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E(2)-Equivariant Graph Planning for Navigation

Linfeng Zhao"”, Hongyu Li

Huaizu Jiang

Abstract—Learning for robot navigation presents a critical and
challenging task. The scarcity and costliness of real-world datasets
necessitate efficient learning approaches. In this letter, we exploit
Euclidean symmetry in planning for 2D navigation, which origi-
nates from Euclidean transformations between reference frames
and enables parameter sharing. To address the challenges of un-
structured environments, we formulate the navigation problem as
planning on a geometric graph and develop an equivariant message
passing network to perform value iteration. Furthermore, to handle
multi-camera input, we propose a learnable equivariant layer to lift
features to a desired space. We conduct comprehensive evaluations
across five diverse tasks encompassing structured and unstructured
environments, along with maps of known and unknown, given point
goals or semantic goals. Our experiments confirm the substantial
benefits on training efficiency, stability, and generalization.

Index Terms—Integrated planning and learning, deep learning
methods, vision-based navigation.

1. INTRODUCTION

AVIGATION is a fundamental capability of mobile robots.
N Traditional navigation approaches, such as A* [1], focus
on finding shortest-distance collision-free paths to a provided
goal location in a pre-built occupancy map or known costmap.
Recently, learning-based approaches to robot navigation have
been proposed [2], [3], [4], [5], [6], which are particularly useful
when the costs or goals are not explicitly provided and need to
be learned from data. For example, in visual navigation, the cost
to navigate between locations may depend on high-dimensional
visual features, and the goal may likewise need to be visually
identified (e.g., “find a mug”). As another example, in imitation
learning, users may provide information about their preferred
navigation policy implicitly via demonstrations, and the costs
or optical actions need to be learned using features from the
robot’s state-action space.
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While the aforementioned learning-based approaches exhibit
remarkable capability in handling high-dimensional observa-
tions, they typically require a considerable amount of data and
intensive training [2], [3]. Furthermore, these methods lack
guarantees regarding generalization capabilities. In this work,
we investigate the potential benefits of Euclidean symmetry
in navigation tasks. It stems from Euclidean transformations
among reference frames, enabling parameter sharing, enhanc-
ing efficiency, and improving generalizability. The utilization
of symmetry in navigation within the grid world domain is
explored in the earlier study by Zhao et al. [7] (left of Fig. 1).
They introduce the equivariant version of the value iteration
network (VIN) [8] under discrete translations, rotations, and
reflections, along with a differentiable navigation planner. Their
work showcases notable improvements compared to baseline
approaches [8], [9]. However, they only focused on navigation
in discrete 2D grids, which limits its applicability to robot
navigation.

In our work, we introduce an equivariant learning-based nav-
igation approach that operates on graphs in continuous space
and considers symmetry with respect to an infinitely larger
continuous group — the Euclidean group E(2) (right of Fig. 1).
Specifically, we use geometric graphs (or spatial graphs) [10],
where nodes in our graph correspond to states (and their features)
arbitrarily located in 2D space. This eliminates the confinement
to a grid, enabling the environment to remain non-discretized and
permitting variable resolution. This also helps when the robot’s
motion deviates from grid-like patterns. Moreover, our approach
accounts for continuous rotational symmetry, enhancing learn-
ing efficiency compared to discrete symmetry like Dihedral
group Dy.

However, to exploit Euclidean symmetry in graph-based nav-
igation, we need to solve two major challenges. First, previous
work on 2D grids exploited the grid nature of their problem and
used standard 2D symmetric convolution, which is no longer
applicable in our case. Instead, we derive a new E(2)-equivariant
message-passing version of VIN and validate that it satisfies
our notion of symmetry. Second, to capture symmetry in visual
inputs/features, previous work relied on a very specific setup. As
illustrated in Fig. 1, the agent was assumed to have four cameras,
each situated 90° apart, exactly matching the D, symmetry being
considered, such that a group transformation (rotation) can be
implemented as a permutation to the four images. Extending
this approach directly to E(2) would technically require an
infinite number of cameras (or at least an infinite-resolution
panoramic camera). We lift this restriction by introducing a
learnable equivariant layer that can take images from a camera
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Tlustration of rotation equivariance. We provide a side-by-side comparison with SymVIN [7]. We use the blue arrow to show the orientation of the robot.

