold 25 50 25
No. of preventive 11 8 10
No. of corrective 8 11 9
Unused life 96.9 288.0 114.2
Unavailable days 3.1 3.9 3.4
Average absolute % error 14.20 17.36 13.00
Average cost, $/day 24.5 31.9 25.7
Argonne Database: NMC532
Optimal threshold 25 100 50
No. of preventive 19 14 19
No. of corrective 6 11 6
Unused life 59.8 136.4 95.8
Unavailable days 2.2 3.0 2.2
Average absolute % error 6.25 13.87 6.89
Average cost, $/day 18.8 22.3 19.1

Overall, the HOPE-FED-based predictive replacement outperformed the APRP in all
datasets. By leveraging predictions to schedule replacement activities in our hypo-
thetical use scenarios, enhanced long-run average costs and improved performance
measures were observed. This approach allowed for the creation of customized
replacement plans for each battery by monitoring standard current, voltage, time,
and usage information effectively.

Comparative analysis with state-of-the-art predictive models

This section offers a comparative analysis of the proposed approach, HOPE-FED,
with two benchmark models, the fully centralized approach and the pure FeRUL
approach. Detailed results can be found in Table 2 for the Nature Energy database
and the Argonne database (HE5050 and NMC532 chemistries). A summary of the
prediction error plots across different lifetime percentiles are shown in Figures 4,
5, and 6.

The first benchmark study focused on a fully centralized approach, where both the
autoencoder and remaining lifetime estimation were performed in a centralized
fashion using traditional ML techniques. In this approach, battery features were
aggregated before applying the autoencoder, and the transformed features
were used together to train the remaining lifetime estimation DNN. This approach
showcases the best-case scenario for prediction purposes, since the predictive
model has access to all the raw data from the batteries. However, by collecting
the raw data, the approach also risks data privacy and stresses communication
and computational capacities. When comparing the average absolute error results,
we observe that there is no significant difference between the performance of fully
federated HOPE-FED and the fully centralized models. However, there is an

Cell Reports Physical Science 5, 102215, October 16, 2024 9
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The performances of fully centralized (A), FeRUL (B), and HOPE-FED (C) approaches are compared using percentage prediction error plots across

different lifetime percentiles for the Nature Energy database.

inevitable but slight difference between the average cost between fully federated
HOPE-FED and the fully centralized models, which constitute the cost of privacy.
The results illustrate that this cost is minimal, resulting in only a 2.4% increase
in the long-run average cost for the Nature Energy database and 4.7% and
1.6% increases for the Argonne database (HE5050 and NMC532 chemistries,
respectively).

In the second benchmark study, the pure FeRUL approach, experiments were per-
formed without implementing the autoencoder to assess the effectiveness of the
FA. This involved directly applying the FeRUL prediction tasks by embedding all bat-
tery features. The results showed that leveraging FAs improved the long-run average
cost by 24%, 19%, and 14% for the Nature Energy database and the Argonne data-
base (HE5050 and NMC532 chemistries), respectively, while keeping hyperpara-
meters constant in both experimental settings.

The FeRUL approach performed the worst for all the databases, indicating that au-
toencoders are powerful tools for obtaining high-quality features to improve the
prediction performance of ML algorithms. Fully centralized models slightly outper-
formed fully federated models in terms of long-run average costs for all three data-
sets, which constitute the cost of privacy. A slight increase in the long-run average
costs demonstrates the trade-off for achieving fully preserved privacy and highlights
the strength of federated models.
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Figure 5. Comparison of benchmark models for the Argonne database: HE5050

The effectiveness of fully centralized (A), FeRUL (B), and HOPE-FED (C) methods are evaluated using percentage prediction error plots across different

lifetime percentiles for the Argonne database, HE5050 chemistry.
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The effectiveness of fully centralized (A), FeRUL (B), and HOPE-FED (C) methods are evaluated using percentage prediction error plots across different

lifetime percentiles for the Argonne database, NMC532 chemistry.

Lithium-ion batteries are a cornerstone technology for electrified transportation and
for fully decarbonized wind and solar energy systems, but they face significant risks
associated with an inadequate ability to precisely predict lifetime performance. This
is especially critical as the magnitude of investments increases during the “green
transition.” A more in-depth understanding and effective management of perfor-
mance can be catalyzed by the broad use of data science tools, especially with
respect to the future grid, but lack of data remains a key roadblock. This paper offers
a new approach to estimating battery health by considering real-time information,
such as standard current, voltage, time, and usage statistics across a fleet of batte-
ries owned and operated by diverse stakeholders.

The proposed approach referred to as HOPE-FED presents a holistic solution for the
battery prognosis domain. The novel contributions of this work stem from the use of
an FL paradigm to train complex ML models for estimating battery health that elim-
inates the need to move prognosis-oriented battery data collected by individual
stakeholders and operators. The novelty of the proposed approach is further
augmented by the development of a federated mechanism for training autoen-
coders that are ultimately responsible for dimensionality reduction. The use of a
federated technique for training autoencoders circumvents the need for centralized
data aggregation to carry out the dimensionality reduction step, which is a common
attribute in most state-of-the-art FL frameworks. The proposed approach demon-
strates an end-to-end, holistic FL mechanism that enables stakeholders to retain
full ownership of their data both in terms of learning complex trends influencing bat-
tery health and feature dimensionality reduction methods that are essential for
robust learning outcomes. The computational results conclusively show that
HOPE-FED outperforms conventional periodic maintenance policies in terms of
improved costs and reduced downtime. However, the results also demonstrate
that HOPE-FED provides costs and downtime performance that are similar to those
of the centralized ML versions. These aspects of the proposed approach show that
battery stakeholders can expect similar or better prognostic quality as compared
to the state of-the-art methods with the added advantage of data privacy and lower
data storage and processing latency. Executing the proposed framework with
different DNN models could be an interesting future direction that will be investi-
gated by the authors.

From a practical standpoint, HOPE-FED allows for compelling business use cases in
the context of lithium-ion batteries enabling collaboration between battery analytics
consultants and OEMs. Battery analytics consultants can leverage HOPE-FED to
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train a powerful ML model designed to optimize battery performance, efficiency,
and longevity. Using the end-to-end, holistic federated approach, HOPE-FED can
allow the sharing of insights and models with multiple OEM stakeholders with the
promise of retaining complete ownership over their proprietary raw battery data.
Consequently, HOPE-FED can ensure that OEMs collectively benefit from a contin-
uously improving, industry-standard model without revealing sensitive data. The
practical impact of HOPE-FED is underpinned by real-world use cases that
encourage the seamless exchange of knowledge and expertise while promoting cut-
ting-edge battery technologies that respect the autonomy and security of each cli-
ent’s valuable data assets.

