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Abstract

We present Lightcurve Anomaly Identification and Similarity Search (LAISS), an automated pipeline to detect
anomalous astrophysical transients in real-time data streams. We deploy our anomaly detection model on the nightly
Zwicky Transient Facility (ZTF) Alert Stream via the ANTARES broker, identifying a manageable ∼1–5 candidates
per night for expert vetting and coordinating follow-up observations. Our method leverages statistical light-curve and
contextual host galaxy features within a random forest classifier, tagging transients of rare classes (spectroscopic
anomalies), of uncommon host galaxy environments (contextual anomalies), and of peculiar or interaction-powered
phenomena (behavioral anomalies). Moreover, we demonstrate the power of a low-latency (∼ms) approximate
similarity search method to find transient analogs with similar light-curve evolution and host galaxy environments.
We use analogs for data-driven discovery, characterization, (re)classification, and imputation in retrospective and
real-time searches. To date, we have identified ∼50 previously known and previously missed rare transients from
real-time and retrospective searches, including but not limited to superluminous supernovae (SLSNe), tidal disruption
events, SNe IIn, SNe IIb, SNe I-CSM, SNe Ia-91bg-like, SNe Ib, SNe Ic, SNe Ic-BL, and M31 novae. Lastly, we
report the discovery of 325 total transients, all observed between 2018 and 2021 and absent from public catalogs
(∼1% of all ZTF Astronomical Transient reports to the Transient Name Server through 2021). These methods enable
a systematic approach to finding the “needle in the haystack” in large-volume data streams. Because of its integration
with the ANTARES broker, LAISS is built to detect exciting transients in Rubin data.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Transient detection (1957); Astronomical methods
(1043); Time domain astronomy (2109); Time series analysis (1916); Astrostatistics techniques (1886);
Classification (1907); Light curves (918); Random Forests (1935)

1. Introduction

Serendindipity has played a disproportionately large role in
breakthrough time-domain astronomical discoveries. For example,
the discovery of SN 1987A (Kunkel et al. 1987) in the nearby
Large Magellanic Cloud ushered in a renewed interest in
supernova (SN) science—spurring systematic searches in the
forms of pencil-beam surveys to discover high-redshift SNe for

cosmological study (Perlmutter et al. 1997; Schmidt et al. 1998)
and rolling searches to drastically increase observed events (Barris
et al. 2004). The discovery of SN 1998bw, which is the first SN
associated with a gamma-ray burst, was found by astronomers who
were observing gamma-ray bursts rather than SNe (Galama et al.
1998). Nearby Type Ia SN 2014J in M82 (Cigar Galaxy) at
3.7Mpc was discovered by chance during an undergraduate
telescope training session at the University of London Observatory
by Steve Fossey and his students (Fossey et al. 2014; McIntosh
et al. 2014). Recently, Itagaki (2023) discovered SN 2023ixf in
M101, the closest SN to Earth since 2014J, from an untargeted
search before automated algorithmic discovery.
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Beyond those closest and brightest to Earth, transient
discoveries of extremely rare origin often arise from astron-
omers aiming to increase the observable parameter space or
find dissimilar objects in ever-increasing data sets (Li et al.
2022). These tasks are worthwhile, because in-depth study of
such rare events reveals insights of their progenitors, explosion
mechanisms, and diversity—all of which continue to be active
areas of research (see, e.g., Margutti et al. 2019; Gagliano et al.
2022; W. V. Jacobson-Galán et al. 2022; Perley et al. 2022;
Kuncarayakti et al. 2023; Pierel et al. 2023).

Astronomers have attempted to automate serendipity in a
“systematic” manner (see, e.g., Giles & Walkowicz 2019) to
increase rare transient discovery. This task is analogous to
finding “the needle in the haystack” (see, e.g., Villar et al.
2019), which becomes not only increasingly difficult in the era
of large, data-driven surveys (where human vetting for the vast
majority of objects is infeasible), but increasingly important
due to the limited spectroscopic resources and multiwavelength
follow-up observations. It is estimated ∼1% of the approximate
10 million Vera C. Rubin Observatory (Ivezić et al. 2019)
Legacy Survey of Space and Time (LSST) transients will be
selected for spectroscopic follow-up (Hambleton et al. 2023),
down from the ∼10% of all optical transients classified
spectroscopically today. Thus, automated algorithms that
identify rare or interesting transients must do so with high
purity as to be judicious with our resources. Moreover, because
it is all but guaranteed that LSST will discover entirely new
phenomena, theorized or not (Hambleton et al. 2023; Li et al.
2022), we need adept algorithms that are able to identify events
with currently unknown feature distributions.

The astronomical community has been hard at work developing
anomaly detection methodologies. Some have focused on static data
sets, such as images (Reyes & Estévez 2020; Storey-Fisher et al.
2021; Etsebeth et al. 2024) or spectra (Böhm et al. 2023; Liang et al.
2023), or time-series light-curve data (Rebbapragada et al. 2009;
Nun et al. 2014, 2016; Solarz et al. 2017; Giles &Walkowicz 2019;
Pruzhinskaya et al. 2019; Soraisam et al. 2020; Webb et al. 2020;
Ishida et al. 2021; Lochner & Bassett 2021; Malanchev et al. 2021;
Martínez-Galarza et al. 2021; Villar et al. 2021; Perez-Carrasco et al.
2023; Cui et al. 2024). The added complexity in detecting
anomalies in time-series data, combined with strong interest in
SN photometric classification (e.g., see Lochner et al. 2016;
Muthukrishna et al. 2019; Möller& deBoissière 2020; Villar et al.
2020; Qu et al. 2021; Aleo et al. 2023; Gagliano et al. 2023 and
references therein), is a key reason why most efforts have
concentrated on identifying anomalous light curves.

To that end, most of the effort has been dedicated to full-
phase anomaly detection, after the entire light curve has been
observed. Only recently has the field focused on real-time
anomaly detection (Soraisam et al. 2020; Villar et al. 2021;
Muthukrishna et al. 2022; Perez-Carrasco et al. 2023; Gupta
et al. 2024), with current efforts combining the SN light curve
with contextual information (e.g., host galaxy, spectra, etc.), as
seen in Perez-Carrasco et al. (2023) and this work.

In conjunction, instead of discovering transients and
isolating anomalies independently, recent effort has been
devoted to finding analogs of a given object or transient event.
Giles & Walkowicz (2019) utilized a similarity score ascribed
to the t-distributed stochastic neighborhood embedding (t-SNE;
van der Maaten & Hinton 2008) representation of Kepler light-
curve features to search for outliers in cluster distributions.
Their follow-up work (Giles & Walkowicz 2020) demonstrated

the effectiveness of k-nearest neighbor distance in feature-
space to efficiently identify anomalous light curves. Martínez-
Galarza et al. (2021) expanded on this work by running an
unsupervised random forest (Shi & Horvath 2006) on the joint
space of Kepler light curves and power spectra with two
manifold-learning algorithms (t-SNE and UMAP; McInnes
et al. 2018) to create a low-dimensional embedding. They
tested their analog-finding ability by analyzing the anomalies’
location and clustering in the embedded feature-space,
identifying those with shared astrophysical properties. In a
different approach, Aleo et al. (2022) simulated bright Zwicky
Transient Facility (ZTF) SNe, extracted statistical light-curve
features, applied a brute-force k-dimensional tree algorithm to
identify nearest neighbors, and visually inspected the closest
matches. They discovered 11 previously unreported transient
events in ZTF (Bellm et al. 2019) fourth data release (DR4) out
of 105 manually vetted objects. Beyond light curves, a
similarity search has been used to identify similar galaxy
images from their low-dimensional representations (Stein et al.
2021) and associating galaxy images with their optical spectra
via cross-modal contrastive learning (Lanusse et al. 2024), as
well as selecting synthetic galaxies matching statistical proper-
ties of observational data for simulations (Lokken et al. 2023).
Here, we present an approach for simultaneous anomaly

detection (real-time and retroactive) and similarity search that uses
both SN light-curve and contextual information (host galaxy
photometry) from the ZTF Alert Stream. We identify transient
events that are of a rare spectroscopic class (spectroscopic
anomalies), exhibit peculiar behavior or interaction-powered
phenomena (behavioral anomalies), or are found in host galaxy
environments uncommon to their type (contextual anomalies), and
categorize these broadly as anomalies. In tandem, we find
transient analogs across via an approximate nearest neighbors
(ANNs) similarity search. We demonstrate the effectiveness of
these methods by identifying archival rare or unique transients
with high purity and low latency, and reclassifying transients after
being prompted to investigate their spectra due to their nearest
neighbors’ class labels. We call our pipeline Lightcurve Anomaly
Identification and Similarity Search (LAISS). We provide a
schematic overview in Figure 1.
Our paper is structured as follows. In Section 2, we describe our

methodology for constructing our database of SNe from the ZTF
Alert Stream. In Section 3, we discuss our real-time random forest
classifier (RFC) anomaly detection model and the results of its
application to the ZTF Alert Stream via the Arizona-NOIRLab
Temporal Analysis and Response to Events System (ANTARES)
broker (Matheson et al. 2021). In Section 4, we provide additional
results based on our model’s application to the Young Supernova
Experiment (YSE) DR1 (Aleo et al. 2023). In Section 5, we
demonstrate the power of low-latency approximate similarity
search of SNe, including finding missed SN candidates and the
reclassification of some SNe. In Section 6, we speculate on
additional applications and extensions of this work, such as
performing a calculation and preliminary analysis of our tagged
transients’ host galaxy masses and star formation rates (SFRs). We
conclude in Section 7, and we detail all used features and newly
reported SN candidates in Appendix C.
The code is publicly available on Github,19 and the version

of this code used in this work is available on Zenodo.20

19 https://github.com/patrickaleo/LAISS-local
20 doi:10.5281/zenodo.11541806
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2. Constructing Our Training Set

We are motivated by two directives: (1) find anomalous
transients in real-time within the ZTF Alert Stream with high
purity (see Section 3 for details), and (2) find k ANNs (i.e.,
analogs) of any transient through our embedding space within
∼ms to scale with the rate of LSST transients. Achieving these
directives with current data sets is a strong prototype for
eventual application to Rubin transients, where the volume and
diversity of transients will demand such infrastructure.

First, we need to construct a reference database of transients
(hereafter, “databank”). This section details this process.

2.1. ZTF Data and Broker

ZTF21 (Bellm et al. 2019) uses the Palomar 48 inch Schmidt
telescope equipped with a 47 deg2 field-of-view camera and an
8 s readout time to observe the entire northern sky in ZTF-g,
ZTF-r, and ZTF-i passbands.22

Now in Phase II operations, ZTF allocates 50% of camera
time and 50% of the spectral energy distribution machine
(SEDM) spectrograph time to a 2 night cadence public survey of
the entire northern sky. SEDM spectra are uploaded daily to the
Transient Name Server (TNS).23 The Infrared Processing and
Analysis Center (IPAC) provides ZTF image reduction and
object identification in near real-time, producing transient alerts
from raw images in ∼4 minutes. These are available to the
community in the public ZTF Alert Stream via alert brokers
such as ANTARES24 (Matheson et al. 2021), Automatic
Learning for the Rapid Classification of Events25 (ALeRCE;
Förster et al. 2021), Fink26 (Möller et al. 2021), Alert
Management, Photometry and Evaluation of Lightcurves
(AMPEL27; Nordin et al. 2019), Pitt-Google,28 and Lasair.29

For this work, we extensively use the ANTARES broker.
The primary advantage of ANTARES is the allowance of a
user-created Filter—snippets of Python code, which can
analyze and tag light curves with numerical or categorical
values. These tags can then be used to filter objects of interest,
such as optimal candidates for follow-up observations. For
example, our full-phase anomaly detection RFC is implemen-
ted as a Filter on ANTARES, and has been running since
2023 August 22. More details on this Filter are presented in
Section 3.1.
ANTARES has processed millions of ZTF objects (“loci”30)

with their Filter lc_feature_extractor. This Filter uses
the light-curve31 package (Malanchev 2021) to quickly
(∼ms) calculate 53 statistical light-curve features in each
passband. These features and its subset we choose for this work
are highlighted in Section 2.3.
Before preprocessing, we start with all ∼2.5 million loci

tagged by the lc_feature_extractor Filter. The over-
whelming majority are variable stars, quasistellar objects
(QSOs), and active galactic nuclei (AGNs), while a small
portion are transient in nature like SNe and tidal disruption
events (TDEs). In addition to the desired light-curve
statistical features, these loci have additional metadata32 and
data products, from R.A./decl. to tags from other science
Filters and beyond. While no transient loci have associated
hosts, we perform our own host associations (Section 2.3.2)
using GHOST (Gagliano et al. 2021), whose features are used
downstream in LAISS.

2.2. Preprocessing

We require a highly pure sample of transients to train, test,
and validate our models. Although the methods we present here
can be extended to variable stars and other phenomena, for this
work, we are interested in transients exclusively and thus want
to minimize contamination from nontransients.
To obtain a pure transient sample, we impose a strict

preprocessing pipeline:

Figure 1. The LAISS Pipeline. We ingest ZTF Alert Stream data, and extract statistical light-curve features with light-curve (Malanchev 2021) and contextual
host galaxy features with GHOST (Gagliano et al. 2021). We apply strict preprocessing cuts to remove contaminants and obtain a reference data set of transient
candidates. We apply a 70/30 train/test split, subsequently upsampling our training set with SMOTE (Chawla et al. 2002) such that each class is balanced. We train a
random forest classifier to perform a binary classification task between “Normal” and an “Anomaly” class. We consider spectroscopic anomalies, contextual
anomalies, and behavioral anomalies via expert vetting. In parallel, we apply principal component analysis (PCA) followed by approximate nearest neighbors (ANNs)
search in feature-space via ANNOY (Bernhardsson 2018; Section 5) to find transient analogs with similar light-curve evolution and host galaxy environment. Finally,
we deploy our anomaly detection model onto the ANTARES broker (Matheson et al. 2021) as a Filter. For transients with P(anom) � 50% at any point in the light
curve, we manually vet them and request for follow-up resources. We report to TNS any new or updated classifications from either our anomaly detection or
approximate nearest neighbors search.

21 http://ztf.caltech.edu
22 We do not use ZTF-i observations for this work because of poor coverage
(∼10% of all ZTF observations) and the 18 month grace period for private
survey data before public release, which is not conducive for real-time
applications.
23 https://www.wis-tns.org
24 http://antares.noirlab.edu
25 http://alerce.science
26 https://fink-broker.org
27 https://github.com/AmpelAstro/Ampel-contrib-sample
28 https://github.com/mwvgroup/Pitt-Google-Broker
29 http://lasair.roe.ac.uk/

30 A locus (plural, loci) is a point on the sky where alerts cluster and is roughly
equivalent to an astrophysical object.
31 https://github.com/light-curve
32 https://antares.noirlab.edu/properties
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1. First, we excise any objects in the galactic plane by
requiring |b|> 15°. We do so because variable stars far
outnumber extragalactic transients along the galactic
plane, and the light curves of longer period variables
(e.g., Mira stars) can resemble those of SNe in statistical
feature-space (Malanchev et al. 2021; Aleo et al. 2022).
This selection cut leaves ∼1 million objects.

2. We require both ZTF-g and ZTF-r light-curve
features, which are only calculated for bands with at least
four observations. Thus, we remove all objects with fewer
than four observations in either passband, leaving
∼0.5 million objects.

3. At this stage, we have yet to distinguish between variable
stars, asteroids, bogus observations, AGNs, transients,
and the like. Because ANTARES has no built-in star/
galaxy or variable/transient separator, we outsource this
step to existing and proven infrastructure.

We query the ALeRCE light-curve classifier
(Sánchez-Sáez et al. 2021) and their stamp classifier
(Carrasco-Davis et al. 2021). We prioritize the results
from the light-curve classifier, which parses objects into
15 subclasses of variable and transient objects across
“Transient,” “Stochastic,” and “Periodic” sources. We
keep only the objects that have a Transient classification
from light-curve classifier (“SN Ia,” “SN Ibc,” “SN II,”
“SLSN”), or stamp classifier (“SN”) as its most probable
classification, prioritizing the results from the light-
curve classifier.33 After cuts, we have ∼10,000 objects,
the majority of which are bona fide transients.

4. From this sample, we obtain host galaxy features using
the GHOST software34 (Gagliano et al. 2021). GHOST is a
database of 16k PanSTARRS (Pan-STARRS1, hereafter
PS1; Chambers et al. 2016) spectroscopic SNe and the
catalog-level properties of their host galaxies, equipped
with analysis tools for transient-host association. A final
association is made using the directional light–radius
(DLR) method at the catalog level. We do not opt to use
the gradient ascent method at the postage-stamp level35

for computational reasons.
Because we require host galaxy features as part of

our input data schema, transients with unsuccessful host
associations (e.g., hosts not in the PS1 host galaxy
catalog, transients occurring in faint host galaxies that are
either not present in the PS1 catalog or cannot be found
during the association etc.) are discarded. From 9402
bona fide transients, 6571 have successful host associa-
tions. However, we additionally remove transients whose
host galaxies have null values for any of the features
presented in Appendix B. This requires PS1 photometry
in grizy passbands.36 After cuts, we have 5837 remaining
objects for which we query TNS for a spectroscopic
classification (if it exists).

5. As a final attempt to increase the purity of bona fide
transients in our databank, we query the PS1 point-source
catalog (PS1-PSC; Tachibana & Miller 2018). The PS1-
PSC contains ∼1.5 billion sources from the PS1 DR1,
and is used within ZTF’s real-time extragalactic alert
stream to automatically reject stellar sources.

We query the PS1-PSC at two locations per transient
candidate: the location of the transient, and the location of
the host galaxy, both with a search radius of 1″. We retain
transient candidates whose host galaxy locations match to
a resolved extended object with >50% probability, and
whose transient locations either (A) also match to
resolved extended object with >50% probability (in the
case of a transient occurring at/near the galaxy center) or
(B) match to no existing counterpart in the PS1-PSC
catalog (in the case of a transient occurring far/offset
from the galaxy center). After cuts, we have a remaining
data set of 5472 likely bona fide transients.

A table summarizing the counts of loci at each stage of our
preprocessing and quality cuts is found in Table 1.
Of our remaining 5472 objects, only 1656 (≈30%) have a

spectroscopic classification available from TNS. This leaves
3816 transients with no spectroscopic classification. The
spectroscopic breakdown is found in Table 2. The subsequent
process for generating our ZTF training set from this full
databank is explained in Section 2.4.

2.3. Feature Selection

Here, we outline our motivation for feature selection. Instead
of using the observed, irregularly sampled light curve, we opt
to use derived statistical features for the anomaly detection and
similarity search methods (Sections 3.1, 5.1). A review of the
challenges astronomers face when analyzing light curves of
astronomical sources and the practices for their characterization
via statistical feature extraction is found in Babu &
Mahabal (2016).
The main advantage of using statistical features is that they

transform the sparse, gappy, and heteroscedastic light curves
into regularly sampled representations, enabling the use of
standard time-series methods. These methods do not rely on
imputation or interpolation; they are calculated only from the
data that is observed. The fast, efficient, and scalable
calculation of statistical light-curve features is now ubiquitous
in LSST brokers. The light-curve package (Malanchev
2021), which is used to extract the light-curve features for our
data set, is already integrated into the pipelines of ANTARES

Table 1
Preprocessing Cuts

Selection Cuts
No. Loci
Remaining

Tagged by lc_feature_extractor Filter 2,536,582
Have |b| > 15° 976,842
Require both ZTF-g, ZTF-r passbands 488,300
Have ALeRCE “SN” classifications 9420
Have successful GHOST host galaxy association 6571
Have nonnull host galaxy features 5837
Cross-matched to resolved extended source (PS1-PSC) 5472

Note. The number of loci (representing potential transient candidates) after
selection cuts to construct our databank.

33 According to Carrasco-Davis et al. (2021), the stamp classifier has an
overall 87% SN completeness of SN, and agrees with 78% of the light-curve
classifier SN.
34 https://pypi.org/project/astro-ghost/
35 https://ps1images.stsci.edu
36 This effectively removes the faintest sources (such as those above the
signal-to-noise ratio limit in only a few bands) and extremely red ones detected
only in the reddest filter (y). This includes the faintest host galaxies (in which
SLSN are preferentially found) and red sources like brown dwarfs and high-
redshift quasars (Magnier et al. 2020). The impact on this selection function is
left unquantified and left for future work.
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(Matheson et al. 2021), AMPEL (Nordin et al. 2019), and Fink
(Möller et al. 2021) broker systems.37 Moreover, it has been
selected for use with LSST. The Rust version of light-
curve package outperforms other implementations by a factor
1.5–50, such that it only takes a few milliseconds per CPU core
to extract “cheap” features for 1000 light-curve observations
(Lavrukhina & Malanchev 2023).

Although relying solely on interpolation-based methods like
Gaussian process (GP; Rasmussen & Williams 2005) is a
popular choice (see, e.g., Lochner et al. 2016; Boone 2019;
Alves et al. 2022), these methods tend to be slower and are not
ubiquitous in broker pipelines. Generally, light-curve inter-
polation, smoothing, and padding are sometimes necessary or
at least tend to improve results in a variety of deep-learning
applications: multilayer perceptrons (Demianenko et al. 2023),
normalizing flows (Demianenko et al. 2023), temporal
convolutional networks (Muthukrishna et al. 2019), recurrent
neural networks (Charnock & Moss 2017; Möller et al. 2021;
Gagliano et al. 2023), convolutional neural networks (Pasquet
et al. 2019; Qu et al. 2021; Burhanudin & Maund 2023),
Bayesian neural networks (Demianenko et al. 2023), varia-
tional autoencoders (VAEs; Villar et al. 2020; Boone 2021;
Aleo et al. 2023), and transformers (Donoso-Oliva et al. 2023;
Moreno-Cartagena et al. 2023; Pimentel et al. 2023).
Oftentimes, the physical interpretation of such learned features
from latent or deep-learning representations can be nebulous.

In the literature, there has been proven successes of using
manually selected statistical features for classification (e.g., the
ALeRCE light-curve classifier, Sánchez-Sáez et al. 2021; dmdt-
mappings, Mahabal et al. 2017; anomaly detection p(dm|dt)
distributions, Soraisam et al. 2020; the SNAD Transient
Miner, Aleo et al. 2022). The lessons learned from these
works inform our feature selection, methods, and approach to
follow.

2.3.1. Statistical Light-curve Features

We start with the suite of 106 light-curve features (53 in
ZTF-g, 53 in ZTF-r bands) automatically extracted (at the last
observed epoch; features calculated at earlier phases are
overwritten) from the lc_feature_extractor Filter in
ANTARES using the light-curve package

(Malanchev 2021). This ensemble of features describe different
aspects of the light-curve shape, capturing rise information,
error distribution, periodic signals, skewness, etc. Moreover,
transients whose feature values are in the tails of their parent
feature distribution are deemed outliers and could indicate
anomalous activity.
We know from Malanchev et al. (2021; their Figure A3) that

many of the calculated light-curve features are correlated. To
mitigate the effect of correlated features and attempt to partially
reduce the dimensionality of our data set, we drop features that
are not used in Aleo et al. (2022), leaving us with 82 light-
curve features (41 per band). Because Aleo et al. (2022) were
able to successfully find previously undiscovered SNe
candidates among nearly ∼1 million sources (most of which
were standard variables) using this feature set, we were
confident that if we adopted a similar feature set we would also
be successful given that the data set we work with here has
significantly higher purity of transients. Lastly, we removed 10
features (per band) that were strongly dependent on the cadence
(or time-dependence) of observations. We do this because
downstream we want to find analogs of the objects themselves
without biasing how their light curves are measured. This
includes features pertaining to measuring the period or
calculating the periodogram.
Our final light-curve feature list comprises 62 total: 48

magnitude-based and 14 flux-based features, all of which are
brightness related; see the complete list of features and their
description in Appendix A.

2.3.2. Host Galaxy Features

As SN discovery rates grow at a rapid pace, particularly in
today’s expansive landscape of systematic sky surveys, the
correlation between SNe and their global galactic environments
has started to crystallize (e.g., Li et al. 2011; Qin et al. 2022,
and references therein). For instance, the rate of core-collapse
(CC) SNe, whose progenitors are short-lived (<50Myr)
massive stars, is tightly coupled to the SFR of a galaxy (Graur
et al. 2017). Similarly, there are unique galactic correlations
that can be gleaned for many SN demographics, and this
information should be considered when quantifying the
“anomalous” nature of a transient. Consider the following: all
but a single SN Iax to date have been discovered in late-type
galaxies (Lyman et al. 2018). Thus, a new discovery of a
second SN Iax in an early-type galaxy could be considered
more anomalous than the same SN Iax (i.e., with the same
light-curve evolution and derived properties) in a late-type
galaxy.
Our work, which incorporates derived global host galaxy

properties, lays the groundwork for such future analyses of
varying SNe types. Thus, the object’s anomaly score is affected
by not only its light-curve behavior, but its global host galaxy
properties as well. We use approximately a 1:1 ratio of light-
curve features to host galaxy features.38 Ultimately, global host
galactic environments of the SNe are considered to be
meaningful, although weighted less when compared to unusual
light-curve behavior. As for local correlations, we conduct no
formal investigation because of the general lack of spatially
resolved explosion site data.

Table 2
Databank Spectroscopic Breakdown (5754 Objects)

Misc. (3852) SN Ia (1160)
SN

II (340)
SN Ib/
c (75) Exotic (45)

Phot (3816) Ia (1098) II (243) Ib (25) TDE (20)
CV (8) Ia-91T-like (37) IIn (59) Ic (21) SLSN-

II (14)
AGN (7) Ia-pec (10) IIb (21) Ic-BL (14) SLSN-I (11)
SN I (6) Ia-91bg-like (6) IIP (14) Ibn (7) L
SN (5) Ia-CSM (4) II-pec (2) Ib/c (5) L
Other (5) SN Iax[02cx-

like](3)
IIn-

pec (1)
Ib-pec (2) L

Nova (3) Ia-SC (2) L Icn (1) L
Varstar (2) L L L L

Note. The spectroscopic classifications from TNS used in our databank before
a train/test split and upsampling.

37 As for non-light-curve implementations, ALeRCE has their own in-
house feature extractor (Förster et al. 2021).

38 In practice, this weighting does not hold exactly (e.g., see Figure 6, where 8
of the top 10 most important features used in our anomaly detection task are
light-curve features, and the remaining two are host galaxy features).

5

The Astrophysical Journal, 974:172 (49pp), 2024 October 20 Aleo et al.



Incorporating contextual information into SN identification
and classification tasks has steadily increased in the last decade.
Foley & Mandel (2013) demonstrated that host galaxy
morphology and color were sufficient to construct photometric
SN Ia samples at the purity level of then-current light-curve
methods. Baldeschi et al. (2020) used photometric host features
(colors and moments) from the PS1 DR2 catalog to build an
RFC and assign probabilities between low and highly star-
forming host galaxies, subsequently to help distinguish SNe II
from SNe Ia. ALeRCE developed a postage-stamp classifier
(Carrasco-Davis et al. 2021)39 to disambiguate SNe from non-
SNe (AGN, variable stars, asteroids, bogus detections) with a
single detection image, in part relying on the fact that many SN
detections contain a visible host galaxy in both science and
reference images, but only the science and difference images
contain the flux from the SN. Gagliano et al. (2021), which
debuted GHOST, found that photometric features of transient-
hosting galaxies alone were sufficient in classifying SNe II and
SNe Ia with ∼70% accuracy when fed into an RFC. Gagliano
et al. (2023) extended such work to combine light-curve and
host galaxy information for adaptive, real-time photometric
classification, with emphasis on early time phases, achieving an
accuracy of 82%± 2% within 3 days of an event’s discovery.

Moreover, publicly accessible SN data products have been
keen to include host galaxy information: the YSE DR1 (Aleo
et al. 2023) included the associated PS1 host galaxies of 1975
SNe, and the simulated Extended LSST Astronomical Time-
Series Classification Challenge (ELAsTiCC; Narayan &
ELAsTiCC Team 2023) produced LSST alert packets with
both transient photometry and host information. In the LSST
era, where transient spectroscopic classification capabilities
will be capped at approximately 1% of all transients
(Hambleton et al. 2023), any additional information to augment
the sparse transient photometry will be required to fully
characterize the SNe and its environment. It is sensible for host
galaxy information to provide such a link.

With the laundry list of works that were successful in SN
identification and classification tasks using host galaxy
information, as well as its prevalence in data products, it is a
natural extension to use it in the context of anomaly detection
and similarity search.

GHOST (Gagliano et al. 2021) natively connects our
transients to a host in the PS1 galaxy catalog and its hundreds
of catalog-level properties.40 All host galaxy features per
transient are retrieved from the PS1 catalog or explicitly
calculated with one host association calculation, and are reused
downstream in our anomaly detection and similarity search
methods (we make the reasonable assumption that the host
association and derived host properties of each SNe are
constant in time).

The selection of global host features includes the Kron
(1980) flux from g, r, i, z, y filter stack detections, the
normalized offset of the SNe from its host with respect to the
DLR, and the extendedness measure for the g, r, i, z, y filter
stack detections based on the deviation between point-spread
function (PSF) and Kron (1980) magnitudes normalized by the
PSF magnitude uncertainty, to name a few. Our final host
galaxy feature list comprises 58 total. See the full list and a

brief description of each host galaxy feature used in this work
in Appendix B, and discussion of our feature correlations in
Appendix C.

