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1. Introduction

A toric vector bundle π : E → P n is a vector bundle equipped with the additional 

information of an algebraic action by the torus T ∼= (C∗)n. This action is required to 

intertwine with the usual action on P n, and induce linear maps between fibers. We let PE

denote the projectivization of E . Like toric varieties, projectivized toric vector bundles 

are a rich class of algebraic varieties which display a wide range of behavior, yet admit 

a combinatorial description.

In [16], Kaneyama shows that any toric vector bundle on P n of rank < n must split 

into a direct sum of line bundles, and gives a complete classification of the irreducible 

toric vector bundles of rank n. Let O(a) for a ∈ Z denote the line bundle of degree a

over P n. Any irreducible toric vector bundle of rank n can be described as the cokernel 

Ea of a map O →
⊕n

j=0 O(ai) where a = {a0, . . . , an} ⊂ Z>0, or as the dual E∨
a

of such 

a bundle. In particular, the tangent bundle T P n and cotagent bundle T ∨P n are the case 

aj = 1. In this paper we study the projectivizations PEa and PE∨
a

of these bundles.

1.1. Mori dream spaces

Recall that a complete, normal variety X is said to be a Mori dream space if its Cox 

ring R(X) is finitely generated. See the book [1] for background on Cox rings. In [13], 

Hering, Mustaţă, and Payne ask when a projectivized toric vector bundle is a Mori dream 

space. The first work on this question is due to Hausen and Süß [14], where they answer 

the question in the positive for tangent bundles of toric varieties. In [12], Gonzaléz shows 

that all rank 2 vector bundles give Mori dream spaces. Many non-examples are found 

by Gonzaléz, Hering, Payne, and Süß [9] by relating projectivized toric vector bundles 

to blow-ups of projective spaces. In what follows we let R(PE) denote the Cox ring of 

the projectivized bundle PE .

In [21], Kaveh and the 2nd author show that the data of a toric vector bundle can be 

encoded in a pair (L, D), where L is a linear ideal, and D is an integral matrix called the 

diagram. Sufficient conditions for this data to define a bundle E with PE is a Mori dream 

space are given [21], [11], [10]. In Section 2 we find pairs (Ln, Da) and (L∨
n , D∨

a
) for Ea

and E∨
a

, respectively. Notably, the ideals Ln and L∨
n depend only on the dimension n.

Theorem 1.1. For any a ⊂ Z>0 the diagram Da is the diagonal matrix with entries a, 

and the ideal Ln ⊂ C[y0, . . . , yn] is generated by y0 + · · ·+yn. The ideal L∨
n ⊂ C[zij | 0 ≤

i < j ≤ n] is generated by the forms zik − zij − zjk, for all i < j < k, and the diagram 

D∨
a

has i, jk-th entry 0 if i /∈ {j, k} and −ai otherwise.

Example 1.2. Let a = {a0, a1, a2, a3} ⊂ Z>0, and let Ea and E∨
a

be the corresponding 

irreducible bundles of rank 3 on P 3. We describe the pairs (L3, Da) and (L∨
3 , D∨

a
) for 

these bundles.
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For Ea we have L3 = 〈y0 + y1 + y2 + y3〉 ⊂ C[y0, y1, y2, y3], and

Da =

⎡

⎢

⎣

a0 0 0 0
0 a1 0 0
0 0 a2 0
0 0 0 a3

⎤

⎥

⎦
.

For E∨
a

we have L∨
3 = 〈z03−z02−z23, z02−z01−z12, z13−z12−z23〉 ⊂ C[z01, z02, z03, z12, z13,

z23], and

D∨
a

=

⎡

⎢

⎣

−a0 −a0 −a0 0 0 0
−a1 0 0 −a1 −a1 0

0 −a2 0 −a2 0 −a2

0 0 −a3 0 −a3 −a3

⎤

⎥

⎦
.

The matroid defined by the ideal L∨
n is that of the type An+1 root system, or equiva-

lently, the graphical matroid defined by a complete graph on n +1 vertices. Theorem 1.1

has several nice corollaries when it is paired with results from [11]. For any toric vector 

bundle E there is an associated full flag bundle FL(E), see [11], and Section 3.