In conclusion, the adoption of FL of lithium-ion batteries, especially in the field, rep-
resents a paradigm shift, by addressing the fundamental challenges of battery health
management: the security and efficiency of data use on a large scale. This game-
changing approach ultimately promotes sustainability and efficiency in the electrifi-
cation era. By harnessing the power of FL, the battery industry can unlock new
frontiers of innovation, ensuring the reliable and environmentally responsible
deployment of lithium-ion batteries in a rapidly evolving world.

EXPERIMENTAL PROCEDURES

Overview of FL framework for battery prognosis

This section develops the methodology for HOPE-FED, a holistic federated battery
prognosis framework geared toward resolving privacy and data acquisition “pain
points” for large-scale battery deployments. A significant benefit of the HOPE-
FED approach is that it eliminates the need to collect sample datasets for learning
the low-dimensional embeddings of the underlying distributed performance data.
As a result, HOPE-FED enables the entire data analysis pipeline to be federated, re-
sulting in providing clients with complete ownership of their data. In the following
subsections, the two distinct stages of HOPE-FED are described. The first subsection
focuses on dimensionality reduction and the second shifts the focus to remaining
lifetime prediction. The proposed two-stage architecture offers a modular approach
that enables operators to execute these stages at different frequencies, if desired.
Owing to their sequential nature, both stages leverage a similar algorithmic struc-
ture, along with a shared computational architecture to carry out federation among
a diverse set of clients.

FA for dimensionality reduction

The first stage of HOPE-FED involves the design and development of an FA for
dimensionality reduction. Compared to traditional techniques such as principal-
component analysis, autoencoders present an enticing alternative for capturing
nonlinear feature relationships owing to their reliance on feedforward DNNs.*” Au-
toencoders consist of an encoder and a decoder, which convert high-dimensional
data into low-dimensional encodings and reconstruct the original data using the en-
codings. By minimizing the reconstruction error, the autoencoder generates accu-
rate encodings that represent the input data with lower dimensions. The ultimate
goal of the FA dimensionality reduction is an effort to culminate in a more effective
feature extraction. While the proposed federated algorithm significantly reduces the
use of communication and computer resources, FAs still improve feature extraction
performance and enable better predictions.

In the case of HOPE-FED, the federation of the autoencoder is the initial step that is

needed for successfully realizing a federated battery diagnosis and prognosis frame-
work. The training for the FA must be executed asynchronously and in parallel across
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a subset of the client pool in an iterative fashion. Each client trains a local autoen-
coder model by leveraging locally available battery data. Post-completion of local
training, the distinct FA models are communicated to federated servers. The feder-
ated server aggregates the received FA models to update the globally maintained
FA model estimate. The updated copy of the FA model is shared by the central
server with the clients to enable the next training round.

The FA component of HOPE-FED empowers clients to collaboratively learn low-
dimensional embeddings of their local battery degradation states accurately
without moving their local data. As a result, the FA component becomes a vital piece
of the overall prognosis framework described by HOPE-FED.

FeRUL prediction

Conventionally, the remaining lifetime of industrial assets can be predicted using a
regression-based approach. However, in the case of lithium-ion batteries, regres-
sion-based approaches fall severely short owing to several sources of nonlinearities
inherently present in battery performance data. Therefore, a more sophisticated
ML modeling paradigm is needed to cater to nonlinearities between 1/O variables,
independence and homoscedasticity of errors, and constant relationships
over time.

In the FeRUL step, the training of feedforward DNNs is federated to effectively pre-
dict the remaining lifetime for batteries across heterogeneous clients. The reduced
set of features obtained from the autoencoder are used as inputs to the DNN, which
can be designed with a specific architecture that includes the number of hidden
layers, neurons in each layer, and activation functions. The model is then trained us-
ing a dataset that includes compressed features and their corresponding remaining
lifetime values.

The FeRUL step uses the same computational architecture as FA. A subset of clients
is delegated to train a DNN locally on the low-dimensional embeddings that are ob-
tained by leveraging FA on local battery data. Following the local training, the DNN
parameters are again communicated to the monitoring service provider (MSP),
which is in charge of aggregating the model parameters obtained from each client
in the subset. The aggregation step results in the updates to the globally maintained
model for predicting remaining lifetime. The MSP concludes the iteration by sending
the updated model parameters to each client. It is important to note that the FA and
the FeRUL steps are individually critical to the success of HOPE-FED. Each client
benefits from a collaboratively trained, low-dimensional, standardized representa-
tion on account of the FA step. The output of the FA step is critical for training the
FeRUL component accurately.

Federated prognosis algorithm

The federated prognosis algorithm consists of several steps that involve applying
the FA and FeRUL prediction sequentially in the FL framework. First, the battery da-
taset {Dy,...,Dp} is randomly splitinto train {D1, ..., Dx} and test sets {Dy,...,D,} and
normalize the raw input datasets before initiating the FL framework, and the corre-
sponding target RUL values, P;, i = 1,...,M, are prepared. Second, the hyperpara-
meters of the FL algorithm, such as the number of rounds for FA and FeRUL predic-
tion, are set. Based on the preliminary experiments, the network parameters for the
encoder, decoder, and DNN for RUL prediction, f, f3, and f,, respectively, are
determined.

¢? CellPress

OPEN ACCESS

Cell Reports Physical Science 5, 102215, October 16, 2024 13




¢? CellPress

OPEN ACCESS

The FA operates in rounds, where each round t involves training a separate model
for arandom subset of S batteries from the training set. For each battery sin the sub-
set, the local computation of FA is accomplished by applying the Autoencoder func-
tion (see Note S1) to a randomly sampled R% portion of its own data. The trained
weights of the encoder and decoder, wj and wf’, respectively, are acquired and sub-
sequently shared with the central node, which aggregates them using the Federated
Averaging (FedAvg) function.®® It is assumed that all participating batteries carry
equal weight. The aggregated model weights are then sent back to the batteries,
and a new federation round begins. This process continues until all federation
rounds are completed. Once finished, the encoder and decoder weights are frozen
and are used to transform all training data into a compressed feature representation.
With the compressed feature set, FL for remaining lifetime prediction is then initi-
ated using the training data.

