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Abstract— While it is generally acknowledged that force
feedback is beneficial to robotic control, applications of policy
learning to robotic manipulation typically only leverage visual
feedback. Recently, symmetric neural models have been used
to significantly improve the sample efficiency and performance
of policy learning across a variety of robotic manipulation do-
mains. This paper explores an application of symmetric policy
learning to visual-force problems. We present Symmetric Visual
Force Learning (SVFL), a novel method for robotic control
which leverages visual and force feedback. We demonstrate that
SVFL can significantly outperform state of the art baselines for
visual force learning and report several interesting empirical
findings related to the utility of learning force feedback control
policies in both general manipulation tasks and scenarios with
low visual acuity.

I. INTRODUCTION

There are a variety of manipulation tasks where it is
essential to use both vision and force feedback as part of
the control policy. Peg insertion with tight tolerances, for
example, is a task that is nearly impossible to solve with-
out leveraging force feedback in some form. The classical
approach is to use an admittance controller with a remote
center of compliance to help the peg slide into the hole [1].
However, this is a very limited use of force feedback and
it seems like it should be possible to use force information
in a more comprehensive way. One of the core challenges
is the difficulty in simulating the complex force interactions
that happen at the robot end effector which primarily depend
upon the contact-modelling utilized by the physics engine.
While there have been major efforts to improve contact
simulations by refining the contact geometry, friction model,
and contact constraints [2], [3], [4], state-of-the-art physics
engines often violate real-world physical constraints limiting
the applicability of simulation-based models to the real
world.

An obvious alternative approach is to leverage machine
learning, i.e. model free reinforcement learning (RL), to
obtain force feedback assisted policies. This is in contrast
to vision-only RL where the policy only takes visual feed-
back [5], [6], [7], [8]. In visual force RL, there is the
possibility to adapt control policies directly to the mechanical
characteristics of the system as they exist in the physical
world, without the need to model those dynamics first.
However, this assumes that we can run RL online directly
in the physical world, something that is hard to do due to
the poor sample efficiency of RL. RL is well known to
require an enormous amount of data in order to learn even
simple policies effectively. While visual force RL might, in
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Fig. 1: Symmetries in Visual-Force Domains. An example of the O(2)
symmetries in the visual-force policy learning problem. Note that the same
rotational symmetries which apply to the image s also apply to the xy
components of the force (fxy , mxy) and end effector state (exy).

principle, be able to learn effective policies, this sample inef-
ficiency prevents us from learning policies directly on phys-
ical equipment. In order to improve the sample efficiency
of RL in visual force problems, one common approach is
to learn a helpful latent representation during a pretraining
phase [9], [10], [11], [12]. This generally takes the form of
self-supervised robot “play” in the domain of interest that
must precede actual policy learning. Unfortunately, this is
both cumbersome and brittle as the latent representation does
not generalize well outside the situations experienced during
the play phase. This is especially prevalent in the visual
force domain as the noisy nature of force sensors means
there will be many force observations not experienced during
pretraining leading to poor latent predictions during policy
learning.

This paper develops an alternative approach to the problem
of visual force learning based on exploiting domain sym-
metries using equivariant learning [13]. Recently, symmetric
neural networks have been shown to dramatically improve
the sample efficiency of RL in robotic manipulation do-
mains [14], [15]. However, this work has focused exclusively
on visual feedback and has not yet been applied to visual
force learning. This is of particular note as the domain sym-
metries used by these equivariant models are also present in
both force and proprioceptive data. This can be seen in Fig. 1
where the image, force, and proprioceptive observations are
all invariant under rotations in the xy plane. This paper
makes three main contributions. First, we propose a novel
method for visual force policy learning called Symmetric
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Visual Force Learning (SVFL) which exploits the underlying
symmetry of manipulation tasks to improve sample efficiency
and performance. Second, we empirically evaluate the impor-
tance of force feedback assisted control across a variety of
manipulation domains and find that force feedback is helpful
for nearly all tasks, not just contact-rich domains like peg
insertion where we would expect it to be important. Finally,
we explore the role of force-assisted policies in domains with
low visual acuity and characterize the degree to which force
models can compensate for poor visual information.