Corollary 1.3. Let V be a finite dimensional vector space, and a ⊂ Z>0, then P (Ea ⊗ V ), 

P (E∨
a

⊗ V ), FL(Ea ⊗ V ), and FL(E∨
a

⊗ V ) are Mori dream spaces.

In Section 3 we give complete presentations of the Cox rings R(PEa), R(PE∨
a

) and 

R(FL(Ea). By Kaneyama’s result [16], any toric vector bundle of rank < n on P n splits, 

so the statement of Corollary 1.3 actually applies to any toric vector bundle of rank ≤ n

on P n. For an example of a rank 3 bundle on P 2 which is not a Mori dream space, see 

[21, Example 6.9].

The ideals Ia and I∨
a

which appear in the presentations of R(PEa) and R(PE∨
a

) are 

interesting in their own right. After reindexing, the ideal I∨
a

is generated by modified 

Plücker relations ([26, Section 14.4]), see Proposition 3.6. In particular, a generating set 

for I∨
a

can be obtained by taking the Plücker relations on Pij for 0 ≤ i < j ≤ n + 1, and 

replacing any instance of P0i with P ai

0i (see Fig. 1).

The notion of well-poised ideal was introduced by the 2nd author and Ilten in [15] to 

describe favorable properties of the initial ideals of complexity one T -varieties. An ideal 

I is said to be well-poised if any initial ideal inw(I) associated to a tropical point w ∈

Trop(I) is a prime ideal. It’s significantly easier to compute a Newton-Okounkov body 

[25], [19] for a variety with a well-poised embedding. There is a Newton-Okounkov body 

associated to every maximal face of Trop(I) for a well-poised ideal I. Work of Escobar and 

Harada [5] on wall-crossing for Newton-Okounkov bodies shows that there are piecewise-

linear bijections relating bodies associated to adjacent faces. The quintessential example 

of a well-poised ideal is the ideal generated by the Plücker relations which cut out the 

Grassmannian variety Gr2(n + 2). This ideal is known to coincide with I1,...,1, which 

presents the Cox ring of the projectivized cotangent bundle PT ∨P n. The following is a 

natural generalization of this fact.
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Fig. 1. The complete graph on 5 vertices, representing the generators Pij of R(PE∨
a

). The highlighted edges 
correspond to the distinguished generators P0i and their exponents in the equations for R(PE∨

a
), where 

a = (a1, a2, a3, a4).

Theorem 1.4. The ideals Ia and I∨
a

are well-poised.

Using Theorem 1.4 we give a procedure to compute Newton-Okounkov bodies for the 

projectivization of any irreducible toric vector bundle of rank n on PE in Section 3.5. 

We also show that we can control the Mori dream space property under pullback along 

any toric blow-up BLρP n → P n corresponding to adding a ray to the fan of P n, see 

Corollary 3.13

Remark 1.5. The Grassmannian variety Gr2(n + 2) is also a cluster variety. It would be 

interesting to identify a connection between the bundles PE∨
a

and the theory of cluster 

varieties.

1.2. Divisors and Fujita’s conjectures

For a smooth, projective variety X we let CL(X) denote the divisor class group, and 

KX denote the canonical class of X. The following are Fujita’s freeness and ampleness 

conjectures, respectively.

Conjecture 1.6. Let X be smooth of dimension n and let A ∈ CL(X) be ample, then

(1) for m ≥ n + 1, KX + mA is globally generated,

(2) for m ≥ n + 2, KX + mA is very ample.
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By Mori’s cone theorem ([24, Theorem 1.5.33]), Conjecture 1.6 can be proven for a 

variety X by showing that any Nef class on X is basepoint-free, and any ample class on X

is very ample. Techniques for computing positivity properties of divisors on a projectived 

toric vector bundle PE are developed in [10]. In Section 4 we apply modifications of those 

techniques to compute the pseudo-effective and Nef cones, along with the effective and 

semiample monoids, for any PEa and PE∨
a

. We then deduce the following.

Theorem 1.7. For any a ⊂ Z>0, a divisor on PEa or PE∨
a

is basepoint free if it is Nef, 

and very ample if it is ample. As a consequence, PEa and PE∨
a

satisfy Fujita’s freeness 

and ampleness conjectures.