The remaining lifetime prediction task begins by sampling batteries and their asso-
ciated datasets that will contribute to the current federation round. Then, a DNN
is trained separately for each sampled battery s by calling the RUL function (see
Note S1) that locally trains DNN weights for battery s at round t. Once all sampled
batteries complete the execution of the RUL function, DNN weights are aggregated
using the FedAvg function until the convergence criteria are satisfied. The federated
prognosis weight aggregation process is summarized in Figure 7. After completing
the training for FeRUL prediction, the proposed approach is evaluated on the test
data. First, the test data are fed into the encoder to obtain transformed features C
for every test battery. Second, the DNN, £, is called for every battery | to achieve
RUL predictions P). Finally, the performance measures that are shared in the next
section are reported. Algorithm S1 (see Note S1) outlines the steps of the federated
prognosis algorithm used in the FL process.

In industrial deployments, the HOPE-FED model may need to be retrained period-
ically to ensure that the proposed framework adapts to the changing trends in the
data. To address this important aspect, deployment strategies, designed to sustain
the performance and stability of the HOPE-FED framework (see Note S2) are
proposed.

Performance measures

The evaluation metric mechanism evaluates the performance in terms of both the
prediction accuracy and cost quantification. In this regard, two fundamental evalua-
tion metrics are established: prediction error and long-run average cost. The predic-
tive error depends on the analysis of the difference between the predicted and
actual remaining lifetime.>? The second metric, the long-run average cost,* incor-
porates the average cost incurred per battery per period (in US dollars per day),
including both the battery’s initial cost and any associated replacement expenses.
In the following sections, the details of the calculations for the prediction error
and long-run average cost are shared.

Evaluating the predictive accuracy

To quantify the prediction error, the remaining lifetime of each battery is predicted
at multiple times throughout its lifespan.” Then, the prediction error, EX, for battery
i at time period k is calculated using the following formula:

Ek — (plk+t1k) — t

; (Equation 1)
ts
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Figure 7. Procedural stages of FL for battery prognosis

Battery prognostic models are constructed on local servers. Following local model training, the neural network weights specific to each local server are

transmitted to the central server. These collected weights are then aggregated and processed at the central server before being redistributed to the

local servers, thus initiating another round of FL. This cycle is executed for the federated dimensionality reduction and FeRUL prediction stages, to

enable end-to-end federation for battery diagnostics and prognostics.

where p¥, t&, and t; refer to the remaining lifetime prediction for battery i at
time period k, its current age at time period k, and its failure time, respectively.
The EF measure indicates the deviation of the remaining lifetime prediction from
the true failure time, while also considering the current age of the battery. This
measure encompasses both positive and negative values, indicating instances
of overestimation or underestimation of the failure time, respectively. In an indus-
trial context, particularly in applications like electric vehicles, overestimating
the battery’s lifespan can have undesired consequences, leading to unexpected
failures without warning, and resulting in costly battery replacements.
Conversely, premature battery replacements can burden the client with unneces-
sary expenses, which is unsustainable from an economic standpoint. Hence, the
following cost quantification analysis incorporates the calculation of long-run
average costs associated with both overestimation and underestimation of
lifetime.

Quantifying the cost

The cost quantification is evaluated using the long-run average cost metric, which
provides a comprehensive assessment of the overall expected cost accrued per
battery during each time period. This assessment considers not only the initial
battery cost but also the significant impact of replacement expenses. In evalu-
ating the effectiveness of the prediction policies, it is important to recognize
the pivotal role played by replacement costs. Furthermore, the magnitude of
these replacement costs is intricately tied to the timing of replacements (e.g.,
replacement before or after the battery failure). Therefore, the prediction of the
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remaining lifetime presents a valuable opportunity for devising efficient battery
replacement strategies, optimizing resource allocation, and enhancing overall
system reliability.

The long-run average cost metric is computed by considering distinct cost values for
the early replacement case ¢, and corrective replacement case cy. In the computa-
tional experiments, a structured replacement policy is considered that replaces
the battery when the remaining lifetime prediction reaches a prespecified threshold
value, 6. Let us assume this event occurs at time t*, and the service crew arrives after
t. time periods. If the battery is still functional upon its arrival, then early replacement
is performed, effectively preventing failures. However, in scenarios where the bat-
tery fails before the remaining lifetime prediction reaches the threshold value, ¢,
or while the service crew is en route, failures arise, resulting in significantly higher
replacement costs.

In all the benchmarking studies, premature battery replacement is considered un-
desirable as it undermines the optimal utilization time of the batteries. Hence,
the calculation of the long-run average cost per battery, considering its lifespan
and replacement time, is employed to ensure optimal utilization of battery life
while minimizing replacement costs. Algorithm S2 (see Note S1) provides a
detailed outline of the steps involved in computing the long-run average cost
per battery when implementing predictive replacement policies. This approach
enables effective decision making in selecting appropriate battery replacement

policy.

RESOURCE AVAILABILITY
Lead contact

Additional details and inquiries regarding data and code should be directed to the lead contact,
Murat Yildirim (murat@wayne.edu).

Materials availability

This study did not generate new materials.

Data and code availability

The datasets employed in this study, namely the Nature Energy database and the Argonne database,
are publicly available. The Nature Energy database can be obtained from https://data.matr.io/1/
projects/5c48dd2bc625d700019f3204, and comprehensive data explanations can be found in Sever-
son et al.” Similarly, the Argonne database can be downloaded from https://acdc.alcf.anl.gov/mdf/
detail/camp_2023_v3.5/, with data details provided in Paulson et al.*
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SUPPLEMENTARY EXPERIMENTAL INFORMATION

Note S1: HOPE-FED Algorithmic Structure

The HOPE-FED framework consists of two main stages: federated autoencoder (FA) and fed-
erated RUL (FeRUL) estimation. To achieve these tasks, the Autoencoder and RUL functions
were developed which are integral components of the federated battery prognosis framework.
The Autoencoder function summarizes the steps involved in the dimensionality reduction task
and is employed within the Federated Battery Prognosis Algorithm. Each sampled battery
executes its own autoencoder function, ensuring the preservation of the federated learning
structure. It is important to note that the autoencoder structure and hyperparameters remain
consistent across all sampled batteries. Similarly, the RUL function is individually invoked for
each sampled battery within the federated battery prognosis framework to train the deep neu-
ral network for predicting the remaining lifetime of lithium-ion batteries. In the next sections,
details of federated autoencoder, federated remaining lifetime prediction, and main algorithm
of HOPE-FED are shared.