Rotating the robot O 90° is equivalent to rotating the world frame ©© 90°. When camera views are cyclically permuted, action output (red arrow) is transformed by
a rotation matrix. The state space of SymVIN (left) is confined to the grid, and it only produces discrete actions. Our approach acts on continuous 2D space and

produces R? actions. .

array conforming to a subgroup of E(2) (such as Dg) and lift
their features to become E(2)-equivariant.

We empirically demonstrate the effectiveness of our approach
on various navigation environments, including 2D grid, 2D geo-
metric graphs, and Miniworld visual navigation [11] on both grid
and graph. Moreover, in demonstrating its potential suitability
for semantic goals and real-world environments, we provide a
proof-of-concept experiment on semantic navigation tasks in the
Habitat simulator [12]. Among these studies, we observe a con-
sistent improvement in learning efficiency and stability. Overall,
our study provides insight into the application of equivariance in
navigation and the challenges. Our contributions are three-fold:

® We study the equivariance properties of 2D navigation and
identify the two challenges.

o Toaddress the challenges, we (1) derive the geometric mes-
sage passing (MP) version of value iteration on geometric
graphs and (2) propose using a learnable equivariant layer
that converts multi-camera images to desired feature space,
respectively.

® We demonstrate the empirical performance of navigation
on Grid World (2D grid), Graph World (2D geometric
graphs), and Miniworld visual navigation on both grid and
graph. We provide proof-of-concept results on semantic
navigation in Habitat simulator.

II. RELATED WORKS

Geometric deep learning: Our exploration of Euclidean sym-
metry utilizes tools from geometric deep learning [10], [13],
[14], [15], [16]. Geometric deep learning and equivariant net-
works extend the study of classic 2D translation-equivariant
convolution neural networks into more symmetry groups and
spaces [10], [13]. Cohen and Welling [13] propose group con-
volution network (G-CNN), a pioneer work that studies rotation
symmetry, followed by an extension to steerable convolution,
Steerable CNN [17]. It has also been extended to the 3D case [18]
and supported by a library in E(2) [16]. For graphs, equiv-
ariant message passing uses equivariant multilayer perceptrons
(MLPs) to propagate geometric quantities between nodes to pre-
serve the symmetry [14], [15]. Different from E(3)-equivariant
message passing in [15], we work on E(2) case. Additionally, the
relationship between geometric graphs and value iteration has

been discussed in [19]. In practice, equivariant networks enable
sharing parameters and reduce the number of parameters.

Equivariance in reinforcement learning and planning: Our
work draws upon previous research on symmetry in reinforce-
ment learning (RL) and planning [7], [20], [21]. Symmetry
and equivariance have been studied in reinforcement learning
and planning before and in the era of deep learning [22], [23].
Invariance of the optimal value function and equivariance of
the optimal policy of a Markov Decision Process (MDP) with
symmetry have been shown in Zinkevich and Balch [24]. When
using function approximation, equivariant policy networks and
invariant value networks have been used to improve training
efficiency in model-free RL [20], [21], and equivariance also
helps in transition model and model-based RL [7], [25], [26],
[27].

Learning to navigate: To achieve end-to-end navigation learn-
ing, several works investigate the differentiable planning algo-
rithms [8], [28]. In this letter, we aim to investigate a partic-
ular class of planning algorithms that rely on Value Iteration
Network (VIN) [8] and its variants [7], [9], [29], [30]. The
selection of VINs is motivated by the fact that value iteration
is fully differentiable and inherently encompasses an equiv-
ariant convolution [7]. Gupta et al. [31] adapt VIN to real-
world applications with simultaneous mapping and planning,
and Karkus et al. [32] propose DAN for end-to-end learning
with structured representation. Prior to us, Zhao et al. [7] im-
proved VIN with symmetry. However, these works operate on a
structured 2D grid Z2. In this letter, we extend the planning to
the 2D plane, enabling navigation in more realistic unstructured
environments.