2.4. ZTF Training Set

We build our training set using our databank presented in
Table 2. Naturally, due to preexisting follow-up strategies and
relative SN rates, our spectroscopic data set is heavily class-
imbalanced; our majority classes are vastly overrepresented,
and our minority classes are vastly underrepresented. More-
over, any algorithm to demarcate anomalies from normal SNe
trained on such a class-imbalanced data set would incur a bias
toward the majority classes.
Because we want an algorithm to learn the full feature-space

of these different SN classes, as well as to mitigate any bias
incurred from class-imbalance, we will upsample all classes.
However, before upsampling, we restrict our SNe classes to
those that have at least 14 members (before train/test split).
This strikes a balance between having several rare SNe classes
in our training set while retaining enough members in each
class to properly upsample in feature-space (via interpolation
between known examples) after a train/test split. In this way,
the feature-space can be satisfactorily representative of the full,
unknown feature distribution to achieve sufficient performance.
There are 3816 photometric objects without a spectroscopic

classification (“Phot” class). Those that do have spectroscopic
classifications breakdown into 1098 SN Ia, 243 SN II, 59
SN IIn, 37 SN Ia-91T-like, 25 SN Ib, 21 SN IIb, 21 SN Ic, 20
TDE, 14 SN Ic-BL, 14 SN IIP, and 14 SLSN-II. We perform a
standard 70/30 train/test split. The training set before
upsampling breaks down into 2656 photometric-only (“Phot”
class), 777 SN Ia, 175 SN II, 44 SN IIn, 28 SN Ia-91T-like, 19
SN Ib, 15 SN IIb, 12 SN Ic, 12 TDE, 9 SN Ic-BL, 9 SN IIP, and
11 SLSN-II. From this class-imbalanced training set, we
upsample to a class-balanced training set using the synthetic
minority oversampling technique (SMOTE; Chawla et al.
2002), such that each minority class has the same number of
samples as the majority class (2656), totaling 31,872 objects.
Thousands of labeled samples per class well encapsulate the
feature-space needed by the RFC for training.
SMOTE works by drawing random samples along vectors

joining every grouping of k objects in feature-space until all
classes are balanced. We use k= 8 neighbors; this is the largest
value we can use for our training set, because our smallest class
to be upsampled for training has nine members (SN IIP, SN Ic-
BL). Note that these upsampled features are derived from the
full light curve (i.e., not partial light curves) and the host galaxy
features. Our final training set is detailed in Section 3.1.
We leave the spectroscopic test set as is, and do not perform

upsampling because we want to evaluate our performance on a
representative sample of true events, matching the selection
function we impose. Our spectroscopic test set is composed of
321 SN Ia, 68 SN II, 15 SN IIn, 9 SN Ia-91T-like, 6 SN Ib, 6
SN IIb, 9 SN Ic, 8 TDE, 5 SN Ic-BL, 5 SN IIP, and 3 SLSN-II.
Our observed photometric set is not used in training or testing,
but is used in our ANNs search (Section 5).
Note that, at this stage, we do not perform any linear or

nonlinear transformation of feature values. We do no rescaling
for our RFC (Section 3.1), but we do standardize features by
removing the mean and scaling to unit variance for principal
component analysis (PCA) before our ANN search with
ANNOY (Section 5). Due to the limited size of our

39 Note that the postage stamp was centered on the detection, thereby encoding
some local/offset information.
40 https://outerspace.stsci.edu/display/PANSTARRS/PS1+Database
+object+and+detection+tables
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spectroscopically labeled data set, especially for rare classes
with few members, we opt for a train/test set instead of the
more commonly used training/test/validation set.

SMOTE (Chawla et al. 2002) is known to have certain
limitations, particularly when dealing with small training sets
and high-dimensional feature-spaces. It is prone to generating
synthetic points that lie along the lines connecting original data
points rather than curves. This behavior, while expected,
indicates that SMOTE may not fully capture the complex,
curved manifolds (Bellinger et al. 2016) inherent in our 120-
dimensional feature-space and the complex phenomena of SNe
light curves and hosts.

Given these constraints, we acknowledge that alternative
oversampling techniques, such as the adaptive synthetic
sampling method (He et al. 2008) and normalizing flows
(Papamakarios et al. 2021), might better address these issues by
considering the local density and distribution of data points, or
correlations across features. This is a subject of future work.

Despite these limitations, our use of SMOTE facilitates
direct comparisons with other anomaly detection methods, such
as the FLEET algorithm (Gomez et al. 2020, 2023a, 2023d),
which also employs SMOTE in a similar context.

3. Anomaly Detection in ZTF Alert Stream

With any anomaly detection task, the definition of
“anomaly” and its associated evaluation metric must be clear.
For this work, we consider a transient to be an anomaly if it
falls into any of the following three categories:

1. Spectroscopic anomaly. This is any transient whose
spectroscopic label is not of Type Ia-normal, Ia-91T-
like,41 II-normal, and IIP (the “Normal” type of our
RFC). Thus, we consider the remaining transient labels
explicitly defined in our training set (e.g., TDE, SLSN-II,
SN IIn, SN IIb, SN Ib, SN Ic, SN Ic-BL) as well as labels
outside our training set (e.g., SN Ia-91bg-like, SN Iax,
SN Ibn, SN Icn, SLSN-I, etc.) as anomalous (the
“Anomaly” type of our RFC). Note that, when we
consider spectroscopic anomalies alone, we do so using
the original TNS classification label without looking at
the spectra. However, when we consider spectroscopic
anomalies after vetting (grouped with contextual and
behavioral anomalies), we determine as such through the
reclassification of the transient’s spectra with SNID
(Blondin & Tonry 2007; if needed). This is often spurred
by “Anomaly” classifications from our model on objects
originally outside of our anomalous classification taxon-
omy, or objects whose ANNs are instances of the
“Anomaly” class.

2. Contextual anomaly. This is any transient whose host
environment is peculiar (e.g., an SN II-normal in an
evolved elliptical galaxy,42 or an SN in a rare galaxy
type) based on our current understanding of host galaxy
correlations. Note that we do not consider SNe Ia in spiral
galaxies to be rare enough alone to be considered
anomalous. We identify contextual anomalies through

manual vetting of the host galaxy type in conjunction
with the known or likely SN type.

3. Behavioral anomaly. This is any transient whose light-
curve behavior exhibits an atypical or peculiar evolution
indicative of an underlying physical process (e.g., a
prominent second bump in the light curve caused by
circumstellar interaction) and not an observational effect
(e.g., missing rise information, color information, ima-
ging artifacts, etc.). We identify behavioral anomalies
through manual vetting by an expert of the light-curve
evolution with respect to the typical evolution of the
SN type.

Our philosophy in constructing LAISS to discover anom-
alous transients is similar to that of FLEET (Gomez et al. 2020)
to find SLSNe (Gomez et al. 2023a) and TDEs (Gomez et al.
2023d), in part due to their proven success. Our guiding
principles are as follows:

1. We “classify” only anomalies with no regard for the
classification success of other transients.

2. We favor anomaly sample purity over sample
completeness.

3. We prioritize low latency and simple model construction
to allow for real-time identification.

4. We aim for a manageable list of currently active flagged
anomalous transients, such that an expert can manually
vet the source and select the best targets each night.

5. We flag anomalies while they are bright to enable
photometric and spectroscopic follow-up.

3.1. Full-phase Anomaly Detection with Random Forest
Classifier and Isolation Forest

3.1.1. Spectroscopic Anomalies (Before Vetting)

With our class-balanced training set, we remove objects with
no spectroscopic label (the “Phot” class), leaving us with
29,216 labeled spectroscopically confirmed and SMOTE-
generated events. From our testing set, we assign SN Ia,
SN Ia-91T-like, SN II, and SN IIP as “Normal” (403 objects),
and TDE, SN IIn, SLSN-II, SN IIb, SN Ib, SN Ic, and SN Ic-BL
as “Anomaly” (52 objects).
Now, we set out to “classify” anomalies. We do not classify

by transient class label; rather, we do a binary classification into
“Normal” and “Anomaly” classes. To discourage our algorithm
from tagging normal SNe Ia as anomalous, we assign SN Ia-
normal and SN Ia-91T-like as “Normal,” despite the latter being
a more rare overluminous subtype. We find that including SN Ia-
91T-like as “Anomaly” resulted in a higher rate of Ia tagged as
anomalous.43 This is perhaps due to the large photometric
similarity in the light-curve profile between SN Ia-91T-like and
SN Ia-normal (unlike SN Ia-91bg-like) because distinguishing
factors like absolute magnitudes are not explicitly used. Thus,
to be consistent throughout this work, we consider SN Ia-91T-
like to be like any other SN Ia-normal, and state that our model
is not well suited to tag SN Ia-91T-like as “Anomaly.”
We perform many iterations of varying machine learning

algorithms for anomaly detection while varying hyperpara-
meters via grid search. Some of these tests included a VAE,
support vector machine (SVM), isolation forest (IF), and an

41 Our model performs more competitively when we consider the rare subtype
SN Ia-91T-like SNe as nonanomalous due to overlap in feature-space with
SN Ia-normal. See Section 3.1 for details.
42 Irani et al. (2022) concluded approximately 0.3% of all core-collapse
(CC) SNe occur in elliptical galaxies, as derived from the spectroscopically
complete ZTF-BTS.

43 We find that including SN Ia-91T-like as “Anomaly” resulted in a higher
rate of Ia tagged as anomalous, lowering our purity about 10%.

7

The Astrophysical Journal, 974:172 (49pp), 2024 October 20 Aleo et al.



RFC. A comparative table summarizing the performance
metrics of all tested algorithms is found in Table 3. We
highlight the combination of hyperparameters from the grid
search resulting in the best anomaly purity, while balancing
both the recall and fraction of predicted test set anomalies.
Additionally, we note commonalities among truly nonanoma-
lous SNe classified as anomalous (“false-positive”). A more in-
depth modification of standardized out-of-the-box algorithms
(e.g., customizing a weighted reconstruction class loss or
anomaly specific class loss using pairwise distances in latent
space) for specialized anomaly detection tasks is a subject of
future work.

Ultimately, we achieved the best and most robust perfor-
mance with the highest sample purity on the spectroscopic test
set via the sklearn implementation of an RFC.44 An RFC is
an ensemble learning method constructed of many decision
trees (each trained on bootstrap samples using a random subset
of features without replacement), which outputs the mode of
the classes in a classification task.

We use an RFC with the following hyperparameters: 100
trees (n_estimators = 100), a tree depth of 35 (max_-
depth = 35), a maximum of 35 features out of the 120 input
features per tree (max_features = 35), a contamination
level of 13%45 (contamination = 0.13), and balance the

weighting of normal to anomalous classes (class_weight =
‘‘balanced’’). Surprisingly, increasing the weighting
toward anomalous classes had no statistically significant
increased performance, and thus, we kept the simpler balanced
weighting. We optimized our hyperparameters with a grid
search: n_estimators from 50 to 500 in steps of 50,
max_depth from 5 to 65 in steps of 5, max_features = 35
from 5 to 65 in steps of 5, and class_weight from 1 to 10
in steps of 1. We used the Gini impurity as our measure for the
quality of feature split. To estimate the classifier’s uncertain-
ties, we run each version of the model 25 times using different
random seed initializations. Training for each run was
performed on a 2 GH. Quad-Core Intel Core i5 (macOS
Version 11.7) and finished in ∼20 s after grid search.
The simplest overview metrics to understand the perfor-

mance of a classifier are completeness, purity, and accuracy.
These metrics are defined for a single class as

( )

=
+

=
+

=
+

Completeness
TP

TP FN

Purity
TP

TP FP

Accuracy
TP TN

S
1

where TP (FP) is the number of true (false) positives, TN (FN)
is the number of true (false) negatives, and S is the total
sample size.

Table 3
Comparison of Anomaly Detection Algorithms

Algorithm Hyperparameters via Grid Search Recall Purity Total Anomalies Predicted False Positive Characteristics
(Anomaly) (Anomaly) (Test Set)

(%) (%)

VAE batch_size = {1, 64, 128, 256, 512} 6 10 30/455 (7%) Bright (m  18 mag),
epochs = {5, 25, 50, 75, 100} SN Ia in spiral/irregular hosts

intermediate_dim = {2, 8, 16, 64} SN II with r plateau,
latent_dim = {1, 3, 5, 10} linear g decline

pos_weight = {0.75, 0.9, 0.95, 1, 2, 5}
metrics = {Precision(), Recall(), Accuracy()}

activation = “relu,” “sigmoid”
optimizer = “adam”

SVM kernel = {“rbf,” “linear,” “poly”} 25 19 68/455 (15%) Often in edge-on,
C = {0.5, 1, 5, 10} faint, or compact hosts

gamma = {“scale,” “auto”}
decision_function_shape = {“ovo,” “ovr”}

class_weight = “balanced”

IF n_estimators = {50, 100, 500} 23 20 60/455 (13%) Very bright (m  16.5 mag)
max_features = {5, 15, 25, 35, 45}

contamination = 13

RFC n_estimators = {50, 100, 500} 29 52 29/455 (6%) Large gaps in light curve,
max_depth = {5, 15, 25, 35, 45} or long-lived
max_features = {5, 15, 25, 35, 45}

class_weight = “balanced”

Note. Comparing tested anomaly detection algorithms with grid search. Bold text indicates the hyperparameters chosen for the final algorithms from a grid search. The
“Total Anomalies Predicted” column indicates how many objects were tagged as “Anomaly” out of the test set sample of 455 objects for each tested algorithm. The
corresponding percentage is shown in parentheses. The “False Positive Characteristics” column indicates common patterns of “Normal” SNe tagged as anomalous, to
reveal common failure modes. After comparing several algorithms, the random forest classifier performed the best, with highest overall anomaly purity balanced with
a suitable number of anomalies tagged relative to their estimated population.

44 sklearn.ensemble.RandomForestClassifier, see https://
scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html.
45 To match our observed value within a conservative limit to account for
potential misclassifications and peculiar behavior.
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In this work, completeness (“recall”) quantifies the percent-
age of a true type that is correctly classified (“Normal” or
“Anomaly”). Purity (“precision”) quantifies the percentage of a
predicted type that is correctly assigned the true type. Accuracy
is the overall fraction of events that were correctly classified
into their respective groups.

The performance of this RFC on the spectroscopic test set is
shown as completeness (left) and purity (right) confusion
matrices in Figure 2. Note that for these confusion matrices we
only consider the value of the original spectroscopic label from
TNS alone, and do not yet consider expert vetting for updated
classifications, peculiar behavior, or atypical host galaxy
environment; such analysis can be found later in this section.

Our RFC achieves an overall accuracy of 89%± 1% with a
97%± 1% “Normal” completeness and 91%± 1% “Normal”
purity, with 29%± 3% “Anomaly” completeness and
52%± 5% “Anomaly” purity (with 1σ uncertainty derived
from the different random seed iterations).

In a magnitude-limited survey like ZTF, we can expect about
70% of observed SNe to be normal SNe Ia, and about 20% to
be normal SNe II, leaving about 10% to be of a rare/anomalous
nature (for ZTF-BTS, the measured relative rates are ∼72%
SNe Ia, ∼20.5% SNe II, ∼5.5% SNe Ib/c, ∼2.5% SLSNe; see
Fremling et al. 2020). Indeed, in our spectroscopic test sample
of 455 SNe, 52 (11%) are considered anomalous. To have a
completeness of 29% and a purity of 52% on the remaining
11% of our test set implies that our RFC model significantly
outperforms random selection. Because our test set is heavily
imbalanced, the probability of randomly selecting “Anomaly”
should be proportional to its prevalence in the data set. Thus, if
we expect the observed sample to be roughly 10% “Anomaly,”
we would expect to successfully recover roughly 10%
anomalous events by random selection. Moreover, at 29%
completeness, our RFC still manages to identify roughly 1/3
true anomalies, a significant recovery fraction.

We also find that our RFC model vastly outperforms a more
sophisticated baseline model commonly used for anomaly
detection (see Table 3): an IF (Liu et al. 2012). An IF is an
unsupervised decision-tree based method that isolates outliers
by randomly selecting a feature from an array of features, and
randomly selecting a threshold value (between the max and
min) to split. This random partitioning of features and values
produces shorter paths in trees for outlier/anomalous data
points when aggregated in a tree ensemble. We use the same
hyperparameter setup when available (n_estimators = 100,
max_features = 35, random_state = 11) and a
contamination level of 13% (contamination = 0.13). If
we compare the 29 objects tagged “Anomaly” (where 15 are
correctly recovered, according to the spectroscopic label only)
to the 29 objects with the highest anomaly score from the IF,
we find the IF only successfully recovers seven events.
Moreover, 27/29 objects deemed most anomalous from the
IF are brighter than 18.5 mag, with 13/29 exceeding
∼16.5 mag in brightness. Of those, 11/13 are simply nearby,
normal SNe Ia, and only 2/11 are what we consider anomalous,
SNe Ic. In essence, the most anomalous objects identified by
the IF are simply bright, nearby, normal SNe that can be found
with a selection cut. However, this result may be unsurprising
given the disparity between a supervised approach like our
RFC model compared to an unsupervised IF model.
A table highlighting all 29 test set objects tagged anomalous

by the RFC model can be found in Table 4. First, we consider
the resulting distributions from the spectroscopic label alone
before expert vetting and potential reclassifications. The objects
of “Normal” spectroscopic classes are nine SN II (13.2% of all
SN II in test set) and five SN Ia (1.5% of all SN Ia in test set).
Similarly, for our anomalous classes, our model tagged six
TDE (75%), three SN IIn (20.0%), two SLSN-II (66.7%), one
SN IIb (16.7%), one SN Ib (16.7%), one SN Ic (11.1%), and
one SN Ic-BL (20.0%). However, because of small number

Figure 2. Completeness (left panel) and purity (right panel) confusion matrices of our spectroscopic test set for binary classification performance between “Normal”
SNe (SN Ia-normal, SN Ia-91T-like, SN II-normal, SN IIP) and “Anomaly” SNe (TDE, SLSN-II, SN IIn, SN IIb, SN Ib, SN Ic, SN Ic-BL), based on the original TNS
spectroscopic label only (i.e., spectroscopic anomalies before vetting). We achieve 52% purity of detecting spectroscopic anomalies alone.
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statistics for the anomalous classes, we cannot say that our
algorithm will detect 75% of all TDE, for example.

When considering other distributions, such as redshift, we
find that our anomaly detection algorithm (which does not use
redshift as input) is agnostic. Unlike the IF model, our RFC
model tags objects that encompass the entire redshift range of
ZTF. We find z= [0.011, 0.338], a mean redshift of ˜ =z 0.087,
a median redshift of zmed= 0.052, and a standard deviation of
σz= 0.079. The bounds and standard deviation of the tagged
redshift distribution imply that our model has learned to
preferentially tag intrinsically bright (correlated with high
redshift due to Malmquist bias, which favor SLSNe, TDEs) and
intrinsically dim (overrepresented in nearby, low-redshift
galaxies, which favor SESNe) events. Meanwhile, the median
redshift aligns with the median redshift of ZTF-BTS (see
Figure 4 of Fremling et al. 2020), which is correlated with the
redshifts of the majority of “Normal” objects. Using redshift

measurements, we can transform apparent magnitudes into
absolute magnitudes using a flat ΛCDM cosmology with
H0= 70 km s−1 Mpc−1, and ΩM= 0.3. We find that the tagged
objects span the gamut of extragalactic transient peak absolute
magnitudes: Mä [−23.2, −15.2]mag, evidence that our model
is able to find objects at all intrinsic brightness scales
(Richardson et al. 2014).

3.1.2. Spectroscopic, Contextual, and Behavioral Anomalies (After
Vetting)

As we describe at the beginning of Section 3, we consider a
transient to be an anomaly if it falls into any one (or more) of
the three categories: spectroscopic anomaly, contextual anom-
aly, and behavioral anomaly. The former can be obtained via
classification of the SN spectrum and without careful
inspection of the light curve or host galaxy, except in the case

Table 4
The 29 Events from Our Spectroscopic Test Set with P(anom) � 50% at Full Light-curve Phase, Ordered by P(anom)

IAU Name TNS Class New Class? z Peak Mabs P(anom) Remarks

2020yue SLSN-II TDEa 0.204 −21.8 91 Visible for ∼220 days. Blue, nuclear.
2021uzt SN IIb SN IIn 0.061 −19.4 89 No visible host (host association incorrect).
2018iih TDE L 0.212 −21.3 76 Visible for ∼1000 days. No data at peak.
2021iui SN IIn L 0.106 −19.7 76 Faint host.
2020aeuh SN Ia SN Ia-CSMc 0.126 −19.8 72 Second bump (likely CSM interaction). Visible for ∼175 days.
2018khn SN IIn L 0.091 −19.4 71 Faint host. Visible for ∼450 days.
2021bxq SN IIn L 0.09 −19.0 70 Faint host. Visible for ∼225 days.
2021gje TDE L 0.358 −21.9 69 Visible for ∼50 days. Blue, nuclear.
2021aazw SN Ic-BL L 0.024 −16.6 68 Visible for ∼50 days.
2021our SN Ia L 0.039 −18.2 66 Normal SN Ia. Tagged because underluminous?
2021aff SN II L 0.051 −17.3 64 Incorrect host association. No decline. Visible for ∼150 days.
2021fyp SN II L 0.053 −18.6 64 Peculiar light curve. Spectrum has He, weak H (possible IIb).
2021cpi SN II SN IIb 0.055 −18.2 64 Lack of strong features in first peak spectrum (shock cooling?).
2021ackd SN Ia SN Ia-91bg-like 0.050 −18.1 63 Matches to SN 1991bg, 2007ax, 1986G.
2021ckb SN II SLSN (He-rich) 0.070 −19.1 62 Narrow Hα emission from host. Match to PTF10hgi.d

2021nwa TDE L 0.047 −18.2 61 Blue, nuclear. Visible for ∼150 days.
2020tnq SN Ia L 0.033 < −18.3 61 First observations around +26 days after peak (from spectrum).
2021M SN IIb L 0.011 −15.2 60 Edge-on host galaxy. Visible for ∼55 days.
2021mhg TDE L 0.073 < −19.5 60 Rebrightening/second transient event at location.e

2020abah SN II L 0.03 −16.5 60 Known member of long-rising SN II class at ∼90 days.f

2021adpx SN Ia SN Ia-91bg-like 0.047 < −18.7 59 ∼20 day r-band gap. Spiral host. Matches to SN 2002cf, SN 2006gt.
2020ywo SN II SN Ia-CSM 0.0475 < −18.8 58 Asymmetric Hα hints IIn, but redwards fit match Ia.
2020rmk SN II L 0.025 −16.9 57 Candidate member of long-rising SN II class.
2020acka TDEg L 0.338 −23.2 57 Blue, nuclear. Visible for ∼300 days.
2020scb SN Ic L 0.018 −17.7 56 Visible for ∼130 days.
2021zj SN II L 0.046 −18.6 56 Flash ionization followed by CSM interaction.h

2020acty SN Ib L 0.047 −17.9 55 Visible for ∼70 days.
2018lnb SLSN-II L 0.222 −22.0 52 Incorrect host association. Visible for ∼175 days.
2021axu TDE L 0.192 −21.4 51 Incorrect host association.i Visible for ∼160 days.

Notes. The bold text designates a transient event that is likely anomalous, and we consider successfully tagged. We consider 26/29 (90%) objects as anomalies due to
their (updated) classification, or peculiar light-curve behavior and/or host galaxy, as opposed to the 15/29 originally considered anomalous based solely on the
original TNS classification labels.
a The updated classification was made by Yao (2023) after our training process.
b Spectra displays narrow Hα at early times, then normal width at late times with broadened Lorentzian Hα profile (no clear P-cygni). Coupled with slow rise time and
bright peak, we favor a IIn classification.
c CSM interaction has been posited as the likely driver for the secondary bump seen in this light curve (Soraisam et al. 2022).
d See Quimby et al. (2018) and Gal-Yam (2019) for details.
e See Munoz-Arancibia et al. (2023a) for details.
f ≈1.4% core-collapse SNe. See Sit et al. (2022) for details.
g Frederick et al. (2021) report this object to be a Trakhtenbrot AGN flare (Trakhtenbrot et al. 2019).
h See Jacobson-Galán et al. (2024).
i Association is correct in current GHOST version.
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of reclassification. Additionally, the latter two require such
expert vetting to identify peculiar behavior (which can occur,
e.g., after the spectrum was taken) or host galaxy environment.
When we consider the results after expert vetting, our purity is
greater than what we were led to believe from the TNS
spectroscopic label alone. Objects that fall into any one or more
of these three categories after careful manual vetting by an
expert post facto are in bold text in Table 4. We consider all
such objects a successfully tagged event by our model. Those
without bold text are likely to be nonanomalous, and thus
represent a “misclassification.” We offer several insights into
common failings of our model in Section 6.

For completeness, we carefully inspect the light curves, spectra,
and host galaxies of all 455 test set objects. This was done
consulting photometry, spectra, host galaxy postage stamps,
redshift estimates, catalog information, and other resources
available on the TNS, ANTARES (Matheson et al. 2021), and
ALeRCE (Förster et al. 2021) brokers, and YSE’s transient survey
management platform YSE-PZ (Coulter et al. 2022). We find 16
transients originally categorized as “Normal” that are updated to
the anomalous “Anomaly” classification, resulting in 68 total and
a 31% overall increase in anomalies. Of these 16 new anomalies,
11 (or ∼69%) were presently tagged by our model as anomalous,
of which we argue eight (SN 2021uzt, SN 2020aeuh, SN 2021fyp,
SN 2021cpi, SN 2021ackd, SN 2021ckb, SN 2021adpx, and
SN 2020ywo) were previously misclassified on TNS (and there-
fore, should be considered spectroscopic anomalies), and three can
be characterized as behavioral anomalies: two (SN 2020abah,
SN 2020rmk) as members of the rare, long-rising (>40 days)
SN II class (≈1.4% CC SNe; see Sit et al. 2022 for details), and
one (SN 2021zj), with two peaks separated by 100 days, exhibits
flash ionization followed by CSM interaction (Jacobson-Galán
et al. 2024). Note that all reclassifications were made with the
original classification spectrum uploaded to TNS; we did not use
any additional proprietary spectra. It follows that there remain five
objects that were incorrectly not tagged as anomalous but appear
to be of an anomalous nature. Specifically, SN 2021wun is also a
known member of the long-rising SN II class (Sit et al. 2022);
SN 2020eyj has previously been described as having late-time
CSM interaction (Fremling et al. 2020); SN 2021yfi has a peak
absolute magnitude of −21.3 mag (but lacks narrow emission
lines, which prevented a superluminous IIn classification46);
SN 2019bcv is uncommonly bright (∼−19.5 mag), red (g− r
≈ 1 mag), and visible for ∼600 days; and SN 2021ttg is
reclassified from SN Ia to SN Ia-91bg-like in this work,
prompted by an ANNs search and revetting of the spectrum
(see Table 8 and Section 5.2).

Now, post facto, we find 26/29 objects successfully tagged
anomalous, resulting in an effective purity of ∼90%. Note that,
of the three remaining objects considered “Normal,” one (33%)
has an incorrect host association (SN 2021aff), which is a
possible explanation for its misclassification.47 The second
(SN 2020tnq) has no observations until approximately
+26 days after peak (estimated from the evolution of the
spectrum), possibly tricking our model into inferring the object
is intrinsically fainter (and thus more likely to be of anomalous

SESNe classes) than it is. The third (SN 2021our) is a
normal SN Ia from the spectrum in a standard elliptical galaxy,
but is underluminous based on peak absolute magnitude
calculations (Mabs∼−18.3 mag), the strongest evidence for
the misclassification.
After vetting and reclassifications, we update the per-type

percentage of objects tagged by the anomaly detection (AD)
model according to the updated spectroscopic label. The tagged
objects of “Normal” spectroscopic classes drops from nine SN II
to five SN II (7.3% of all SN II in test set) and from five SN Ia to
two SN Ia (0.06% of all SN Ia in test set). Similarly, for our
anomalous classes, our model tagged seven TDE (77.8%), three
SN IIn (26.7%), two SLSN-II (66.7%), two SN IIb (33.3%), one
SN Ib (16.7%), one SN Ic (11.1%), and one SN Ic-BL (20.0%).
Our model additionally tags 2/3 SN Ia-91bg-like (66.7%) and 2/3
SN Ia-CSM (66.7%), both classes that were identified through
reclassification and not included originally in our training set.
Subsequently, we show updated confusion matrices in

Figure 3, which describe the effectiveness of our model at
classifying spectroscopic, contextual, and behavioral anoma-
lies within the observed ZTF Alert Stream. Now, we record an
accuracy of 90%. We score a “Normal” completeness of 99%
at a “Normal” purity of 90% while achieving an “Anomaly”
completeness of 38% at an “Anomaly” purity of 90%. As
designed, our algorithm indeed prioritizes anomaly purity over
sample recall, and is effective at identifying SNe with peculiar
attributes in regards to the spectroscopic label and beyond.