The Fujita conjectures are known for smooth toric varieties. In the non-smooth toric 

case, freeness holds by work of Fujino [8], and a theorem of Payne [28] establishes ample-

ness in the case of Gorenstein singularities. Working by way of dimension, curves satisfy 

both conjectures by Riemann-Roch, and results of Reider [29] prove the surface case. 

The freeness conjecture has been proved for smooth projective varieties up to dimension 

5 [6,18,31]. For toric vector bundles, if the rank of E is 2, then PE is a complexity-1

T -variety, and therefore satisfies Fujita’s freeness conjecture by a result of Altmann and 

Ilten [2]. We credit Altmann and Ilten for the suggestion to study the Fujita conjectures 

for projectivized toric vector bundles. For Mori dream spaces, Fahrner [7] has developed 

algorithms which test the freeness conjecture.

We prove Theorem 1.7 by showing that PEa and PE∨
a

both carry embeddings into 

split projectivized toric vector bundles in such a way that both the class groups and 

semiample monoids are isomorphic to those of the ambient space (Proposition 4.3). We 

call a map with these properties a neat and tidy embedding, see Section 4.

Acknowledgments: We thank Kiumars Kaveh for many useful discussions about toric 

vector bundle.

2. Linear ideals and diagrams

In what follows let E denote the fiber of a toric vector bundle E over the identity point 

of a torus T , thought of as a dense, open subvariety of a smooth toric variety X(Σ). The 

data of a toric vector bundle E can be packaged in a number of ways. Kaneyama’s 

classification [17] is by certain GL(E) cocycles. Klyachko [20] uses an arrangement of 

filtrations of E labeled by data from the representation theory of T . In [22], Kaveh and 

the 2nd author show that E can be captured in a prevaluation v : E → O|Σ| where the 

latter denotes the integral piecewise-linear functions with a finite number of domains 

of linearity on the support of the fan Σ. The operations on O|Σ| are “multiplication,” 

computed as pointwise sum, and “addition,” computed as pointwise minimum. We regard 

∞ as the additive identity of O|Σ|, and 0 serves as the multiplicative identity. Under these 

operations, O|Σ| has the structure of a semifield.
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Definition 2.1. A prevaluation v : E → O|Σ| is a function which satisfies:

(1) v(0) = ∞,

(2) v(Cf) = v(f) for any C ∈ C \ {0},

(3) v(f + g) ≥ min{v(f), v(g)}.

Klyachko’s compatibility conditions, and Kaneyama’s cocycle data can be wrapped 

up in the axioms of prevaluations, along with the requirement that there be an linear 

adapted basis Bσ for the restriction v |σ: E → O|σ| of v to each maximal face of the fan Σ. 

This means that there is some vector space basis Bσ ⊂ E with the property that v |σ (b)

agrees with an integral linear form on |σ|, and for any f ∈ E with f =
∑

bi∈Bσ
cibi we 

have v |σ (f) = min{v(bi) | ci �= 0}.

Because of the adapted bases Bσ ⊂ E and the smoothness of Σ, the prevaluation 

v is entirely determined by its values on the ray generators of Σ. The fact that v is a 

prevaluation implies that its specialization v(u) : E → Z at a ray generator determines 

an integral, decreasing filtration of E by the spaces:

F u
r = {f | v(u)(f) ≥ r}.

The integral filtration F u of E can be used to define an integral valuation on the poly-

nomial ring Sym(E). A choice of spanning set B = {b1, . . . , bm} ⊂ E determines a 

presentation of Sym(E) by a linear ideal L ⊂ C[y1, . . . , ym], and by taking values on 

B ⊂ E, the valuation defined by F u specializes to a point w(u) in the tropical variety 

Trop(L) by evaluation on the image of the generators y1, . . . , ym in Sym(E). The point 

w(u) completely determines F u in that F u
r is the span of those elements of B whose 

w(u) entries are larger than r. Such a set always defines a flat of the matroid M(L)

determined by L on the set y1, . . . , ym.