III. BACKGROUND AND PROBLEM FORMULATION: NAVIGATION
AS GEOMETRIC GRAPHS

In this section, we define the navigation problem under study
and explore its symmetry aspects. Our formulation is a straight-
forward generalization of the global planning on occupancy
grid [7], [8], with extensions including representing the naviga-
tion task through a geometric graph [10], [15]. Our objective is
to train a planner that generates action a; at state sy, guiding the
agent to reach a target w on the graph: a; = policy,(s;, w).
The target can be a spatial location (point goal) or semantic goal.
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We base on the differentiable planner — VIN [8], allowing to
consume input in high-dimensional features, e.g., image or even
text embedding. As background, we first explain the problem
definition, alongside the geometric structure and symmetry in
the navigation graph. Then, we introduce the extension of equiv-
ariance in value iteration. Lastly, we delve into the incorporation
of equivariance within the value iteration framework on the
geometric graph.

Definition: We approach navigation as a 2D continuous path
planning problem, building upon the 2D discrete grid version
introduced in [7], [8], while extending it to the utilization of
the geometric graph G = (V, ) in 2D Euclidean space R?. In
navigation tasks, the agent observes a state s; € S at each step,
and the action is to move on the 2D plane a; € A = R?. State
s, can be a 2D position in R? or egocentric panoramic images in
REXH>W (wwhere K denotes the number of images of resolution
H x W).! To convert the task into a geometric graph, each node
v; € V corresponds to a state s € S and is associated with a
node feature h; (such as images) and has a position x; € R?.
It is also possible to use edge features.” In this letter, we focus
on addressing the global planning problem: given a navigation
task (state s and target w) as a feature field/map M, we output
action field IT = Plangy(M).

Assumptions: The navigation challenge under consideration
pertains to high-level global planning. In this context, we ab-
stract the perception aspect (e.g., the method of acquisition)
and the control aspect (assuming the feasibility of 2D relative
movement output). Even if the execution of action does not
arrive at another graph node, we may use action from the closest
states or interpolate surrounding states. We assume a relatively
accurate localization is provided.

Geometric Structure: The navigation problem can be defined
as a MDP, and an inherent geometric structure emerges: it
can be conceptualized as a geometric graph (defined above)
situated within a 2D Euclidean space. Specifically, this graph
can be transformed through 2D Euclidean isometric symmetries,
without impacting the optimal solution of the MDP [7], [20].
The set of all such transformations in 2D is called Euclidean
group E(2), which can be uniquely decomposed into translation
part R? and rotation/reflection part O(2), denoted as semi-direct
product x: E(2) = R? x O(2) [13], [16]. We only require the
node features h (and edge features) are transformable by a sub-
group G < E(2). Following the notation in [16], we denote the
rotation/reflection symmetry part as compact symmetry group
G < GL(2), because translation group is not compact and many
useful theorems do not hold. In our implementation, translation
equivariance is achieved by using relative position. For any
subgroups G of rotation/reflection, its equivariance needs group
convolution [13] or steerable convolution [17].

Value Iteration and Symmetry: When symmetry appears in
an MDP, the value and policy functions are equivariant [7],
[20]. Abstractly, we can write value iteration (VI) as iteratively

'We omit image RGB channel for notation simplicity.
2Similarly, eachedge e; j € &€ corresponds to a state-action transition (s, a) €
S x A and has an edge feature € R°c (such as distance or movement cost).
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applying the Bellman operator 7 : V; — V4 1:
Q:(s,a) := R(s,a) +/ ds'P(s'| s,a)V(s'),
]R2
‘/t+1(8) = ml?XQt(Saa’)a (1)

where the input and output of the Bellman operator are
both value function V :S — R. Specifically, s € S,a €
A, R(s,a), P(s' | s,a) represent the states, actions, rewards,
and transitions, respectively. In VIN, VI(M) = T} [Vp] is exe-
cuted k times, which takes an initial value V; and the map M
(with a goal) as input

g-VI(M) =g Ty Vol = Taglg - Vol = VI(g- M).  (2)

Zhao et al. [7] explore the equivariance for a 2D grid case. We
extend it to geometric graph: 7 is performed on a graph, which
is implemented using message passing.

Symmetry Transformations: In this paragraph, we unify the
concepts presented in the preceding two paragraphs to demon-
strate the implementation of equivariance constraints, which
establish equivalence between transformed and original in-
put/output [13], [17], [33]. Under the group transformation g, a
(left) regular representation L, transforms a feature map with
cou-dimensional vector (vector field) f: X — R as [10],
[17], [33]:

[Lyf](z) = [f ° g_l} () = poul(g) - f (9_133) )

where poy is the G-representation associated with output R,
For example, for action feature map II : R* — R? (i.e., every
position x € R? is associated with a relative 2D movement),
rotating the vector needs a 2 x 2 rotation matrix.