Federated Autoencoder (FA) Mechanism

The autoencoder is trained to reduce the feature dimension of the standard current-voltage-
time-usage data, aiming to alleviate the computational burden in the downstream FeRUL task.
During training, the autoencoder learns to encode the input data in a way that minimizes the
reconstruction error. After training, the encoder can be used to obtain the lower-dimensional
representation of new input data, which can be utilized for various downstream tasks such as
clustering, classification, or visualization. To evaluate the effectiveness of the autoencoder for
dimensionality reduction, the reconstruction error of the decoder is assessed, which provides a
measure of how accurately the autoencoder can reconstruct the original input from the lower-
dimensional encoding.

The autoencoder is trained using the Adam optimizer with a mean-squared error (MSE) loss
function, with the batch size and the number of epochs set. As the autoencoder learns, it en-
codes the input data in a way that minimizes the MSE loss between the reconstructed input and
the original input. To optimize the weights of the network, the error is backpropagated through
the network and the weights are updated using the gradients computed by the optimizer. The
Autoencoder function summarizes the steps performed during autoencoder training and takes
five different inputs, including the network parameters for the encoder fy and decoder fg, the
network weights of encoder wy and decoder wg, and dataset for autoencoder training repre-
sented with D. The network parameters for the encoder fy and decoder fg include the structure
of the respective networks, such as the number of layers, types of activation function, and the
number of neural units in each layer. Additionally, the target feature size, which becomes the
neuron size of the last layer of the encoder for reducing the input dimension to the desired fea-
ture size, is also included in the network parameters. In each epoch and batch of the training,
the reconstruction loss value is calculated, and the encoder and decoder network weights, wy
and wg, are optimized using the Adam optimizer to improve the model’s performance.



function AUTOENCODER(fy, fg, Wy, wg, D)
Set number of epochs to £
for epoch=1,2,..., &
apply ENCODER:
Compress D to C by leveraging fy
C « fy(D; wy)
apply DECODER:
Reconstruct C by leveraging f; to obtain D
D + f5(C;wp)
Compute loss function:
m
Lws) = - S (i fiCi wy)

i=1
Update the weights wy and wp

end for

return wy, wg

Federated RUL (FeRUL) Prediction Mechanism

The RUL function is designed to train the DNN for predicting the remaining useful lifetime of
lithium-ion batteries. This function takes four different inputs: network parameters f,, network
weights w,, compressed battery features, C, and target variables for prediction (actual RUL
values), P. Initially, the number of epochs and batch size are set initially, and for each epoch
and batch, the input data is fed to the DNN. The loss values are then calculated between
predicted RUL values, P, and actual RUL values, P. Based on the loss values, the DNN
weights, w., are optimized.

function RUL(f,, w,,C, P)
Set number of epochs to £

for epoch=1,2,..., &
Feed input data C to the DNN
P £, (C;w,)

Compute loss function:
m

1
L(w,) = — _21)(7% (G w,))?
i=
Update the network weights w., by calling Adam optimizer

end for

return w,




Network Structures of HOPE-FED Framework

Autoencoder is a type of neural network designed to learn efficient codings of input data. The
structure begins with defining the input shape of the network which takes an input feature vector.
The encoder part of the autoencoder then processes this input through two connected dense
layers. The first dense layer reduces the dimensionality to 64 units with a hyperbolic tangent
(tanh) activation function, and the second dense layer further reduces it to target feature size
(30 for Nature Energy database and 40 for Argonne database), also using the tanh activation
function. This bottleneck layer represents the compressed encoding of the input data. Follow-
ing this, the decoder part of the network reconstructs the input by passing the encoded data
through another dense layer with 64 units and tanh activation, and finally, through a dense
layer with original feature size units and a rectified linear unit (ReLU) activation function. The
output of this layer aims to replicate the original input data. The complete autoencoder model
is constructed by connecting the input layer to the final decoded output.

Following this, the federated RUL framework takes the encoded features produced by an
autoencoder as its input. The neural network structure for RUL predictions begins with a dense
layer consisting of 512 neurons with a ReLU activation function, which takes input features of
dimension target feature size of associated database. This is followed by a series of dense
layers with decreasing neuron counts: 256, 128, 64, 32, and 16, all using the ReLU activation
function. Finally, the network concludes with a single neuron in the output layer, also with a
RelLU activation function.

HOPE-FED Algorithm

The Autoencoder and RUL, as introduced in the preceding sections play a pivotal role in HOPE-
FED framework. They are responsible for executing local training for the Autoencoder and
DNN. In the structural framework of HOPE-FED, the process unfolds in two distinct stages.
Initially, the FA undergoes distributed training, utilizing federated averaging to update local
weights over a predetermined number of federation rounds. Following this, in the second stage,
the FeRUL component is trained using the compressed representations of the current-voltage-
time-usage data derived from FA during the predetermined number of federation rounds. To
provide a comprehensive overview, Algorithm S1, Federated Prognosis Algorithm, outlines the
federated prognosis steps within the HOPE-FED framework. This algorithm sequentially ap-
plies FA and FeRUL.



Algorithm S1: Federated Prognosis Algorithm

1: Notation:
2: M: set of batteries
3: K: set of training batteries
4: [: set of test batteries
5. S: number of sampled batteries at each round
6: R: sampling ratio of data points at each round
7. Dn: input dataset for battery m, m € {1,2,.., M}
8: Pnm: target dataset for battery m, m € {1, 2, .., M} which consist of actual values of RUL
9: Tauteoencoder: NUMber of rounds for federated autoencoder
10: TruL: number of rounds for federated RUL prediction
11: fy: neural network function for encoder
12: fg: neural network function for decoder
13: f,: neural network function for RUL prediction
14: wy: network weights of encoder
15: wg: network weights of decoder
16: w,: network weights of RUL prediction
17: for each round t = 1, 2, .., Tautoencoder dO:
18:  Randomly select S batteries from training set K
19:  for each selected battery s = 1,2, .., S, in parallel do:
20: Sample from dataset Dg with R% and obtain Dy
21: wis, w‘ﬂS + AUTOENCODER(fy, f5, W, wtﬁs, Ds')
22:  end for
23:  Apply federated averaging:
24 wh ﬁ ST wh
25: wh ﬁ >, Wi
26: end for

27: Freeze encoder and decoder weights, wy and wg
28: Transform train inputs using encoder:

29: for each train battery k = 1,2, .., £ in parallel do:
30:  Ck <+ fo(Dk; wo)

31: end for

32: for eachroundt=1,2, .., TruL in parallel do:

33:  Randomly select S batteries from training set £
34:  Sample from dataset Cs with R% and obtain Cq
35:  for each selected battery s = 1,2, .., S, in parallel do:
36: Wtj +— RUL(f ,w‘j,CSu Psr)

37:  end for




38:  Apply federated averaging:
1
. t+1 S t
39: W ST D oe= Wy
40: end for
41: Freeze RUL prediction weights, w,
42: for each test battery 1= 1,2, .., £ do:

43:  Transform inputs D, using encoder:

44: Ci + fo(D); wyg)

45.  Make RUL predictions:

46: P« £,(C,w,)

47:  Report performance measures for the test set D,
48: end for

Long-Run Average Cost Calculation Framework

Algorithm S2 provides a comprehensive overview of the long-run average cost calculation for
each battery, enabling the cost quantification for prediction efficacy to facilitate comparisons
between benchmark studies and the HOPE-FED approach.