II. RELATED WORK

Contact-Rich Manipulation. Contact-rich manipulation
tasks, i.e. peg insertion, screw fastening, edge following,
etc., are well-studied areas in robotic manipulation due to
their prevalence in manufacturing domains. These tasks often
are solved by hand-engineered polices which utilize force
feedback and very accurate state estimation [1], resulting in
policies that perform well in structured environments but do
not generalize to the large range of real-world variability.
More recent work has proposed the use of reinforcement
learning to address this by training neural network policies
which combine vision and proprioception [6], [16], [17].
However, while these methods have been shown to perform
well across a variety of domains and task variations, they
require a high level of visual acuity, such that the task is
solvable solely using image observations. In practice, this
means these methods are unsuitable for a large portion of
contact-rich manipulation tasks which require a high degree
of precision and often include visual obstructions.
Multimodal Learning. A common approach to multimodal
learning is to first learn a latent dynamics model which
compactly represents the high-dimensional observations and
then use this model for policy learning. This technique has
recently been adapted for use in various robotics domains to
combine various types of heterogeneous data. [18] combine
vision and haptic information using a GAN but do not utilize
their latent representation for manipulation policies. [12] and
[11] learn physics models from cross-modal visual-tactile
data for a series of tasks but they do not use this learned rep-
resentation for either a hand-crafted policy or policy learning.
Our work is most closely related to [10], [9] which we use
as baselines in this work. [10] combine vision, force, and
proprioceptive data using a variational latent model learned
from self-supervision and use this model to learn a policy
for peg insertion. [9] learn a multimodal latent heatmap
using a cross-modal visuo-tactile transformer (VTT) which
distributes attention spatially. They show that by combining
VTT with stochastic latent actor critic (SLAC), they can learn
policies that can solve a number of manipulation tasks. In
comparison to these works, we propose a sample-efficient
deterministic multimodal representation that is learned end-
to-end without the need for pretraining.
Equivariant Neural Networks. Equivariant networks were
first introduced as G-Convolutions [19] and Steerable
CNNs [13], [20], [21]. Since their inception they have
been applied across varied datatypes including images [20],

spherical data [22], [23], and point clouds [24]. More recent
work has expanded the use of equivariant networks to
reinforcement learning [15], [7], [25] and robotics [26], [27],
[28], [29]. Compared to these prior works which focus on a
single data modality, this works studies the effectiveness of
combining various heterogeneous datatypes while preserving
the symmetry inherit in each of these data modalities.

III. BACKGROUND

Equivariant Neural Networks. A function is equivariant if
it respects the symmetries of its input and output spaces.
Specifically, a function f : X → Y is equivariant with
respect to a symmetry group G if it commutes with all
transformations g ∈ G, f(ρx(g)x) = ρy(g)f(x), where ρx
and ρy are the representations of the group G that define
how the group element g ∈ G acts on x ∈ X and y ∈ Y ,
respectively. An equivariant function is a mathematical way
of expressing that f is symmetric with respect to G: if we
evaluate f for various transformed versions of the same
input, we should obtain transformed versions of the same
output. Although this symmetry can be learned [30], in this
work we require the symmetry group G and representation
ρx to be known at design time. For example, in a convolu-
tional model, this can be accomplished by tying the kernel
weights together to satisfy K(gy) = ρout(g)K(y)ρin(g)

−1,
where ρin and ρout denote the representation of the group
operator at the input and output of the layer [31]. End-to-
end equivariant models can be constructed by combining
equivariant convolutional layers and equivariant activation
functions. In order to leverage symmetry in this way, it
is common to transform the input so that standard group
representations work correctly, e.g., to transform an image
to a top-down view so that image rotations correspond to
object rotations.
Extrinsic Equivariance. Often real-world problems contain
symmetry corruptions such as oblique viewing angles and
occlusions. This is particularly prevalent in robotics domains
where the state of the world is rarely fully observable. In
these domains we consider the symmetry to be latent where
we know that some symmetry is present in the problem but
cannot easily express how that symmetry acts in the input
space. We refer to this relationship as extrinsic equivari-
ance [25], where the equivariant constraint in the equivariant
network enforces equivariance to out-of-distribution data.
While extrinsic equivariance is not ideal, it does not necessar-
ily increase error and has been shown to provide significant
performance improvements in reinforcement learning [25].