3.1.3. Additional Performance Evaluation

Beyond a confusion matrix, there are other methods to evaluate
the performance of a binary classifier. With an RFC, the final
prediction is an aggregate of the final prediction of each tree in the
forest, and so, the fraction of votes belonging to either “Normal” or
“Anomaly” can be conceptualized as a classification probability.
Traditionally, the final classification is assigned as a simple
majority, where 50% is the decision threshold, but this choice can
be changed to reflect different aspects of the model. It follows that
a higher decision threshold considers only events with near-
unanimous decision by the trees in the forest, whereas a lower
decision threshold is the opposite case; such a trade-off is
construed by a receiver operating characteristic (ROC) curve. The
ROC curve measures the rate of true positives and false positives
as a function of the decision threshold from 0 to 1, and the model
accuracy represents a single point along the curve. Meanwhile, the
area under the curve (AUC) quantifies the separability of our two
classes, where in the limit of perfect classification the AUC
approaches unity. A high AUC indicates a high true positive rate
and a low false positive rate, whereas a low AUC indicates a low
true positive rate and a high false positive rate.
In the left panel of Figure 4, we show the ROC curve for our

model, reporting the AUC for only the anomalous “Anomaly”
class in the cases of random guessing (red), spectroscopic
anomalies only before vetting (blue), and any of spectroscopic,
contextual, behavioral anomalies after vetting (green). We also
report the AUC standard deviation across our 25 different
random seed iterations (shown as faded lines, with the bold line
denoting our final model). We find by the spectroscopic label
alone before vetting we achieve an AUC of 76%± 1%, and for
all anomaly categories after vetting, we achieve an AUC of
83% ± 1%. The greatest separation between these two
anomaly criteria occurs at the low true positive and low false
positive rate regime, which indicates that the model’s

46 See classification report from https://www.wis-tns.org/object/2021yfi.
47 We remind the reader that the host association is performed upstream, and
as in the real-time data processing scenario, an expert cannot a priori know the
correctness of the association of a flagged anomaly before human-on-the-loop
vetting. Erroneous associations (estimated to be ∼5% by Gagliano et al. 2021)
can be identified and dismissed by an expert, underscoring the indispensable
role of human intervention in the analysis pipeline.
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improvement primarily benefits in the detection of true
positives (anomalies) while maintaining low false positives
when vetted anomalies are considered.

In the right panel of Figure 4, we show a precision–recall curve
for our model performance. We consider any object with P
(anom) < 50% as “Normal” and P(anom)� 50% as “Anomaly.”
At a P(anom) = 50% threshold, we achieve a purity of
spectroscopic anomalies of approximately 50% (52%), which
optimizes the trade-off between precision and recall for our use-
case—we achieve the maximum recall for which we identify more

anomalies than nonanomalies. For this threshold visualized in our
precision–recall curve, we cast any object with P(anom) < 50% to
P(anom) = 0% and any object with P(anom)� 50% to P
(anom)= 100%. This manifests as an inflection point, occurring at
the “Anomaly” recall values as shown in the confusion matrices
(29% before vetting, 38% after vetting). We show the average
precision48 from prediction scores in parentheses, denoted as the

Figure 3. Same as Figure 2, but including additional spectroscopic, contextual, and behavioral anomalies after expert vetting of the classification spectra, host galaxy
environment, and light-curve evolution, respectively. We achieve 90% effective purity of detecting spectroscopic, contextual, and behavioral anomalies combined.
We find this effective purity score is consistent with the spectroscopic subset of transients identified as anomalous in our real-time deployment on the nightly ZTF
Alert Stream via ANTARES (∼83%, see Table 5).

Figure 4. Left: receiver operator characteristic (ROC) curves for spectroscopic, contextual, and behavioral anomalies after vetting (green solid line), spectroscopic
anomalies only before vetting (blue solid line), and by random selection (red dashed line). Each curve is a different initialization from 1 of 25 different random seeds,
where the bold line is the chosen model’s performance. The area under the curve (AUC) for the “Anomaly” classification is listed along with its standard deviation
across the 25 different random seeds. Right: precision–recall curves for spectroscopic, contextual, and behavioral anomalies after vetting (green solid line),
spectroscopic anomalies only before vetting (blue solid line), and by random selection (red solid line), where any object with P(anom) < 50% is cast to 0, and P
(anom) � 50% is cast to 1. The average precision (AP) score is shown in parentheses, and a 50% purity is shown as a dashed black line. Our anomaly detection model
significantly outperforms random selection, and can achieve high levels of purity (�50%) at a range of recall thresholds (�70% after vetting, �32% before vetting).

48 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
average_precision_score.html
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weighted mean of precision values achieved at each threshold,
using the increase in the recall from the previous threshold as
the weight. Our anomaly detection model significantly outper-
forms random selection, and can achieve high levels of purity
(�50%) at a range of recall thresholds: �32% for spectro-
scopic anomalies only before vetting, and �70% for vetted
spectroscopic, contextual, and behavioral anomalies combined.
For even higher levels of purity (�75%), these recall thresholds
are �15% for spectroscopic anomalies only before vetting, and
�49% for vetted spectroscopic, contextual, and behavioral
anomalies combined.

Ultimately, we want to better understand on a granular scale
how reliably we can trust the model output at varying
confidence scores, particularly to investigate if higher con-
fidence correlates in the increased likelihood of an object being
anomalous. In Figure 5, we show the observed completeness
(left panel) and observed purity (right panel) of our model as a
function of anomaly classification confidence, P(Anomaly)
(hereafter P(anom)). Because of our hyperparameter selection,
there are fewer high confidence scores (P(anom)� 50%) than
low ones (P(anom)< 50%), and of those that have P
(anom)� 50%, the majority are grouped within the 50%–

70% range, with only a few greater than 70% (see column (6)
of Table 4).

In our test set before vetting, every object with P
(anom)� 70% is anomalous except one, SN 2021uzt, which
has the overall second highest anomaly score at P
(anom) = 89%. A possible driver of the high anomaly score
is the likely incorrect host association for this object (the real
host is not visible). SN 2021uzt was originally classified as an
SN IIn (Tucker 2021), but later classified as an SN II (Chu et al.
2021). Due to this, SN 2021uzt is represented as the sharp dip
shown in the right panel in blue, and is the sole reason for the
decline in purity at high confidence scores. However, upon
vetting and reevaluating the two spectra, there is evidence of a
IIn-like Lorentzian Hα profile and none of P-cygni. Moreover,
SN 2021uzt is bright at its peak (Mabs∼−19.4 mag) with a
long rise (>30 days). This evidence suggests the original IIn

classification is the best characterization, and we adopt it for
this work. Thus, after vetting (green), all objects with P
(anom)� 70% are anomalous.
Averaged over the 25 different seed iterations, the purity of

vetted anomalies steadily increases with rising confidence score
from 0% to a peak around P(anom)≈ 45%, plateaus until P
(anom)≈ 65%, then rises to a perfect purity at P(anom)≈ 70%
and sustains it until a maximum classification confidence.49 If P
(anom)� 47%, the purity achieved is �80% (the nearby P
(anom) = 50% is reflected in the purity confusion matrix of
Figure 3). This trend shares similarities when considering only
spectroscopic anomalies (before vetting) except the difference
that stems from SN 2021uzt and that the maximum purity that
can be achieved is overall lower; if P(anom)≈ 47%, the purity
achieved before vetting is nearly half that compared to vetted
anomaly candidates, achieving ∼40% at worst (but usually
�50%). Perhaps the most interesting insight gleaned from
Figure 5 is that if we vet our anomaly candidates, we achieve a
50% purity score at a lower P(anom) threshold (38%) than if
we do not (47%). Fluctuations in the model from random seed
iterations impact the outcome of the anomalies before vetting
more severely than after vetting, likely due the fact that more
objects with high anomaly scores are deemed anomalous after
vetting than vice versa.
In a similar manner, the recall steadily decreases with

increasing confidence score across the range of recall scores,
alluding to the fact that the majority of objects have low
anomaly confidence scores (because most are truly nonanoma-
lous), and a minority have high anomaly scores. This behavior
reflects the distribution of anomalies we observe. There is little
difference in the recall score before and after vetting at the P
(anom) margins; the greatest gain (≈10% in recall) comes
around P(anom)∼ 50%, although we observe that this large

Figure 5. The observed completeness (left panel) and observed purity (right panel) of our model as a function of anomaly classification confidence, P(anom),
calculated at full light-curve phase. Individual object confidence scores are represented as circles. Each curve is a different initialization from 1 of 25 different random
seeds, where the bold line is the chosen model’s performance. At our chosen thresholds of P(anom) = 50% for this work, we achieve an overall purity score of 52%
and a completeness of 29% for spectroscopic anomalies only before vetting (blue) and an overall purity score of 90% and a completeness of 38% for spectroscopic,
contextual, and behavioral anomalies after vetting (green), reflected in the confusion matrices of Figures 2, 3, respectively.

49 As we will see in Table 7, P(anom) � 70% does not guarantee perfect
purity; however, in the case of Table 7, our model is not trained on features
extracted from YSE photometry, and we consider the score at any light-curve
phase instead of at the end of the full phase.
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offset is in part attributed to fluctuations from the random
seeding.

For our chosen model, we achieve a maximum purity of
100% at a recall of 13% given a confidence score of P
(anom)= 68%. But the best balance achieved between purity
and recall is at P(anom)= 50%, which is reflected throughout
this work.

3.2. Feature Importance

To better understand our model, we desire to determine
which light-curve and host galaxy features (see the complete
list in Appendix A) are most valuable for our anomaly
detection task. A common method is to calculate impurity-
based feature importances, computed as the (normalized) total
reduction of the criterion brought by that feature (Gini
importance). We use the feature_importances_ attribute
from sklearn.ensemble.RandomForestClassi-
fier, and display the results in Figure 6. As is standard
procedure, we use the normalized feature importance, defined
as the percentage of times the feature is used as a split, as our
metric for feature significance.

Under this method, we find that the most important light-
curve features are the light-curve slope in a least squares fit of
the linear stochastic model with Gaussian noise described by
observation errors {δi} (feature_linear_fit_slope_
magn_{g,r}) and its error in g band (feature_linear_
fit_slope_sigma_magn_g), the mean and excess variance
r-band flux (feature_excess_variance_flux_r,
feature_mean_variance_flux_r), mean magnitude
in g band (feature_mean_magn_g), and the unbiased
Anderson–Darling normality test statistic for flux (feature_
anderson_darling_normal_flux_{g, r}). We suspect
that the feature_linear_fit_slope_magn_g at 0.067 is
the most important feature overall at nearly twice the

contribution of the second most important feature (0.038;
feature_excess_variance_flux_r) because many rarer
classes of transients like TDEs show consistently strong blue
colors or SESNe, which tend to exhibit constantly weak blue
colors relative to red throughout the light-curve evolution.
Interestingly, like FLEET (Gomez et al. 2020, 2023a,

2023d), which is designed to find SLSNe and TDEs with an
RFC, we find the most important host galaxy feature is the
projected angular separation between the transient and host
galaxy normalized by host radius (dist/DLR, denoted as
θ/dDLR in the original GHOST paper; Gagliano et al. 2021).
This is an indication that SN classes, particularly rare ones,
may preferentially occur at different locations throughout their
host galaxies than more normal SNe. For example, TDEs are
nuclear events, and would predominantly have a small dist/
DLR value, making this potentially a powerful indicator for
separating TDEs from non-TDEs.
The second most important host feature is the aperture

magnitude i− z color difference (i-z), followed by 4DCD, the
four-dimensional color distance in g− r, r− i, i− z, and z− y
from the PS1 stellar locus (Tonry et al. 2012). This is the path
traced by stars in color–color space (see Section 2.2 of
Gagliano et al. 2021 for details). Color-derived features encode
information about the metallicity, mass, and SFR of host
galaxies. These characteristics are known to be associated with
the type of SN (e.g., Hansson et al. 2012), including host
galaxy property correlations with SNe Ia (e.g., Johansson et al.
2013; Henne et al. 2017; Kelsey et al. 2023). Furthermore, the
color of galaxies can effectively distinguish between early- and
late-type galaxies (Strateva et al. 2001; Nair & Abraham 2010).
This suggests that valuable host galaxy features for classifying
SNe, and potentially anomalous SNe, are related to previously
established galaxy correlations.

Figure 6. The top 15 light-curve and host galaxy features, ordered by the greatest normalized impurity-based feature importance in our binary “Normal” vs.
“Anomaly” task as determined by our final random forest classifier model. The features with highest importance can be broadly categorized by light-curve slope fit and
error, g-band brightness and its variance, transient radial separation, and host galaxy color. The high importance of such host galaxy features is consistent with findings
from Gomez et al. (2020) and Gagliano et al. (2021) despite their different classification tasks (SLSNe vs. non-SLSNe, and SNe Ia vs. CC SNe, respectively).
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Moreover, our host galaxy feature importance results align
very well with those of Gagliano et al. (2021) when considering
radial offset and color-derived features. They used a gradient
boosting model to classify SN Ia versus CC SNe from host
galaxy information alone derived from GHOST host galaxy
associations, finding their 10 most important features for
classification were of the same three main categories: radial
offset, including θ and θ/dDLR (their #1 and #2 most
important features, respectively); color-derived features,
including 4DCD, g-r, g-i, r-i, and i-z (their #7, #3,
#4, #5, and #9 most important features, respectively); and
morphological features, including momentXX in g and i and
ExtNSigma in g (their #10, #8, and #6 most important
features, respectively).

In this work, we do not use θ, g-r, g-i, r-i, but we do use
dist/DLR (θ/dDLR), i-z, 4DCD, {g,r}momentXX, and
gExtNSigma. For us, dist/DLR is our most important host
galaxy feature, and 4DCD is our second most important, with
rmomentXX, and gExtNSigma being in the top half of host
galaxy features, and gmomentXX being in the lower half of
important host features. Thus, even though our classification
task is different from that of Gagliano et al. (2021), there is
great overlap in the most important features chosen in regards
to radial offset (dist/DLR) and color-derived features
(i-z, 4DCD). Further exploration and quantization of the
usefulness of these features are areas of future work.

However, it is known that impurity-based feature impor-
tances can be misleading for high cardinality features and
artificially inflate numerical feature importance.50 Because of
the strong correlations between the majority of host galaxy
features, the variable importances returned by our RFC model
may not reveal the most valuable features for SN classification,
or paint the entire picture. Thus, we opt to additionally
investigate feature importance using the permutation impor-
tance method described in Breiman (2001). Permutation

importance measures the impact of each feature on the model’s
performance by evaluating how much the model’s accuracy (or
another evaluation metric) degrades when the values of that
feature are randomly shuffled. Features that have a high impact
on the model’s accuracy will result in a significant decrease in
accuracy when permuted. Therefore, it provides a measure of
the feature’s importance in making accurate predictions. We
display the top seven features with greatest permutation
importance in Figure 7.
Six of the seven top features identified by permutation

importance align well with those identified by impurity-based
importance. Specifically, feature_linear_fit_slope_-
magn_g remains the most important by a wide margin over
every other feature, indicating that particular g-band slope
profiles are the best indicator of anomalous activity. Light-
curve features feature_linear_fit_slope_sigma_-
magn_r and feature_anderson_darling_normal_-
flux_g remain as among the most important. As before,
radial offset (dist/DLR) and color-derived features (i-z,
4DCD) for host galaxy features are vital. Meanwhile, the only
feature flagged as important by permutation and not by
impurity methods is zExtNSigma. Because of our highly
dimensional feature-space, the individual impact of any one
feature on the final anomaly classification (besides these top
few) is small.

3.3. Filter Deployment, Real-time Anomaly Detection, and
Follow-up

After demonstrating the success of our anomaly detection
model, we deploy it in a real-time scenario: the ZTF Alert
Stream. We compose a Filter on the ANTARES broker, which
first requires objects to have been tagged successfully upstream
by the lc_feature_extractor Filter. Then, we perform
the same preprocessing cuts to initially create our databank as
outlined in Section 2.2, except that we do not query PS1-PSC
to save on computational time in a real-time scenario. We then
apply our trained RFC model. Calculated light-curve features,

Figure 7. A boxplot of the top seven most important features from our training set with the highest permutation importance using the method from Breiman (2001).
We use 10 permutations per feature, finding the features that most negatively impact accuracy. All features except zExtNSigma are shown as among the most
important identified by the impurity-based feature importance metric (see Figure 6). The light-curve feature feature_linear_fit_slope_magn_g remains the
singular most important feature for identifying anomalies for this work.

50 See https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.
feature_importances_.
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host galaxy features, and anomaly score are saved to the tagged
loci as locus properties.

All objects that successfully pass through the Filter are
tagged as “LAISS_RFC_AD_filter” regardless of anomaly
score. However, those with P(anom)� 50% (or any threshold
of a user’s choosing) at any point during their light-curve
evolution are processed by our Slack API App51 as a bot that
sends out a notification of the IAU name, ANTARES Locus
ID, TNS spectroscopic classification (if it exists), and the
current anomaly score. An expert then manually inspects each
anomaly candidate. Our bot queries the ANTARES broker
using the antares_client package (NOIRLab CSDC
Team 2023), and collates all objects tagged by LAISS_RF-
C_AD_filter within any number of days of the expert’s
choosing. From there, we apply Wide-field Infrared Survey
Explorer (WISE; Wright et al. 2010) color selection criteria for
AGNs from Jarrett et al. (2011) and Stern et al. (2012) to
remove likely AGN candidates with high anomaly scores. We
typically run the bot once a day to vet the previous nights’ up-
to-date and active anomaly candidates.

Our Filter was deployed on 2023 August 22. The data cutoff
for this work for our real-time deployment is 2023 October 22,
2 months since deployment. In that short time, LAISS has
successfully processed ∼1200 loci, of which 45 have achieved
an anomalous classification of P(anom)� 50% and are listed in
Table 5, ordered by maximum anomaly score, ( ( ))Pmax anom .
In total, 39 are transients (21 with spectroscopic classifica-
tions), and 6 are AGN or AGN candidates (1 spectroscopically
confirmed).

For the spectroscopic sample, we consider 17/21 (81%) to
be spectroscopic, contextual, or behavioral anomalies (which
aligns closely to the 86% purity of our spectroscopic test set),
marked by bold text. Note that the objects here are a mix of
those that were already classified and active at the time of Filter
deployment (e.g., TDE 2022fpx), those that were tagged by our
model as anomalous before a classification spectrum was
acquired by others (e.g., SN Ib 2023nlj), and those whose
spectra were acquired by us—indicated by a dagger symbol
(e.g., SN Ia-CSM 2023ocx). We report new and/or updated
classifications from our acquired spectra to TNS.

The distribution of objects is as follows: six SN IIn, three
SN Ia-CSM, one M31 Nova, two TDE, one SLSN-II, one
SN Ib, one SN IIb, one SN Ia-91bg-like, three SN II, and two
SN Ia. This is further evidence that our algorithm is capable of
identifying an array of different spectroscopic anomalies with
high purity in practice, with a preference at identifying long-
lived CSM-interacting events like SNe IIn and SNe Ia-CSM.
Moreover, as we identified in the spectroscopic test set, our
algorithm tags anomaly candidates at all common redshift
ranges observable by ZTF: z ä [0.029, 0.194]. Likewise, these
objects are varied in their apparent and intrinsic brightness, host
galaxy type, morphology, and apparent size, with no obvious
difference compared to the test set.

Of our nine obtained spectra, we consider six to be
anomalous. In fact, one was used to aid in the reclassification
of a normal Type II to a IIn, as in the case of SN 2023nof (Aleo
et al. 2023). The three remaining are of a normal Type Ia and
two Type II SNe, although two were only (marginally) above
the anomaly score threshold for one epoch in its light-curve
evolution, and the other had an incorrect host association that

may have played into the misclassification. Generally, we find
throughout this work that objects with higher anomaly scores
and/or are above the P(anom)= 50% anomaly threshold for
more epochs are more likely to be anomalous, supported in part
by the evidence from our purity as a function of prediction
confidence as shown in Figure 5.
Three objects have likely incorrect host associations from

GHOST (SN 2023omf, SN 2023khp, SN 2023otw), although
oddly two of three are of anomalous classes. This could
indicate that, in some cases, truly anomalous phenomena as
captured by the light-curve evolution alone (or the pairing of
the light-curve evolution with an incorrect host that happens to
be atypical for that light curve) is sufficient to be flagged
anomalous. Although we make no formal analysis of
misclassified hosts, Gagliano et al. (2021) estimates that the
misassociation rate of GHOST is approximately 5%. Continual
improvements to the pipeline and addition of catalogs such as
GLADE (Dálya et al. 2018) since the original release likely will
decrease the rate of misassociations.
Perhaps the most promising revelation from our real-time

deployment beyond the high purity is that occasionally our
algorithm flags a transient as anomalous well before (2
weeks) the first classification spectrum. When we reextract the
light-curve features for all epochs of all tagged transients and
reapply our model throughout its light-curve evolution as a
mock up for real-time deployment, we can investigate when
these candidates would have been tagged had our model been
deployed before the transient was active.
Of our spectroscopic subset, two (TDE 2022fpx, SN Ib

2023nlj) were tagged 39 and 16 days before their respective
classification spectra. With earlier anomaly classifications, we
can more closely study the physics linked to its explosion
(Gagliano et al. 2023), as well as more completely follow up
the most interesting events with spectrophotometric resources
and create a fuller picture of the spectral energy distribution
(SED) evolution (Pierel et al. 2018; Vincenzi et al. 2019). SED
templates enable the construction of models and simulations
that better capture genuine anomalies, supplementing existing
idealized models focused on typical phenomena. Realistic
simulations of anomalies can enhance machine learning
algorithm training in classification and anomaly detection
tasks—contrasting with the tendency of algorithms trained on
idealized simulations to mischaracterize anomalies (see, e.g.,
Muthukrishna et al. 2022; Aleo et al. 2023).
For the photometric sample, unfortunately, there is no way to

confirm the anomalous nature of 18 anomaly candidates.
However, we have proffered potential classifications and
anomaly candidates for completeness. Potential classifications in
Tables 4–7 come from a combination of FLEET (Gomez et al.
2020) predictions, the YSEDR1 ParSNIP and SuperRAENN
classifiers (Aleo et al. 2023; adapted from Boone 2021; Villar
et al. 2020, respectively), SN Ia SALT3 fits (Kenworthy et al.
2021), and an expert analysis. Although we cannot use the
photometric subset to quantify our algorithm’s results, we make
an inference at their anomalous nature by highlighting in bold
text those that are strong anomaly candidates (as we do with the
spectroscopic subset).
Despite the lack of a classification spectrum, some objects

stand out as likely anomaly candidates. For instance,
AT 2021rjf, which exhibited no previous variability, shows
signs of a normal SN II light curve followed by a second bump
likely powered by CSM interaction that has lasted 800 days and51 https://api.slack.com
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counting. AT 2023mic also appears to have prolonged CSM
interaction. The rest are predominantly SN II/IIn or SLSN
candidates in faint host galaxies.

Our LAISS_RFC_AD_filter Filter continues to run on
ANTARES. The full list of processed objects regardless of anomaly
score can be found at https://tinyurl.com/LAISSrfcADfilter.

Table 5
Real-time Search: Transient-only Loci with ( ( )) Pmax anom 50% at Any Light-curve Phase

45 Total Tagged Loci, LAISS_RFC_AD_filter Filter, Ordered by ( ( ))Pmax anom

Spectroscopic

ZTF ID IAU Name Spec. Class z ( ( ))Pmax anom Remarks

ZTF22aadesap 2022fpx TDE 0.073 0.92 Tagged anomalous 39 days before SGLF’s spectrum.
ZTF23aatzhso 2023oom Nova L 0.87 In M31.
ZTF23aaspcfl 2023nlj SN Ib 0.03 0.83 Tagged anomalous 16 days before ZTF’s spectrum.
ZTF23aanptpp 2023koq SLSN-II 0.104 0.77 Tagged anomalous at peak.
ZTF23aarktow 2023myo SN IIba 0.035 0.74 Reclassified. First ZTF-r epoch is shock cooling.
ZTF22aaetqzk 2022gzi SN IIn 0.089 0.72 L
ZTF23aamsetvb 2023kvy TDE 0.16 0.67 Tagged on minimum required ZTF-g, r obs.
ZTF23abcinumc 2023sds SN II 0.065 0.67 YSE target. In elliptical galaxy?
ZTF23aajkisd 2023iex SN IIn 0.029 0.66 L
ZTF23aalgqsq 2023jdh SN IIn 0.054 0.65 Faint host.
ZTF23aatdceyc 2023nof SN IIn 0.069 0.65 With our spectrum, reclassify from Type II to IIn.
ZTF23aapgswu 2023mcs SN Ia 0.03 0.64 First epochs are ≈+20 days after peak.
ZTF23aatcsouc 2023nwe SN IIn 0.194 0.64 Tagged anomalous 14 days before our spectrum.
ZTF23aagpjyp 2023ggb SN Ia-CSM 0.08 0.59 L
ZTF23aavtugdc 2023omf SN IIn 0.083 0.57 Incorrect host. Match to SN 1996L.
ZTF23abhafym 2023tsw SN Ia-91bg-liked 0.05 0.57 Reclassified. Red, rapid fading favors 91bg-like.
ZTF23aatabjec 2023ocx SN Ia-CSM 0.076 0.56 Tagged anomalous 22 days before our spectrum.
ZTF23aawblmib 2023otw SN II 0.087 0.60 Incorrect host.e

ZTF23aberpzwc 2023swf SN II 0.024 0.53 Only one anomalous epoch.
ZTF23aamsekn 2023khp SN Ia-CSM 0.09 0.52 Incorrect host.f

ZTF23abayyjmc 2023sed SN Ia 0.14 0.50 Only one anomalous epoch. Spiral host.

Photometric

ZTF21abiggqxg 2021rjf SN IIn? L 0.80 Long-lived (800 days) CSM interaction?
ZTF23aaveoxd 2023ofr SN IIn? L 0.76 Faint host. FLEET = 82% SN II.
ZTF23aaqbyzr 2023mic SN Ia-CSM? L 0.74 YSE target. Second peak likely CSM interaction.
ZTF23abhegfd 2023tjc SN Ia? L 0.66 FLEET = 59% SN I. SALT3 c = − 0.3.
ZTF23aaqqeek 2023mne SLSN? L 0.63 Faint host. FLEET = 82% SLSN-II.
ZTF23abevrtm 2023tim SN Ia? L 0.63 FLEET = 76% SN I. SALT3 c = − 0.22.
ZTF23abbbypt 2023sap SLSN? L 0.61 FLEET = 74% SLSN-II.
ZTF23abaurik 2023she SN IIP? L 0.60 FLEET = 75% SN II.
ZTF23abekzca 2023tcq SN Ia? L 0.59 YSE target. FLEET = 85% SN I. SALT3 c = − 0.15.
ZTF23aazfibd 2023puf SN II/IIn? L 0.58 Faint host. FLEET = 90% SN II.
ZTF23aasotjh 2023nie SN II? L 0.57 Peculiar rise. FLEET = 80% SN II.
ZTF23abetluh 2023tdy SN Ia? L 0.57 FLEET = 46% SN I. SALT3 c = − 0.3.
ZTF23aaxbkgs 2023pdf SN II/IIn? L 0.55 Faint host. FLEET = 41% SN II.
ZTF23abdpgvv 2023sws SN Ia? L 0.55 Incorrect host. SALT3 c = − 0.27.
ZTF23aaufkak 2023nwk SN IIn? L 0.54 Faint host. FLEET = 76% SN II.
ZTF23abedgfr 2023syt SN Ib/c? L 0.54 Poor SALT3 fit. FLEET = 52% SN I.
ZTF23aaewyhm 2023gzn SN IIn? L 0.50 Behind Sun for ≈150 days. FLEET = 56% SN II.
ZTF23abeujrk 2023tnr SN Ia? L 0.50 FLEET = 88% SN I. SALT3 c = − 0.29.

Notes. The bold text designates a transient event that is likely anomalous, and we consider successfully tagged. FLEET does not distinguish between Type II and IIn.
Filter tagged one known AGN (ZTF20acvfraq/AGN 2020adpi) and five likely AGN (ZTF22abghche/AT 2023tsa, ZTF23aaloouf, ZTF22abplfmz/AT 2023gld,
ZTF23aaxazht, ZTF23aaqxgan/AT 2023tpk), which are not shown in this table.
a We reclassify from Type II to IIb.
b Spectroscopic follow-up in coordination with FLEET (Gomez et al. 2023d) program.
c Targets for which we got spectra and posted their (updated) spectroscopic classification to TNS.
d We reclassify from Type Ia to Ia-91bg-like.
e Association is correct in current GHOST version.
f Association is correct in current GHOST version.
g In the databank used for train/test split (see Table 2).
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3.4. Retrospective Characterization of the
iso_forest_anomaly_detection Filter

Our anomaly detection model can also be used for
retrospective characterization, similar to that of our spectro-
scopic test set (Table 4). This enables us to potentially unearth
new or overlooked anomalous objects worthy of study or
attention. For this assessment, we run LAISS on 10,000
random loci tagged (out of over 25,000) by ANTARES’ first
anomaly detection Filter, iso_forest_anomaly_detec-
tion, and report objects whose maximum anomaly score is
�50% at full light-curve phase in Table 6.