Algorithm S2: Cost Calculation Algorithm
Notation:
ts;: failure time of battery i, i€ 1,2,.., M
tc: time for service crew to initiate a battery replacement operation after a
replacement is triggered
d: threshold RUL level for triggering a replacement operation before a failure
happens
t": age of battery i, i € 1,2, .., M, when RUL prediction hits
under ¢ for the first time
c;: the cost of replacing a battery before it experiences a failure
cs: the cost of replacing a battery after it experiences a failure
C;: long-run average cost per battery i

for each batteryi=1,2,..., M do:
Calculate long-run average cost of prediction C;:

if J[i* +1c <t
Cr
Ci=——
ottt
else:
G
bt
end for




Long-Run Average Cost Calculation for Age-based Periodic Replacement Policy
(APRP)

Algorithm S3 introduces the long-run average cost calculation for APRP, which plays a crucial
role in determining the optimal time period to initiate replacement activities. By minimizing the
long-run average cost among the available candidate time periods, this algorithm aids in the
selection of the most effective replacement triggering point for APRP.

Algorithm S3: Benchmark Cost Calculation

for each time period t* = 1,2, ..., 7 do:
for each battery i* = 1,2, ..., K in the training set do:
Calculate long-run average cost of prediction Cji-:

if t* +tc <ty
- G
Clt* t* + tc
else:
Cit+ = —
fi
end for
end for

Select t* value that minimizes » ~ Cir-

Note S2: Deployment Strategies for HOPE-FED

Deployment of federated learning algorithms is a critical aspect for ensuring their continued
performance and effectiveness. As data changes over time, federated learning models may
become outdated and lose accuracy, which necessitates regular updates to the algorithms.
This process typically involves monitoring the model’s performance, identifying, and addressing
any issues that may arise, and retraining the model with updated datasets.

To maintain the efficacy of HOPE-FED, it is essential to establish a set of rules for trigger-
ing retraining. To this end, the metric called long-run average cost per battery measure (as
explained in Algorithm S2 in Note S1, is used as a key indicator of performance to monitor for
retraining. An increase in long-run average costs signifies potential issues with the algorithm’s
performance. A threshold value, a, can be set as a limit for deviation in the long-run average
cost; whereby, when the long-run average cost exceeds «, it serves as an alert for the decision-
maker, prompting the retraining of the model to enhance its performance. By implementing this
approach, it is ensured that HOPE-FED remains a reliable tool for accurately predicting the
remaining lifetime of lithium-ion batteries, consistently delivering valuable insights for replace-
ment strategies.

Note S3: Data Preparation

To implement the HOPE-FED framework, two datasets, namely the Nature Energy and Argonne
databases, were utilized. The feature generation and data preprocessing procedures utilized
for these datasets is explained under this section.



Nature Energy Database

In the computational experiments, one of the most extensive publicly available datasets for
lithium-ion batteries, which was introduced by Severson et al. 1, was employed. This dataset
comprises 124 commercial lithium-ion phosphate (LFP) / graphite cells with a nominal capacity
of 1.1 Ah and a nominal voltage of 3.3 V. The cycle lives of these cells range from 150 to
2300 cycles, with cycle life defined as the number of cycles completed corresponding to 80%
of the nominal capacity. The dataset generated by Severson et al. contains approximately
96,700 cycle data points from 124 commercial lithium-ion batteries. The average cycle life is
806 cycles with a standard deviation of 377 cycles.

During the data collection process, the batteries were subjected to 72 distinct fast-charging
conditions while maintaining identical discharging conditions (4.0 C / 2.0 V). The fast-charging
rates varied between 3.6 C and 6.0 C for a duration of 10 minutes, and the batteries were
charged until reaching 80% state-of-charge (SOC) conditions using one or two different fast-
charging rates. After the completion of fast-charging, the batteries were further charged until
reaching 100% SOC using a 1C CC-CV charge, ramping up to 3.6 V with a C/50 charge cutoff.
Throughout the data generation process, the voltage, current, internal resistance, and cell tem-
perature were recorded. It is important to note that although the cell temperature was initially
set to 30°C, charging and discharging operations could cause the cell temperature to fluctu-
ate by up to 10°C. For more comprehensive details regarding the data collection process, the
reader is referred to Severson et al.’s work [1].

Argonne Database

The second battery dataset is obtained from the Argonne Cell Analysis, Modeling, and Proto-
typing (CAMP) facility [2]. This dataset comprises 300 batteries with six distinct metal oxide
cathode chemistries, namely NMC111, NMC532, NMC622, NMC811, HE5050, and 5Vspinel.
The selection of batteries for this dataset was based on specific criteria: they utilize graphite
as the active material, have charging rates equal to or less than 1C, and have undergone
performance testing for a minimum of 100 cycles. It is worth noting that batteries belonging
to different chemistries exhibit varying cycle life values, and even within the same chemistry,
properties such as porosity, loadings, and materials can vary. In the analysis, the NMC532 and
HE5050 chemistries, which are the largest chemistries within the dataset, are used and the ex-
perimental results for these two chemistries are presented. For further in-depth information on
the CAMP dataset, please refer to [2].

Feature Generation and Data Preprocessing

To generate the input data for the FL framework, various relevant features, including charge
and discharge capacity, temperature, and charging time, were incorporated as an input. Fur-
thermore, additional features from the raw data of each cycle, such as the minimum discharge
capacity observed, were derived.