IV. APPROACH

A. Problem Statement

We model the visual force control problem as a dis-
crete time finite horizon Markov decision process (MDP),
M = (S,A, T , R, γ), where states s ∈ S encode visual,
force, and proprioceptive data and actions a ∈ A command
small end effector displacements. This MDP transitions at a
frequency of 20 Hz and the commanded hand displacements
are provided as positional inputs to a lower level Cartesian
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space admittance controller that runs at 500Hz with a fixed
stiffness. The hand is constrained to point straight down at
the table (along the −z direction).

State is a tuple s = (I, f, e) ∈ S. I ∈ R4×h×w is
a 4-channel RGB-D image captured from a fixed camera
pointed at the workspace. f = (fxy, fz,mxy,mz) ∈ RT×6

is a T × 6 time series of the last T measurements from a
six-axis wrist force-torque sensor transformed into the robot
base frame. e = (eλ, exy, ez, eθ) ∈ R5 is the configuration
of the end effector where eλ ∈ Eλ is the hand open width,
(exy, ez) are the Cartesian coordinates of the hand, and eθ
is the orientation of the hand about the −z axis. Actions are
represented by a = (λ,∆p) ∈ A ⊆ R5 where λ ∈ R is the
desired gripper open width and ∆p = (∆pxy,∆pz,∆pθ) ∈
R4 is the desired delta pose of the gripper with respect to
the current pose p.

B. O(2) Symmetries in Visual Force Domains

In order to leverage symmetric models for visual force
policy learning, we utilize the group invariant MDP frame-
work. A group invariant MDP is an MDP with reward
and transition functions that are invariant under the group
action, R(s, a) = R(ρs(g)s, ρa(g)a) and T (s, a, s′) =
T (ρs(g)s, ρa(g)a, ρs(g)s

′), for elements of an appropriate
symmetry group g ∈ G [14], [32]. ρs and ρa are representa-
tions of the group G that define how group elements act on
state and action. This paper focuses on discrete subgroups
of O(2) such as the dihedral groups D4 or D8 that represent
rotations and reflections in the xy plane, i.e. the plane of the
table. We utilize the D8 group in our experiments.

In order to express visual force manipulation as a group
invariant MDP, we must define how the group operates on
state and action such that the transition and reward invariance
equalities described above are approximately satisfied. State
is s = (I, f, e) = (I, fxy, fz,mxy,mz, exy, ez, eλ). Since we
are focused on rotations and reflections in the plane about
the z axis, only the xy variables are affected. Therefore, the
group g ∈ SO(2) acts on s via

ρs(g)I = ρ0(g)I

ρs(g)f = (ρ1(g)fxy, fz, ρ1(g)mxy,mz)

ρs(g)e = (ρ1(g)exy, ez, eλ)

where ρ0(g) is a linear operator that rotates/reflects the pixels
in an image by g and ρ1(g) is the standard representation of
rotation/reflection in the form of a 2×2 orthonormal matrix.
Turning to action, a = (λ,∆pxy,∆pz,∆pθ), we define
ρa(g)a = (λ, ρ1(g)∆pxy,∆pz,∆pθ). Given these defini-
tions, visual force manipulation satisfies the transition and
reward invariance constraints, R(s, a) = R(ρs(g)s, ρa(g)a)
and T (s, a, s′) = T (ρs(g)s, ρa(g)a, ρs(g)s

′). This is illus-
trated for transition invariance in Fig. 1.

C. Model Architecture

As we discuss in the next section, we do policy learning
using SAC which requires a critic (a Q-function) and an
actor. In our method, both actor and critic employ the

Fig. 2: Symmetric Visual Force Learning. SVFL combines visual, force,
and proprioceptive feedback into a single joint-representation while respect-
ing the symmetry inherent to each data modality.

same encoder architecture which encodes state into a la-
tent representation. Since our state s = (I, f, e) ∈ S
is multimodal (i.e. vision, force, and proprioception) our
backbone is actually three encoders, the output of which is
concatenated (Fig. 2). The image encoder (top left in Fig. 2)
is a series of seven equivariant convolutional layers. The
force encoder (middle left) is a single equivariant self-
attention layer. The proprioceptive encoder (bottom left) is
a four-layer equivariant MLP. In each of these encoders,
the model respects the equivariance and invariance of each
data modality corresponding to the relationships described in
Section IV-B. These equivariant networks are implemented
using the escnn [33], [34] library, where all the hidden layers
are defined using regular representations.