If we take B to be any spanning set of E containing adapted bases Bσ we arrive at 

the characterization of toric vector bundles in [21, Theorem 1.4]. A toric vector bundle 

can be captured by a configuration w1, . . . , wn of points on a tropicalized linear space 

Trop(L) such that for any face σ ∈ Σ the rows wi for ρi ∈ σ(1) must all belong to a 

common apartment AB ⊂ Trop(L). Apartments AB ⊂ Trop(L) are distinguished poly-

hedral subcomplexes of Trop(L). There is an apartment AB for each basis B ⊂ M(L), 

in particular, AB is the set of (v1, . . . , vm) ∈ Trop(L), where vj is equal to the minimum 

of the vk where yk appears in the B-expression for yj . It is straightforward to show that 

the apartments cover Trop(L) and that each AB is piecewise-linear isomorphic to Qr. 

We organize the configuration into an n × m matrix D, where the i-th row of D is wi. 

In this way, a toric vector bundle E is determined by a pair (L, D).

We let Σn denote the fan of P n. The ray generators of Σn are the elementary basis 

vectors e1, . . . , en, along with e0 = − 
∑n

i=1 ei. We let σi denote the maximal face of 

Σn which is spanned by all ray generators except ei. Recall that a T -linearized line 

bundle O(r0, . . . , rn) on P n is determined by a tuple (r0, . . . , rn) ∈ Zn+1. There is a 
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corresponding piecewise-linear function φ on Σn determined by the properties that φ |σi

is linear, and φ(ei) = ri.

Tensoring a bundle E by a line bundle L does not change the projectivization, so we 

may replace the diagram of E by the diagram of E ⊗ L without changing the geometry 

of PE . Tensoring a toric vector bundle E which corresponds to the pair (L, D) by the 

T -linearized line bundle O(r0, . . . , rn) amounts to adding rj to each entry of the j-th 

row of the diagram D. For this reason we may speak of the non-negative form of a 

(L, D), where we have added non-negative integers to the row of D so that each entry is 

non-negative.

2.1. The pair (Ln, Da)

Fix a = {a0, . . . , an} ⊂ Z>0. In [16], Kaneyama constructs half of the irreducible 

bundles of rank n on P n as cokernels of the maps O →
⊕n

j=0 O(aj). We partially 

reconstruct Kaneyama’s result by supposing we have an exact sequence of toric vector 

bundles:

0 → O(0) →

n
⊕

i=0

O(Di)
π
−→ E → 0,

with E irreducible and rank n, where each Dj ∈ Zn+1 satisfies 
∑n

i=0 Dij = aj , and 

determines an action of T on the total space of O(aj). We let (E, v) be the prevalued 

vector space corresponding to E .

Now we let VD =
⊕n

j=0 O(Dj) and V =
⊕n

j=0 Cyj . Each tuple Dj determines the 

piecewise-linear function φj ∈ OP n , where φj(ei) = Dij . We let vD : V → OP n be the 

prevaluation with adapted basis {y0, . . . , yn} such that vD(yj) = φj . By [21, Section 3], 

this corresponds to a map of prevalued vector spaces (V, vD) → (E, v). The surjectivity of 

π implies in particular that the induced maps πσ : (VD)σ → Eσ over the torus fixed points 

of X(Σ) are also surjective. Consequently, the images b0, . . . , bn of the y0, . . . , yn ∈ V

contain an adapted basis for v |σi
, for each maximal face of Σn. Accordingly, we may 

take the spanning set B = {b0, . . . , bn} ⊂ E. As E has dimension n, precisely one 

linear relation can hold among the bj. Without loss of generality, we take this to be 

b0 + . . . + bn = 0. We conclude that L = 〈y0 + · · · + yn〉, and D = [D0 · · · Dn] for the 

bundle E . The following proposition finishes our analysis.

Proposition 2.2. The bundle Ea is comes from the pair (Ln, Da), where Ln = 〈y0+· · ·+yn〉

and Da is the diagonal matrix with the aj along the diagonal.