The iso_forest_anomaly_detection Filter is sim-
pler than LAISS. It aims to tag transient events like SNe,
cataclysmic variables (CVs), and weird or rare events/objects
in the night sky. Originally deployed on 2021 April 5, it is an
IF algorithm (Liu et al. 2012) trained on 1,000,000 random
ANTARES loci using 1000 trees on 106 total light-curve
features,52 53 for both ZTF-g and ZTF-r passbands. The only
selection cuts used enforced that the loci does not reside in the
galactic plane (|b|� 10°), and does not have its strongest

period between 100 and 1000 days (e.g., to weed out the
majority of Mira star contaminants). Thus, it uses no contextual
host galaxy information, or selection cuts to reduce AGN,
QSOs, or other variable stars. Approximately one out of three
tagged objects are on TNS (reported by ANTARES or other
teams), and the rest are contaminants. And the vast majority of
tagged transients are normal SNe Ia.
Despite the quantity of nontransients and those that are not

successfully processed by the LAISS_RFC_AD_filter
Filter (e.g., the locus is a star, the associated host is not found
or does not have PS1-grizy color information needed for our
model, etc.), we do find spectroscopically confirmed and
photometric anomalies.
LAISS tags 10 objects, of which six fall into the spectro-

scopic anomaly category only: five SN IIn and 1 SLSN-I.
Because one was previously used in the training of our model
(SN 2021qep), we exclude this object and say that five of
nine are anomalous, or 56% purity. By happenstance, two of
these objects (SN 2022vmg and SN 2023nwe) we had
confirmed with spectra from previous follow-up campaigns.
Of the four spectroscopic nonanomalies, two have likely
incorrect host associations (SN 2023dgp, whose potential hosts
are vastly different: either a small elliptical or large nearby
spiral, and SN 2023eqx, which is between an irregular faint

Table 6
Retrospective Search: Transient-only Loci with ( ( )) Pmax anom 50% at Full Light-curve Phase

10,000 Randomly Selected Tagged Loci, iso_forest_anomaly_detection Filter, Ordered by P(anom)

Spectroscopic

ZTF ID IAU Name Spec. Class z P(anom) Remarks

ZTF22abhwlnm 2022wed SN IIn 0.114 0.95 Tagged anomalous 118 days before BTDG’s spectrum.
ZTF22aadesjc 2022fnl SN IIn 0.104 0.93 Tagged anomalous 14 days before ZTF’s spectrum.
ZTF22abfdzrv 2022vmg SLSN-I 0.41 0.69 Peak Mabs ∼ −22.4 mag.
ZTF21abgkfzha 2021qep SN IIn 0.086 0.67 Faint host. Visible for ∼800 days.
ZTF23aatcsou† 2023nwe SN IIn 0.194 0.64 Tagged anomalous 14 days before our spectrum.
ZTF23aadjssg 2023dgp SN Ia-91T-like 0.045 0.64 Likely incorrect host. No rise info.
ZTF18aaiwzie 2023bfv SN Ia-91T-likeb 0.086 0.58 Reclassified. No g-band obs for >36 days.
ZTF23aaekebt 2023eqx SN II 0.02 0.58 Incorrect host?
ZTF23aadbtou 2023cyx SN Ia 0.033 0.52 No rise info. SALT3 c = −0.09.
ZTF22abghrui 2022vwu SN IIn 0.197 0.50 Tagged anomalous 14 days before ZTF’s spectrum.

Photometric

ZTF21abiggqxa 2021rjf SN IIn? L 0.80 Long-lived (800 day) CSM interaction?
ZTF23aaefpfb 2023fli SN II? L 0.68 Faint host, incorrect assoc. FLEET≈28% SN II/SLSN-I.
ZTF22aatwxrl 2022oym SN IIn? L 0.64 FLEET = 51% SN II, 43% SLSN-I. Visible for∼375 days.
ZTF23aaahnss 2023atr SN IIn? L 0.64 Faint host, incorrect assoc. No rise. FLEET = 60% SN II.
ZTF22absuavp 2022zyh TDE? L 0.61 Blue. Faint host. Visible for ∼200 days.
ZTF23aafgmaz 2023frg SN Ib/c? L 0.60 SALT3 x1 = +3.00. FLEET = 84% SN I.
ZTF23aaflptz 2023gbk SN Ia? L 0.55 No decline. Peak Mabs ∼ −18.3 mag. Underluminous?
ZTF23aatcola 2023noh SN Ia? L 0.55 Only one anomalous epoch. FLEET = 53% SN I, 46% SN II.
ZTF23aajestr 2023inr SN II? L 0.54 YSE Target. Long-rising (∼75 day) SN II candidate.
ZTF23aahjdxa 2023gpp SLSN/SN IIn? L 0.53 SLSN/IIn? FLEET = 46% SLSN-II, 41% SN II.
ZTF22abrbohu 2022ywi SN II? L 0.53 Incorrect host? FLEET = 60% SN II.
ZTF23aarzzwu 2023nfs SN Ia? L 0.52 No decline. Poor SALT3 fit (x1 = +3.00, c = − 0.3).
ZTF22abzajwl 2023adr TDE? L 0.51 ( ( )) =Pmax anom 0.84. Blue, nuclear. FLEET = 81% TDE.
ZTF23aagxvad 2023glx SN Ia? L 0.50 Barred spiral host galaxy. No g-band obs after peak.
ZTF23aaempzk 2023fbj SN Ia? L 0.50 No rise. SALT3 x1 = 2.80, c = −0.28. FLEET = 46% SN I.

Notes. The bold text designates a transient event that is likely anomalous, and we consider successfully tagged. We encountered eight AGN or nontransient activity
(ZTF19abyfhvp, ZTF21ackmnbo, ZTF21achlwqg, ZTF22aaytzrb, ZTF22aanvqhn, ZTF21abwyelp, ZTF23aaunnwa, ZTF23aaarpdm), which are not shown in this
table.
a In the databank used for train/test split (see Table 2).
b We reclassify from SN Ia to SN Ia-91T-like.

52 These 106 include all of the light-curve features used in LAISS and more—
for a comprehensive list, see https://antares.noirlab.edu/properties.
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host or small elliptical), two have no rise information
(SN 2023dgp as stated before, SN 2023cyx), and one has only
r-band detections with g-band nondetections for the last
36 days of the light curve (SN 2023bfv; of which it was tagged
anomalous on the last observation overall, meaning that the
g-band light-curve features are outdated by several epochs).

Of the photometric anomalies, our model tags 15 objects, of
which we consider nine to be likely anomalous. The strongest
anomaly candidates are two missed likely TDEs (AT 2022zyh,
AT 2023adr), notable for their strong blue color throughout the
light-curve duration and their location at the host galaxy
nucleus (van Velzen et al. 2019), and our discovery of the long-

Table 7
Retrospective Search: The 42 Most Anomalous YSE DR1 (Aleo et al. 2023) Events with ( ( )) Pmax anom 70% at Any Light-curve Phase

1153 Processed, from 1975 Total YSE DR1 Objects, Ordered by ( ( ))Pmax anom

Spectroscopic (Spec-z)

IAU Name Spec. Class z Peak Mabs ( ( ))Pmax anom Anom. Obs Remarks

2020xsy SLSN-II 0.27 −22.3 0.98 93 Tagged anomalous 13 days before YSE’s spectrum.
2020tip SN Ia-9T-likea 0.095 −19.2 0.90 14 Spiral host? Lack of Si. Match to SN 2006oa.
2020qkx SN Ia 0.127 −19.8 0.89 51 Luminous Ia?
2020opy TDE 0.159 −20.5 0.89 83 Tagged 23 days before YSE’s spectrum.
2021nxq SLSN-I 0.15 −20.6 0.89 27 Faint host, incorrect assoc.
2020qql SN Ia 0.076 −19.8 0.88 35 Luminous Ia?
2021hrj SN Ib 0.022 −17.4 0.88 79 Tagged 7 days before YSE’s spectrum (Figure 8).
2021bmv SN IIn 0.09 −19.3 0.85 11 Faint host.
2021aadc SLSN-II 0.1953 < −20.8 0.85 15 Faint host.
2020qmj SN IIn 0.022 −18.8 0.82 51 L
2020kre SN Ia-CSM 0.136 −19.9 0.82 70 Tagged anomalous 37 days before YSE’s spectrum.
2021too SN Ic-BL 0.07 −19.4 0.82 36 L
2021pnp SN IIb 0.03 −17.0 0.79 46 L
2021gno SN Ib-pec 0.0062 −15.0 0.78 29 See W. Jacobson-Galán et al. (2022).
2020kbl SN Ia 0.079 −18.8 0.77 22 SALT3 c = +0.3. In flocculent spiral/merger galaxy.
2021btn SN II 0.083 −19.6 0.75 43 Bright. No g- obs for ∼50 days. Hα origin unclear.
2021udc SN IIb 0.035 −18.3 0.75 8 L
2021bpq SN Ia 0.1 −19.3 0.75 5 L
2021ojn SN Ia 0.08 −19.5 0.74 18 Faint host, misassoc. Early Ia-bump candidate.
2020tan SN IIn 0.079 −19.0 0.73 60 Tagged 75 days before YSE’s spectrum.
2020acun SN II 0.0216 −17.3 0.73 25 Misclassified by ParSNIP, SuperRAENN (Ib/c).
2020kvl SN Ia-91T-likeb 0.12 −20.6 0.72 8 Possible SN Ia-SC.
2020wfg SN Ia 0.108 −19.4 0.72 3 L
2020ivg SN IIb 0.053 −17.3 0.72 40 Tagged 18 days before YSE’s spectrum.
2020kpz SN II 0.039 < −18.2 0.71 65 Preexplosion data? Peculiar light curve (LC). Visible ∼400 days.
2020acct SN Ic 0.035 −18.0 0.70 32 See Angus et al. (in prep).
2019wmr SN II 0.038 −17.5 0.70 2 Misclassified by ParSNIP, SuperRAENN (Ib/c).
2021vwx SN Ia 0.06 < −19.3 0.70 9 No rise or peak. In spiral.

Spectroscopic (Host-z)

2020rss SN Ia? 0.1288 −19.1 0.77 11 L
2021ofr SN Ia? 0.0848 −19.2 0.76 8 L
2020kmj SN II? 0.0799 −18.4 0.76 49 Elliptical host galaxy.

Photometric (Photo-z)

2020hjv SN Ia? 0.141 −19.9 0.91 7 Luminous Ia?
2020acyu SN IIn? 0.254 −20.4 0.90 33 Faint host.
2020jvi SN IIn? 0.192 −20.2 0.84 9 Faint host.
2019vuz TDE? 0.21 −20.8 0.79 17 Blue. Nuclear. FLEET = 89% TDE.
2021dpa SLSN? 0.152 −18.9 0.73 20 Faint host, misassoc. Peculiar long rise (∼100 days).
2020itp SN Ia-CSM? 0.16 −19.7 0.73 44 ZTF-r declines slowly but ZTF-g fades quickly.
2021rmq SN II? 0.131 −19.1 0.73 10 Candidate member of long-rising SN II class.
2020wwt SN Ia? 0.157 −19.2 0.72 14 SALT3 c = −0.21. Spiral. Artifact in PS1-r image.
2020iga SN Ia? 0.13 −19.2 0.71 7 SALT3 c = −0.20. Nuclear.
2020sgy SN Ia? 0.204 −20.6 0.71 18 Luminous Ia? Faint host.
2020vpn SN Ia? 0.136 −19.4 0.70 5 L

Notes. The bold text designates a transient event that is likely anomalous, and we consider successfully tagged.
a We reclassify from SN Ia to SN Ia-91T-like.
b We reclassify from SN Ia to SN Ia-91T-like.
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rising SN II candidate AT 2023inr, which had a rising light
curve of at least ∼75 days.

By leveraging LAISS and additional tests such as the
iso_forest_anomaly_detection Filter, we can
uncover a variety of anomalous objects in the night sky, some
of which may have been previously overlooked. This under-
scores the significance of employing multiple anomaly
detection techniques to maximize the scientific value we can
extract from recovering known and likely anomalies, quantify
common pitfalls for why objects were either missed or not
targeted for follow-up, and limit missed opportunities for active
study in the future.

4. Retroactive Anomaly Detection with YSE DR1

The premiere multiband, multisurvey time-domain data set is
the YSE DR1 (Aleo et al. 2023), which includes the final
photometry of 1975 transients observed by the ZTF (Bellm
et al. 2019) in gr and PS1 (Chambers et al. 2016) in griz bands
as conducted by the YSE (Jones et al. 2021). YSE DR1 stands
out as the most extensive and consistent multiband data set of
SNe at low redshifts ever assembled. This data set serves as an
ideal testing ground: it features a diverse range of real objects
(SN Ia, SN Ia-SC, SN Ia-CSM, SN Ia-91T-like, SN Ia-91bg-
like, SN II, SN IIn, SN IIb, SN Ib, SN Ib-pec, SN Ibn, SN Ic,
SN Ic-BL, TDE, SLSN-II, SLSN-I, SNa Iax, and rare SN
impostors such as a luminous blue variable outburst and a
luminous red nova), SNe observations spanning extensive time
frames (2019 November 24 to 2021 December 20), and a vast
range of apparent magnitudes (m ä [12, 22]) and absolute
magnitudes (Mabs ä [−13.5, −22.5]), and covers a redshift
distribution up to approximately z≈ 0.5. Moreover, because
ZTF and PS1 share gr photometry, we treat PS1-gr and ZTF-gr
as equivalent by stacking their light curves, effecting reducing
the overall cadence and adding depth information.53

As an extension of the original work from Aleo et al. (2023),
we run LAISS to find the most anomalous objects in
YSE DR1. We do not use the redshift or latent embedding
information from the ParSNIP photometric classifier in our
model. Of the 1975 total YSE DR1 data set, 1153 (≈58%) are
successfully processed through our model after selection cuts
for the requisite number of observations in the combined PS1
+ZTF-gr bands and associated hosts with PS1-grizy photo-
metry. Unlike Tables 4 and 6, we consider the max anomaly
score ( ( ))Pmax anom at any light-curve phase. Note that we use
the same RFC model that is trained on the full light curves, but
the input YSE DR1 light-curve features are constantly
recalculated (the host features do not change) with the
light-curve extractor and passed through model at each
epoch, to mimic a real-time anomaly detection scenario.

There are 198/1153 (≈17%) transients that achieve
( ( )) Pmax anom 50%, but only 42/1153 (≈3.6%) that

achieve ( ( )) Pmax anom 70%. For brevity, we show the
results of these 42 objects in Table 7, ordered by highest
anomaly score. If two or more objects have the same score, we
secondarily rank them by the number of observations for which

the anomaly score of the object was P(anom)� 50%
(“Anom. Obs”).
When considering spectroscopic anomalies alone, we find a

purity of 15/29, or 52%, aligning well with the results we find
in Figure 5. If expanded to consider behavioral and contextual
anomalies, we achieve a purity of 20/29, or 69%, which
slightly underperforms given what we expect from Figure 5.
However, our anomaly detection model is not trained nor tested
with PS1 photometry nor ZTF PSF-fit forced-photometry54 (as
opposed to the ZTF Alert Stream) as in YSE DR1, and thus, we
cannot expect our model to perform in exactly the same way.
The original work from Aleo et al. (2023) did not do an

extensive study of anomalous objects. Broadly, they found
transients with latent embeddings (from the YSE-ZTF trained
ParSNIP classifier) outside the bulk of their member class
distribution were more likely to be misclassified. They
indicated that these objects likely deviated from the normal,
more representative objects that share their spectroscopic class.
Because the ParSNIP classifier was trained on simulations from
idealized templates, objects whose real behavior differed from
this normality were likely to be poorly characterized. Despite
classifying SNe Ia with high purity (�90%), they found
misclassified SNe Ia tended to fall within two categories: (1)
observing effects such as significant (∼100 day) gaps, only
observed well after peak (e.g., SN 2020zmi, SN 2021van,
SN 2021vwx), and SN Ia that requires a large correction for
dust extinction (e.g., red SNe Ia with SALT3 c> 0.3;
SN 2020pki, SN 2020zfn, SN 2021aamo); or (2) physical
effects linked to rare phenomena (91T-like/91bg-like) proper-
ties (SN 2021bmu, SN 2021ctn), and long-lived CSM interac-
tion (e.g., SN Ia-CSM: SN 2020aekp, SN 2020kre,
SN 2021uiq).
If we investigate misclassified SNe Ia due to observing

effects, we find the following: the hosts of SN 2020pki and
SN 2020zmi did not have the requisite grizy photometry, and
thus were not processed by our model; SN 2021van did not
have enough g-band photometry; SN 2020zfn and
SN 2021aamo were successfully processed by our model, but
not tagged anomalous; SN 2021vwx was tagged anomalous,
although likely due to having no rise nor peak information in
the light curve, which is rare in our training set (see Section 6.2
for details). We have insufficient statistical evidence to
determine how YSE DR1 SNe affected by observing effects
influence our LAISS anomaly detection classification.
We additionally investigate objects misclassified by ParSNIP

and SuperRAENN, as these are strong anomaly candidates.
Note that both classifiers in Aleo et al. (2023) are only trained
via simulations to classify into SN Ia, SN II, and SN Ib/c (thus,
SLSN, TDE, and more will always be misclassified). We find
13 such objects flagged by our anomaly detection model:

1. SN 2020xsy (SLSN-II). This is the most anomalous object
from YSEDR1 according to our model, in terms of

( ( ))Pmax anom at 98% and number of epochs with an
anomaly classification (93), and also, at the furthest
redshift, z= 0.27. ParSNIP misclassified as SN II; Super-
RAENN misclassified as SN Ia.

2. TDE 2020opy (TDE). This was tagged anomalous
23 days before the first classification spectrum from
YSE, and the second highest number of epochs with an

53 While this approximation is generally accurate, minor discrepancies may
arise due to variations in passband transmission profiles and disparities in
photometric pipelines. Moreover, ZTF is not color calibrated; it is calibrated to
PS1 assuming that all (g − r) colors are zero. We do not account for the ZTF
color correction coefficient. Therefore, the more rigorous approach involves
considering passbands independently, which is left for future work. See http://
nesssi.cacr.caltech.edu/ZTF/Web/gettingto1.html for more details. 54 https://web.ipac.caltech.edu/staff/fmasci/ztf/forcedphot.pdf
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anomaly classification (83). ParSNIP misclassified as
SN Ia; SuperRAENN misclassified as SN Ibc.

3. SN 2021nxq (SLSN-I). Even with an incorrect host
association (likely due to the faint host), this object is
tagged anomalous at peak light. ParSNIP misclassified as
SN Ib/c; SuperRAENN misclassified as SN Ib/c.

4. SN 2021aadc (SLSN-II). This was tagged anomalous
2 days before the first classification spectrum from
BTDG, approximately 2 weeks before peak light. There
is no decline information for this object. ParSNIP
misclassified as SN Ib/c; SuperRAENN misclassified as
SN Ib/c. It is located in a faint host.

5. SN 2020qmj (SN IIn). From peak light onwards, there is
an approximately constant red color g− r≈ 0.7 mag in
the light-curve evolution. ParSNIP misclassified as SN Ia;
SuperRAENN misclassified as SN Ia. It is located in an
edge-on spiral galaxy.

6. SN 2020kre (SN Ia-CSM). Our anomaly detection algo-
rithm tagged this object as anomalous 21 days after the
original SN Ia-normal classification but 37 days before
YSE’s SN Ia-CSM reclassification spectrum. It is located
in a faint, blue host.

7. SN 2021pnp (SN IIb). From peak light onwards, there is
an approximately constant red color g− r≈ 0.9 mag in
the light-curve evolution, photometrically similar to
SN 2020qmj. There is no strong evidence of shock
breakout in the photometry. ParSNIP misclassified as
SN Ib/c; SuperRAENN misclassified as SN Ib/c.

8. SN 2021btn (SN II). This is unusually bright for a normal
SN II at Mabs∼−19.6 mag. There were a lack of g-band
observations for the first 50 days of the event. It is unclear
if the Hα emission in the spectrum is from the host or the
transient, and whether there are signs of P-cygni. A
possible alternative is an SN IIn classification. ParSNIP
misclassified as SN Ib/c; SuperRAENN misclassified as
SN Ib/c.

9. SN 2021udc (SN IIb). There is no strong evidence of
shock breakout in the photometry. ParSNIP misclassified
as SN Ia; SuperRAENN misclassified as SN Ia.

10. SN 2020acun (SN II). From peak light onwards, there is
an approximately constant red color g− r≈ 0.9 mag in
the light-curve evolution, photometrically similar to
SN 2020qmj and SN 2021pnp. Superfit (Howell
et al. 2005) gives matches to SN IIb, but the He I
5875Å absorption is very low signal-to-noise ratio if it
is present at all, and hence, we keep the SN II
classification. ParSNIP misclassified as SN Ib/c; Super-
RAENN misclassified as SN Ib/c.

11. SN 2020kpz (SN II). This is a peculiar SN with possible
preexplosion data, marked by a sudden shift from blue to
red before the sharp rise to peak. ParSNIP misclassified
as SN Ib/c; SuperRAENN misclassified as SN Ib/c.

12. SN 2020acct (SN Ic*). This is a peculiar, distinctly double
peaked SN separated by ∼60 days, which does not fall
neatly into any existing SN classification. See Angus
et al. in prep for details. ParSNIP misclassified as SN Ia;
SuperRAENN misclassified as SN Ib/c.

13. SN 2019wmr (SN II). From peak light onwards, there is
an approximately constant red color g− r≈ 0.9 mag in
the light-curve evolution, photometrically similar to
SN 2020qmj, SN 2021pnp, and SN 2020acun. ParSNIP

misclassified as SN Ib/c; SuperRAENN misclassified as
SN Ib/c.

An interesting observation is that, of the 28 most anomalous
spectroscopic YSEDR1 objects (Table 7), 13 (or 46%) are what
we consider bona fide anomalies (bold text) and are misclassified
by both ParSNIP and SuperRAENN. When accounting for only
spectroscopic classes for which ParSNIP and SuperRAENN were
trained (SN Ia, SN II, SN Ib/c; and thus excluding SLSN and
TDE), we find this drops to only nine (or 32%).
Although we do not formally consider the phase at which the

anomaly detection successfully tags an object as anomalous in
our metrics, there is great value at flagging anomalies at or
before peak, and as early time as possible, as these times are
when the physics of the progenitor explosion is most correlated
with the photometry (Gagliano et al. 2022). Of the successfully
tagged objects in Table 7, our algorithm correctly identifies 6/
20 (30%) as anomalous at least 1 week earlier than the first
classification spectrum. In the best case, we identified SN IIn
2020tan 75 days prior. We show the “worst” case of only
7 days prior for SN Ib 2021hrj in Figure 8. The YSE team
originally requested spectra when SN 2021hrj passed their
magnitude-limited sample criteria. If our anomaly detection

Figure 8. The Type Ib SN 2021hrj/ZTF21aarnjyd was retrospectively tagged
as anomalous (P(anom) � 50%) on MJD 59316 (2023 April 12) by our LAISS
AD algorithm (dashed blue line), 1 week earlier than the first classification
spectra from YSE (2023 April 19; dotted–dashed purple line) and ZTF (2023
April 20) on TNS. The YSE team originally requested spectra when this object
passed their magnitude-limited sample criteria. If our algorithm was in place
when SN 2021hrj was active, we could in principle have obtained a spectrum 1
week earlier in the light-curve evolution, providing valuable information in
regards to the early time supernova physics and local environment of this
peculiar, long-rising event.
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algorithm were in place when it was active, we could, in
principle, have obtained a spectrum 1 week earlier in the light-
curve evolution, providing valuable information in regards to
earlier-time SN physics and local environment of this peculiar,
long-rising event.

We additionally identify strong anomaly candidates for
which there was no spectroscopic follow-up (Table 7). We
consider such photometric objects as missed opportunities.
Although it is impossible to know the exact classifications, we
have evidence that 6 of 11 (55%) of the most anomalous
tagged photometric objects from YSE DR1 were likely bona
fide anomalies:

1. AT 2020acyu (SN IIn?). This is visible for ∼175 days,
and approximately 2 42 separation from the center of
faint host PS1 galaxy catalog ID 1237654653639656020.
At an estimated redshift of z= 0.254 from Easy
Photoz (Aleo et al. 2023), we calculate a peak absolute
magnitude of Mabs≈−20.4 mag. Likewise, if we use the
photo-z estimate of z= 0.224 from SDSS (Csabai et al.
2003), we estimate a peak absolute magnitude of
Mabs≈−20.2 mag. FLEET (Gomez et al. 2020) predicts
a Type II (with no distinction between Type II and Type
IIn) with 68% confidence, followed by SLSN-II at 24%.
ParSNIP predicts a Type II with 55.9%. With the luminous
but not superluminous brightness, extended duration, and
color evolution, we predict this to be a missed SN IIn.
Beyond the simple explanation of being overlooked, a
possible reason for why there was no spectroscopic follow-
up requested for this object is because this object achieved a
peak apparent magnitude of only ∼20.0mag, which would
require long exposure times for such a faint source, and thus
would be a low priority.

2. AT 2020jvi (SN IIn?). This is visible for ∼120 days,
approximately 0 11 separation from the center of faint,
blue host PS1 galaxy catalog ID 1237662636371739674.
At an estimated redshift of z= 0.192 from Easy
Photoz (Aleo et al. 2023), we derive a peak absolute
magnitude of Mabs≈−20.2 mag. Likewise, if we use the
photo-z estimate of z= 0.173 from SDSS (Csabai et al.
2003), we calculate a peak absolute magnitude of
Mabs≈−20.0 mag. This object rose approximately
2 mag in 20 days, and is marginally red (∼0.1 mag)
throughout its duration. FLEET (Gomez et al. 2020)
predicts an SLSN-II at 58% confidence. To add to the
confusion, ParSNIP predicts a Type Ib/c at 69%
confidence (however, ParSNIP is not trained for SLSN
classification). An SALT3 fit reveals a poor fit and a
stretch parameter value of x1=+3.00. Similarly as
AT 2020acyu, with the luminous but not superluminous
brightness, extended duration, and color evolution, we
cautiously predict this to be a missed SN IIn. This object
achieved a peak apparent magnitude of ∼19.4 mag in
ZTF-r, which is within reasonable limits for follow-up.

3. AT 2019vuz (TDE?). Arguably the most anomalous of the
photometric subset due to the intrinsic rarity, we predict
this object as a likely missed TDE, due to its duration of
∼75 days, blue color, at a nuclear location of 0 11
separation from the center of its red, possible elliptical
host PSO J072914.403+420437.05. At an estimated
redshift of z= 0.21 from Easy Photoz (Aleo et al.
2023), we estimate a peak absolute magnitude of
Mabs≈− 20.8 mag. Using the estimated redshift of

z= 0.248 from PS1-STRM (Beck et al. 2021), we
estimate a peak absolute magnitude of Mabs≈
−21.2 mag. FLEET (Gomez et al. 2023d) predicts a
TDE at 89% confidence. This object achieved a peak
apparent magnitude of ∼19.3 mag in PS1-g and was
brighter than 19.5 mag for ∼20 days, which is well within
reasonable limits for follow-up.

4. AT 2021dpa (SLSN?). Exhibits an unusually prolonged
slow rise of ∼0.8 mag over ∼100 days (estimated
∼125 days mag−1) in an extremely faint, small, red host.
Likely due to its faint nature, GHOST (Gagliano et al.
2021) does not find the likely host and results in a
misassociation (to a nearby, faint galaxy PS1 object
ID 1237664871896777642). At approximately 2 2

offset from its apparent host PS1 object ID
149701403944978764, there are two disparate estimates
for the photo-z. From Easy Photoz (Aleo et al. 2023),
the estimated redshift of z= 0.152± 0.096 results in a
peak absolute magnitude of Mabs≈− 18.9 mag. How-
ever, the YSE DR1 estimate is likely low, due to the host
being perceptible in the DESI Legacy Survey Imaging
Surveys55 but only marginally so in SDSS and PS1
stacked templates. The SDSS estimated redshift of
z= 0.482± 0.1461 (Csabai et al. 2003) results in a peak
absolute magnitude of Mabs≈−21.9 mag. FLEET
(Gomez et al. 2023a) estimates an SLSN-II with 40%
confidence, followed by SLSN-I with 31% confidence.
When considering proprietary YSE photometry beyond
the YSE DR1 cutoff, this object is visible for ∼370 days.
All of this evidence together points to an SLSN. A
compelling reason for why there was no spectroscopic
follow-up requested for this object is because this object
achieved a peak apparent magnitude of only ∼20.2 mag
before disappearing behind the Sun, only to reappear at a
faint 21.7 mag at ∼250 days later. It is unlikely one could
acquire spectroscopic follow-up for this object even if it
was known to be anomalous.

5. AT 2020itp (SN Ia-CSM?). Visible for ∼80 days, in
elliptical host PS1 objectID 147052397040217754. The
ZTF-r photometry declines slowly but the ZTF-g fades
quickly. There is a fair agreement in photo-z. From Easy
Photoz (Aleo et al. 2023), the estimated redshift of
z= 0.16± 0.051 results in a peak absolute magnitude of
Mabs≈−19.7 mag whereas the SDSS estimated redshift
of z= 0.109± 0.033 (Csabai et al. 2003) results in a peak
absolute magnitude of Mabs≈−19.0 mag; both are
consistent with SN Ia. Regardless, for both photo-z
estimates, if there existed any CSM interaction, the Hα

profile would reside in only the ZTF-r wavelength
range,56 a possible driver for the slow ZTF-r decline.
Because this object is as intrinsically bright as an SN Ia
but with a longer duration and slower ZTF-r decline that
is consistent with possible CSM interaction, we posit this
to be a missed SN I-CSM. This object achieved a peak
apparent magnitude of ∼19.4 mag in ZTF-r, which is
within reasonable limits for follow-up.

6. AT 2021rmq (long-rising SN II). The YSE DR1 light
curve shows a rise of ∼60 days, with an evolution
consistent with Type II, and is thus a candidate member

55 https://www.legacysurvey.org/
56 http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?id=Palomar/
ZTF.r&&mode=browse&gname=Palomar&gname2=ZTF#filter
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of the rare long-rising SN II class (Sit et al. 2022).
Additional ZTF DR data photometry57 indicate that this
rise may be longer, closer to ∼80 days. It is offset 0 23
from its blue (likely spiral) host PS1 objectID
146701848390420314. The Easy Photoz (Aleo et al.
2023) photo-z (0.131) is in good agreement with that of
Beck et al. (2021; 0.146), placing the peak absolute
magnitude at around Mabs≈−19.1 mag. However, if the
photo-z is accurate, this would place the absolute
magnitude brighter than any of the 13 events found in Sit
et al. (2022) at −17.5 mag. It is also possible the long rise
could be a result of CSM interaction (Nyholm et al.
2020), and this object could instead be an SN IIn.