The Nature Energy database, as presented in [1], encompasses a wide range of features
that are categorized into summary data and cycle data. The summary data provides per-cycle
information regarding charge and discharge capacity, internal resistance, charging time, cycle



number, and temperature statistics. On the other hand, the cycle data captures detailed in-
formation within each cycle, including the data stream of various features such as charge and
discharge capacity, temperature, voltage, and current.

By leveraging these diverse time-series cycle features, it becomes possible to generate
new features that contribute to a better understanding of the underlying causes of degradation
in lithium-ion batteries. These additional features ultimately enhance the prediction task by
providing valuable insights into the degradation behavior. Through the utilization of different
time-series cycle features, new features can be specifically designed to improve the under-
standing of the underlying reasons behind the degradation behavior exhibited by lithium-ion
batteries.

Capacity is a pivotal health indicator for lithium-ion batteries [3], providing a time frame for
the operation of a fully charged battery under current environmental conditions. Capacity fade
curves are frequently generated to observe the degradation behavior of batteries [4, 5]. The
capacity itself, along with its temporal changes, serves as a powerful feature for estimating the
remaining useful life of batteries. Furthermore, capacity values can be evaluated in conjunction
with voltage values, and analyzing their time-series behavior within cycles can offer insights into
degradation mechanisms. Notably, Severson et al. [1] predicted the lifetime classification of
different cells by leveraging features derived from observed changes in the capacity curve. In
a more intricate approach, they incorporated additional features such as temperature, internal
resistance, and charge time to enhance their prediction task.

In this study, a set of 68 diverse features were carefully engineered to predict the remain-
ing lifetime of lithium-ion batteries. These features encompass information extracted from both
summary and cycle data sources. The summary features provide valuable insights into the
internal resistance, charge and discharge capacities, average, minimum, and maximum tem-
perature, as well as charging times observed for each cycle. Additionally, features representing
the charging policy have been incorporated into the feature set. To further enrich the feature
set, statistical measures such as mean, variance, skewness, and kurtosis were calculated for
comparing the cycle data from previous cycles with the current cycle. This comprehensive set
of features enables to capture various aspects of battery behavior and maximize the predictive
capabilities for remaining lifetime estimation. The list of features generated for Nature database
are presented in Table S1.

In the case of the Argonne database [2], a similar feature generation procedure was ap-
plied, resulting in the creation of a total of 74 features that are embedded to the dimensionality
reduction task. The dataset includes discharge energy and capacity, as well as charge energy
and capacity values for each cycle. Additionally, raw feature values are available, which can be
leveraged to generate additional features. By utilizing the voltage and current values from the
raw data statistical measures such as mean and standard deviation were calculated resulting
in the creation of supplementary features. Furthermore, temporal features and statistical mea-
sures were derived from the discharge and charge capacities and energies within the database.
This comprehensive feature set captures various aspects of the battery behavior and enables
effective dimensionality reduction techniques to be employed for further analysis and modeling.
The list of features generated for Argonne database are presented in Table S2.

After creating the feature set, the datasets were preprocessed for the computational exper-
iments. For both datasets, similar experimental settings were applied. Since the cycle lives of
the batteries in both datasets exceeded 100, the remaining lifetime prediction during the first



Table S1: Feature set for Nature Energy database

Summary Features:
Charge time
Temperature (T)
Min temperature
Max temperature
Internal resistance (IR)
Charge capacity (Qc)
Discharge capacity (Qq)
Charging Policy:
Charge rate 1
Charge percentage
Charge rate 2
Cycle Features
Qqlin(t) — Qqlin(10) (a) :
min(a), mean(a), var(a), skewness(a), kurtosis(a)
Qqlin(t) — Qqlin(100) (b) :
min(b), mean(b), var(b), skewness(b), kurtosis(b)
Temporal Summary Features
10 buckets from history of Qq4, Q¢, and IR -bucket means are reported as features
Other Features
Levels and ratios of Qq, Q¢, and IR at different cycles
Average charge time over first 5 cycles
Maximum and minimum T and IR observed until cycle 100
Maximum and minimum T and IR observed between cycles 100 and t
Maximum(Qq until t)-Qq4(2)

Table S2: Feature set for Argonne database

Summary Features:

Charge capacity (Qc)

Discharge capacity (Qg)

Charge energy (Ec)

Discharge energy (Eq)

Cycle Features:

Average and standard deviation of voltage level at cycle t

Average and standard deviation of current level at cycle t

Temporal Features:

10 buckets from history of Qq, Q¢, Eq4, and E¢ -bucket means are reported as features

Other Features:

State of health ratios based on discharge capacity referenced to cycles 20 and 100

Levels and ratios of Qq, Q¢, Eq, and E. at different cycles

Maximum Qg, Qc, E4, and E; observed until cycle 100

Maximum and minimum Qq, Qc, E4, and E. observed till cycle t




100 cycles was not activated. Instead, information from these initial cycles were collected and
used to create various features for the dimensionality reduction task. However, it is important to
note that this threshold can be adjusted for different datasets, as remaining lifetime prediction
can be done even in the early stages of a battery’s lifetime, as indicated by Severson et al.
Additionally, both datasets were normalized prior to leveraging dimensionality reduction. The
both datasets were split into train and test sets, with the train set consisting of 75% of the data
and the test set consisting of 25%.

Note S4: Algorithms for Performance Metric Calculations

Algorithm S4 outlines the step-by-step process for computing the average unused life across
all batteries in the test data.

Algorithm S4: Calculation of average unused life

Notation:
ei: number of unavailable days for lithium-ion battery i
tm: duration of replacement activities in terms of days
R: set of replaced batteries
for each batteryi=1,2,..., L
if t* + 1t < tg:

Extend battery i to set R

& =t — (1" +tc +tm)
Calculate average unused periods:

Algorithm S5 presents the sequential steps involved in calculating the average number of
days that batteries are unavailable due to replacement operations across the entire test data
set.
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Algorithm S5: Calculation of average number of unavailable days
Notation:
u;: number of unavailable periods for lithium-ion battery i
tm: duration of replacement activities in terms of days
for each batteryi=1,2, ..., £ do:
if t* +1. < tg:
Ui=tm
else if: t* <tg:
Ui = (tc + tm) — (t5 — t)
else:
u =tc +tm
end for
Calculate average unavailable periods:
> u
1

£

u=

Note S5: Experimental Setup and Additional Computational Re-
sults

In this section, an overview of the settings for distributed computing and hyperparameter tuning
for HOPE-FED framework are provided. Additional computational results for age-based peri-
odic replacement policy (APRP) are presented. In addition, the comparative findings between
HOPE-FED and batch-federated approaches are summarized.