Proof. First, we observe that each collection of n rows of Da must share a common 

adapted basis. This implies that for each such collection, there is a column with all 0

entries in the associated rows; namely the column corresponding to the element left out 

of the basis. Next, observe that if any two collections have the same adapted basis, then 
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all rows have the same adapted basis. This would imply that the resulting bundle would 

be split, contradicting the irreducibility of Ea. It follows that each of the n +1 collections 

of rows have a distinct adapted basis. There are exactly n + 1 bases of the matroid 

defined by Ln, and each element of y0, . . . , yn is left out of some basis. Accordingly, each 

column of Da has at most one non-zero entry in the location not in the corresponding 

complementary set of rows, and irreducibility again implies that this entry is positive. 

We can therefore assume that Da is a diagonal matrix with the aj along the diagonal. �

2.2. The pair (L∨
n , D∨

a
)

Let (E, v) be a prevalued vector space, and let E be the corresponding toric vector 

bundle over a toric variety X(Σ). The dual bundle E∨ corresponds to a prevaluation 

v
∨ : E∨ → O|Σ| on the dual E∨ of E. The function v∨ is determined by what it does 

on the duals of the adapted bases B∨
σ ⊂ E∨ for σ ∈ Σ. Following [21, Example 3.27], we 

take B∨
σ to be the dual basis of Bσ, and we have v∨ |σ (b∨

i ) = −v |σ (bi).

Now we wish to go from the data (E∨, v∨) to a pair (L∨, D∨) for a dual bundle. The 

ideal is obtained by taking L∨ to be the relations which vanish on the set B∨ = ∪σ∈ΣB∨
σ . 

Now fix a face σ ∈ Σ, and consider the rows of D∨ which come from the rays σ(1). 

The entries of these rows coming from B∨
σ are determined by the formula v∨|σ (b∨

i ) =

−v |σ (bi), and any value for b ∈ B∨ \ B∨
σ is computed by expressing b as a unique 

linear combination of elements of B∨
σ , and taking the minimum value which appears. 

This method determines all entries of D∨.

We now apply this construction to E∨
a

. Let E = V/〈y0 + · · · yn〉. We view E∨ as the 

space of linear functionals z : V → C such that 
∑n

j=0 z(yj) = 0. For any basis member 

yj ∈ V we have a dual y∨
j : V → C, and the difference zij = y∨

i − y∨
j of any two dual 

basis members is always an element of E∨.

Fix a face σi in Σn, then Bσi
has adapted basis the images of the yj with j �= i. It 

is then easy to check that B∨
σi

= {zji | j �= i} ⊂ E. Moreover, v∨
a

(zji) = −va(yj), this 

vector is 0 for each ray in σi except the j-th ray, where it is −aj . To simplify matters 

we take B∨ = {zji | j < i} ⊂ E∨; then this set contains an adapted basis for each σi.

Proposition 2.3. The ideal L∨
n is generated by the circuits zik = zij + zjk for i < j < k. 

The non-negative diagram D∨
a

has rows w� with the property that the ij-th entry is −a�

if � = i or j and 0 otherwise.

Proof. Fix i < j < k, then zij + zjk = y∨
i − y∨

j + y∨
j − y∨

k = zik. These are the relations 

of the type An root system, so they define a quotient space of rank n, and generate L∨
n . 

Now fix a row w� of D∨
a

. The �-th ray appears in the face σj , where j �= �, which has 

adapted basis zij . If i = �, then the �, ij-th entry is −a�; otherwise this entry is 0. This 

determines D∨
a

. �
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We have determined the pair (L∨
n , D∨

a
) of the dual bundle E∨

a
, however the diagram 

D∨
a

has negative entries. The non-negative form of this pair, which best describes PE∨
a

has diagram D′
a
, where the �, ij-th entry is 0 if � = i or j and a� otherwise.

3. Cox rings

In this section we find presentations of the Cox rings R(PEa), R(PE∨
a

) of the projec-

tivizations of the irreducible toric vector bundles of rank n on P n. First we use a result 

in [21] to show that R(PEa) is presented by a single hypersurface. The matrix Da is 

diagonal, so we are able to use a theorem from [11] to conclude that the full flag bundle 

FL(Ea) is also a Mori dream space. We find a presentation of the Cox ring R(FL(Ea))

by adapting an argument from [11]. We then use an invariant theory construction to find 

a presentation of R(PE∨
a

). The ideals Ia, I∨
a

of these presentations are then shown to 

be well-poised.