The remaining five photometric objects with high anomaly
scores (AT 2020hjv, AT 2020wwt, AT 2020iga, AT 2020sgy,
AT 2020vpn) are likely SN Ia. If photo-z estimates are correct,
two are luminous and potentially of a rare subtype at
Mpeak∼−20 mag (AT 2020hjv, AT 2020sgy), but we find no
conclusive evidence. Of the others, two are blue when
compared to the SALT3 (Kenworthy et al. 2021) model at
c∼−0.2 (AT 2020wwt, AT 2020iga), and one (AT 2020vpn)
appears to be unremarkable.

Lastly, there are three objects with host spectra but no transient
spectra. AT 2020rss and AT 2021ofr appear to be normal SN Ia
based on evolution and absolute magnitude estimates using the
spectroscopic host-z. The likely contextual anomaly is
AT 2020kmj, which exhibits an SN IIP profile with typical SN II
peak absolute magnitude but resides in what appears to be an
elliptical galaxy (PS1 objectID 116361881748977931).

Overall, of the objects that were successfully processed and
characterized by LAISS from YSE DR1 (1153/1975, or 58%),
7/27 (26%) of the most anomalous objects (P(anom)� 70% at
any phase in the light curve) that we consider likely anomalies
(bold text) did not have transient spectra. Of those that did, 6/
20 (30%) were flagged by LAISS at least a week prior to the
classification spectrum.

5. Approximate Nearest Neighbor Similarity Search with
ANNOY

In this current age of large time-domain surveys like ZTF
(Bellm et al. 2019) and the imminent LSST (Ivezić et al. 2019),
the bottleneck of object discovery lies in the ability of
automated algorithms to quickly isolate and prioritize detec-
tions of interest amid the flood of alert events. ZTF generates
approximately 70 GB night−1 (Patterson et al. 2019) and
discovers an order ∼10,000 SNe yr−1,58 and LSST is estimated
to produce an alerts volume of 10× that at approximately
782 GB night−1, observing an estimated order ∼1 million
SNe yr−1.59

With high present-day discovery rates and climbing, we
cannot rely on computationally expensive operations for SNe
discovery and characterization. In this section, we argue that a
low-latency, sublinear time-complexity ANNs search can be an
effective tool to search for similar SNe for applications of SN
discovery, reclassfication, and more.

Previous studies have shown that data mining strategies
involving a nearest neighbors search for retroactive SN discovery
can be successful (Aleo et al. 2022). However, Aleo et al. (2022)
used a brute-force kD-tree approach to search for neighbors in
feature-space, which in the worst case scales linearly with the
number of data points in runtime ( ( ) n ). This approach would be
impractical for the real-time data streams of ZTF and LSST. We
use their approach as inspiration, and instead opt for an
approximate similarity search, which in the worst case scales in
logarithmic time with respect to the number of data
points, ( ( )) nlog .
For our ANN algorithm, we use the open-source package

ANNOY60 (Bernhardsson 2018), the method developed by
Spotify for song recommendations. Essentially, ANNOY allows
for an efficient ANN search in high-dimensional spaces, such
as the large light curve and host galaxy feature data set we use
in this work.61 This process involves dividing the high-
dimensional space into smaller subspaces using random
hyperplanes. These subspaces are organized into a binary tree
structure, where each node represents a subspace, and each leaf
node corresponds to a specific point in the original high-
dimensional space. During a search operation, the algorithm
begins at the root of the tree and recursively traverses the tree,
selecting the branch that is closest to the query point. At each
leaf node, the distance between the query point and the
represented point is recorded. Simultaneously, a list of the k
closest points encountered thus far is maintained. To optimize
the search process, recorded distances are utilized to prune
branches unlikely to contain points closer than the current kth
closest point. This iterative search is repeated for each query
point. The ANNOY library is designed to ensure efficient
memory usage and high performance, enabling indexing of
millions of high-dimensional vectors.
In the LAISS pipeline (Figure 1), we build an ANNOY index of

our databank—the reference data set to which new, incoming, or
manually chosen objects will be compared. However, we do so
after scaling our databank with the sklearn.preproces-
sing.StandardScaler()62 module and applying PCA
(Jolliffe 2002) to reduce the dimensionality of our data from
120 dimensions to 60 dimensions, retaining ∼98% of the
variance. This will partially speed up the ANN search without
important information loss; moreover, having less than
100 dimensions is recommended by the code authors for the
best performance.63

LAISS can run the ANN search to calculate any k neighbors
(default is k= 8) for any ZTF object for which its light-curve
and host galaxy association and features can be extracted,
regardless if it exists in the databank or not; all that is needed is
a ZTF object ID of the user’s choosing. For example, when
supplied a ZTF object ID, LAISS queries ANTARES for the
object of interest’s ZTF photometry and manually extracts the
light-curve features in the same manner as the lc_fea-
ture_extractor Filter, followed by running GHOST

57 https://www.ztf.caltech.edu/ztf-public-releases.html
58 For this estimate, we use the search function from www.wis-tns.org/ and
search for all transients reported to TNS from ZTF first light on 2017
November 1 to 2023 November 1 with ZTF listed as the discovery source, and
find the per year average.
59 https://dmtn-102.lsst.io/DMTN-102.pdf

60 https://github.com/spotify/annoy
61 Note that in this work we do not use data imputation. Although in principle
ANNOY can run on data sets with imputed entries, it may introduce bias and
impact the nearest neighbor search accuracy, particularly if many values are
imputed.
62 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
StandardScaler.html
63 Though, in principle, it can perform “surprisingly well” up to
1000 dimensions; see https://github.com/spotify/annoy#summary-of-
features.
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(Gagliano et al. 2021) to retrieve the matched-host galaxy and
its features. The object will undergo the same scaling and PCA
transformation as the data set bank, and then ANNOY will find
the ANNs in the 60-dimensional PC-space. As the ANNs are
found, LAISS queries the ANTARES broker to retrieve the up-
to-date ZTF photometry, IAU name, spectroscopic classifica-
tion (if exists), and spectroscopic redshift (if exists) from TNS
for each ANN. Plotting functions are then run to overlay the
reference transient and its k ANNs’ light curves and host galaxy
thumbnails. Currently, this ANN similarity search feature is
only available in the Python module on Github.64 Efforts to
create the same functionality within an ANTARES Filter are
ongoing. This will remove the additional outside API requests
for extracting light-curve and host galaxy features and up-to-
date TNS information.

Within our databank of 5472 transients, the default k= 8
ANN search alone takes anywhere from 1 to 350 ms on a
2 GH. Quad-Core Intel Core i5. This results in �5 minutes of
total processing time to find k= 8 ANNs for all
∼1000 SN night−1 estimated with LSST. If an object needs
to have its light-curve and host features extracted from
scratch, the entire process takes about 1 minute per transient
(thus, ∼16 hr of total processing time for all
∼1000 SN night−1), where the time bottleneck stems from
the GHOST host association—specifically time spend on
catalog queries (e.g., PS1); such catalogs could be down-
loaded to disk to dramatically speed up associations.
Utilizing faster host association methods such as DELIGHT
(∼60 ms/transient, Förster et al. 2022) and modifying
GHOST to use internal disk-downloaded catalogs is a subject
of future work.

5.1. ANN Similarity Search Results on Light Curves and Host
Galaxies

The ability to quickly find analogs to an object of interest is
crucial to many useful applications, including but not limited to
the following:

1. Predicting behavior. Based on the known properties and
evolution of analogs, one can predict the potential
behavior of newly observed transients across their time
evolution. Nominal events will likely evolve as expected
in common galactic environments, and deviations from
this behavior (or in the case where analogs are
anomalous) could indicate rare or misunderstood
phenomena;

2. Calibrating models. By comparing observations of
known analogs with theoretical predictions, experts can
improve the accuracy of models describing the under-
lying physical processes of transient events, such as those
used for simulations (e.g., models developed for SNANA,
Kessler et al. 2009; and their use in PLAsTiCC, Hložek
et al. 2023).

3. Studying rare events. By associating a similarity score,
experts can measure how similar or dissimilar an event is
from the rest of the existing data set. Objects strongly
dissimilar to their nearest neighbors can indicate truly
unusual phenomena, or out-of-distribution (OOD) beha-
vior for the particular reference data set.

4. Probing host galaxy properties. Analogous transients in
different host galaxies allow experts to investigate the
influence of host galaxy properties on the characteristics
of the transient events. This information is valuable for
understanding the connections between stellar popula-
tions, galactic environments, and transient phenomena.

5. Improving classification. As more analogs are discovered
and characterized, classification systems can be refined,
leading to more accurate and automated identification of
new transients.

6. Reclassification. A given transient of a known type
whose analogs are classified differently can direct the
expert’s attention into reinspecting their spectra and
classifications, possibly updating their classification. We
show this to be true in Section 5.2 and Table 8, where we
update classifications for 17 unique SNe from our
databank, prompted by an ANN search.

7. Optimizing observational strategies. Observers can
prioritize targets based on the likelihood of finding
analogs or because they are analogs to a known rare or
scientifically useful event, helping to maximize the
efficiency of observing campaigns and the utilization of
telescope time. This can be used in tandem with active
learning strategies like RESSPECT (Kennamer et al.
2020).

8. Retroactive discovery. Analogs of known transients can
also be used as a data mining method to find similar but
previously undiscovered (i.e., not publicly reported)
transients in large data sets, successfully demonstrated
by Aleo et al. (2022). In this work, we showcase 84
transients discovered from the ZTF Alert Stream in
2018–2021 using this method, as shown in Table F1 and
Section 5.4. Similarly, analogs can be used to suggest
likely candidates of a certain class that were originally
reported but have no follow-up spectra for classification,
and thus represent possible missed opportunities
(Section 5.3).

To our knowledge, there is no popular and lightweight tool
for finding transient analogs like SNe. To demonstrate such a
utility, we present an ANN similarity search of the most
commonly observed SNe (a Type Ia) in Figure 9. As a
reminder, we only input the 60-dimensional PC feature-space
(from the 120-dimensional light curve and associated host
galaxy feature-space). We do not input the photometric
observations themselves, nor the redshift, SN type, galaxy
type (spiral, elliptical), or thumbnail image (although this is a
topic to be explored in future work). For visual aid, in the left
panel, we overlay the object of interest (ZTF21aaublej/
SN 2021ixf) and its k= 8 closest ANNs, shifting the light
curves such that the peak brightness in the ZTF-r band and
ZTF-g band is at 0 day since peak (both passbands fit
independently). In the right panel, we show the thumbnail of
the host galaxy of our object of interest in the top left, and the
eight ANNs continuing from left to right, top to bottom. This
similarity search in our database was completed in 3 ms.
We find that the reference SN 2021ixf, in part because it is a

well-sampled, full-phase, common SN Ia at a nearby redshift, is
indeed highly similar in light-curve evolution and host galaxy
environment as its eight ANNs. All light curves increase in
brightness by ≈3 mag in 16–20 days to peak from their first
observation, and have a prominent secondary ZTF-r-band
bump at around 30 days postpeak, lasting about 100 days in64 https://github.com/patrickaleo/LAISS-local
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Figure 9. Stacked light curve (left panel) and grid of host galaxy thumbnails (right panel) of Type Ia SN 2021ixf (bold) and its eight approximate nearest neighbors
within 120 day feature-space (faded). The similarity search in our database was completed in only 3 ms. Note that we do not include SN type or redshift information in
the similarity search. Thus, the similar light-curve evolution, SN types, redshift values, and host galaxy environments are as a result of the close proximity of
SN 2021ixf and its neighbors in 120-dimensional feature-space.

Table 8
Reclassification of SNe Updated Classification of 17 Unique SNe Driven by ANN = 8 Nearest Neighbor Matches to All SNe Classes Using SNID

ZTF ID IAU Name TNS Class New Class Reference SNe ANN Remarks

Reference Class: SN IIn (59 objects)
ZTF21abcjpnm 2021njo SN II SN IIn 2020abku 1 Second peak likely CSM interaction.
ZTF21aaizyqc 2021ckb SN II SLSN (He-rich) 2021hur 2 Match to PTF10hgi (Gal-Yam 2019).

Reference Class: SN Ia-91T-like (37 objects)
ZTF21aagoliy 2021cjc SN Ia SN Ia-91T-like 2020zjv 1 Match to SN 1997br, SN 1991T.
ZTF21abjtqyq 2021sis SN Ia SN Ia-91T-like 2020acef 1 Match to SN 1999aa.
ZTF21abothvq 2021uib SN Ia SN Ia-91T-like “ 6 Matches to SN 2001V, SN 1991T.
ZTF21abicgai 2021sju SN Ia SN Ia-91T-like 2020adis 3 Match to 1997br.
ZTF21abcxner 2021nxh SN Ia SN Ia-91T-like 2021qvg 8 Lack of Si. Match to SN 1991T.

Reference Class: SN Ib (25 objects)
ZTF21aaqwfqe 2021hen SN I SN Ib 2021gno 2 Match to iPTF13bvn.
ZTF21aabyifm 2021qv SN Ib/c SN Ib ” 5 Matches to iPTF13bvn, SN 2009iz.

Reference Class: SN IIb (21 objects)
ZTF21abnvlnj 2021tyf SN II SN IIb 2021M 8 LC has shock-cooling peak.

Reference Class: SN Ic-BL (14 objects)
ZTF21aacufip 2021vz SN Ic SN Ic-BL 2021too 4 Match to SN 2007ce. Bad quality spectrum.

Reference Class: SN Ia-pec (10 objects)
ZTF20ackkejs 2020xyd SN Ia SN Ia-91T-like 2021cky 8 Lack of Si and bright (Mabs = − 19.65).
ZTF21abothvq 2021uib SN Ia SN Ia-91T-like 2021ebb 1 Matches to SN 2001V, SN 1991T.
ZTF21abiawpf 2021rce SN Ia SN Ia-91T-like ” 5 Matches to SN 2006cz, SN 2007S.

Reference Class: SN Ia-91bg-like (six objects)
ZTF20acnznol 2020yje SN Ia SN Ia-91bg-like 2021jvp 7 Matches to SN 2007ba, SN 2000cn.
” ” SN Ia SN Ia-91bg-like 2021wzb 6 ”

ZTF21achjwus 2021abpz SN Ia SN Ia-91bg-like 2021jvp 5 Matches to SN 1986G, SN 1999bh.
” ” SN Ia SN Ia-91bg-like 2021wzb 8 ”

ZTF21acfigoo 2021aazj SN Ia SN Ia-91bg-like 2021fnr 2 Matches to SN 1986G, SN 2007ax.
ZTF21abmwgow 2021ttg SN Ia SN Ia-91bg-like 2021wzb 2 Matches to SN 2008R, SN 2007ap.

Note. Italicized text designates transients that appear at least twice in the table. The double quotation ” marks a repeated entry from the above row.
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total. Our reference object of class SN Ia-normal at z= 0.041 is
matched to six SN Ia-normal and two SN Ia-91T-like spanning
z ä [0.021, 0.05], with a mean redshift of ¯ =z 0.039. The host
galaxies are all nearby, face-on spiral galaxies except for one,
which is edge-on (SN 2021mid/ZTF21abbkefe). Another also
exhibits evidence of a violent merging history (SN 2021vtq/
ZTF21absvlrr).

5.2. Reclassification of SNe

Here, we briefly test the ansatz that similar transient types
broadly have similar light-curve evolutions and host galaxy
environments, investigating whether or not it proves fruitful to
look for nearest neighbors of rare reference objects. Although
there is no guarantee that nearest neighbors of an object are of
the same type, it is a higher likelihood than random sampling.
In this search, we find that in doing so we additionally recover
transients of rare types that were initially misclassified.

In Figure 10, we show the Type Ia-91bg-like SN 2021jvp/
ZTF21aawihwx and its eight ANNs, achieved in ∼300 ms.
Initially, if we look at the original TNS classification labels
only, we find four SN Ia, one SN II, and three with no
classification spectrum (for which we make no definitive
determination). Prompted by the nearest neighbor results, we
manually reinspect the classification spectra from TNS for
these five objects using the Supernova Identification package
(SNID; Blondin & Tonry 2007). We use the 5.0 version of
SNID with additional template sets from the Berkeley Super-
nova Ia Program (Silverman et al. 2012; Liu & Modjaz 2014;
Modjaz et al. 2014, 2016; Liu et al. 2016; Gutiérrez et al. 2017;
Williamson et al. 2019) totaling 6145 spectra from 811
templates. We use the forcez argument for any object that
has a known host-z.

We find SN 2021abpz (ANN= 5) and SN 2020yje (ANN= 7)
are better explained by the SN Ia-91bg-like classification—the
same as reference SN 2021jvp. In SN 2021abpz, there is a visible
titanium trough at 4200Å (Hachinger et al. 2009; Heringer et al.

2017) and strong SNID matches to subluminous/Type Ia-91bg-
like SN 1986G, SN 1999bh a few days after peak, in phase with
when the spectrum was taken. SN 2021abpz has a peak absolute
magnitude of M∼−18.5mag, consistent with subluminous Ia.
Similarly, SN 2020yje has strong matches to Type Ia-91bg-like
SN 2007ba and SN 2000cn a few days before peak, with a peak
absolute magnitude of M∼−17.6mag, also consistent with
subluminous Ia. Moreover, both SN 2021abpz and SN 2020yje
are in elliptical hosts and offset from the center—common for
Type Ia-91bg-like events (Barkhudaryan et al. 2019). Their light
curves are red and fast declining. We additionally find both
objects are among the first eight ANNs of another SN Ia-91bg-like
object, SN 2021wzb.
We repeat this procedure and manually inspect the TNS

classification spectra of all classified transients within the first
eight ANNs for the spectroscopic objects in our databank. Any
updated classifications for classes in which at least one discovery
was made is shown in Table 8. In the majority of cases, the
original classification labels are correct, and we do not reclassify.
Of our entire spectroscopic sample of 1620 objects, we find 17
unique objects that are better explained by a different
classification label, or about 1%. Although this percentage is
small, of the 17 objects we reclassify, 8 (47%) were reclassified
from a nonanomalous class (which in this work are SN Ia, SN Ia-
91T-like, SN II, and SN IIP) to an anomalous class. This brings
the total anomalous spectroscopic sample from 228 objects to
236, an increase of 3.5%. Because of the intrinsic rarity of
anomalous objects, a 3.5% increase in our overall spectro-
scopically anomalous sample from a directed manual reevalua-
tion of their spectra is a marked difference.
In our original spectroscopic sample of 1620 objects, only

six were originally of this SN Ia-91bg-like classification. After
searching this same data set for the eight ANNs of the six
known SN Ia-91bg-like objects, we find an additional four
SN Ia-91bg-like objects originally misclassified as SN Ia-

Figure 10. Same as Figure 9, but for Type Ia-91bg-like SN 2021jvp/ZTF21aawihwx. In this case, ANN = 5 (SN 2021abpz/ZTF21achjwus) and ANN = 7
(SN 2020yje/ZTF20acnznol) are in fact SN Ia-91bg-like SNe previously missclassified as SN Ia-normal after reexamination of their TNS classification spectra,
prompted by the results of this similarity search (see Table 8). We bold these reclassified events (dark green and dark red for ZTF-g and ZTF-r, respectively) for visual
purposes. The similarity search in our database was completed in only ∼300 ms.
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normal, an increase of 67%. This nearly doubles our total to 10
SN Ia-91bg-like objects.

5.3. Missed Opportunity SNe—Previously Reported to TNS

We can only reclassify SNe that have follow-up spectra.
However, in principle, we can repeat the same ANN= 8 search of
anomalous transients to look for potential anomalous candidates
that were reported to TNS while active but have no classification
spectrum. We call these “missed opportunity” transients. Although
these events have faded, we identify unclassified ZTF transients
with a high likelihood of being anomalous. While the entire search
is ongoing and its entirety is beyond the scope of this work, we do
identify a few candidates for which there is a strong possibility of
being a TDE, using the FLEET-TDE classifier from Gomez et al.
(2023d).

For a directed search, we examine the first eight ANNs of
each of the 20 spectroscopic TDEs from our databank to look
for missed opportunity TDEs that have yet to be reported in the
literature. For instance, we use as reference 2021gje, a TDE at
z= 0.358. We find the eight ANNs in ∼230 ms, as shown in
Figure 11. Of those, two are AGNs, which have survived all
our selection cuts (ANN= 3, ZTF21aafktkn; ANN= 8,
ZTF18abmnoau), three are likely SN Ia (AT 2021cmq,65

AT 2021Z, AT 2021ugf), one is an SLSN candidate66

(AT 2021hzr), and two are likely TDEs or AGN flares with
no previous reporting as such in the literature (AT 2021ovg,
AT 2021ahwl). Moreover, AT 2021ahwl was never reported to
TNS until this work (and thus was not considered in Gomez
et al. 2023d).

AT 2021ovg has a P(TDE)= 85% from FLEET from the
late-time classifier, but there is no postpeak photometry, and
thus, the usage of the late-time classifier is not fully appropriate

here. From the FLEET-TDE classifier for prepeak, this object is
assigned a P(AGN)= 60% and P(TDE)= 32%. It is nuclear
and blue, and there are no previous signs of variability
according to ZTF DR data. The ALeRCE light-curve classifier
(Sánchez-Sáez et al. 2021) assigns the highest probability as an
SLSN at 34% (there is no TDE option), with the second highest
probability being an AGN (16%). At an estimated redshift of
z= 0.241 from SDSS (Csabai et al. 2003), we estimate an
absolute magnitude of at least Mabs≈−20.5 mag, as there is no
visible peak. AT 2021ovg was not reported in Gomez et al.
(2023d).
AT 2021ahwl is a moderately strong missed TDE candidate

at P(TDE)= 70% from FLEET. It is nuclear, blue, and visible
for ∼60 days, and there are no previous signs of strong
variability according to ZTF DR data. At an estimated redshift
of z= 0.364 from SDSS (Csabai et al. 2003), we estimate a
peak absolute magnitude of Mabs≈−21.8 mag. Using the
estimated redshift of z= 0.372 from PS1-STRM (Beck et al.
2021), we estimate a peak absolute magnitude of Mabs≈
−21.9 mag. Both redshift estimates, if correct, are consistent
with the reference z at 0.358.
We repeat a likewise examination for the 20 spectroscopic

TDEs from our databank, and find one strong TDE candidate
(AT 2021agpi with P(TDE)= 95% from the FLEET late-time
classifier), and three questionable ones (AT 2020hip,
AT 2020yaf, AT 2021stx) that could be TDE or possibly
AGN/AGN flares, or enhanced accretion-driven AGN flares
(Trakhtenbrot et al. 2019). Spectroscopic observations are
warranted for confirmation, although this opportunity has
passed.
Similarly, because FLEET is also optimized for SLSN-I

classification and discovery, we perform another directed search
and examine the first eight ANNs of each of the 11 spectroscopic
SLSN-I and 14 spectroscopic SLSN-II from our databank to
look for missed opportunity SLSNe-I that have yet to be reported
in the literature. We identify one moderately strong SLSN-I
candidate (AT 2021fao with ( )- =P SLSN I 64% from the

Figure 11. Same as Figures 9, 10 but for TDE 2021gje/ZTF21aapvvtb. In this case, ANN = 2 (AT 2021ovg/ZTF21aazenvp) was previously reported to TNS but
never previously identified as a TDE candidate until this work (FLEET = 85% TDE), and ANN = 6 (AT 2021ahwl/ZTF21aasdcgt) is a missed TDE candidate
(FLEET = 70% TDE; now reported to TNS from this work). We bold these new TDE candidates (dark green and dark red for ZTF-g and ZTF-r, respectively) for
visual purposes. The similarity search in our database was completed in only ∼230 ms.

65 This object likely has a host misassociation, but is correct in the currently
running GHOST version.
66 AT 2021hzr has ( )- =P SLSN II 68% according to FLEET; though, FLEET
is not optimized for SLSN-II classifications.
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FLEET late-time classifier) and one borderline candidate
(AT 2021lnu with ( )- =P SLSN I 49% from the FLEET late-
time classifier67).

5.4. Missed Opportunity SNe—Previously Unreported to TNS

Beyond identifying possible rare transients or anomaly
candidates that were reported but have no spectroscopic follow-
up, we can go the next step further and search for ANNs of
known transients to find previously undiscovered or unreported
transients (i.e., not reported to public catalogs like TNS). The
idea here is that, if a known transient has a specific feature
distribution, (approximate) nearest neighbors with similar
distributions are likely to also be transients, and perhaps a
fraction are not reported. An illustration of this directed search
is found in Figure 12, whose search was completed in
∼140 ms.

The reference used is Type Ia SN 2020whs/ZTF20aciuftf at
z= 0.13. From this ANN= 8 search, five were already reported
to TNS, and thus, we manually investigated the remaining three
with no submission. Upon expert analysis, we find that all 3 are
missed SNe candidates: ANN= 1 (AT 2018mfm/ZTF18abnz-
ney), ANN= 3 (AT 2021ahvn/ZTF21abcluco), and ANN= 5
(AT 2021ahvo/ZTF17aadqidc).

The first ANN, AT 2018mfm/ZTF18abnzney, is approxi-
mately 1 38 from its host (WISEA J000044.86+152956.7). It
peaks in ZTF-g at an apparent magnitude of 19.8 mag with a
rise of 11 days, compared to the 19.6 mag peak apparent
magnitude of reference SN 2020whs with an 8 day rise. At the
time of the transient, AT 2018mfm has a peak brightness about
1 mag brighter than the baseline from ZTF DR5. Because of the
short timescale and evolution, this is likely an SN Ia.

The third ANN, AT 2021ahvn/ZTF21abcluco, is remarkably
similar in evolution to reference SN 2020whs. Both have a first
epoch in ZTF-g at an apparent magnitude of 20.2 mag, rise to

peak in 8 days to a peak apparent magnitude in ZTF-g of
19.6 mag, and fade in 12–13 days. This candidate has an
estimated photo-z from from PS1-STRM (Beck et al. 2021) of
z= 0.168, similar to the spectroscopic redshift of reference
SN 2020whs (z= 0.13). This candidate, at approximately 0 61
from the center of host WISEA J115609.31+210137.8, has an
estimated peak absolute magnitude consistent with that of
an SN Ia.
The fifth ANN, AT 2021ahvo/ZTF17aadqidc, is at the

center (0 17) of a galaxy (WISEA J100313.80+283944.8)
with a spectroscopic redshift of 0.087, placing the peak
Mabs∼−18.6 mag, well within the expected Mabs range of an
SN I. Moreover, this object has seven ZTF-r and five ZTF-g
alert stream observations and an apparent peak magnitude of
m∼ 19.4 mag, which is about 1 mag brighter than the limiting
magnitude of ZTF, making this a viable candidate for SN
detection algorithms. A possible reason for why this was
initially missed is due to its nuclear location, although this
candidate’s photometry is ∼0.3 mag above the baseline of from
the ZTF DR and is red g− r≈ 0.4 mag (disfavoring an AGN
flare). The ALeRCE light-curve classifier Sánchez-Sáez et al.
(2021) predicts this candidate is an SN Ib/c.
We likewise perform a directed search by calculating the first

eight ANNs of all spectroscopic transients in our databank, and
investigate any nonreported ANNs for transient activity. In
summary, we find that a fraction were never reported in public
catalogs, totaling 84 transient candidate discoveries (not
including likely AGN), all of which can be found in
Table F1.
Finally, to be complete in recovering missed SNe from our

databank, we perform an exhaustive search, visually inspecting
each unique object not previously reported to TNS and not
previously discovered through our ANN search. That search
yielded 241 SNe candidates, as shown in Table F2.
In total, we report the discovery of 325 transients, all

observed between 2018 and 2021 and absent from public
catalogs (∼1% of all ZTF AT reports to TNS through 2021).

Figure 12. Same as Figures 9–11, but for Type Ia SN 2020whs/ZTF20aciuftf. In this case, ANN = 1 (AT 2018mfm/ZTF18abnzney), ANN = 3 (AT 2021ahvn/
ZTF21abcluco), and ANN = 5 (AT 2021ahvo/ZTF17aadqidc) were missed SNe candidates (now reported to TNS from this work). We bold these SN discoveries
(dark green and dark red for ZTF-g and ZTF-r, respectively) for visual purposes. The similarity search in our database was completed in only ∼140 ms.

67 Although not formally discussed in the literature, this object does have an
Astronote identifying it as a ZTF SLSN candidate (Perley et al. 2021).
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To better understand how our retroactive candidate SNe
discoveries are distributed as a function of time, we plot in
Figure 13 the unweighted percentage (top panel) and weighted
(bottom panel) percentage relative to the fraction present in our
original databank (blue) identified by our ANN= 8 search
method (gold) and exhaustive method (green). The majority
(134 out of 325, or 41%) of our candidate discoveries are from
2018 (with contributions of 35 out of 84 (42%) from our
ANN= 8 search method and 99 out of 241 (41%) from our
exhaustive search method). Contrary to our expectation, this is
nearly equal to that of 2021, where we identify 131 out of 325
(also 40%) total missed candidates. However, our databank
contains an uneven distribution of reported candidates per year.
Grouping the IAU names, approximately 0% are from 2017,
11% are from 2018, 4% are from 2019, 20% are from 2020,
62% are from 2021, and 3% are from 2022. Thus, when we
account for this unequal weighting, our result of 40% of our
identified missed candidates from 2021 becomes unsurprising
given that 62% of our databank is from 2021; it follows that
there would be relatively more missed transients (numbers
wise) for that year.