The force encoder is of particular note due to its
use of single-headed self-attention. The input is a set of
T tokens, f ∈ RT×6, that encode the most recent T
measurements from the force-torque sensor. In order to
make this model equivariant, we convert each of the key,
query, and value networks to become equivariant models.
For the standard implementation of self-attention, Attn =
softmax(fWQ(fWK)T )fWV , the resulting group self at-
tention operation is equivariant [35]:

Attn(XfΓ) = softmax(XfΓW
Q(XfΓW

K)T )XfΓW
V

= softmax(XfW
QΓ(XfW

KΓ)T )XfW
V Γ

= softmax(XfW
QΓΓT (XfW

K)T )XfW
V Γ

= softmax(XfW
Q(XfW

k)T )XfW
V Γ

= Attn(Xf )Γ,

where, for simplicity of this analysis, we define Γ to be the
linear representation of the action of a group element g ∈ G
and Xf ∈ RT×6×|G|.1

D. Equivariant SAC

For policy learning, we use Soft Actor Critic (SAC) [36]
combined with the model architecture described above. This
can be viewed as a variation of Equivariant SAC [14] that
is adapted to visual force control problems. The policy is

1Although we omit the positional encoding here, this does not affect the
result [35].
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(a) Block Picking (b) Block Pulling (c) Block Pushing (d) Block Pulling Corner

(e) Mug Picking (f) Household Picking (g) Drawer Opening (h) Peg Insertion

Fig. 3: Tasks. The manipulation domains from the BulletArm benchmark
[38] implemented in PyBullet [39]. (Left) Initial state. (Right) Goal state.

TABLE I: Number of trainable parameters in the policy learning tasks. Due
to being latent representation learning methods, VTT and PoE utilize shared
encoders between the actor and the critic so that the number of parameters
is smaller than SVFL and CNN. Additionally, we utilize a smaller model
for PoE as increasing the size of the PoE model has been shown to worsen
performance [9].

Network SVFL CNN VTT POE

# of Parameters 2.4E6 2.5E6 1.19E6 2.9E5

a network π : S → A × Aσ , where Aσ is the space of
action standard deviations. We define the group action on the
action space of the policy network ā ∈ A×Aσ as: ρā(g)ā =
(ρa(g)a, aσ), where aσ ∈ Aσ and g ∈ G. The actor network
π is defined as a mapping s 7→ ā that satisfies the following
equivariance constraint: π(ρs(g)s) = ρa(g)(π(s)). The critic
is a Double Q-network [37]: q : S×A → R that satisfies an
invariant constraint: q(ρs(g)s, ρa(g)a) = q(s, a). Both the
actor and critic are implemented using the escnn library. For
the critic, the output is a trivial representation. For the actor,
the output is a mixed representation containing one standard
representation for the (x, y) actions, one signed representa-
tion for the θ action, and seven trivial representations for the
(λ, z) actions alongside the action standard deviations.

V. EXPERIMENTS

We performed a series of experiments both in simulation
and on physical hardware to validate our approach, Sym-
metric Visual Force Learning (SVFL). First, we benchmark
SVFL’s performance in simulation against several alternative
approaches. Second, we perform ablations that measure the
contributions of different input modalities for different tasks
under both ideal and degraded visual observations. Finally,
we validate the approach on physical hardware.

A. Simulated Experiments

Tasks. We evaluate SVFL across nine manipulation tasks
from the BulletArm benchmark [38] which uses the Py-
Bullet [39] simulator: Block Picking, Block Pushing, Block
Pulling, Block Corner Pulling, Mug Picking, Household
Picking, Peg Insertion, Drawer Opening, and Drawer Closing
(Fig. 3). The workspace’s size is 0.4m×0.4m×0.26m. The
minimum z height is slightly beneath the table allowing the
arm to come in contact with the table. The pixel size of the
visual observation is 4×76×76 and is cropped to 4×64×64
during training and testing. The force data consists of the
most recent 64 readings from the F/T sensor. The maximum

Fig. 4: Baseline Comparison. Comparison of SVFL (gray) with baselines.
Greedy evaluation policy is shown in terms of success rate. In all of our
experiments, results are averaged over 5 random seeds and the evaluation
is performed every 500 training steps. Shading denotes standard error.