There are several useful functions in reinforcement learning
(RL) and planning that can be written as graph features, e.g.,
node features as functions on S and edge features as functions
on S x A. We use ps(g) to represent how the state is trans-
formed under rotations and reflections g € GG, and similarly
for action associated with representation p4(g). Note that M
and II are vector maps, requiring additional transformation for
their respective fibers (vectors). When A4 is continuous action,
p4 is rotation matrices. For image-input case of M : S —
REHXW Peamera(g) means cyclically permuting K cameras:
Peamera(g) - M (8¢) = M (ps(g) - s¢). It will be discussed in the
next section. We list the equivariance conditions of the key MDP
functions here.

R:SxA—=R: R(si,a;) = R(ps(g) - s, palg) - ar)
Q:SxA—=R: Q(sy,ar) = Qps(9) - s¢,palg) - ar)
V:S—>R: V(st) =V(ps(g) - st)
M:S— A: pag) - 1(sy) = U(ps(g) - s¢)

“

IV. METHODOLOGY: EQUIVARIANT MESSAGE PASSING FOR
VALUE ITERATION

Following the spirit of VIN, we build a geometric message
passing network and extend it to learning value iteration on
geometric graphs: IT = Plang(M ). Given that the input feature
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MP x,hg

Az

R2

Q-Map Q Action Map IT

Overview of the message passing planner network (MP-VIN). It takes the map M as the input, which contains the node position 2 € R? and is optionally

appended by the goal information (the red node is goal node) or observations depending on the navigation task. Then, the output is applied value iteration for k
times. The state value map hy and Q-value map h¢y are updated during value iterations. The final output is an action map II: for each node, it is a continuous

relative movement Az € R2.

map M and the resulting action map II are both amenable to
transformation within the same group, we enforce equivari-
ance constraints throughout the MP network (shown in Fig. 1):
g-II =Plany(g- M).

A. Message Passing Value Iteration Networks (MP-VIN)

The overview of the MP-VIN is shown in Fig. 2. For the
input feature map M, each node contains a node position
x € R?. Varied navigation tasks may lead to the augmentation
of additional features, including goal features, observations, or a
combination of both. For example, in the Grid World experiment
(Section V-A), only the goal feature (a boolean value) is provided
for each node. In the Miniworld experiment (Section V-C),
both the goal feature and egocentric RGB observation are pro-
vided. In the semantic goal navigation experiment (Section V-E),
only the RGB observation is provided, rendering the goal
implicit.

Regarding the value iteration process, our MP-VIN is anal-
ogous to the original VIN formulation. However, what sets
our approach apart is the improvement brought about by the
inclusion of the geometric graph using an equivariant message
passing layer (discussed in the next section). There are two
advantages of using graph format: (1) cover the environment
with irregular graphs to achieve variable resolution, and (2)
output continuous actions.

B. O(2)-Equivariant Message Passing Layer: Equivariant
Value Iteration on Graph

Discretization to Graph: We could employ standard 2D con-
volution on regular grids for value iteration, as seen in VIN.
However, irregular graphs render grids unsuitable. In the prior
study of Niu et al. [34], an earlier iteration of graph convolution
was employed. However, it exhibited equivariance only with
respect to R? translations, and it did not encompass consider-
ations for rotation or reflection symmetries (O(2)). Here, we
derive from first principles using the original continuous form
of value iteration.

The integral term in VI can be written as a mapping ®

K(z,x')h(x'),
RZ

&)

where K : R? x R? — R js the kernal function.® h :
R? — R and h': R? — R% are input and output feature
map. If translation equivariance is desired, the kernel can be
further simplified from two-argument to one-argument case, and
the mapping is convolution [7], [35]. The continuous steerable
convolution * is defined (via cross-correlation) by [16], [17],
[33]:
W(z) = [Kxh](x)= [ K —z)h),

R
where K : R? — R« ig a (steerable) kernel.