3.1. The Cox ring R(PEa)

The irreducible bundle Ea is an example of a sparse bundle ([21], [11]). In particular, 

the diagram D∨
a

has at most one non-zero entry in each row. The Klyachko filtrations of 

sparse bundles have at most one intermediary step, which are also codimension 1. Sparse 

bundles were first studied in [9], where it was shown they are Mori dream spaces, and 

explicit presentations of their Cox rings were constructed. The following presentation 

comes from [21, Corollary 6.7], which states that the Cox ring of a sparse pair (L, D) is 

presented by appropriate homogenizations of a minimal generating set of L. In particular, 

the Cox ring of the projectivization of a sparse bundle is always a complete intersection, 

and any sparse bundle is a CI bundle, see [21, Proposition 6.2].

Proposition 3.1. The Cox ring R(PEa) is the quotient of the polynomial ring in 2(n + 1)

variables C[x0, . . . , xn; Y0, . . . , Yn] by the ideal Ia = 〈
∑n

j=0 x
aj

j Yj〉.

Example 3.2. The tangent bundle T P n is the case a = (1, . . . , 1), we recover the well-

known fact that the Cox ring of PT P n is presented by the polynomial x0Y0 + · · ·+xnYn.

3.2. The full flag bundles FL(Ea) and FL(E∨
a

)

The next proposition is largely the content of [11], although we have added a treatment

of the dual bundle E∨. If the full flag bundle FL(E) is a Mori dream space, an infinite 

collection of projectivized toric vector bundles and their full flag bundles must also 

be Mori dream spaces. The methods used to prove this result draw on the theory of 

representation stability and non-reductive representation theory, see [11] for details.
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Proposition 3.3. Let E be a toric vector bundle, and suppose FL(E) is a Mori dream 

space, then for any finite-dimensional vector space V , P (E⊗V ), FL(E⊗V ), FL(E∨⊗V ), 

and P (E∨ ⊗ V ) are Mori dream spaces.

Proof. The fact that P (E ⊗V ) and FL(E ⊗V ) are Mori dream spaces is [11, Theorem 1.3, 

Corollary 1.4]. If FL(E ⊗V ) is a Mori dream space, then P ((E ⊗V )∨) = P (E∨ ⊗V ∨) is a 

Mori dream space for all V by [11, Corollary 5.9], see also the discussion in Section 3.3. 

But this implies that FL(E∨ ⊗ V ) is a Mori dream space for all V . �

Corollary 3.4. Let E be an irreducible toric vector bundle of rank n on P n, then P (E ⊗V )

and FL(E ⊗ V ) are Mori dream spaces.

Proof. By Proposition 3.3, it suffices to show that FL(Ea) is a Mori dream space, but 

this is [11, Corollary 5.8]. �

Now we give a presentation of the Cox ring R(FL(Ea)). Our treatment follows the 

construction of the Cox ring of FL(T P n) in [11] (this is the special case a = (1, . . . , 1)). 

For toric vector bundle E of rank n, the Cox ring R(FL(E)) can be constructed as the 

algebra of invariants by the natural action of the unipotent group Un−1 of n − 1 × n − 1

upper triangular matrices with 1’s on the diagonal on the Cox ring R(P (E ⊗ Cn−1)). In 

the case Ea, the algebra R(P (Ea ⊗Cn−1)) is presented by the polynomial ring C[xj, Yij |

0 ≤ j ≤ n, 1 ≤ i ≤ n − 1], which also carries an action by Un−1. The unipotent actions 

extend to an action by the reductive group GLn−1(C), hence we obtain a surjection:

C[xj , Yij | 0 ≤ j ≤ n, 1 ≤ i ≤ n − 1]Un−1 → R(FL(Ea)) → 0.

The algebra C[xj , Yij | 0 ≤ j ≤ n, 1 ≤ i ≤ n − 1]Un−1 ⊂ C[xj , Yij | 0 ≤ j ≤ n, 1 ≤ i ≤

n − 1] is a polynomial ring in n + 1 variables over the Plücker algebra of upper-justified 

minors of the matrix of variables [Yij]. For background on the Plücker relations see [26, 

Section 14.2]. Accordingly, we can present R(FL(Ea)) as a quotient of the polynomial 

ring C[xj , Pτ , P0,τ | 0 ≤ j ≤ n, τ ⊂ [n]].