Experimental Setup

To establish a robust FL architecture, a high-performance computing (HPC) cluster, where each
client’s server is represented by separate nodes, was utilized. This design allows an HPC node
to access the data of a specific client and train its corresponding model. By employing a dis-
tributed computing framework using the Message Passing Interface (MPI), different nodes in
the HPC cluster were allocated to represent each client. MPI serves as a standardized means of
information transfer between multiple devices, facilitating synchronization and communication
among parallel nodes in a constrained setting. For the implementation, OpenMPI was em-
ployed along with mpi4py to initiate and manage multiple distributed memory client processes,
accurately simulating user devices in real-world field scenarios.

Within the FL framework, the Keras and TensorFlow libraries were used to construct the
autoencoder and DNN models for remaining lifetime prediction. The autoencoder structure in-
cludes two layers for both the encoder and decoder, excluding the input layers. For remaining
lifetime prediction, the DNN consists of seven layers. Hyperparameter tuning was performed
for both the federated autoencoder and remaining lifetime prediction tasks to improve their per-
formances. Furthermore, the hyperparameters of the FL algorithm were tailored by exploring
variations in the number of federation rounds, the ratio of sampled batteries, and the ratio of
sampled data points from each battery per round. Throughout both phases, the Adam optimizer
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was employed and the mean squared error loss function was utilized. The initial experiments
guided to set the target feature size for the encoder as 30 for the Nature Energy database and
40 for the Argonne database.

Comparative Analysis: HOPE-FED Approach vs. Age-based Periodic Replace-
ment Policy (APRP)

Tables S3, S4, and S5 provide a detailed comparison of the age-based periodic replacement
policy and the HOPE-FED framework under different threshold values for triggering replace-
ment activities, specifically for the Nature Energy and Argonne databases with HE5050 and
NMC532 chemistries, respectively.

Table S3: Comparison of age-based periodic replacement vs. fully-federated prediction-based replacement ap-
proaches on Nature Energy database

Benchmark Policy = Threshold=10 Threshold=25 Threshold=50 Threshold=100

Trigger Time 451 Prediction-based Prediction-based Prediction-based Prediction-based
# Preventive 29 25 30 31 31

# Corrective 2 6 1 0 0

Unused Life 4445 54 20.3 46 114.3
Unavailable Days 1.3 1.6 1.2 1 1

Avg. Cost (in $/day) 20.3 13.4 12.6 12.9 16.1

Table S4: Comparison of age-based periodic replacement vs. fully-federated prediction-based replacement ap-
proaches on Argonne database: HE5050

Benchmark Policy  Threshold=10 Threshold=25 Threshold=50  Threshold=100

Trigger Time 1013 Prediction-based Prediction-based Prediction-based Prediction-based
# Preventive 10 7 10 10 13

# Corrective 9 12 9 9 6

Unused Life 262.9 148.9 114.2 143.8 156
Unavailable Days 3.4 3.9 3.4 3.4 2.6

Avg. Cost (in $/day) 32.5 30.4 25.7 27.5 28.8

Table S5: Comparison of age-based periodic replacement vs. fully-federated prediction-based replacement ap-
proaches on Argonne database: NMC532

Benchmark Policy  Threshold=10 Threshold=25 Threshold=50  Threshold=100

Trigger Time 593 Prediction-based Prediction-based Prediction-based Prediction-based
# Preventive 18 9 17 19 22

# Corrective 7 16 8 6 3

Unused Life 551.8 78.2 73.9 95.8 124.6
Unavailable Days 2.4 3.9 2.5 2.2 1.6

Avg. Cost (in $/day) 26.5 25.7 20.6 19.1 21.2

Comparative Analysis: HOPE-FED Approach vs. Batch-Federated Approach

Batch-federated learning is a collaborative training approach that proves beneficial for multi-
asset clients aiming to leverage the advantages of FL while addressing specific requirements.
In batch-federated learning, a subset of the clients within the multi-asset environment partic-
ipates in aggregating their data during the model training process. Rather than involving all
clients, this approach allows for the consolidation of data from a specific group. By aggregat-
ing data from these selected clients, batch-federated learning enables the creation of a unified
and representative training dataset for model updates. This method strikes a balance between
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Fig S1: Batch-federated computational results for Argonne database: NMC532.

sharing data for collaborative learning to preserve privacy, and improving operational efficiency
specific to multi-asset environments.

Batch-federated learning can be highly advantageous for multi-asset clients, such as vehicle
fleet operators, seeking to leverage the benefits of collaborative model training while ensuring
data privacy and operational efficiency. By aggregating data from a subset of vehicles within a
fleet, batch-federated learning enables the creation of a more diverse and representative train-
ing dataset, leading to improved model accuracy and performance. Additionally, the reduced
communication overhead in transmitting aggregated data enhances the overall efficiency of the
training process, especially in scenarios where bandwidth is limited. With faster convergence
enabled by a larger combined dataset, vehicle fleets can derive valuable insights and optimize
their operations, and maintenance, across their entire fleet of vehicles.

To implement the batch-federated learning approach, the batteries were randomly divided
into 5, 20, and 30 clusters. Within each cluster, the datasets of the associated batteries were
aggregated. Increasing the number of clusters brings the approach closer to the proposed fully-
federated approach, HOPE-FED. Conversely, fewer clusters align the approach more closely
with the fully-centralized approach. The long-run average costs and other relevant metrics for
the Argonne database, specifically for the NMC532 chemistry, are documented in Table S6.
Additionally, Fig. S1 presents a box plot illustrating the prediction error across different lifetime
percentiles.

Fig. S1 displays the box plots depicting the results of batch-federated experiments con-
ducted on the NMC532 chemistry from the Argonne database. The x-axis represents lifetime
percentiles, while the y-axis represents prediction errors. Notably, the fully-centralized ap-
proach exhibits lower levels of error compared to other approaches. As the number of clusters
increases, indicating a decrease in data aggregation, the model characteristics begin to con-
verge to the fully-federated approach. Consequently, the prediction error generally increases
as the model moves closer to the fully-federated approach, aligning with expectations.
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Table S6: Comparison of batch-federated vs. fully-federated approaches for the Argonne database: NMC532

Fully-Centralized 5-Clusters 20-Clusters 30-Clusters Fully-Federated

Optimal Threshold 25 25 50 25 50
# Preventive 19 19 21 18 19
# Corrective 6 6 4 7 6
Unused Life 59.8 85.6 101.3 61.5 95.8
Unavailable Days 2.2 2.0 1.8 2.4 2.2
Avg. Cost (in $/day) 18.8 19.0 18.9 18.5 19.1

The findings presented in Table S6 demonstrate that utilizing 5 and 20 clusters yields long-
run average costs that fall between those of the fully-centralized and fully-federated approaches.
Conversely, employing 30 clusters slightly enhances the cost rate performance of both the fully-
centralized and fully-federated approaches. These results affirm the competitive capability of
the HOPE-FED approach in terms of performance. Furthermore, the batch-federated approach
becomes beneficial in reducing computational load, particularly in scenarios where clients have
the flexibility to aggregate datasets from multiple assets they possess.