If we sample nodes in R? and construct edges by transition
S x A, the continuous convolution on R? can be discretized,
which is similar to strategy of PointConv [15].* We use nonlinear
message passing to replace linear convolution. We use two
MLPs for computing messages (propagate,) and updating
node features (updatey), and has form

(6)

m;; = propagateQ (hlv h’ja Zi, wj) )

h; :updatea h;, Z mi;
JEN (@)

(N

Implementation of Equivariance: We implement E(2)-
equivariant message passing on the graph that is equivariant
under two parts:

Translation R?: In the plannar convolution on 2D grid, it is
known to be equivariant to translation because it only relies on
relative position between two cells as input and never takes abso-
lute coordinates. Analogously, we use relative position between
nodes x; — x; as input to the message passing function [15]:

x;). (8)

It is a direct generalization of translation-equivariant 2D convo-
lution that relies only on relative positions or local coordinates
(shown in 6), allowing generalization to larger maps.

Rotation and Reflection O(2): We use steerable equivariant
network to implement O(2)-equivariance [13], [15], [16], [17],

m,;; = propagatey (h;, hj,x; —

3Note that the kernel K here is different from the notation K we use to
represent the number of images.

4Brandstetter et al. [15] discuss other strategy for 3D steerable messsage
passing, which expands the feature maps to spherical harmonics. Analogously,
it is possible to expand the features to cyclic harmonics.
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Fig. 3. Our proposed 1ift layer and its equivariance.

[35]. The O(2) group is compact and thus its representations
are decomposable into irreducible representations [16], [33],
thus convolutions can be performed in Fourier domain and more
efficient. We use it to build equivariant MLPs of propagate
and update (effectively 1 x 1 convolution). The kernel K of
G-steerable convolution needs to satisfy constraint [16], [33],
where G can be any (discrete) subgroup of O(2):

K(97) = pou (9) o K(z) 0 pin (9)"" Vg € G,z € R, (9)

where pi, and poy stand for representations of the layer’s input
and output, respectively. This kernel constraint guarantees that
the layer is G-equivariant: K (g)pin (9) = pou (9) © K (x). We
refer the readers to Weiler and Cesa [16], Cohen and Welling [17]
for more details.

C. Ck-Equivariant Lifting Layer: Processing Camera Array

In the previous section, we extend from discrete symmetry in
SymVIN to continuous symmetry, such as continuous rotations
SO(2). Injecting such equivariance into the entire network re-
quires us to know how to continuously rotate sensory input
by g € SO(2). This can be naturally achieved by two types
of observations: (1) 360° point cloud input from a LiDAR
(naturally continuous) or (2) 360° cylindrical camera. However,
(1) may not seamlessly incorporate semantic information from
RGB images, and (2) is hard to obtain and process. Thus, we need
to relax this requirement of SO(2)-transformable input modality.
As a solution, we introduce a learnable layer 1ift that can map
camera images from different views to a SO(2)-transformable
feature. This enhances our ability to exploit symmetry in the
planning process.

We visually illustrate this in Fig. 3. For example, assume we
have a robot equipped with four cameras facing north, east,
west, and south (shown in the top left, as top down view).
The observation from this camera array could only be cyclically
permuted by O 90° (or reflected), shown in the bottom left using
the blue arrow. By using a equivariant learnable layer 1ift, it
lifts the image features to become features on circle S* ~ SO(2)
shown on the right. They are transformable by SO(2), as shown
via green arrow. We use small black circles to highlight that the
feature at that point corresponds to that image.
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Although the output is SO(2)-transformable, the left side is
only Cy-transformable, so the layer 1ift can only be restricted
to be Cy-equivariant. The restriction from G = SO(2) to sub-
group H = CY is called restricted representation: This layer is
a special kind of equivariant induction layer [36]. It can lift fea-
tures on a subgroup H < (G to a group G and is H-equivariant.
Intuitively, it needs to satisfy the equivariance constraint only
for © 90° € C4, which is a subgroup Cy < SO(2):

1ift(0 90° - images) =0 90° - features, (10)

where we assume 4 images and output SO(2) features, while it
can be any group such that Cj is its subgroup.’

V. EXPERIMENTS

We evaluate our proposed approach MP-VIN and baselines
on four different tasks. Among these tasks, we perform point
goal navigation under different environments: known struc-
tured environments (Grid World), known unstructured en-
vironments (Graph World), unknown structured environ-
ments (Miniwor1d), and unknown unstructured environments
(Miniworld-Graph). Results are shown in Table 1.