The Cox ring R(FL(Ea)) is the image of the map Ψa : C[xj , Pτ , P0,τ ] → C[tj , yij ]

defined by:

Ψa(xj) = t−1
j ,

Ψa(Pτ ) = det[y(τ)]taτ ,

Ψa(P0,τ ) =
n

∑

j=1

det[y(j, τ)]ta0

0 taτ .

Here y(τ) denotes the minor on the first |τ | rows and the τ columns of [yij ], and aτ

denotes the part of the tuple a supported on τ . The quadratic Plücker relations hold 
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among the Pτ and P0,τ . Moreover, it is straightforward to vary that
∑

j /∈τ x
aj

j Pjτ = 0

using the definition of Ψa. We show that these relations suffice to present R(FL(Ea)).

The proof of Theorem 3.5 involves a modification of the semigroup GZn of Gel’fand-

Zetlin patterns with n rows. A Gel’fand-Zetlin pattern g ∈ GZn is an array of integers 

arranged in n rows, where the i-th row has n + 1 − i entries gij . These integers satisfy 

additional inequalities: gij ≥ gi+1,j ≥ gi,j+1. Let GZ+
n be the set of patterns with g1n = 0. 

The generators of GZ+
n are in bijection with strict subsets τ ⊂ [n], where the pattern 

g(τ) corresponding to τ is the unique pattern with |τ ∩ [n − i + 1]| 1’s and |[n − i + 1] \ τ |

0’s in row i.

A solution to the word problem for a semigroup S with generators A1, . . . , Am is 

a minimal set of relations of the form Ai1
· · · Ait

= Aj1
· · · Ajs

which can be used to 

transform an arbitrary relation to a trivial relation by substitution.

Theorem 3.5. The ideal ker(Ψa) is generated by the Plücker relations among the Pτ and 

P0,τ , along with relations of the form 
∑

j /∈τ x
aj

j Pjτ = 0.

Proof. The argument proceeds as in [23, Algorithm 1.8]. We select a monomial ordering 

on C[tj , yij ] which satisfies yij ≺ t� for all i, j, �, such that the initial form in≺ det[y(τ)]

is the product of the diagonal terms. This ordering also defines a partial ordering on the 

variables xj , Pτ , P0,τ . The initial forms of Ψa(xj), Ψa(Pτ ), and Ψa(P0,τ ) with respect to 

this ordering generate a semigroup in GZn × Zn+1. To prove the theorem, it suffices to 

show that there is a generating set of the binomial relations which vanish on these initial 

forms which are themselves the initial forms of the described set of relations with respect 

to the induced partial ordering on the polynomial ring C[xj, Pτ , P0,τ ].

Now we identify the initial forms in≺t−1
j , in≺ det[y(τ)]taτ , and in≺ det[y(0, τ)]ta0

0 taτ

with elements of the semigroup GZn×Zn+1. The form in≺t−1
j is sent to (0, −ej) ∈ GZn×

Zn+1, the form in≺ det[y(τ)]taτ is sent to (g(τ), 
∑

j∈τ ajej) ∈ GZn × Zn+1, and finally, 

the form in≺

∑n
j=1 det[y(j, τ)]ta0

0 taτ is sent to (g(τ∗), a0e0 +
∑

j∈τ ajej) ∈ GZn × Zn+1. 

Here τ∗ denotes the set τ ∪ {�}, where � is the first element of [n] not in τ . In particular, 

if e0 appears in the support of u ∈ Zn+1, where (g(η), u) is a generator, then the first 

index in the support of η is smaller than the first non-zero index of u.