Note S6: Hyperparameter Selection

The hyperparameters for both the federated autoencoder and federated RUL prediction were
determined through preliminary experiments. This section presents the results of these initial
tests. Table S7 displays the computational experiment results conducted to select hyperpa-
rameters for the federated autoencoder using the Nature dataset. The table varies two key
hyperparameters: the number of federation rounds and the number of target features, which
represent the reduced dimension size resulting from the autoencoder transformation. This re-
duction determines the input size for the subsequent prediction task, federated RUL prediction.
Both the mean square error (MSE) of the training and test sets are reported. The choice of
2000 federation rounds and 30 target features was based on the observation that increasing
either measure raises computation times without proportionally reducing MSE levels. Simi-
lar computational experiments were conducted for the Argonne database with NMC532 and
HE5050 chemistries, as detailed in Table S8. In this dataset, 2000 federation rounds and 40
target features were selected.

Hyperparameters for federated RUL prediction were determined based on monitoring both
cost rates and average absolute percentage errors. Table S9 presents the results of hyperpa-
rameter tuning using the Argonne database HE5050 chemistry training data. Increasing the
number of federation rounds generally reduces the average absolute error. To mitigate overfit-
ting, the number of federation rounds was capped at 4000, as beyond this point, the cost rate
stabilizes with minimal improvement. Similar experiments were conducted for other databases,
setting the number of federation rounds to 7500 for the Nature database and 6000 for the Ar-
gonne database NMC532 chemistry.
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Table S7: Autoencoder hyperparameter selection for Nature database

Federation Number of Tar- MSE of MSE of
Rounds get Features Train Data Test Data
500 30 0.0027 0.0054
500 40 0.0027 0.0057
500 50 0.0027 0.0055
1000 30 0.0018 0.0045
1000 40 0.0015 0.0041
1000 50 0.0015 0.0039
2000 30 0.0009 0.0033
2000 40 0.0009 0.0032
2000 50 0.0009 0.0033
3000 30 0.0006 0.0033
3000 40 0.0007 0.0031
3000 50 0.0007 0.0029
4000 30 0.0006 0.0029
4000 40 0.0006 0.0029
4000 50 0.0006 0.0029
5000 30 0.0006 0.0031
5000 40 0.0005 0.0029
5000 50 0.0006 0.0029

Table S8: Autoencoder hyperparameter selection for Argonne database

Chemistry: NMC532

Chemistry: HE5050

Federation Number of Tar- MSE of MSE of MSE of MSE of
Rounds get Features Train Data Test Data Train Data Test Data
500 40 0.0016 0.0022 0.0011 0.0018
500 50 0.0015 0.0020 0.0011 0.0016
500 60 0.0013 0.0017 0.0010 0.0017
1000 40 0.0007 0.001 0.0006 0.0010
1000 50 0.0008 0.0012 0.0007 0.0011
1000 60 0.0007 0.0012 0.0006 0.0010
2000 40 0.0003 0.0004 0.0004 0.0008
2000 50 0.0004 0.0005 0.0003 0.0007
2000 60 0.0004 0.0007 0.0005 0.0010
3000 40 0.0003 0.0005 0.0003 0.0008
3000 50 0.0002 0.0004 0.0003 0.0007
3000 60 0.0002 0.0003 0.0003 0.0007
4000 40 0.0002 0.0004 0.0003 0.0007
4000 50 0.0002 0.0004 0.0003 0.0008
4000 60 0.0002 0.0003 0.0003 0.0007
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Table S9: Cost rates and average absolute percentage errors across varying numbers of federation rounds for RUL
prediction in HE5050 chemistry training data

Number of Federation Rounds

Threshold 1000 2000 | 3000 | 4000 | 5000

10 17.65 | 19.14 | 16.61 | 14.97 | 17.36

25 17.04 | 1545 | 1539 | 14.20 | 14.17

50 16.89 | 15.86 | 15.79 | 15.12 | 14.98

100 19.13 | 1850 | 18.18 | 18.08 | 18.14

Best Cost Rate (in $/day) 16.89 | 1545 | 15.39 | 14.20 | 14.17
Average Absolute % Error | 10.06% | 8.18% | 6.25% | 4.64% | 2.97%

16



References

1.

Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., Chen, M. H., Aykol,
M., Herring, P. K., Fraggedakis, D., et al. (2019). Data-driven prediction of battery cycle
life before capacity degradation. Nature Energy 4, 383-391.

Paulson, N. H., Kubal, J., Ward, L., Saxena, S., Lu, W., and Babinec, S. J. (2022). Feature
engineering for machine learning enabled early prediction of battery lifetime. Journal of
Power Sources 527, 231127.

Diao, W., Saxena, S., Han, B., and Pecht, M. (2019). Algorithm to determine the knee
point on capacity fade curves of lithium-ion cells. Energies 12, 2910.

Saxena, S., Ward, L., Kubal, J., Lu, W., Babinec, S., and Paulson, N. (2022). A convolu-
tional neural network model for battery capacity fade curve prediction using early life data.
Journal of Power Sources 542, 231736.

Honkura, K., Takahashi, K., and Horiba, T. (2011). Capacity-fading prediction of lithium-

ion batteries based on discharge curves analysis. Journal of power sources 196, 10141—
10147.

17



	XCRP102215_proof_v5i10.pdf
	Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage ...
	Introduction
	Results and discussion
	Framework evaluation
	Predictive performance of the proposed approach in different chemistries
	Comparative analysis with APRP
	Comparative analysis with state-of-the-art predictive models

	Experimental procedures
	Overview of FL framework for battery prognosis
	FA for dimensionality reduction
	FeRUL prediction
	Federated prognosis algorithm
	Performance measures
	Evaluating the predictive accuracy
	Quantifying the cost


	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References