Note the weighted fraction of objects (bottom panel) missed
in 2018 and 2019 is greater than that relative to 2020 and 2021.
In fact, the weighted fraction is greatest in 2018, the first full
year of the ZTF survey, and decreasing every year through
2022, implying an improvement in detection and reporting
methods via increasing numbers of active broker teams in the

ZTF Alert Stream.68 For instance, the ALeRCE broker did not
start real-time machine learning classification of the ZTF alert
stream until early 2019 (Förster et al. 2021), and the
ANTARES broker did not start reporting to TNS until 2021.
Fink did not begin processing the ZTF public live-alert stream
until 2019 November (Möller et al. 2021). Between additional
teams reporting to TNS and the addition of object detection
algorithms characterizing the ZTF alert stream in subsequent
years (e.g., Muthukrishna et al. 2019; Andreoni et al. 2021;
Carrasco-Davis et al. 2021; Coughlin et al. 2021; Duev & van
der Walt 2021; Förster et al. 2021; Sánchez-Sáez et al. 2021;
van Roestel et al. 2021; Aleo et al. 2022; Leoni et al. 2022;
Reyes-Jainaga et al. 2023), it is sensible that we discover
progressively fewer SNe candidates relative to those present in
our databank. We encourage more retroactive study of the ZTF
survey, particularly in 2018 and 2019 as these data are likely
rife with undiscovered SNe and interesting candidates.

6. Discussion

6.1. Light-curve Extrapolation

Astronomical transients are the observational counterpart of
terminal events, and a study of their photometric evolution can
offer insights to underlying astrophysical properties. This can
be performed on an individual basis (e.g., Gagliano et al.
2021), or across a population (e.g., Nyholm et al. 2020). Due to
cadence, weather, and other factors intrinsic to astronomical
observations, our photometry is irregularly sampled and noisy,
and at times has large gaps spanning several epochs. Thus,
obtaining homogeneous data suited for feature extraction and
training machine learning and deep-learning models requires
fast but accurate approximation. For such reasons, there are
popular parametric light-curve models in the literature (Bazin
et al. 2009; Villar et al. 2019; Russeil et al. 2024) and
nonparameteric models such as GP (Boone 2019; Demianenko
et al. 2023) both of which predict the temporal flux evolution.
Note that although we make no such rigorous attempt at a

formal light-curve fit model, we can approximate a possible
light-curve evolution through considering the additional
photometry and host galaxy environment from analogs to
“reconstruct” a light curve. To our knowledge, this idea has not
been demonstrated in the literature for light-curve fits, but
similar ideas of applying “twin” SNe in regards to spectra for
SN Ia standardization (Fakhouri et al. 2015; Boone et al. 2021)
have shown promise.
Although we cannot recover photometry that was missed, we

can place a soft constraint on the possible evolution by stacking
light curves of ANNs, which broadly will be of a similar SN
class, redshift, and host galaxy environment to the reference.
Despite poor sampling of the light curve, or poor sampling at a
critical phase, it is reasonable to investigate ANNs of these
objects to gain insight of possible light-curve evolutionary
paths and the associated variance. We show an example of
reference SN Ia 2022cox/ZTF18aaiwewk in Figure 14, which
is poorly sampled postpeak.
Despite having a large 30 day gap immediately after peak, we

know from spectra SN 2022cox is an SN Ia at z= 0.087. Four of
its ANN matches have spectroscopic classifications: three SN Ia
with redshift ranging z= 0.07 to z= 0.08, and one poor SN II

Figure 13. The unweighted percentage (top panel) and weighted (bottom
panel) percentage relative to the fraction present in our original databank (blue)
of the retroactive SNe candidate discoveries recovered by our ANN = 8 search
method (gold) and exhaustive method (green). From both methods combined,
we recover nearly equal numbers from 2018 and 2021 (134 out of 325 (41%)
and 131 out of 325 (40%), respectively). However, relative to the yearly
fractions that comprise our databank, we find that the fraction of our total 2018
discoveries relative to all discoveries from this work (41%) is nearly 3 times
that of the fraction relative to that which comprise our databank (11%), whereas
our total 2021 discoveries (40%) make up nearly two-thirds relative to our
databank (62%). Overall, the weighted fraction of discoveries is greatest in
2018, the first full year of the ZTF survey, and decreasing every year through
2022, implying an improvement in detection and reporting methods via
increasing numbers of active broker teams in the ZTF Alert Stream.

68 Only three objects in our databank have a ZTF objectID from 2017, so
although it is included for completeness, it effectively bears no impact on this
analysis.
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match at z= 0.023. The photometric evolution of the other four
ANNs appear to also be of an SN Ia nature. In total, only one
appears to occur in an early-type galaxy. Stacking the light
curves, the possible evolution postpeak (where the original gap
is) is now well sampled. In fact, if we overplot the best-fit
SALT3 model (Kenworthy et al. 2021), we find that the ZTF-r
fit is well traced by the majority of the analogs’ r-band
photometry postpeak as well as the late-time photometry of our
reference. Moreover, despite there being no ZTF-g photometry
postpeak, the SALT3 fit is, too, well traced by the analogs’ g-
band photometry. This method may provide viable supporting
evidence for light-curve constraints (or priors), particularly in
cases where the SALT3 fit is poorly constrained.

The attraction of this approach is that this provides critical
potential photometry where there is little to none, which
contrasts nicely with a popular light-curve approximator: GP
(Boone 2019; Demianenko et al. 2023; Gagliano et al. 2023).
GP regression (Rasmussen & Williams 2005), while producing
zero error at the learning points, incurs a large error in large
gaps between subsequent epochs. A rigorous analytic compar-
ison between the error of GP-fit light curves to those fit with
analogs’ photometry is left for future work.

Because our approach relies on the quality of the ANN search
and consistency in light-curve profiles, it is necessary for there to
be sufficient numbers of the SN type at varying redshifts and
host galaxies to have requisite matches for tracing possible light-
curve evolutions. Thus, for this work, it is unlikely this method
will be effective for any SNe beyond normal SN Ia.

6.2. Common Failure Modes of Our Anomaly Detection Model

Despite the success of our anomaly detection model and our
hyperparameter tuning to create a high fidelity sample, there are
still cases where our model tags a nonanomaly as anomalous.
Visual inspection of such objects from Tables 4–7, including
their light-curve evolution and host galaxy association and

environment, reveals some common patterns. The majority of
misclassified anomalies tend to

1. have an incorrect host association (SN 2021aff, SN 2021uzt,
SN 2021ojn, AT 2022ywi, SN 2023dgp, SN 2023eqx,
AT 2023fli, AT 2023sws); this often occurs where the likely
true host is faint and small (correlated with high-z); thus,
normal light-curve behavior in one host galaxy environment
could be exceedingly peculiar if wrongly associated to
another vastly different host galaxy; however, we note that
there are many instances where a spectroscopic or behavioral
anomaly is correctly tagged anomalous despite a misassocia-
tion (SN 2018lnb, AT 2021dpa, AT 2023atr, SN 2021axu,
SN 2023khp, SN 2023omf, AT 2023otw), potentially indi-
cating that the object’s light-curve behavior is peculiar
enough alone to warrant being flagged anomalous;

2. be very blue (SALT3 c�− 0.2) SN Ia or SN Ia candidates
(AT 2020iga, AT 2020itp, AT 2020wwt, AT 2023tdy,
AT 2023tim, AT 2023tjc, AT 2023tnr, AT 2023sws); this
is likely a byproduct of feature_linear_fit_slo-
pe_magn_g) being our model’s most discriminating
feature for anomaly detection, where strong blue color is
correlated with TDEs and some prepeak SNe IIn light
curves; thus, it is unsurprising that SNe Ia significantly
bluer than the SALT3 model are flagged anomalous;

3. be luminous (transient peakMabs�− 19.8, using spectro-
scopic or photometric redshift estimates) Ia or Ia
candidates whose host galaxy is faint (apparent bright-
ness) and/or small (apparent size) and/or blue (likely
spiral, star forming) according to the DESI Legacy
Survey Imaging Surveys (AT 2020hjv, SN 2020qkx,
SN 2020qql, AT 2020sgy, SN 2020wfg)69;

Figure 14. Same as Figures 9–12, but for Type Ia SN 2022cox/ZTF18aaiwewk, overplotted with the best-fit SALT3 model (Kenworthy et al. 2021). In this case, even
though SN 2022cox is poorly sampled after peak with a 30 day gap, we can see fuller light-curve evolution and accompanying host galaxies of analogs through the
similarity search, providing useful insights as to the possible classification and redshift range as well as the possible (unobserved) light-curve evolution of our
reference. The SALT3 fit provides additional context, and we observe that analog light-curve epochs are positioned on or near this curve. The similarity search in our
database was completed in only ∼2 ms.

69 Note that SN Ia-CSM 2020kre is an example of successfully tagged event
that falls in this category.
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4. have no rise information (SN 2023cyx, SN 2023dgp,
AT 2023fbj, AT 2023huz) or have no observations until
the light curve is well in decline (SN 2020tnq,
SN 2021vwx, SN 2023mcs); the latter possibly masquer-
ades as a transient that is far fainter than is typical or is at
a lower z than the host galaxy would imply, and would
cause light-curve features that are OOD with respect to
similar spectroscopic members due to the features’
dependence on quantifying early (and intermediate)
phases of light-curve behavior; in other words, two of
the exact same SN Ia, where one is observed postpeak,
and one that is observed for the entirety of the evolution
will have some differing light-curve features despite
being the same event;

5. be SN II with constant color evolution, thus have light
curves that appear more SN Ib/c-like (SN 2019wmr,
SN 2020acun); both examples were in YSE DR1 and
misclassified by both ParSNIP and SuperRAENN as
SN Ib/c, potentially indicating these events are in fact of
the SNe IIb subtypes (the most common such case, as
cited in Aleo et al. 2023);

6. have a significant (>10 day) gap in one passband during a
period of intense color evolution of the light curve
(SN 2023bfv, AT 2023glx); because ZTF-g and ZTF-r
features are calculated independently, the passbands then
no longer represent a similar phase in the evolution, but
offset phases (where one lags behind), leading to
behavior that is flagged as anomalous;

7. or have some combination of the above.

6.3. Host Galaxy SED Modeling with PROSPECTOR

As an additional analysis, we fit a spectral energy density
model using stellar population synthesis to matched-host
galaxies for each real-time anomalous transient candidate
(i.e., tagged by LAISS_RFC_AD_filter Filter) to under-
stand the connection between transients and their host galaxy
environments. We perform Bayesian statistical inference to
report the SFR (SFR [MeGyr–1]), the stellar mass of the galaxy
( ( )Mlog ), the specific SFR ( ( )log spSFR ), the age of the stellar
population (age [Gyr]), and the V-band optical depth (AV).

Our goal is to begin an investigation of the locations of
tagged anomalies in host galaxy parameter feature-space (e.g.,
log(SFR) versus ( )Mlog ), relative to larger derived systematic
samples across many normal and anomalous SNe classes from
Schulze et al. (2021) and Sharma et al. (2023). We note that the
sample from Schulze et al. (2021) contains the entirety of CC
SNe from 2009 and 2017 by the Palomar Transient Factory—
888 SNe of 12 distinct classes out to z ≈ 1—including host
galaxy photometric properties spanning the far-ultraviolet
(FUV) to the mid-infrared (MIR) with modeled host galaxy
SEDs to derive physical properties. Meanwhile, the sample
from Sharma et al. (2023) added 12 Bright Transient Survey
(BTS) SNe Ia-CSM hosts in comparison to BTS SNe Ia
collected by Irani et al. (2022), with all such works overplotting
hosts into SFR versus stellar mass feature-space. By comparing
the locations of derived SFR and stellar mass for our tagged
anomalies to larger systematic samples, we can incrementally
add to the literature of derived host galaxy parameters for rare
SNe, as well as investigate the nature of LAISS’ tagged
spectroscopically “Normal” SNe (e.g., SN Ia, SN II)—do they
reside in sparse regions of host galaxy parameter space?

We analyze the set of matched-host galaxies from Table 5
using PROSPECTOR,70 a framework integrating Bayesian
statistical inference through nested (DYNESTY71) or distributed
(EMCEE72) samplers with stellar population synthesis models
(FSPS73; Foreman-Mackey et al. 2013; Leja et al. 2017;
Johnson et al. 2021). We begin with the previously matched
PanSTARRS host galaxies of anomaly candidate transients
calculated via GHOST (Gagliano et al. 2021) within the
LAISS_RFC_AD_filter Filter. Using the matched-host
astrometry, we requery MAST74 for PanSTARRS photometry
(Chambers et al. 2016), choosing the Kron magnitude
(Kron 1980) from the forced mean table in each band. The
Kron magnitude utilizes an adaptive size aperture, the size of
which we also query. Using the Kron aperture in the
PanSTARRS r band, we query for the nearest fixed-size
aperture and uncertainties in Galaxy Evolution Explorer
(GALEX; Gezari et al. 2013), Two Micron All Sky Survey
(2MASS; Skrutskie et al. 2006), AllWISE (Jarrett et al. 2011),
and UKIRT Infrared Deep Sky Survey (UKIDSS; Lawrence
et al. 2007) catalogs. Because the matched-host galaxies via
GHOST are inherently from the PanSTARRS catalog, we are
guaranteed to have PanSTARRS photometry.
To properly model the SED to extract physical and

phenomenological parameters of the host galaxies, we require
a vast range of host galaxy photometry from the FUV to the
MIR. Thus, we only include tagged anomalies that have at least
one observation in GALEX (filters FUV, NUV spanning
1542–2274Å), PanSTARRS (filters g, r, i, z, y spanning
4776–9603Å), either 2MASS (filters J, H, Ks spanning
12350–21590Å) or UKIDSS (filters Z, Y, J, H, K spanning
8360–23800Å), and AllWISE (filters W1, W2, W3, W4
spanning 33526–285500Å). Moreover, we require a known
redshift from spectroscopy, and the transient class (which is not
an AGN) from at least one classification spectrum. This results
in five matched hosts from the original sample of 45 tagged
anomalies.
Our fitting routine follows that given in Leja et al. (2017); we

first make a fit of our stellar population synthesis (SPS) model
parameters using the Levenberg–Marquardt algorithm
(Moré 1978) to initialize the Markov Chain Monte Carlo
(MCMC) chains to a sensible parameterization. We then use
the Dynesty sampler to perform Bayesian parameter estima-
tion. Additional details on the SED fitting methods can be
found in Appendix D.
Our reported galaxy properties are calculated from the

parameter samples following Section 4.1 of Nugent et al.
(2020), and we report the parameter estimates in Table 9. It is
important to note that, while PROSPECTOR samples over the
total solar masses formed, we estimate and report the stellar
mass of the galaxy using the approximation given in Leja et al.
(2013).
Of the five remaining objects after cuts, we only consider

two bona fide anomalies, both of which are spectroscopic
anomalies. However, we will find that all five objects lie in
sparse regions of SFR versus stellar mass feature-space
compared to Schulze et al. (2021) and Sharma et al. (2023),
and could indicate that LAISS’ tagged spectroscopically

70 https://github.com/bd-j/prospector
71 https://github.com/joshspeagle/dynesty
72 https://github.com/dfm/emcee
73 https://github.com/cconroy20/fsps
74 https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
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“Normal” SNe have uncommon host galaxy parameters for
their respective SNe classes despite small number statistics.

ZTF23aajkisd (SN IIn) at a ( )Mlog of -
+10.118 0.110

0.1125 Me and
( )log SFR of - -

+1.469 0.181
0.167 Me yr−1, resulting in a ( )log spSFR

of - -
+11.594 0.209

0.204 yr−1, lies beyond the outer 90% contour of
host galaxy populations in the mass–SFR plane as determined
by a kernel density estimate of 111 SN IIn in the Schulze et al.
(2021) sample (see their Figure 10). This indicates that
SN 2023iex has an uncommonly low SFR for its relatively
larger galaxy mass, resulting in a lower spSFR. However, in the
mass–redshift plane (see their Figure 9), the host of SN 2023iex
resides in the inner ∼20% contour, indicating a common mass
for its redshift (0.029).

ZTF23aatdcey (SN IIn) at a ( )Mlog of -
+10.128 0.096

0.100 Me and
( )log SFR of - -

+1.591 0.238
0.198 Me yr−1, resulting in a ( )log spSFR

of- -
+11.719 0.272

0.241 yr−1, follows the same pattern as SN 2023iex
(ZTF23aajkisd). The host of SN 2023nof (ZTF23aatdcey) also
lies beyond the outer 90% contour of host galaxy populations
in the mass–SFR plane from the Schulze et al. (2021) sample.
Its host galaxy also resides in a sparsely populated, low region
of spSFR, where the SFR is low considering the relatively
larger mass of the galaxy. In the mass–redshift plane, it resides
in the inner ∼20% contour, indicating a common mass for its
redshift (0.069).

ZTF23aberpzw (SN II), at a ( )Mlog of -
+10.204 0.083

0.071 Me and
( )log SFR of - -

+1.949 1.87
0.175 Me yr−1, resulting in a ( )log spSFR

of - -
+12.154 0.216

0.232 yr−1, lies beyond the outer 90% contour of
host galaxy populations in the mass–SFR plane as determined
by a kernel density estimate of 498 SN II in the Schulze et al.
(2021) sample (see their Figure 10). Moreover, it lies in what
Schulze et al. (2021) found to be in the lower extreme of SFR
—up to 2% of regular CC SNe (SN Ibc, SN IIb, SN II, and
SN IIn) whose hosts exhibit SFR 0.01Me yr−1 (a ( )log SFR
of −2Me yr−1) and spSFR between 10−14 yr−1 and
10−11 yr−1, often with sizeable uncertainties. Thus, we consider
this object to be a member of the lower extreme SFR hosts. In
the mass–redshift plane, the host of SN 2023swf resides in the
inner ∼10% contour, indicating an extremely common mass at
its redshift (0.024). Despite the light curve and spectra
indicating a normal SN II, there is some evidence this object
may be anomalous when considering the extremely low spSFR,
and thus may be considered a contextual anomaly.

Overall, all CC SNe (ZTF23aajkisd, ZTF23aatdcey,
ZTF23aberpzw) reside in a sparsely populated region of
uncommonly low spSFR, where their galaxies have low SFR
for their relatively larger size (all above the median and mode

( )Mlog values as shown in Schulze et al. 2021, their Table 5).
ZTF23aapgswu (SN Ia), at a ( )Mlog of -

+8.367 0.095
0.077 Me, is a

peculiar case. Its host is a relatively compact, strongly blue, and
likely high star-forming galaxy. One such consequence is a
heavily negatively skewed SFR distribution, with one peak and
long tail, resulting in a (more negative) median value of

( )log SFR of - -
+4.389 59.850

0.570 Me yr−1 and a ( )log spSFR of
- -

+12.751 59.850
0.600 yr−1. However, because of the heavy negative

skew that biases the median, we also note a marginally more
realistic (but still unphysical) mode value of ( )log SFR of
−3.998Me yr−1 and a ( )log spSFR of −12.424 yr−1. Such an
unphysically low SFR value can likely be traced to our choice
of star formation history (SFH) function: it has been suggested
that parameterized SFH are not flexible enough to deal with the
actual complexities inherent in galaxy systems (Leja et al.
2019a). As a further point of caution, no SN Ia from Irani et al.
(2022) of BTS SNe Ia have such a low ( )log SFR , and thus, we
make no strong claims as to the validity of the fit. More
investigation of the host galaxy and derived host parameters of
SN 2023mcs is encouraged, especially when considering it is
host to an SN Ia.
ZTF23abayyjm (SN Ia) at a ( )Mlog of -

+10.815 0.044
0.110 Me (the

largest in our sample of five objects) and ( )log SFR of

-
+0.147 0.842

0.263 Me yr−1, resulting in a ( )log spSFR of
- -

+10.705 0.761
0.234 yr−1, is the only event that resides in a host

galaxy with above Milky Way metallicity ([Z/H]= 0.0; see
Choi et al. 2016). When compared to BTS SNe Ia from Irani
et al. (2022) and Sharma et al. (2023), it is at the upper regime
of massive, highly star-forming, and high metallicity host
galaxies beyond the red and blue contours corresponding to
Galaxy Zoo ellipticals and spirals (see Figure 14 of Irani et al.
2022). However, the spSFR is average after normalizing SFR
by the very large galaxy mass, and is among the highest mass
hosts compared to the Irani et al. (2022) and Sharma et al.
(2023) samples.
The goal of this exercise was to lay the groundwork of

building a downstream Filter to fit SPS host galaxy models. In
this pursuit, we have discerned valuable insights. Moreover, we
recognize the need for additional technologies and software

Table 9
Host Galaxy Parameter Estimation with Prospector

ZTF ID Spec. Class Redshift ( )Mlog Age AV ( )log SFR ( )log spSFR χ2/n.o.f.
(Gyr)

ZTF23aatdcey SN IIn 0.069 -
+10.128 0.096

0.100
-
+4.406 1.331

1.952
-
+1.636 0.278

0.267 - -
+1.591 0.238

0.198 - -
+11.719 0.272

0.241 39.451/14
ZTF23aajkisd SN IIn 0.029 -

+10.118 0.110
0.125

-
+3.120 1.031

1.959
-
+2.097 0.184

0.191 - -
+1.469 0.181

0.167 - -
+11.594 0.209

0.204 23.446/14
ZTF23aapgswu SN Ia 0.030 -

+8.367 0.095
0.077

-
+10.401 2.913

2.368
-
+0.117 0.087

0.189 –4.389-
+

59.729
0.570 –12.751-

+
59.850
0.600 28.920/10

ZTF23aberpzw SN II 0.024 -
+10.204 0.083

0.071
-
+9.418 2.387

2.611
-
+1.221 0.188

0.194 - -
+1.949 0.187

0.175 - -
+12.154 0.216

0.232 19.036/14
ZTF23abayyjm SN Ia 0.140 -

+10.815 0.044
0.110

-
+1.471 0.461

1.006
-
+3.275 0.170

0.184
-
+0.147 0.824

0.263 - -
+10.705 0.761

0.234 28.451/11

Notes.We fit a spectral model using photometry from matched-host galaxies to each transient in Table 5 that pass strict selection cuts. We report the transient redshift,
the log star formation rate ( ( )log SFR [Me]), the total stellar mass of the galaxy ( ( )Mlog [Me yr−1]), the log specific star formation rate ( ( )log sSFR [yr−1]), the age of
the stellar population (age (Gyr)) and the V-band optical depth (AV). We also report the value of χ2/n.o.f. (number of filters). For all distributions, we report the median
values with upper and lower bounds equivalent to the 84th and 16th quantiles, respectively, unless otherwise noted (italicized text; see below). The italicized text
indicates distributions that have unreliable median values (displayed as default in the table) due to their heavy negative skew. For these, the mode is better
representative. For ZTF23aapgswu, the mode of ( )log SFR is −3.998 Me yr−1 and the mode of ( )log spSFR is −12.424 yr−1. Bold text indicates an object we consider
a likely anomaly.
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infrastructure that needs to be developed before this process
can be scaled to Rubin-era data streams.

First, it was critical to use matched-aperture size photometry
to get sensible results. Even so, we chose to only use
precalculated magnitudes from reported fixed-size apertures,
when in principle the apertures should be matched exactly across
each band. Additional work would be necessary to create a
robust pipeline that works on galaxies at various distances. Our
fits could likely be improved by utilizing nonparameteric SFH
functions. Additionally, MCMC sampling is computationally
expensive. Each object’s sampling takes approximately 2 hr on a
shared compute node equipped with an AMD EPYC 7502 CPU.
To rectify this, other works have suggested speeding up SPS
models with neural network emulators (Kwon et al. 2023),
which are reported to achieve a 100× speed-up; or with
approximate posterior distributions of galaxy parameters effi-
ciently via simulation-based inference (Cranmer et al. 2020) and
amortized neural posterior estimation (Papamakarios & Mur-
ray 2016) techniques, which can achieve an amortized
calculation of galaxy parameter posteriors in less than 1 s (see
Hahn & Melchior 2022; Khullar et al. 2022; Wang et al. 2023,
and references therein); or with a physics-informed VAE
(Gagliano & Villar 2023). These efforts are promising and
ongoing, but beyond the scope of this work.

7. Conclusion

In this work, we present LAISS, a pipeline for real-time
anomaly detection and approximate similarity searches of
astronomical transients within large volumetric data streams.
We debut our anomaly detection model as a Filter on the
ANTARES broker to process the nightly ZTF Alert Stream.
Our model is based on an RFC architecture using extracted
light-curve and contextual host galaxy features without the
need for redshift information, designed to classify several types
of transients as anomalies (“Anomaly”) with high purity:

1. spectroscopic anomalies (i.e., designate all SNe other
than normal Type Ia, Type Ia-91T-like, and normal Type
II, IIP as anomalous);

2. contextual anomalies (e.g., an SN in an atypical galactic
environment);

3. behavioral anomalies (e.g., an SN rebrightening due to
CSM-interaction).

We run our anomaly detection model on the active ZTF alert
stream for real-time discovery, as well as legacy subsets of the
ZTF alert stream and the YSE DR1 for retroactive discovery.
Moreover, we construct a low-latency approximate similarity
search model within our derived light-curve and host galaxy
feature-space to find transient analogs of similar light-curve
evolution and host galaxy environments.

Our conclusions and key takeaways for the LAISS anomaly
detection and approximate similarity search pipeline are as
follows:

1. The most important light-curve features for distinguishing
anomalies from other transients according to our RFC
model using both impurity and permutation importances
are the light-curve slope in a least squares fit of the linear
stochastic model with Gaussian noise described by
observation errors {δi} (feature_linear_fit_slo-
pe_magn_g) and its error in r band (feature_li-
near_fit_slope_sigma_magn_r), and the unbiased

Anderson–Darling normality test statistic for g-band flux
(feature_anderson_darling
_normal_flux_g).

2. The most important host galaxy features for distinguish-
ing anomalies from other transients according to our RFC
model using both impurity and permutation importances
are radial offset and color-derived features, namely, the
aperture magnitude i− z color difference (i-z) and the
normalized host separation dist/DLR. Notably, the
high importance of these contextual host galaxy features
is in agreement with that of FLEET (Gomez et al.
2020, 2023a, 2023d) and GHOST (Gagliano et al. 2021),
despite the nature of their different anomaly detection and
SNe classification tasks.

3. Using the spectroscopic label alone from TNS (before
vetting) as an indicator of an anomalous transient, we can
recover anomalies with a purity of ≈50% using the full
light-curve classifier for events with P(anom)> 0.5. If we
assume anomalies (defined in this work as everything not
Type Ia-normal, 91T-like, II-normal, and IIP) comprise
about 10% of the SNe population in a magnitude-limited
survey like ZTF, this is a factor of ∼5 improvement
compared to random selection. The corresponding
completeness for this threshold is 29%. However, if we
additionally consider updated spectroscopic classifica-
tions, contextual anomalies, and behavioral anomalies
(such as SNe in an atypical environment or peculiar light-
curve or spectral behavior) as a result of expert vetting,
we can recover anomalies with an observed purity of
≈90% using the full light-curve classifier for events with
P(anom)> 0.5 at a completeness threshold of 38%. This
is a factor of ∼8 improvement compared to random
selection.

4. When using any SNe as input into our approximate
similarity search, we can retrieve eight ANNs in our 5472
object, 60-dimensional principal component-space in

( ) 100 ms. If needed, we can reextract light-curve
features in ∼1 s and host galaxy association and features
in ∼1 minute. We show that an ANN solution to finding
SNe analogs with precomputed features can scale to
Rubin data streams.

5. We demonstrate an approximate similarity search for
finding SNe analogs is useful in many applications, such
as but not limited to the following: finding similar SNe
evolution and host galaxy environment, finding missed
SNe in legacy data sets, providing possible light-curve
evolution of poorly sampled SNe, and prompting some
reclassification of SNe (often to a rarer subclass of the
SNe type).

6. From our approximate similarity search, we report 17
unique reclassified SNe and 84 previously undiscovered
SNe candidates found by an ANN= 8 search of our
databank spectroscopic sample. From a final exhaustive
search of our databank, we report the remaining 241 SNe
candidates to TNS. In total, we report 325 discoveries, all
from 2018 to 2021 and absent from public catalogs (∼1%
of all ZTF AT reports to TNS through 202175).

7. Despite small number statistics, there is some evidence to
suggest that objects tagged anomalous by LAISS have
host galaxy properties, such as mass, SFR, and specific

75 https://tinyurl.com/ZTF-AT-TNS-reports-thru2021
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SFR, that reside in sparse regions of latent space of
equivalent SN type when compared to larger samples in
the literature.

7.1. List of Anomalies

We report the following new spectroscopic and behavioral
anomalies, either flagged in real-time or retrospectively by our
anomaly detection model. They are confirmed via follow-up
observations or from a retroactive reclassification of existing
spectra prompted by approximate similarity search. Addition-
ally, we report likely anomalous transient candidates based on
their light-curve evolution, host galaxy environment, and
results from photometric classifiers such as FLEET (Gomez
et al. 2020). We newly identify a myriad of peculiar and rare
transients, including the following:

1. SLSN (11 total; 2 spectroscopic; 9 photometric). We
identify 11 new candidate members, 2 spectroscopic
(ZTF21aaizyqc/SN 2021ckb, ZTF22abfdzrv/SN 2022
vmg); 9 photometric (ZTF20acbiwfi/AT 2020afew, ZTF
20aczhbki/AT 2020afex, ZTF21aajrgkw/AT2021dpa, ZTF
21aaualdi/AT 2021ahwa, ZTF21abasbpe/AT 2021
ahwh, ZTF20acyroio/AT 2021ahwp, ZTF23aahjdxa/AT
2023gpp, ZTF23aaqqeek/AT 2023mne, ZTF23aawblmi/
AT 2023otw).

2. TDE (10 total; 1 spectroscopic, 9 photometric). We
identify nine new candidate members, one spectroscopic
(ZTF23aamsetv/SN 2023kvy); eight photometric (ZTF18
abtjrbt/AT 2018mfz, ZTF18acvwkvc/AT 2018mkd, PS19
gzf/AT 2019vuz, ZTF20acpgnmw/AT 2020afev, ZTF20
acpzjsk/AT 2020affx, ZTF21aazenvp/AT 2021ovg, ZTF21
aasdcgt/AT 2021ahwl, ZTF22absuavp/AT 2022zyh, ZTF
22abzajwl/AT 2023adr).