movement allowed for any action is limited to ∆x,∆y,∆z ∈
[−2.5cm, 2.5cm], ∆θ ∈ [− π

16 ,
π
16 ], λ ∈ [emin, emax] where

emin and emax are the joint limits of the gripper. For all
tasks, a sparse reward function is used where a reward of
+1 is given at task completion and 0 otherwise.
Baselines. We benchmark our method against two promi-
nent alternative methods for visual force (or visual tactile)
learning that have been proposed recently: Visuo-Tactile
Transformers (VTT) [9] and Product of Experts (PoE) [10].
We also compare against a non-symmetric version of our
model that is the same in every way except that it does
not use equivariant layers (CNN). Both PoE and VTT are
latent representation methods which rely on a self-supervised
pretraining phase to build a compact latent representation of
the underlying states providing increased sample efficiency.
Due to this pretraining, these methods represent attractive
options for on-robot policy learning. In both baselines we
used the encoder architectures proposed in [9] which were
shown to outperform those in [10]. PoE encodes the different
input modalities independently using separate encoders and
combines them using product of experts [10]. VTT combines
modalities by using cross-modal attention on force to build
latent representations that focus attention on important task
features in the visual state space [9]. For further details
on these baselines, see [9], [10]. The latent encoders are
pretrained for 104 steps on expert data to predict the re-
construction of the state, contact and alignment embeddings,
and the reward. All methods use Prioritized Experience
Relay (PER) [40] pre-loaded with 50 episodes of the expert
data. We augment the transitions by randomly cropping the
visual observations and applying random rotations to the full
observation. Parameter counts for all method can be found
in Table I.
Results. We compared our method (SVFL) against the two
baselines (POE and VTT) and the non-symmetric model
(CNN) on the nine domains described above. Results are
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shown in Fig. 4. All results are averaged over five runs
starting from independent random seeds. When compared
to the baselines, SVFL has significantly higher success
rates and sample efficiency in all cases. We note the lower
performance of VTT and PoE compared to [9] (namely in the
Peg Insertion task) which we attribute to our use of sparse-
reward functions which has been shown to lead to poor latent
representations when using SLAC [41].

B. Sensor Modality Ablation

Although it is intuitive that force data should help learn
better policies on manipulation tasks, especially on contact
rich tasks like peg insertion, it is important to validate this
assumption and to measure the benefits that can be gained
by using both vision and force feedback rather than vision
alone. Recall that our state representation can be factored
into three modalities, s = (I, f, e), where I is an image
(vision), f is force, and e is the configuration of the robot
hand (proprioception). Here, we compare the performance
of SVFL with all three modalities against a vision-only
model, a vision/force model, and a vision/proprioception
model on the same tasks as in Section V-A. Results are
shown in Fig. 5. The results indicate that the inclusion of
each additional sensor modality improves sample efficiency
and performance for policy learning with all three sensor
modalities performing best in most cases. However, notice
that the degree to which force (and proprioceptive) data helps
depends upon the task. For example, the addition of force
feedback drastically improves performance in Peg Insertion
but has almost no effect in Block Pulling. There are, however,
many tasks between these extremes. In Drawer Opening and
Block Picking the force-aware policy converges to a slightly
higher success rate than the non-force assisted policies. The
fact that force feedback is usually helpful, even in tasks
where one might not expect it, is interesting. This suggests
that there is real value in incorporating force feedback into
a robotic learning pipeline, even when there is a non-trivial
cost to doing so.

C. Role of Force Feedback When Visual Acuity is Degraded

We also perform experiments in the context of degraded
visual acuity to determine what happens if the visual input
to our model is scaled down significantly. Specifically, we
evaluate the model on RGB-D images rescaled (bilinear
interpolation) to four different sizes: 64 × 64, 32 × 32,
16 × 16, and 8 × 8. Aside from the rescaling, all other
aspects of the model match the SVFL method detailed in
the previous section. This experiment gives an indication of
how force data can compensate for low resolution cameras,
cloudy environments, or smudged camera lenses. Fig. 6
shows performance at convergence at the four different levels
of visual resolution. We note several interesting observations.
First, the importance of visual acuity is dependant on the
task, e.g. high visual acuity is very important for Block
Picking but not very important for Block Pulling. Second,
force information generally tends to help the most in low
visual acuity scenarios. Finally, while force data generally

Fig. 5: Sensor Modality Ablation. Comparison of the full SVFL model
(gray) to subsets of the data modalities.

improves performance, it cannot compensate for the loss of
information in extreme visual degradation in tasks which
require high visual acuity.