Methods: We experiment four variants of our methods, with
or without translation (R?) or rotation/reflection (using G =
Dg < O(2)) equivariance: No-Sym, Ds, R?, and R? x Dg. We
use two grid-based methods: VIN [8] and SymVIN [7] (with
D,-equivariance). These methods are grid-based; therefore, we
apply several modifications, including pre-processing and post-
processing, to ensure fair comparisons. These modifications are
detailed in the later sections. We also replace and compare
our message passing module with the Graph Convolutional
Networks [37] (GCN-VIN) and Graph Attention Networks [38]
(GAT-VIN).

A. Planning on Known Maps: Grid World

Setting: In this task, we randomly generate synthetic mazes
withsizem x m (Grid World). We validate the performance
on two different sizes m € {15, 27}. Each cell on the maze map
is represented as occupied (0) or unoccupied (1). There are four
actions available for each cell on the map: north, east, west, and
south. We randomly select a goal on the map and generate a goal
map, where the cell containing the goal is marked as 1. Each cell
is labeled by the ground-truth action using Dijkstra’s algorithm.

To apply our planners for graphs, we transform the grid
representation into connectivity graphs [34]. Each node of the
graph is a cell in the 2D grid and is associated with a 4-D node
feature vector, which has (1) (x,y) location, (2) whether the
node is an obstacle, and (3) whether the node is the goal. Any
two nodes are connected by an edge if they are neighbors on the
grid map, i.e., obstacles are not connected.

Results: MP-VIN with R? x Dg symmetry demonstrates
faster learning efficiency than its graph-based variants and VIN
(the left of Fig. 4). We surprisingly find that MP-VIN with

5One solution for D4 group is to use guotient representations, but it not
generally applicable for higher-degree rotations such as Dg or infinitesimal
rotations SO(2).
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TABLE I
AVERAGED TEST SUCCESS RATE (%) WITH STANDARD DEVIATION. THE BEST RESULT IS BOLDED

Method Grid World Graph World Miniworld
15 x 15 27 x 27 | 128 nodes 256 nodes | Grid Graph

VIN [8] 78.51+1.51  50.15+3.94 18.75+1.95 20.09+6.87 | 57.14+5.02 18.90+2.87
SymVIN [7] 95851502  93.73:7.33 24.40+2.11 27.53+4.73 | 91.67 +2.58 27.98+1.34
MP-VIN (No Sym) | 87.07+4.53 55.99+30.56 | 63.10+17.26 54.76+3.20 | — —
MP-VIN: Dg 87.19+2.78  38.53+16.17 | 52.38+5.02 32.89+3.47 | — —
MP-VIN: R? 90.81+1.02  72.45+31.04 | 70.24+2.69 58.33+5.93 | 79.76+21.06  96.58+2.46
MP-VIN: R? x Dg | 91.50+1.01  84.52+6.04 7217450 61.90+5:33 | 90.89+1.63 96.96--1.00

The best result is bolded. The second-best result is underlined.

Grid World (15 x 15) Grid World (27 x 27)

100 -

80 -
'
60

40- "

Successful Rate

20 -

Epochs Epochs

== GCN === MP-VIN: )y === MP-VIN (No Sym)

Fig. 4.

—— MP-VIN: 22Dy

Graph World (128 nodes)

Graph World (256 nodes)

Epochs Epochs

== SymVIN === VIN = MP-VIN: 82 === GAT

Learning curves on the Grid World experiments (left two) and the Graph World experiments (right two). The shadow area shows the standard error.

Dashed lines are for non-MP-VIN methods (VIN, SymVIN, GCN-VIN, and GAT-VIN).

R? x Dg has much smoother learning curves than its variants
without Dg symmetry (R? and No-Sym). This indicates that in-
jecting Euclidean symmetry may improve the loss landscape. In
terms of absolute performance gain, by adding Dg symmetry to
MP-VIN with R?, we obtain another 0.69% and 12.07% success
rate on the 15 x 15 and 27 x 27 mazes, respectively. However,
it is still outperformed by SymVIN, which uses steerable 2D
convolution to process the input. It is reasonable as it directly
uses the regular grid structure, while our graph version can
handle unstructured grpahs and is more expressive, while we
apply both of them on grid maps. When the map size increases,
MP-VIN with R? x Dg symmetry demonstrates the second-
least performance degradation, showing better generalization to
larger maps.