3. Long-rising (>40 day) SN II (six total; two spectroscopic,
four photometric). We identify six new candidate
members, two spectroscopic (ZTF20abqlmwn/SN 20
20rmk, ZTF21aaqyifh/SN 2021hqe); four photometric
(ZTF18abiitmq/AT 2018mhh, ZTF18abkmfaj/AT 2018
mhj, ZTF21abasjcd/AT 2021rmq, ZTF23aajestr/AT 20
23inr).

4. SN Ic-BL (one total; one spectroscopic, zero photo-
metric). We identify one new candidate member; one
spectroscopic (ZTF21aacufip/SN 2021vz); zero
photometric.

5. SN Ib (two total; two spectroscopic, zero photometric).
We identify two new candidate members, two spectro-
scopic (ZTF21aaqwfqe/SN 2021hen, ZTF21aabyifm/
SN 2021qv); zero photometric.

6. SN Ib/c (six total; zero spectroscopic, six photometric).
We identify six new candidate members, zero spectro-
scopic; six photometric (ZTF18abwhsnx/AT 2018mgd,
ZTF18aajgowk/AT 2018mgw, ZTF20acuyxki/AT
2020afes, ZTF21aaiapis/AT 2021ahwg, ZTF23aafg-
maz/AT 2023frg, ZTF23abedgfr/AT 2023syt).

7. SN IIb (four total; three spectroscopic, one photometric).
We identify four new candidate members, three spectro-
scopic (ZTF21aajvukh/SN 2021cpi, ZTF21abnvlnj/
SN 2021tyf, ZTF23aarktow/SN 2023myo); one photo-
metric (ZTF18acvgmpx/AT 2018mkc).

8. SN IIn (19 total; 4 spectroscopic, 15 photometric). We
identify 19 new candidate members, 4 spectroscopic
(ZTF21abcjpnm/SN 2021njo, ZTF23aatdcey/SN 2023nof,
ZTF23aatcsou/SN 2023nwe, ZTF23aavtugd/SN 2023
omf); 15 photometric (ZTF18ablqjws/AT 2018mga,
PS20czv/AT 2020jvi, PS20mgo/AT 2020acyu, ZTF20
aclghmy/AT 2020affa, ZTF20acbptqx/2020affg, ZTF20
acngnvf/AT 2020affn, ZTF20acrssoi/AT 2020affz, ZTF20
actkqax/AT 2020afgb, ZTF20acxyrkk/AT 2020afge, ZTF
21abiggqx/AT 2021rjf, ZTF22aatwxrl/AT 2022oym, ZTF
23aaahnss/AT 2023atr, ZTF23aaveoxd/AT 2023ofr, ZTF
23aaufkak/AT 2023nwk, ZTF23aaewyhm/AT 2023gzn).

9. SN Ia-CSM (three total; two spectroscopic, one photo-
metric). We identify three new candidate members, two
spectroscopic (ZTF20acpbboa/SN 2020ywo, ZTF23aa-
tabje/SN 2023ocx); one photometric (ZTF23aaqbyzr/
SN 2023mic).

10. SN Ia-91bg-like (10 total; 7 spectroscopic, 3 photo-
metric). We identify 10 new candidate members,
7 spectroscopic (ZTF20acnznol/SN 2020yje, ZTF21
abmwgow/SN 2021ttg, ZTF21acfigoo/SN 2021aazj,
ZTF21achjwus/SN 2021abpz, ZTF21acjgafq/SN 2021
ackd, ZTF21acmnpqa/SN 2021adpx, ZTF23abhafym/
SN 2023tsw); 3 photometric (ZTF19aavoqbe/AT
2019aatq, ZTF21aaiahsu/AT 2021ahxg, ZTF23aaflptz/
AT 2023gbk).

11. Unknown blue transients (two total; two photometric).
We identify two blue transients of unknown type, zero
spectroscopic; two photometric (ZTF21aabyoxk/
AT 2021ahwu, ZTF21aawzmne/AT 2021ahyj).

Lastly, we aggregate the contextual anomalies:

1. SN candidates in rare ring host galaxy (2). This includes
ZTF18acvgmpx/AT 2018mkc and ZTF21aakjxhg/
AT 2021ahxn.

2. SN Ia in flocculent spiral/merger (1). This includes
ZTF20aazpwen/SN 2020kbl.

3. SN II or SN II candidate in possible elliptical host
galaxy (3). This includes ZTF19abljudj/AT 2019aats,
ZTF20aawlmfu/AT 2020kmj, and ZTF23abcinum/
SN 2023sds.
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Appendix A
Light-curve Features

Our light-curve features are extracted with the lc_fea-
ture_extractorfilter in ANTARES using the light-
curve package. We extract the same features for r and g band,
comprising 62 total features (31 r band, 31 g band). A brief
description of each feature is as follows:

1. feature_amplitude_magn, half amplitude of mag-
nitude (Malanchev et al. 2021);

2. feature_anderson_darling_normal_magn,
unbiased Anderson–Darling normality test statistic for
magnitude (Malanchev et al. 2021);

3. feature_beyond_1_std_magn, fraction of observa-
tions beyond n= 1σm from the mean magnitude 〈m〉
(D’Isanto et al. 2016);

4. feature_beyond_2_std_magn, fraction of observa-
tions beyond n= 2σm from the mean magnitude 〈m〉
(D’Isanto et al. 2016);

5. feature_cusum_magn, a range of cumulative sums
dependent on the number of observations, mean magni-
tude, and magnitude standard deviation (Kim et al. 2014);

6. feature_inter_percentile_range_2_magn,
interpercentile range for p= 0.02, where p is the pth
quantile of the magnitude distribution (Malanchev et al.
2021);

7. feature_inter_percentile_range_10_magn,
interpercentile range for p= 0.10, where p is the pth
quantile of the magnitude distribution; a special case of
the interpercentile range known as the interdecile range
(Malanchev et al. 2021);

8. feature_inter_percentile_range_25_magn,
interpercentile range for p= 0.25, where p is the pth
quantile of the magnitude distribution; a special case of
the interpercetile range known as the interquartile range
(Malanchev et al. 2021);

9. feature_kurtosis_magn, excess kurtosis of mag-
nitude (Malanchev et al. 2021);

10. feature_linear_fit_slope_magn, the slope of
the light curve in the least squares fit of the linear
stochastic model with Gaussian noise described by
observation errors {δi} (Malanchev et al. 2021);

11. feature_linear_fit_slope_sigma_magn, the
error of the slope of the light curve in the least squares
fit of the linear stochastic model with Gaussian noise
described by observation errors {δi} (Malanchev et al.
2021);

12. feature_magnitude_percentage_ra-
tio_40_5_magn, the magnitude 40 to 5 ratio, written in
terms of the magnitude distribution quantile function Q.
(D’Isanto et al. 2016);

13. feature_magnitude_percentage_ra-
tio_20_5_magn, the magnitude 20 to 5 ratio, written in
terms of the magnitude distribution quantile function Q.
(D’Isanto et al. 2016);

14. feature_mean_magn, the nonweighted mean
magnitude;
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15. feature_median_absolute_deviation_magn,
the median of the absolute value of the difference
between magnitude and its median (D’Isanto et al. 2016);

16. feature_percent_amplitude_magn, the maxi-
mum deviation of magnitude from its median (D’Isanto
et al. 2016);

17. feature_median_buffer_range_percenta-
ge_10_magn, the fraction of observations inside Median
(m) ±10× (max(m) –min(m))/2 interval (D’Isanto et al.
2016);

18. feature_median_buffer_range_percenta-
ge_20_magn, the fraction of observations inside Median
(m) ±20× (max(m) –min(m))/2 interval (D’Isanto et al.
2016);

19. feature_percent_difference_magnitude_
percentile_5_magn, ratio of p= fifth interpercentile
range to the median (Malanchev et al. 2021);

20. feature_percent_difference_magnitude_
percentile_10_magn, ratio of p= 10th interpercen-
tile range to the median (Malanchev et al. 2021);

21. feature_skew_magn, skewness of magnitude, G1

(Malanchev et al. 2021);
22. feature_standard_deviation_magn, standard

deviation of magnitude, σm (Malanchev et al. 2021);
23. feature_stetson_k_magn, Stetson K coefficient

described light-curve shape of magnitude (Stetson 1996);
24. feature_weighted_mean_magn, weighted mean

magnitude (Malanchev et al. 2021);
25. feature_anderson_darling_normal_flux,

unbiased Anderson–Darling normality test statistic for
flux (Malanchev et al. 2021);

26. feature_cusum_flux, a range of cumulative sums
dependent on the number of observations, mean flux, and
flux standard deviation (Kim et al. 2014);

27. feature_excess_variance_flux, measure of the
flux variability amplitude (Sánchez et al. 2017);

28. feature_kurtosis_flux, excess kurtosis of flux
(Malanchev et al. 2021);

29. feature_mean_variance_flux, standard deviation
of flux to mean flux ratio (Malanchev et al. 2021);

30. feature_skew_flux, skewness of flux (Malanchev
et al. 2021);

31. feature_stetson_k_flux, Stetson K coefficient
described light-curve shape of flux (Stetson 1996).

The full documentation, including equations, can be found
here: https://docs.rs/light-curve-feature/0.2.2/light_curve_
feature/features/index.html.

Appendix B
Host Galaxy Features

Our host galaxy features and a brief description are as
follows:76

1. gmomentXX, second moment Mxx for g filter stack
detection;

2. gmomentXY, second moment Mxy for g filter stack
detection;

3. gmomentYY, second moment Myy for g filter stack
detection;

4. gmomentR1, first radial moment for g filter stack
detection;

5. gmomentRH, half radial moment (r0.5 weighting) for g
filter stack detection;

6. gPSFFlux, PSF flux from g filter stack detection;
7. gApFlux, aperture flux from g filter stack detection;
8. gKronFlux, Kron (1980) flux from g filter stack

detection;
9. gKronRad, Kron (1980) radius from g filter stack

detection;
10. gExtNSigma, an extendedness measure for the g filter

stack detection based on the deviation between PSF and
Kron (1980) magnitudes, normalized by the PSF
magnitude uncertainty;

11. rmomentXX, second moment Mxx for r filter stack
detection;

12. rmomentXY, second moment Mxy for r filter stack
detection;

13. rmomentYY, second moment Myy for r filter stack
detection;

14. rmomentR1, first radial moment for r filter stack
detection;

15. rmomentRH, half radial moment (r0.5 weighting) for r
filter stack detection;

16. rPSFFlux, PSF flux from r filter stack detection;
17. rApFlux, aperture flux from r filter stack detection;
18. rKronFlux, Kron (1980) flux from r filter stack

detection;
19. rKronRad, Kron (1980) radius from r filter stack

detection;
20. rExtNSigma, an extendedness measure for the r filter

stack detection based on the deviation between PSF and
Kron (1980) magnitudes, normalized by the PSF
magnitude uncertainty;

21. imomentXX, second moment Mxx for i filter stack
detection;

22. imomentXY, second moment Mxy for i filter stack
detection;

23. imomentYY, second moment Myy for i filter stack
detection;

24. imomentR1, first radial moment for i filter stack
detection;

25. imomentRH, half radial moment (r0.5 weighting) for i
filter stack detection;

26. iPSFFlux, PSF flux from i filter stack detection;
27. iApFlux, aperture flux from i filter stack detection;
28. iKronFlux, Kron (1980) flux from i filter stack

detection;
29. iKronRad, Kron (1980) radius from i filter stack

detection;
30. iExtNSigma, an extendedness measure for the i filter

stack detection based on the deviation between PSF and
Kron (1980) magnitudes, normalized by the PSF
magnitude uncertainty;

31. zmomentXX, second moment Mxx for z filter stack
detection;

32. zmomentXY, second moment Mxy for z filter stack
detection;

33. zmomentYY, second moment Myy for z filter stack
detection;

34. zmomentR1, first radial moment for z filter stack
detection;

76 Those from PS1 can be found here: https://outerspace.stsci.edu/display/
PANSTARRS/PS1+Database+object+and+detection+tables.
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35. zmomentRH, half radial moment (r0.5 weighting) for z
filter stack detection;

36. zPSFFlux, PSF flux from z filter stack detection;
37. zApFlux, aperture flux from z filter stack detection;
38. zKronFlux, Kron (1980) flux from z filter stack

detection;
39. zKronRad, Kron (1980) radius from z filter stack

detection;
40. zExtNSigma, an extendedness measure for the z filter

stack detection based on the deviation between PSF and
Kron (1980) magnitudes, normalized by the PSF
magnitude uncertainty;

41. ymomentXX, second moment Mxx for y filter stack
detection;

42. ymomentXY, second moment Mxy for y filter stack
detection;

43. ymomentYY, second moment Myy for y filter stack
detection;

44. ymomentR1, first radial moment for y filter stack
detection;

45. ymomentRH, half radial moment (r0.5 weighting) for y
filter stack detection;

46. yPSFFlux, PSF flux from y filter stack detection;
47. yApFlux, aperture flux from y filter stack detection;
48. yKronFlux, Kron (1980) flux from y filter stack

detection;
49. yKronRad, Kron (1980) radius from y filter stack

detection;
50. yExtNSigma, an extendedness measure for the y filter

stack detection based on the deviation between PSF and
Kron (1980) magnitudes, normalized by the PSF
magnitude uncertainty;

51. i-z, aperture magnitude for the i filter stack detection
minus aperture magnitude for the z filter stack detection;
(iApMag − zApMag);

52. gApMag_gKronMag, aperture magnitude minus the
Kron (1980) magnitude for the g filter stack detection;

53. rApMag_rKronMag, aperture magnitude minus the
Kron (1980) magnitude for the r filter stack detection;

54. iApMag_iKronMag, aperture magnitude minus the
Kron (1980) magnitude for the i filter stack detection;

55. zApMag_zKronMag, aperture magnitude minus the
Kron (1980) magnitude for the z filter stack detection;

56. yApMag_yKronMag, aperture magnitude minus the
Kron (1980) magnitude for the y filter stack detection;

57. 4DCD, a four-dimensional color distance in g− r, r− i,
i− z, and z− y from the PS1 stellar locus, the path traced
by stars in color–color space (Tonry et al. 2012);

58. dist/DLR, transient-host separation (arcseconds) nor-
malized by the DLR.

Appendix C
Feature Correlations

With a large 120-dimensional feature-space, we are likely to
have dependent or correlated features. In this subsection, we
argue that this is an intentional choice that proffers quantitative
benefits rather than suffers from poor design.

We present a Spearman rank-correlation matrix of our
training set in Figure C1. Note that we choose Spearman’s rank
correlation in favor of Pearson correlation because the former
can quantifiably describe linear and nonlinear relationships
(those that can be described with a monotonic function),
whereas the latter describes only linear relationships.
For light-curve features, we use the same set of 31 for both

ZTF-r, ZTF-g bands. Broadly, the features that measure amplitude
or amplitude-adjacent properties are correlated across intrapass-
band and interpassband. However, those that are correlated
intrapassband are measuring different degrees of amplitude or
amplitude variation during an SN’s evolution (e.g., those
measuring the 2nd, 10th, and 25th quantile of the magnitude
distribution). Meanwhile, those that are interpassband correlated
provide utility because of the color information they capture.
Moreover, interpassband correlation vectors are less correlated than
their intrapassband counterparts.
For host galaxy features, it is not only known that some

features are highly correlated with each other; in fact, it has
been leveraged in its use in empirical relationships such as the
fundamental plane for ellipticals (Dressler et al. 1987), the
color–magnitude relation (Bell et al. 2004), and more recently
in cosmological analyses with SNe Ia in regard to host galaxy
stellar mass (Popovic et al. 2021; Kelsey et al. 2023). See, e.g.,
Kelly et al. (2010), Sullivan et al. (2010), Brout & Scolnic
(2021), and Grayling et al. (2024) for additional discussions
regarding the relationship between SN and galaxy properties.
We find that, with the exception of the second moment {g,r,

i,z,y}momentXY, all of our intrapassband host features are
positively correlated, but to varying degrees. However, the same
features interpassband tend to exhibit strong correlations (e.g., {g,
r,i,z,y}momentR1). Easier to see is the appearance of blocks
within the full correlation matrix, which are the strong positive
correlations between brightness and radial moments of host galaxies
in each band. These findings are largely consistent with those found
in Gagliano et al. (2021; see further details in their Section 4).
From a broader viewpoint, the correlation between light-curve

and host galaxy features is poor at best, with the largest positive
Spearman correlation of ρ∼+0.30 existing between the slope of
the light curve in the least squares fit of the linear stochastic
model feature_linear_fit_slope_magn_g,r and
nearly all host galaxy features (with the exception of the second
moment {g,r,i,z,y}momentXY, aperture magnitude i− z
color difference i-z, and normalized DLR dist/DLR). The
most negative Spearman correlation of ρ∼−0.30 relates the
majority of host galaxy features to the nonweighted mean
magnitude feature_mean_magn_{g,r} and the weighted
mean magnitude feature_weighted_mean_magn_{g,r}.
Perhaps the most interesting feature is the normalized DLR
dist/DLR, which is not correlated with any other feature
except for itself, and is the most discriminating host galaxy
feature used in our RFC model (see Figure 6).
Typically, the large number of features used in this work could

fall prey to the curse of dimensionality and would prohibit a brute-
force ( ( ) n time) search across SNe. We circumvent this by (1)
using an RFC for our AD model, which inherently performs
feature selection when building each decision tree in the forest
(where a random subset of max_features features at each split
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is used77), and (2) using dimensionality reduction via PCA for
our ANN similarity search with ANNOY (which itself is natively

( ( )) nlog time) to efficiently search the entire feature-space.

Appendix D
Methods for PROSPECTOR Host Galaxy SED Modeling

We correct photometry by subtracting an extinction correction
using the corrected Schlegel, Finkbeiner, and Davis (SFD) map
(Chiang 2023), provided through the DUSTMAP78 package. To
make these corrections, we assume an average Rv= 3.1. We set

Figure C1. The Spearman rank-correlation matrix for the LAISS databank of extracted ZTF-g, ZTF-r light-curve and PS1-grizy host galaxy features
(see Appendix B), with red corresponding to positively correlated features and blue corresponding to negatively correlated features. Broadly, the light-curve features
that measure amplitude or amplitude-adjacent properties are correlated, more strongly intrapassband vs. interpassband. There exists strong positive correlations
between brightness and radial moments of host galaxies in each band, forming a repeating block structure. From a high level, the correlation between light-curve
features to host galaxy features is poor. Overall, these features are chosen to maximize color and capture related but different information of the supernova light curve
and host galaxy, and to reduce the impact of dependent or irrelevant features.

77 This process effectively reduces the dimensionality because not all features
are used for each tree, helping to avoid overfitting, and is robust to more
irrelevant features.

78 https://github.com/gregreen/dustmaps
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a lower bound on the photometric error in any filter as 15% to
allow for systematic error—which we note is a larger bound
than used in Leja et al. (2019b). We felt it was necessary to
increase the lower bound of uncertainty given our inexact
matched aperture sizes.

The final vector of photometric observations and
uncertainties are used to fit our stellar population synthesis
model. Prospector calls the PYTHON-FSPS79 library to
perform the fits (Conroy et al. 2009; Conroy & Gunn 2010).
The library uses the MIST isochrones to build the models (Choi
et al. 2016; Dotter 2016). We use a Chabrier initial mass
function (IMF; Chabrier 2003) with a delayed-tau stellar
formation history (t× t-texp ). We set the redshift to the
value of the known transient’s redshift. We model dust
attenuation using the Milky Way dust extinction law (Cardelli
et al. 1989), and additionally attenuate young stars with an
extra static dust contribution of 0.5 (for additional details, see
Conroy et al. 2009). We model the contribution from nebular
emission but fix the gas phase metallicity and the gas ionization
parameters (Byler et al. 2017). We use the Gallazzi et al. (2005)
mass–metallicity relationship as a prior on the stellar
metallicity, following its use in Nugent et al. (2023). The final
model is a function of five free parameters. Our priors are
described in Table D1.

Appendix E
Spectra

Here, we describe our observations and data reduction for
the nine spectra whose classifications are used in Table 5.

TDE 2023kvy was discovered on 2023 June 16 23.59 by
Tonry et al. (2023) and classified as a TDE on
2023 September 9.97 (Gomez et al. 2023b) as part of the
FLEET program (Gomez et al. 2020) from a SOAR/Goodman
spectrum acquired on 2023 August 27. LAISS correctly tagged
TDE 2023kvy as an anomaly on 2023 August 26. This
spectrum was acquired in coordination with FLEET, whose
program identified this object independently.

SN 2023sds was discovered on 2023 September 11.38 by
Munoz-Arancibia et al. (2023b) and classified by us as an SN II
on 2024March 24.10 (Aleo 2024) from a Lick 3 m/KAST
spectrum acquired by us on 2023 October 22.19. LAISS
correctly tagged SN 2023sds as an anomaly on
2023 September 24.
SN 2023nof was discovered on 2023 July 23.34 by Munoz-

Arancibia et al. (2023c) and originally classified as an SN II on
2023 July 27.34 by Lidman et al. (2023) from an Australian
National University (ANU) 2.3 m/WiFeS spectrum acquired
on 2023 July 26. Later, we reclassified as an SN IIn on
2023 October 6.77 from an ANU 2.3 m/WiFeS spectrum
acquired by us on 2023 September 29 (Aleo et al. 2023).
LAISS correctly tagged SN 2023nof as an anomaly on
2023 September 24.
SN 2023nwe was discovered on 2023 July 24.43 by Cham-

bers et al. (2023) and classified by us as an SN IIn on
2023 September 11.69 (Davis et al. 2023) from a Lick 3 m/
KAST spectrum acquired by us on 2023 September 6.30.
LAISS correctly tagged SN 2023nwe as an anomaly on
2023 August 28.
SN 2023omf was discovered on 2023 July 31.35 by Freml-

ing (2023a) and classified by us as an SN IIn on
2024March 24.15 (Aleo 2024) from a Lick 3 m/KAST
spectrum acquired by us on 2023 October 22.11. LAISS
correctly tagged SN 2023nwe as an anomaly on
2023 October 10.
SN 2023ocx was discovered on 2023 July 20.22 by Fremling

(2023b) and classified as an SN Ia-CSM by us on
2023 October 2.52 (Angus & Aleo 2023) from an NOT/
ALFOSC spectrum acquired by us on 2023 September 19.
LAISS correctly tagged SN 2023ocx as an anomaly on
2023 August 28.
SN 2023otw was discovered on 2023 July 29.46 by Fremling

(2023c) and classified as an SN II on 2023 November 7.56
(Gomez et al. 2023c) as part of the FLEET program (Gomez
et al. 2020) from a SOAR/Goodman spectrum acquired on
2023 October 11. This spectrum was acquired in coordination
with FLEET, whose program identified this object indepen-
dently. LAISS incorrectly tagged SN 2023otw as an anomaly
on 2023 September 20.
SN 2023swf was discovered on 2023 September 16.25 by

Fremling (2023d) and classified as an SN II on
2023 October 4.72 (Ayala et al. 2023) from a ESO-New
Technology Telescope (NTT) /EFOSC2-NTT (ePESSTO+)
spectrum acquired on 2023 October 04.21. We retained the
original SN II classification from an ANU 2.3 m/WiFeS
spectrum acquired by us on 2023 October 11. LAISS incor-
rectly tagged SN 2023swf as an anomaly on 2023 October 9.
SN 2023sed was discovered on 2023 September 8.35 by

Munoz-Arancibia et al. (2023b) and classified by us as an SN Ia
on 2023 October 2.55 (Angus 2023) from an NOT/ALFOSC
spectrum acquired by us on 2023 September 28. LAISS
incorrectly tagged SN 2023sed as an anomaly on
2023 September 24.
To reduce the Kast data, we used the UCSC Spectral

Pipeline80 (Siebert et al. 2020), a custom data-reduction
pipeline based on procedures outlined by Foley et al. (2003),
Silverman et al. (2012), and references therein. The two-
dimensional spectra were bias-corrected, flat-field corrected,

Table D1
PROSPECTOR Parameter Priors

Parameter Prior Distribution Notes

mass ( ) e elog 1 6, 1 13 PROSPECTOR samples masses formed; we
report stellar masses

logzsol ( ) -2, 0.4 Limited by availability of MIST iso-
chronesa (Choi et al. 2016)

dust2 ( ) 0.0, 4.0 L
tage ( ) 0.0, 13.8 Age of stellar population
tau ( )log 0.01, 10 L

IMF δ(1) Chabrier IMF
Dust Type δ(1) Milky Way extinction law
SFH δ(4) Delayed-Tau

Notes. We describe our model, initial parameter estimates, and priors below.
We broadly follow the suggestions of model complexity following the
procedure of Nugent et al. (2023). Below, ( ) a b, is the top hat distribution on
the interval (a, b). δ means that the parameter is always fixed.
a The MIST models developed for ancient, metal-poor populations from
−4.0 � [Z/H] < −2.0 from Choi et al. (2016) are not included in FSPS.

79 https://github.com/dfm/python-fsps 80 https://github.com/msiebert1/UCSC_spectral_pipeline

40

The Astrophysical Journal, 974:172 (49pp), 2024 October 20 Aleo et al.

https://github.com/dfm/python-fsps
https://github.com/msiebert1/UCSC_spectral_pipeline


adjusted for varying gains across different chips and amplifiers,
and trimmed. One-dimensional spectra were extracted using the
optimal algorithm (Horne 1986). The spectra were wavelength
calibrated using internal comparison-lamp spectra with linear
shifts applied by cross-correlating the observed night-sky lines
in each spectrum to a master night-sky spectrum. Flux
calibration and telluric correction were performed using
standard stars at a similar airmass to that of the science
exposures. We combine the sides by scaling one spectrum to
match the flux of the other in the overlap region and use their
error spectra to correctly weight the spectra when combining.
More details of this process are discussed elsewhere (Foley
et al. 2003; Silverman et al. 2012; Siebert et al. 2020; Davis
et al. 2023).

Data obtained with ALFOSC, GOODMAN, and WiFeS
were reduced using standard techniques, which included
correction for bias, overscan, and flat-field. Spectra of
comparison lamps and standard stars acquired during the same
night and with the same instrumental setting have been used for

the wavelength and flux calibrations, respectively. We
employed standard IRAF commands to extract all spectra.
A table summarizing all nine spectroscopic follow-up

observations follows in Table E1.

Appendix F
Tables

In Table F1, we report the following previously undiscov-
ered SNe to TNS from ANN= 8 nearest neighbor matches to
all SNe classes. Bold text indicates an object we consider a
likely anomaly. Italicized text indicates an object that appeared
more than once from the ANN= 8 search (e.g., ZTF18abmo-
few/2018mfo was uniquely found seven times during the
ANN= 8 search). These objects are listed for completeness for
each match shown. Only classes for which at least one
discovery was made are shown.
In Table F2, we report the following previously undiscov-

ered SNe to TNS from an exhaustive search of our databank.

Table E1
Spectroscopic Observation Details

IAU Name Obs Date MJD Estimated Phase Telescope Instrument
(UT) (days)

2023kvy 2023-08-27 60183 +65 SOAR GOODMAN
2023sds 2023-10-22 60239 +34 Lick 3 m KAST
2023nof 2023-09-29 60196 +43 ANU 2.3 m WiFeS
2023nwe 2023-09-06 60193 +14 Lick 3 m KAST
2023omf 2023-10-22 60239 +52 Lick 3 m KAST
2023ocx 2023-09-19 60206 +33 NOT ALFOSC
2023otw 2023-10-11 60228 +65 SOAR GOODMAN
2023swf 2023-10-11 60228 +7 ANU 2.3 m WiFeS
2023sed 2023-09-28 60215 +4 NOT ALFOSC

Note. Log of spectroscopic observations for TDE 2023kvy, SN 2023sds, SN 2023nof, SN 2023nwe, SN 2023omf, SN 2023ocx, SN 2023otw, SN 2023swf,
SN 2023sed.

41

The Astrophysical Journal, 974:172 (49pp), 2024 October 20 Aleo et al.