D. Real-World On-Robot Policy Learning

We repeat the simulated Block Picking policy learning
experiment from Section V-B in the real world to evaluate
our methods performance in the real-world. Fig. 7 shows the
experimental setup which includes a UR5e robotic arm, a
Robotiq Gripper, a wrist-mounted force-torque sensor, and
a Intel RealSense camera. The block is a 5cm wooden
cube that is randomly posed in the workspace. We utilize
AprilTags to track the block for use in reward/termination
checking and to automatically reset the workspace by moving
the block to a new pose at the start of each episode. These
tags are not utilized during policy learning. In order to facil-
itate faster learning, we modify a number of environmental
parameters in our real-world setup. We use a workspace size
as of 0.3m×0.3m×0.26m and a sparse reward function. We
increase the number of expert demonstrations to 100 (from
50) and reduce the maximum number of steps per episode
to 25 (from 50). Additionally, we reduce the action space
by removing control of the gripper orientation and increase
the maximum amount of movement the policy can take in
one step to 5cm (from 2.5cm). We utilize the same model
architecture as in Section V-A.

Fig. 7 shows the learning curve of the full SVFL model
alongside the various subsets of data modalities available
to our method. We train all models for 3000 steps taking
around 4 hours. As in the simulation results, the full SVFL
model is both more sample efficient and outperforms SVFL
modailty subsets. Additionally, we see that force sensing is a
vital component in this setting with the force-aware models
achieving a 90% success rate compared to the 60% success
rate of the non-force aware models (at 3000 training steps).
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Fig. 6: Performance Under Degraded Visual Acuity. Comparison of the full SVFL model (gray) versus SVFL with subsets of the data modalities under
visual acuity degradation. Performance is given after all models are trained to convergence.

Fig. 7: On-Robot Policy Learning. (Left) Robotic setup. (Right) Compar-
ison of the full SVFL model (gray) versus SVFL with subsets of the data
modalities in the real-world on the Block Picking task. Results are averaged
over 3 runs.

E. Real-World Block Centering

To further examine the advantages of SVFL, we conduct a
supervised learning experiment using the same experimental
setup in Fig. 7. Here we learn a function, h : (I, f) 7→
{0, 1}4, that maps visual-force observations to a four-way
classification denoting the direction in which the gripper
would need to move in order to grasp the block after a finger
collides with the block. The idea was to mimic the most
common failure case we see during policy learning in block
picking where the grasp was slightly offset from the block.
The dataset is generated by a human teleoperator where each
sample is the most recent sensor observations immediately
following the collision. The goal of the teleoperator was to
mimic a failed grasp where one finger came into contact
with the block. We generate 200 data samples and split the
dataset into 100 training samples and 100 testing samples.
We generated a diverse set of interactions by varying the
position of the gripper in relation to the block, the amount
of force (by varying the amount of movement when coming
into contact with the block), and the pose of the block.

We compare the classification accuracy of the baseline
SVFL model against the non-symmetric version of the
model. We examine the effect of three different types of
input: Vision Only (V), Force Only (F), and Vision & Force
(V+F). In each case, in order to measure the models’ ability
to generalize, we evaluated the performance on training sets
of differing sizes including 10, 25, 50, and 100 samples.
Table II shows the accuracy of the models on the held-out

TABLE II: Experiment on Robotic Hardware. Prediction accuracy (%)
on the test set for models trained with different amounts of training data.
We compare the performance of equivariant and non-symmetric versions of
the vision encoder (V), the force encoder (F), and the fusion of these two
encoders (V+F). Mean and standard error is given over three runs.

# of Training Samples

Encoder 10 25 50 100

V
CNN 38.7± 1 41.4± 3 35.1± 7 59.5± 6

SVFL 51.3± 3 59.5± 5 67.7± 4 94.6± 4

F
CNN 21.6± 1 36.0± 3 42.3± 1 45.9± 7

SVFL 30.6± 3 54.5± 2 81.1± 4 92.8± 1

V+F
CNN 38.7± 3 38.7± 6 45.0± 3 73.9± 3

SVFL 57.8± 4 63.2± 3 87.6± 9 98.4± 1

test dataset. Notice that in all cases, the symmetric model
does much better than its non-symmetric counterpart, both
for differently sized training sets as well as input types.