B. Planning on Known Graphs: Graph World

Setting: We validate the performance of our approach in
unstructured graph environments (Graph Wor1d). We follow
the setup of [34] to generate the random graphs. We randomly
generate /N nodes, each with coordinates between (0,0) and
(m,m). These nodes are connected using a KNN graph. We
randomly select some nodes as the obstacle nodes, and one node
as the goal node.

To verify the performance of grid-based approaches in Graph
World, we discretize the environment [34]. We round down
the coordinates of each node to map it to a cell on the grid.
The obstacle feature is carried over to the grid. Ultimately,
we verify its performance on the graph by transforming the
discrete actions into continuous actions (represented in [z, y]
coordinate). For example, north is transformed into [1,0], and
east is transformed into [0,1].

Results: MP-VIN with R? x Dg symmetry demonstrates the
strongest performance in this task in terms of learning efficiency
and smoothness of learning curve (Fig. 4). This is because the

Dataset Size: 100

200 400 600 800 1000
Map Size

Dataset Size: 256 Dataset Size: 512

1200 200 400 600 800 1000 1200
Map Size

1200 200 400 600 800 1000
Map Size

—— MPVIN: D, —— MPVIN: RiMD, —— MPVIN: ' —— MPVIN (No Sym)

Fig.5. Dataefficiency and size generalization. We demonstrate data efficiency
across 100, 256, and 512 training samples. For models trained on each dataset,
we show size generalization by training them on the smallest size and directly
testing them on larger ones.

graphs generally do not have regular structure, i.e. four neighbors
only in four directions. Thus, all methods encounter performance
degradation, while grid-based methods struggle more in such
unstructure graphs.

Data Efficiency: As shown in Fig. 5, we evaluate the data
efficiency by assessing the model tranined on varied dataset
sizes (100, 256, 512 samples). Even when trained with only
100 samples, our approach, incorporating E(2) symmetry, con-
sistently outperforms the baselines (w/o E(2) symmetry) trained
with 512 samples. These results confirm the substantial gains in
data efficiency achieved by leveraging Euclidean symmetry.

Size Generalization: Fig. 5 illustrates our evaluation of size
generalization ability. We train our model on a small graph
consisting of 225 nodes and subsequently test it on larger graphs
without any further fine-tuning. Remarkably, even as the com-
plexity of the environment increases, our approach consistently
outperforms the compared methods by a large margin. This
underscores the added value of incorporating E(2) symmetry in
enhancing the model’s generalizability to diverse environments.

C. Mapping and Planning Under Unknown Maps: Miniworld

Setting: We compare different methods in a more challenging
visual environment (Miniworld), where the models learn
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Fig. 6. Learning curves on the Miniworld experiment (top) and
Miniworld-Graph experiment.

mapping and planning simultaneously. We leverage the Mini-
world simulator [11] to render the randomly generated maze into
a 3D visual environment. Different from the Grid World, we are
not given a map in this experiment. Instead, we use egocentric
RGB observations. For each cell in the maze environment, we
obtain the RGB images from the cameras facing four orien-
tations (0°, 90°, 180°, 270°). We transform the dataset into a
graph using the same approach as mentioned in Section V-A.
In order to estimate the map of the environment, we encode
the visual observations into occupancy features using a mapper
network [7], [9]. Results are shown in Fig. 6

Results: Since this task is based on a 15 x 15 grid using
visual observations, the experiment results are similar to the
Grid World. MP-VIN with R? x Dg symmetry demonstrates
higher learning efficiency than MP-VIN with only R? symmetry
and VIN. However, every method faces a performance drop due
to the mapping uncertainty. We observe that the performance
gap of MP-VIN with R? x Dg symmetry (0.61%) is lower than
that of SymVIN (4.18%). Therefore, the performance gap be-
tween MP-VIN with R? x Dg symmetry and SymVIN becomes
narrower.

D. Mapping and Planning Under Unknown Graphs:
Miniworld-Graph

While Miniworld is a 3D-rendered visual environment, the
state and action spaces are still discrete (grid-based). To show
real-world feasibility, we aim at a more realistic setting in this
experiment.