Table F1
84 Previously Undiscovered/Reported SNe Found by ANN = 8 Search

ZTF ID IAU Name Possible Class Reference SNe ANN Remarks

Reference Class: SN Ia (1098 objects)
ZTF18achdfqm 2018mfl SN Ia? 2020vnl 4 Host-z = 0.095. Peak Mabs ∼ −18.8 mag.
ZTF18abnzney 2018mfm SN Ia? 2020whs 1 L
ZTF21abcluco 2021ahvn SN Ia? ” 3 L
ZTF17aadqidc 2021ahvo SN I? ” 5 Host-z = 0.087. Peak Mabs ∼ −18.6 mag.
ZTF18acpegrg 2018mfn SN Ia? 2020wts 2 Host-z = 0.132. Peak Mabs ∼ −19.6 mag.
ZTF18abmofew 2018mfo SN Ia? 2020xyh 2 Well sampled.
ZTF19aaaamwp 2018mfp SN Ia? 2020xit 5 Host-z = 0.124. Peak Mabs ∼ −19.1 mag.
ZTF21aamssts 2021ahvp SN Ia? 2020zcw 5 L
ZTF21abvjcnb 2021ahvq SN I? ” 7 L
ZTF18acbvtjm 2018mfq SN? 2020zbr 1 L
ZTF20aconebc 2020afeq SN? ” 5 L
ZTF21aamssts 2021ahvp SN Ia? 2020abrg 1 L
ZTF18abrxvpd 2018mfr SN Ia? ” 4 L
ZTF20adadbsm 2021ahvr SN I? 2020acmi 5 L
ZTF20adadbsm 2021ahvr SN I? 2020acvz 4 L
ZTF21aalgilf 2021ahvs SN Ia? 2021ab 8 L
ZTF21aarpnxt 2021ahvt SN Ia? 2021Y 1 L
ZTF18aczerlj 2018mfs SN II/IIP? 2021by 2 Well sampled. Host-z = 0.066. Peak Mabs ∼ −17.7 mag.
ZTF18acbzvzm 2018mft SN Ia? 2021vt 1 Host-z = 0.106. Peak Mabs ∼ −19.5 mag.
ZTF21aamssts 2021ahvp SN Ia? 2021apk 8 L
ZTF18acbwdym 2018mfu SN Ia? 2021arr 2 Host-z = 0.091. Peak Mabs > −19.0 mag.
ZTF18acbwgmi 2018mfv SN Ib/c? 2021buy 5 Tagged by AD model.
ZTF19abxsehw 2019aata SN I? 2021eij 3 L
ZTF20acvdqsy 2020afer SN Ia? ” 7 L
ZTF18abokvkt 2018mfw SN Ia? 2021gfi 3 Faint host.
ZTF19aaviczu 2019aatb SN Ia? 2021iok 2 Host-z = 0.156. Mabs ∼ −19.6 mag.
ZTF18abtgmuw 2018mfx SN Ia? ” 8 Faint host.
ZTF18abnvnqb 2018mfy SN Ia? 2021lea 4 Well sampled. Faint host.
ZTF21aalimvt 2021ahvu SN? 2021mhm 2 No decline.
ZTF21aadruss 2021ahvv SN Ia? 2021mla 4 L
ZTF21aaxswjy 2021ahvw SN Ia? 2021nya 5 Faint host.
ZTF21aajtfas 2021ahvx SN Ia? 2021oia 1 Well sampled.
ZTF21aaswuea 2021ahvy SN Ia? 2021nsh 7 Host-z = 0.134. Mabs ∼ −19.0 mag.
ZTF21aajtfas 2021ahvx SN Ia? 2021tvc 5 Well sampled.
ZTF18abmofew 2018mfo SN Ia? 2021uwa 5 Well sampled.
ZTF20acuyxki 2020afes SN Ia? 2021uvx 1 Host-z = 0.121. Mabs ∼ −19.2 mag.
ZTF18abmofew 2018mfo SN Ia? 2021vku 4 Well sampled.
ZTF18abtjrbt 2018mfz TDE? 2021vnv 7 Blue. SALT3 x1 = +3.00. Host-z = 0.065. Mabs ∼ −18.4 mag.
ZTF18ablqjws 2018mga SN II/IIn? 2021wym 3 Well sampled. Tagged by AD model.
ZTF20acjoazg 2020afet SN Ia? 2021xoh 6 Well sampled.
ZTF20acthdtq 2020afeu SN Ia? 2021wwc 1 Faint host.
ZTF18acbzvzm 2018mft SN Ia? 2021xpk 1 Host-z = 0.106. Peak Mabs ∼ −19.5 mag.
ZTF18abmofew 2018mfo SN Ia? 2021ycy 5 Well sampled.
ZTF18abuioue 2018mgb SN Ia? ” 2 No visible host.
ZTF20acjoazg 2020afet SN Ia? 2021ysn 2 Well sampled.
ZTF18acvgwfq 2018mgc SN Ia? 2021aafd 1 Fast decline.
ZTF18acbwdym 2018mfu SN Ia? 2021aaem 2 Host-z = 0.091. Peak Mabs > −19.0 mag.
ZTF18abwhsnx 2018mgd SN Ib/c? 2021aaht 7 Tagged by AD model.
ZTF18abwhsnx 2018mgd SN Ib/c? 2021abds 2 Tagged by AD model.
ZTF18abmofew 2018mfo SN Ia? 2021abaq 7 Well sampled.
ZTF21abdhwhj 2021ahvz SN? 2021abpc 4 L
ZTF21aamssts 2021ahvp SN Ia? 2021acgo 5 L
ZTF18acpefbb 2018mge SN Ia? 2017baq 4 Host-z = 0.135. Peak Mabs ∼ −19.5 mag.
ZTF21aaualdi 2021ahwa SLSN? 2021acgu 7 No visible host. FLEET = 46%(41%) SLSN-I(II). Tagged by AD model.
ZTF18absljwl 2018mgf SN II? 2021acfg 6 No rise.
ZTF18acbzvzm 2018mft SN Ia? 2021acwr 1 Host-z = 0.106. Peak Mabs ∼ −19.5 mag.
ZTF18acefgee 2018mgg SN I? 2021aczd 1 L
ZTF21aabvpub 2021ahwb SN Ia? ” 7 L
ZTF21aayngti 2021ahwc SN Ia? ” 8 Host-z = 0.142. Peak Mabs ∼ −19.1 mag.
ZTF21abcluco 2021ahvn SN Ia? 2021adeq 2 L
ZTF18acbvijf 2018mgh SN Ia? ” 5 L
ZTF18abuioue 2018mgb SN Ia? 2021aden 6 No visible host.
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Table F1
(Continued)

ZTF ID IAU Name Possible Class Reference SNe ANN Remarks

ZTF19aacislx 2019aatc SN Ia? 2021aefa 1 Faint host.
ZTF21aamfdzo 2021ahwd SN Ia? 2022is 8 L
ZTF21abghbue 2021ahwe SN Ia? 2022aby 4 Faint host.
ZTF18acwward 2018mgi SN Ia? 2022bcc 7 Faint host.
ZTF20acpgnmw 2020afev TDE? 2022ccz 7 Blue. Nuclear. FLEET = 63% TDE.
ZTF18acbvtjm 2018mfq SN? 2022cmd 3 L
ZTF21aabvpub 2021ahwb SN Ia? 2022csq 3 L
ZTF18abuluko 2018mgj SN Ia? ” 4 No decline.

Reference Class: SN II (243 objects)
ZTF18ablqjws 2018mga SN II/IIn? 2021lmp 7 Well sampled. Tagged by AD model.
ZTF20acyybza 2021ahwf SN II? 2018grp 5 Well sampled. Faint host.
ZTF20acbiwfi 2020afew SLSN? 2019cob 4 FLEET = 44% SLSN-II.
ZTF20aczhbki 2020afex SLSN? ” 5 Host-z = 0.573. Peak Mabs ∼ −23.1 mag.
ZTF20acyzxse 2020afey SN Ia? ” 7 L
ZTF18abkhqww 2018mgk SN II/IIP? 2020tab 2 Well sampled. Faint host.
ZTF18acandwv 2018mgl SN Ia? 2020tzs 1 L
ZTF18aczerlj 2018mfs SN II/IIP? 2020vcp 5 Well sampled. Host-z = 0.066. Peak Mabs ∼ −17.7 mag.
ZTF21aaiapis 2021ahwg SN Ib/c? 2021adcw 4 Tagged by AD model.
ZTF18aaxckpt 2018mgm SN? 2020yae 7 L
ZTF18aczerlj 2018mfs SN II/IIP? 2020acjg 3 Well sampled. Host-z = 0.066. Peak Mabs ∼ −17.7 mag.
ZTF20acyydhn 2020afez SN II? 2021crx 3 Host-z = 0.021. Peak Mabs ∼ −15.3 mag.
ZTF21abasbpe 2021ahwh SN IIn/SLSN? 2021uuz 4 Faint host. No decline. FLEET = 61% SLSN-II.
ZTF18abmofew 2018mfo SN Ia? 2021yky 3 L
ZTF21aajtfas 2021ahvx SN Ia? 2021aaev 8 Well sampled.

Reference Class: SN IIn (59 objects)
ZTF18ablqjws 2018mga SN II/IIn? 2021lft 1 Well sampled. Tagged by AD model.
ZTF19aasalud 2019aatd SN Ia? 2021acnp 6 L

Reference Class: SN Ia-91T-like (37 objects)
ZTF21aalvdng 2021ahwi SN Ia? 2022cvt 6 No decline.
ZTF21aamfdzo 2021ahwd SN Ia? 2020veg 7 L
ZTF18abokvkt 2018mfw SN Ia? 2020wze 8 Faint host.
ZTF20aclghmy 2020affa SN IIn? 2021hj 5 SALT3 x1 = +3.00. Host-z = 0.136. Peak Mabs ∼ −19.4 mag.

Reference Class: SN Ib (25 objects)
ZTF18acbvijf 2018mgh SN Ia? 2021lax 5 L
ZTF18abwhsnx 2018mgd SN Ib/c? 2021riw 6 Tagged by AD model.
ZTF18acrdqvy 2018mgn SN II? 2021aghp 3 Host-z = 0.049. Peak Mabs ∼ −17.0 mag.
ZTF19aabblsx 2019aate SN Ia? ” 7 L

Reference Class: SN IIb (21 objects)
ZTF18aaiuynw 2018mgo SN Ia? 2018hqu 3 L
ZTF18acenyrb 2018mgp SN I? 2020abkp 4 L

Reference Class: SN Ic (21 objects)
ZTF21abvatnb 2021ahwj SN Ia? 2021lei 3 L
ZTF21aagyuvz 2021ahwk SN I? ” 8 L
ZTF19aafmxxd 2019aatf SN Ia? 2021acwh 2 Host-z = 0.095. Peak Mabs ∼ −19.1 mag.
ZTF21aajtfas 2021ahvx SN Ia? 2021adgu 2 Well sampled.
ZTF ID IAU Name Possible class. Reference SNe ANN Remarks

Reference Class: TDE (20 objects)
ZTF20acqyjih 2020affb SN Ia? 2021lo 7 Nuclear.
ZTF21aasdcgt 2021ahwl TDE? 2021gje 6 FLEET = 60% TDE. Nuclear, blue. Tagged by AD model.
ZTF21acbgyai 2021ahwm SN Ia? 2022rz 2 Nuclear.

Reference Class: SN IIP (14 objects)
ZTF18absljwl 2018mgf SN II? 2020tet 7 No rise.

Reference Class: SLSN-II (14 objects)
ZTF18abuioue 2018mgb SN Ia? 2020vws 7 No visible host.
ZTF21aajtfas 2021ahvx SN Ia? 2021fmu 4 Well sampled.
ZTF20acllkua 2020affc SN Ia? 2022akb 1 L
ZTF18aajmlnp 2019aatg SN Ia? ” 1 Host-z = 0.117. Peak Mabs ∼ −19.1 mag.
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Table F1
(Continued)

ZTF ID IAU Name Possible Class Reference SNe ANN Remarks

Reference Class: SN Ic-BL (14 objects)
ZTF21aalimtb 2021ahwn SN I? 2021otc 3 L.

Reference Class: SLSN-I (11 objects)
ZTF18abuioue 2018mgb SN Ia? 2020xga 4 No visible host.
ZTF20acteioa 2020affd SN Ia? 2021rwz 3 Faint host.
ZTF18abwfhqb 2018mgq SN II? 2021ybf 5 Faint host.
ZTF19aaapmth 2018mgr SN Ia? ” 6 Faint host.
ZTF18abnzney 2018mfm SN Ia? 2021ybf 7 L

Reference Class: SN Ia-pec (10 objects)
ZTF19aaptarf 2019aath SN Ia? 2021wwu 5 L
ZTF18acvgehz 2018mgs SN Ia? 2022bbt 6 Host-z = 0.120. Peak Mabs ∼ −19.4 mag.

Reference Class: AGN (seven objects)
ZTF18abmofew 2018mfo SN Ia? 2021swi 4 Well sampled.

Reference Class: SN Ibn (seven objects)
ZTF18acbwdym 2018mfu SN Ia? 2021bbv 2 Host-z = 0.091. Peak Mabs > −19.0 mag.
ZTF20acbiwfi 2020afew SLSN? ” 7 FLEET = 44% SLSN-II.

Reference Class: SN (five objects)
ZTF18acueeoo 2018mgt SN II? 2020uts 6 Host-z = 0.085. Peak Mabs ∼ −18.2 mag. Tagged by AD model.

Reference Class: SN IIn-pec (one object)
ZTF20aclghmy 2020affa SN IIn? 2021vlu 5 SALT3 x1 = +3.00. Host-z = 0.136. Peak Mabs ∼ −19.4 mag.

Notes. Bold text indicates an object we consider a likely anomaly. Italicized text indicates an object that appeared more than once from the ANN = 8 search. This is
explained in the text preceding the table. Parentheses indicate the same object in the row above for that column.
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Table F2
241 Previously Undiscovered SNe Found by Exhaustive Search

ZTF ID IAU Name
Possible
Class Remarks

ZTF18aabteyx 2018mgu SN? SN in template thumbnail.
ZTF18aajgowk 2018mgw SN Ib/c? Tagged by AD model.
ZTF18aajkgtr 2018mgx SN Ia? L
ZTF18aamdjfh 2018mgv SN? SN in template thumbnail.
ZTF18aaqzdge 2018mgy SN? No rise.
ZTF18aathofv 2018mgz SN Ia? No rise.
ZTF18aawlezqa 2018mha SN II? L
ZTF18aawonvg 2018mhb SN Ia? L
ZTF18aaxmjit 2018mhc SN? No rise.
ZTF18aaxqwnd 2018mhd SN II? L
ZTF18aaxzhzf 2018mhe SN Ia? L
ZTF18aayyedm 2018mhf SN Ia? L
ZTF18abhttmr 2018mhg SN? No visible host.
ZTF18abiitmq 2018mhh SN II? Long (∼70 day) rise. Can-

didate member of long-
rising SN II class. No
decline.

ZTF18abjicev 2018mhi SN II? Lasts ∼200 days.
ZTF18abkmfaj 2018mhj SN II? Long (∼50 day) rise. Can-

didate member of long-
rising SN II class. No
decline.

ZTF18ablwatx 2018mhk SN I? Edge-on host galaxy.
ZTF18abnysyy 2018mhl SN Ia? Well sampled.
ZTF18abolrnr 2018mhm SN Ia? L
ZTF18abpucqe 2018mhn SN? L
ZTF18abrlhnm 2018mho SN Ia? Faint host.
ZTF18abrlurr 2018mhp SN I? L
ZTF18abrwqti 2018mhq SN Ia? L
ZTF18abscetq 2018mhr SN Ia? L
ZTF18abscghc 2018mhs SN Ia? L
ZTF18absdgly 2018mht SN I? Faint host.
ZTF18abshfmb 2018mhu SN II? Faint host.
ZTF18abskrcm 2018mhv SN Ia? L
ZTF18absljlb 2018mhw SN

II/IIP?
Faint host.

ZTF18absllcn 2018mhx SN Ia? L
ZTF18absloog 2018mhy SN Ia? L
ZTF18absmsbm 2018mhz SN Ia? Faint host.
ZTF18absopva 2018mia SN? L
ZTF18absqohp 2018mib SN Ia? No visible host.
ZTF18absquza 2018mic SN I? Edge-on host galaxy.
ZTF18absrljp 2018mid SN Ia? L
ZTF18abtflop 2018mie SN Ia? L
ZTF18abtigie 2018mif SN? L
ZTF18abtlxae 2018mig SN Ia? L
ZTF18abtmnha 2018mih SN Ia? L
ZTF18abtnwpa 2018mii SN Ia? L
ZTF18abtotsq 2018mij SN Ia? No visible host.
ZTF18abtpgms 2018mik SN? L
ZTF18abtptey 2018 mil SN? L
ZTF18abtqceg 2018mim SN Ia? Faint host.
ZTF18abtqidt 2018 min SN Ia? L
ZTF18abuahio 2018mio SN Ia? No visible host. Tagged by

AD model.
ZTF18abubjqi 2018mip SN Ia? L
ZTF18abufwxs 2018miq SN I? Faint host. No decline.
ZTF18abuvqgo 2018mir SN Ia? L
ZTF18abuxgmk 2018mis SN? L
ZTF18abuyomg 2018mit SN Ia? L
ZTF18abvctat 2018miu SN? No visible host.
ZTF18abvexiz 2018miv SN Ia? Faint host.
ZTF18abvrgjc 2018miw SN Ia? Faint host.

Table F2
(Continued)

ZTF ID IAU Name
Possible
Class Remarks

ZTF18abvywcl 2018mix SN Ia? Faint host.
ZTF18abwblyl 2018miy SN Ia? L
ZTF18abwqgsc 2018miz SN Ia? L
ZTF18abwsfdy 2018mja SN II/

IIP?
Faint host.

ZTF18abxfott 2018mjb SN Ia? Faint host.
ZTF18abxthsc 2019aati SN I? L
ZTF18acajloc 2018mjc SN? Faint host. Tagged by AD

model.
ZTF18acbvgtj 2018mjd SN? L
ZTF18acbvzsi 2018mje SN Ia? Faint host.
ZTF18acbwele 2018mjf SN? No rise.
ZTF18acbxrft 2018mjg SN Ia? L
ZTF18acbzvfj 2018mjh SN? Faint host.
ZTF18acbzvow 2018mji SN? L
ZTF18acchzlc 2018mjj SN? Faint host.
ZTF18accjwbc 2018mjk SN? Edge-on host galaxy.
ZTF18accjyim 2018mjl SN? Faint host.
ZTF18acckcfr 2018mjm SN? L
ZTF18accndre 2018mjn SN? Faint host.
ZTF18accvkpt 2018mjo SN Ia? L
ZTF18accwild 2018mjp SN? Faint host.
ZTF18acegbeo 2018mjq SN Ia? Edge-on host galaxy.
ZTF18acehtvv 2018mjr SN? L
ZTF18aceitqw 2018mjs SN? Faint host.
ZTF18acevgyz 2018mjt SN I? Tagged by AD model.
ZTF18achdign 2018mju SN? L
ZTF18acmyfyu 2018mjv SN Ia? L
ZTF18acmymdx 2018mjw SN? L
ZTF18acnmicp 2018mjx SN? L
ZTF18acnneyt 2018mjy SN II/

IIP?
Faint host.

ZTF18acnnfqr 2018mjz SN Ia? Host-z = 0.171. Peak
Mabs ∼ −19.4 mag.

ZTF18acqzakw 2018mka SN Ia? Faint host.
ZTF18acurkik 2018mkb CC SN? SALT3 x1 = +3.00. Host-

z = 0.068. Peak
Mabs ∼ −17.9 mag.

ZTF18acvgmpx 2018mkc SN II? Host-z = 0.069. Peak
Mabs ∼ −17.6 mag. In
ring galaxy?

ZTF18acvwkvc 2018mkd TDE? FLEET = 40% TDE, 27%
SLSN-II.

ZTF18acwtrfe 2018mke SN? L
ZTF18acwworr 2018mkf SN II? Host-z = 0.092. Peak

Mabs ∼ −18.3 mag.
ZTF18acwyauj 2018mkg SN? L
ZTF18acyxxen 2018mkh SN Ia? L
ZTF18aczzvtw 2018mki SN? Faint host.
ZTF18aczzwjf 2018mkj SN? Faint host.
ZTF18adaksjk 2018mkk SN? Faint host.
ZTF18adazgwk 2018mkl SN? L
ZTF18adcbkiq 2018mkm SN? L
ZTF19aaaefkt 2018mkn SN Ia? L
ZTF19aaaeuxz 2019aatj SN I? L
ZTF19aaafmjk 2019aatk SN II? Host-z = 0.062. Peak

Mabs ∼ −17.6 mag.
ZTF19aaafotc 2019aatl SN Ia? Host-z = 0.137. Peak

Mabs ∼ −19.6 mag.
ZTF19aaajbre 2018mko SN Ia? L
ZTF19aaapdum 2019aatm SN Ia? Host-z = 0.171. Peak

Mabs > −19.6 mag.
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Table F2
(Continued)

ZTF ID IAU Name
Possible
Class Remarks

ZTF19aacwiqw 2019aatn SN Ia? L
ZTF19aacyrdk 2019aato SN Ia? Faint host.
ZTF19aadgceq 2019aatp SN Ia? L
ZTF19aavoqbe 2019aatq SN Ia-

91bg-
like?

Host-z = 0.13. SALT3
c = +0.3. Peak
Mabs ∼ −18.8 mag.

ZTF19abiinmg 2019aatr SN Ia? L
ZTF19abljudj 2019aats SN II? In elliptical galaxy?
ZTF20abribtl 2020affe SN? L
ZTF20abztvjb 2020afff SN II/

IIP?
Red. Lasted ∼80 days.

Faint host.
ZTF20acbptqx 2020affg SN IIn? Faint host. FLEET = 52%

SN II, 31% SLSN-II.
ZTF20acfamrq 2020affh SN II? L
ZTF20achofuu 2021ahwo SN Ia? L
ZTF20acipeqz 2020affi SN II? L
ZTF20ackjgbt 2020affj SN I? Faint host.
ZTF20acmsesb 2020affk SN II? L
ZTF20acnbhsq 2020affl SN Ia? L
ZTF20acnexgl 2020affm SN Ia? Host-z = 0.118. Peak

Mabs ∼ −19.2 mag.
ZTF20acngnvf 2020affn SN IIn? Faint host. Lasted 125 days.

FLEET = 70% SN II.
ZTF20acnviuc 2020affo SN Ia? L
ZTF20acnvoql 2020affp SN Ia? L
ZTF20acnzpsj 2020affq SN Ia? L
ZTF20acnztaa 2020affr SN II/

IIn?
Faint host.

ZTF20acnzzlo 2020affs SN Ia? L
ZTF20acotzgs 2020afft SN Ia? Faint host.
ZTF20acpggpe 2020affu SN Ia? L
ZTF20acpskkx 2020affv SN? L
ZTF20acpxtkj 2020affw SN Ia? L
ZTF20acpzjsk 2020affx TDE? Blue. Nuclear.

FLEET = 40% SN II.
ZTF20acrktth 2020affy SN Ia? L
ZTF20acrssoi 2020affz SN IIn? Faint host. FLEET = 74%

SN II.
ZTF20acsfdpi 2020afga SN? L
ZTF20actkqax 2020afgb SN IIn/

SLSN?
Faint host. FLEET = 40%

SN II, 36% SLSN-II.
Tagged by AD model.

ZTF20acuhlsk 2020afgc SN Ia? L
ZTF20acusjnl 2020afgd SN Ia? Faint host.
ZTF20acxyrkk 2020afge SN IIn/

SLSN?
Faint host. FLEET = 50%

SN II. Tagged by AD
model.

ZTF20acyroio 2021ahwp SLSN? Host-z = 0.545. Peak
Mabs ∼ −22.8 mag.

ZTF21aaahiba 2021ahwq SN Ia? L
ZTF21aaaolli 2021ahwr SN Ia? L
ZTF21aaaxnnv 2021ahws SN I? L
ZTF21aaayfre 2021ahwt SN Ia? L
ZTF21aabyoxk 2021ahwu TDE/

SN IIn?
Blue. Unclear host. Possible

host-z = 0.14.
ZTF21aacuckk 2021ahwv SN I? Host-z = 0.094. Peak

Mabs ∼ −19.0 mag.
ZTF21aadplfw 2021ahww SN Ia? L
ZTF21aadrrbf 2021ahwx SN Ia? L
ZTF21aadruuo 2021ahwy SN II? Edge-on host galaxy.
ZTF21aadsosc 2021ahwz SN? No decline.
ZTF21aaekerb 2021ahxa SN? L
ZTF21aaewjmq 2021ahxb SN II? L

Table F2
(Continued)

ZTF ID IAU Name
Possible
Class Remarks

ZTF21aagkynz 2021ahxc SN? L
ZTF21aagtspb 2021ahxd SN I? L
ZTF21aagywat 2021ahxe SN Ia? Faint host.
ZTF21aahhegg 2021ahxf SN Ia? L
ZTF21aaiahsu 2021ahxg SN Ia-

91bg-
like?

Host-z = 0.088. SALT3
c = +0.3. Peak
Mabs ∼ −18.8 mag.

ZTF21aaiaqvc 2021ahxh SN Ia? L
ZTF21aaiqdbp 2021ahxi SN Ia? L
ZTF21aaiqdkm 2021ahxj SN Ia? L
ZTF21aaiqifj 2021ahxk SN Ia? No visible host.
ZTF21aaitqpu 2021ahxl SN I? Faint host.
ZTF21aakitay 2021ahxm SN Ia? L
ZTF21aakjxhg 2021ahxn SN Ia? Ring host galaxy?
ZTF21aalgiex 2021ahxo SN Ia? L
ZTF21aalimxp 2021ahxp SN Ib/c? Tagged by AD model.
ZTF21aantmww 2021ahxq SN II/

IIP?
L

ZTF21aaoijsw 2021ahxr SN Ia? L
ZTF21aapjzyl 2021ahxs SN Ia? L
ZTF21aaqgmfz 2021ahxt SN Ia? L
ZTF21aarbdjl 2021ahxu SN Ia? L
ZTF21aardvtr 2021ahxv SN Ia? L
ZTF21aarffuz 2021ahxw SN I? L
ZTF21aarhnil 2021ahxx SN I? L
ZTF21aarnxig 2021ahxy SN Ia? Faint host.
ZTF21aarspet 2021ahxz SN Ia? L
ZTF21aarvysz 2021ahya SN? No visible host.
ZTF21aasjilo 2021ahyb SN? L
ZTF21aasjlxg 2021ahyc SN Ia? L
ZTF21aasttsm 2021ahyd SN Ia? L
ZTF21aatbbjt 2021ahye SN Ia? L
ZTF21aathago 2021ahyf SN II/

IIP?
Faint host.

ZTF21aatwoxq 2021ahyg SN I? L
ZTF21aavdtcy 2021ahyh SN I? L
ZTF21aawlnxl 2021ahyi SN Ia? L
ZTF21aawzmne 2021ahyj SN Ia? Blue. Off-nuclear. SALT3

x = +3.00, c = −0.27.
ZTF21aaxslhj 2021ahyk SN? L
ZTF21aaxsqht 2021ahyl SN Ia? L
ZTF21aaxszmx 2021ahym SN Ia? Host-z = 0.12. Peak

Mabs ∼ −19.0 mag.
ZTF21aayebcv 2021ahyn SN Ia? Tagged by AD model.
ZTF21aayebwx 2021ahyo SN Ia? Host-z = 0.148. Peak

Mabs ∼ −19.7 mag.
ZTF21aayfqtb 2021ahyp SN Ia? L
ZTF21aaynwgp 2021ahyq SN Ia? L
ZTF21aayotul 2021ahyr SN Ia? L
ZTF21aazqpgb 2021ahys SN Ia? L
ZTF21aazzciu 2021ahyt SN? L
ZTF21abamprv 2021ahyu SN II? L
ZTF21abbwxbf 2021ahyv SN Ia? L
ZTF21abcnhrd 2021ahyw SN Ia? L
ZTF21abcopnn 2021ahyx SN Ia? L
ZTF21abcothc 2021ahyy SN Ia? L
ZTF21abcsifi 2021ahyz SN? Faint host.
ZTF21abcskis 2021ahza SN? L
ZTF21abcsqmp 2021ahzb SN? L
ZTF21abcudam 2021ahzc SN Ia? L
ZTF21abejeyz 2021ahzd SN? No decline.
ZTF21abenlno 2021ahze SN? Faint host.
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We do not include objects discovered previously through our
ANN search (see Table F1).
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Table F2
(Continued)

ZTF ID IAU Name
Possible
Class Remarks

ZTF21abezpqc 2021ahzf SN II/
IIP?

L

ZTF21abfreru 2021ahzg SN Ia? L
ZTF21abfspnh 2021ahzh SN Ia? L
ZTF21abhsttv 2021ahzi SN Ia? Faint host.
ZTF21abhzape 2021ahzj SN Ia? Host-z = 0.145. Peak

Mabs ∼ −19.4 mag.
ZTF21abidgad 2021ahzk SN Ia? L
ZTF21abigfjv 2021ahzl SN? Faint host. Tagged by AD

model.
ZTF21abjkdli 2021ahzm SN Ia? L
ZTF21abjqcmb 2021ahzn SN Ia? Host-z = 0.166. Peak

Mabs ∼ −19.6 mag.
ZTF21abjtxur 2021ahzo SN? No decline.
ZTF21abkapuy 2021ahzp SN II? L
ZTF21abowuoq 2021ahzq SN Ia? Faint host.
ZTF21abtoqij 2021ahzr SN I? L
ZTF21abutvjt 2021ahzs SN Ia? L
ZTF21abvqzuu 2021ahzt SN II? L
ZTF21abvtzbv 2021ahzu SN Ia? L
ZTF21abvubre 2021ahzv SN II? Faint host.
ZTF21abvufbg 2021ahzw SN Ia? Faint host.
ZTF21abwulxy 2021ahzx SN II? L
ZTF21abwymva 2021ahzy SN? Faint host.
ZTF21abxabce 2021ahzz SN Ia? Faint host.
ZTF21abxayqz 2021aiaa SN II? L
ZTF21abxcqfx 2021aiab SN Ia? Faint host.
ZTF21abxjdtn 2021aiac SN Ia? Faint host.
ZTF21abxkqry 2021aiad SN Ia? No visible host.
ZTF21abxoxhb 2021aiae SN Ia? L
ZTF21abxyydw 2021aiaf SN II/

IIP?
L

ZTF21abxzzel 2021aiag SN Ia? Faint host.
ZTF21abyaetw 2021aiah SN Ia? Faint host.
ZTF21acblsec 2021aiai SN Ia? L
ZTF21aceylki 2021aiaj SN Ia? L
ZTF21acguaop 2021aiak SN Ia? Edge-on host. Host-

z = 0.096. Peak
Mabs > −18.5 mag.
No rise.

ZTF21achsdxh 2021aial SN Ia? L
ZTF21acjotbc 2021aiam SN Ia? L
ZTF21acjouhg 2021aian SN I? L

Notes. Bold text indicates an object we consider a likely anomaly.
a This object is also listed as ZTF18adjzsqt.
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