VI. DISCUSSION & LIMITATIONS

This paper proposes Symmetric Visual Force Learning
(SVFL), an approach to policy learning with visual force
feedback that incorporates SE(2) symmetries into the model.
Our experiments demonstrate that SVFL outperforms two
recent high profile benchmarks, PoE [10] and VTT [9], by
a significant margin both in terms of learning speed and
final performance. We also report a couple of interesting
empirical findings. First, we find that force feedback is
helpful across a wide variety of policy learning scenarios, not
just those where one would expect force feedback to help,
i.e. Peg Insertion. Second, we find that the positive effect
of incorporating force feedback increases as visual acuity
decreases. A limitation of this work is that although we
expect that our framework is extensible to haptic feedback,
this paper focuses on force feedback only. Additionally, we
constrain our problem to top-down manipulation and planar
symmetries in SE(2) and therefor there is significant scope
to extend this to SE(3) symmetries. Finally, this paper
focuses primarily on RL but the encoder architectures should
be widely applicable to other learning techniques such as
imitation learning.

3106

Authorized licensed use limited to: Northeastern University. Downloaded on December 06,2024 at 05:50:19 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] D. E. Whitney, “Historical perspective and state of the art in robot
force control,” The International Journal of Robotics Research, vol. 6,
no. 1, pp. 3–14, 1987.

[2] R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019. [Online]. Available:
https://drake.mit.edu

[3] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[4] J. Liang, V. Makoviychuk, A. Handa, N. Chentanez, M. Macklin, and
D. Fox, “Gpu-accelerated robotic simulation for distributed reinforce-
ment learning,” in Conference on Robot Learning. PMLR, 2018, pp.
270–282.

[5] R. Platt, C. Kohler, and M. Gualtieri, “Deictic image mapping:
An abstraction for learning pose invariant manipulation policies,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, 2019, pp. 8042–8049.

[6] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[7] D. Wang, C. Kohler, and R. Platt, “Policy learning in se (3) action
spaces,” in Conference on Robot Learning. PMLR, 2021, pp. 1481–
1497.

[8] C. Kohler and R. Platt, “Visual foresight with a local dynamics model,”
in The International Symposium of Robotics Research. Springer, 2022,
pp. 67–82.

[9] Y. Chen, M. V. der Merwe, A. Sipos, and N. Fazeli, “Visuo-tactile
transformers for manipulation,” in 6th Annual Conference on Robot
Learning, 2022. [Online]. Available: https://openreview.net/forum?id=
JqqSTgdQ85F

[10] M. A. Lee, Y. Zhu, P. Zachares, M. Tan, K. Srinivasan, S. Savarese,
L. Fei-Fei, A. Garg, and J. Bohg, “Making sense of vision and touch:
Learning multimodal representations for contact-rich tasks,” IEEE
Transactions on Robotics, vol. 36, no. 3, pp. 582–596, 2020.

[11] W. Zheng, H. Liu, and F. Sun, “Lifelong visual-tactile cross-modal
learning for robotic material perception,” IEEE transactions on neural
networks and learning systems, vol. 32, no. 3, pp. 1192–1203, 2020.

[12] N. Fazeli, M. Oller, J. Wu, Z. Wu, J. B. Tenenbaum, and A. Rodriguez,
“See, feel, act: Hierarchical learning for complex manipulation skills
with multisensory fusion,” Science Robotics, vol. 4, no. 26, p.
eaav3123, 2019.

[13] T. S. Cohen and M. Welling, “Steerable CNNs,” in International
Conference on Learning Representations, 2017. [Online]. Available:
https://openreview.net/forum?id=rJQKYt5ll

[14] D. Wang and R. Walters, “So (2) equivariant reinforcement learning,”
in International Conference on Learning Representations, 2022.

[15] D. Wang, R. Walters, X. Zhu, and R. Platt, “Equivariant q learning
in spatial action spaces,” in Conference on Robot Learning. PMLR,
2022, pp. 1713–1723.

[16] M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal, “Learning
force control policies for compliant manipulation,” in 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2011, pp. 4639–4644.

[17] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunya-
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