Setting: We sample random navigation graphs (256 nodes) in
the Miniworld environment. The edges between nodes represent
navigability. Like the Miniworld experiment in Section V-C,
each node contains a panoramic egocentric RGB observation
facing four directions. We use a similar mapper to estimate the
map from the visual observations. Differently, we estimate the
occupancy graph instead of the occupancy grid.

Results: Similar to the Miniworld experiment on grid repre-
sentation, we observe the MP-VIN with R? x Dg symmetry has
higher learning efficiency than MP-VIN with only R? symmetry.
Grid-based approaches suffer in this task since it is hard for
CNN to process the expressive unstructured environment, also
indicated in the previous Graph World experiment. In both
Miniworld experiments, we observe that MP-VIN with R? x Dg
symmetry has a much smoother learning curve and lower vari-
ance than MP-VIN with only R? symmetry. This indicates that
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Fig. 7. Visualization of our navigation environment. On the left, we show
the constructed geometric graph in an HM3DSem scene. The density of color
represents the distance to the goal. On the right, we demonstrate the observation
example on each node, which consists of four egocentric RGB images facing
four directions.

TABLE II
PERFORMANCE IN SEMANTIC NAVIGATION TASK

Method | Successful Rate (%)
MP-VIN (No Sym) | 69.70+ 107
MP-VIN: R? x Cy | 74.27+5.12

by adding R? symmetry, we could further optimize the network
with better stability.

E. Planning With Semantic Goal

Setting: To confirm the validity of our approach in a more
realistic setting, we perform a proof-of-concept semantic nav-
igation task using the real-world collected Habitat-Matterport
3D semantics dataset (HM3DSem) [39]. Our model learns to
seek an object in the environment given only RGB observa-
tions. In our experiment, we consider the most common object
among all environments (“refrigerator’”’). We assume access to
fully-observable environment information, i.e. camera observa-
tions at any location.

To achieve this, we randomly sample nodes in the navigatable
areas using the Habitat simulator [12]. We construct a graph
on the sampled nodes using a radius graph. The edges that
lead to infeasible motion (e.g. crossing the wall) are removed.
We use the provided ground-truth object location to label the
ground-truth action for each node. Note that the object location is
unknown during testing. We obtain four egocentric RGB images
for each node, which are the only observations given to our
model. Visualization can be found at Fig. 7.

For each scene, we randomly sample 20 graphs, in which
each graph contains 128 nodes. Each RGB image has the size
of 3x H x W, and we set H =W = 128 in our following
experiments. We extract image features (d = 128) from the RGB
observation using ResNet-34. During training, we freeze the
entire ResNet except for the last output layer. The image features
are fed into the differentiable planner to generate the optimal
plan.

Results: We utilize MP-VIN without symmetry as the base-
line, and compare MP-VIN with R? x C; symmetry. The result
is shown in Table II. Our findings demonstrate that incorporating
Cy symmetry into MP-VIN leads to an improvement of 4.57%
in the success rate.
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VI. CONCLUSION AND DISCUSSION

In this letter, we explored the applicability of exploiting
Euclidean symmetry within the context of a navigation planner.
We contributed a novel equivariant differentiable planner. The
effectiveness of the proposed approach is extensively assessed
across four distinct tasks involving structured and unstructured
environments, with known and unknown maps. The empirical
findings demonstrate a significant enhancement in learning effi-
ciency when Euclidean symmetry is integrated into 2D naviga-
tion planning. Furthermore, the results indicate that leveraging
Euclidean symmetry yields more stable optimization and yields
superior overall performance. In the future, we hope to extend
our work to navigation task that has higher dimension, such as
semantic navigation [2], [3], [4].

Limitations: Inheriting from VIN, our message passing plan-
ner also considers only fully-observable states and takes ob-
servations of all states as input at once [7], [8], [9], which is
impractical in real-world navigation. One potential direction is
to consider partial observation, as done in [40]. Another potential
direction is to combine with differentiable filter to counter the
uncertainties [32]. To facilitate deployment on a real robot, it
may be helpful to consider augmenting our state space with an
additional orientation dimension [40].

In this letter, our primary emphasis lies within the Euclidean
group E(2). Nevertheless, in future works, potential performance
improvement may be achieved by broadening the scope of the
group employed, e.g. incorporating the scaling and general linear

group.
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