Next, we find a generating set of the prime binomial ideal which vanishes on these 

patterns by solving the word problem. If [b] ⊂ η then we have:

[0, −abeb][g(η),
∑

j∈η

ajej ] = [0, −a0e0][g(η), a0e0 +
∑

j∈η\{b}

ajej ]

Here [g(η), 
∑

j∈η ajej ] is the representative of in≺ det[y(η)]taη , and [g(η), a0e0 +
∑

j∈η\{b} ajej ] is the representative of in≺

∑n
j=1 det[y(j, η \ {b})]ta0

0 taη\{b} . We also have 

the standard binomial relations among the Gel’fand-Zetlin generators:

[g(τ),
∑

j∈τ

ajej ][g(η),
∑

i∈η

aiei] = [g(τ ∪ η),
∑

k∈τ∪η

akek][g(τ ∩ η),
∑

�∈τ∩η

a�e�].
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These binomials hold among the initial forms of in≺ det[y(τ)]taτ ; it is straightforward to 

verify that the versions involving in≺

∑n
j=1 det[y(j, τ)]ta0

0 taτ work in the same way.

The two families of binomials described lift to 
∑

j /∈τ x
aj

j Pτ = 0, and Plücker relations, 

respectively. Therefore, if we check that these relations suffice to generate the binomial 

ideal which vanishes on the initial forms, we have shown that the required relations 

generate ker(Ψa). We suppose we have two words A1 · · · An, B1 · · · Bn whose product 

maps to the same extended Gel’fand-Zetlin pattern. We must show that after applications 

of the above binomial relations, these words can be taken to a common word.

First we observe that the contributions to the Zn+1 component from either word 

agree, and that if e� appears with multiplicity b�, we can divide b� by a� and factor the 

resulting number of copies of [0, −e�] off both words. In particular, we may assume with-

out loss of generality that the contribution of e� is divisible by a�. Similarly, any [0, −e�]

not supported by a pattern elsewhere in the words can be read off of the Zn+1 compo-

nent, and factored off both sides. Also, any [0, −a�e�] for [�] ⊂ τ for [g(τ), 
∑

j∈τ ajej ]

appearing the word can be converted to [0, −a0e0] using the first relation above. So we 

may assume without loss of generality that both words do not contain a generator of the 

form [0, −a�e�] for any � ∈ {0, . . . , n}.

Now, using the Gel’fand-Zetlin binomial relations, we can ensure that the underly-

ing Gel’fand-Zetlin patterns in both words are the same, with possibly different Zn+1

components. Select a leading pattern on both sides, say A1 = [g(τ), 
∑

j∈τ\{b1} ajej ]

and B1 = [g(τ), 
∑

j∈τ\{c1} ajej ], and suppose that b1 < c1. We must have that 

[b1] ⊂ τ and [c1] ⊂ τ . Moreover, the Zn+1 components of both words agree, 

so there must be some A2 = [g(η), 
∑

k∈η\{c1} akek] with [c1] ⊂ η. This means 

b1, c1 ∈ τ , and c1 ∈ [c1] ⊂ η, so also b1 ∈ η. Now we may apply the conse-

quence of the Gel’fand-Zetlin relations: [g(τ), 
∑

j∈τ\{b1} ajej ][g(η), 
∑

k∈η\{c1} akek] =

[g(τ), 
∑

j∈τ\{c1} ajej ][g(η), 
∑

k∈η\{b1} akek], and factor off [g(τ), 
∑

j∈τ\{c1} ajej ]. This 

completes the proof. �

3.3. The Cox ring R(P (E∨
a

))

In this section we obtain a presentation the Cox ring R(PE∨
a

) from a presentation of 

the Cox ring R(FL(Ea)). For a general toric vector bundle E of rank r over a smooth, 

projective toric variety X(Σ) the class group of FL(E) is naturally a product:

CL(FL(E)) ∼= CL(X(Σ)) × CL(FLr),

where FLr denotes the full flag variety of the vector space Cr, see [11, Proposition 3.5]. 

For a moment we draw from representation theory and write CL(FLr) as 
⊕r−1

i=1 Zωi, 

where ωi denotes the i-th fundamental weight of the reductive group SLr. Each positive 

combination λ =
∑r−1

i niωi corresponds to a Schur functor Sλ, which is an operation 

which applies to both vector spaces and vector bundles. These are precisely the effective 

classes on FLr. If (d, λ) ∈ CL(FL(E)) is effective, restriction of this class to the identity 
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fiber of FL(E) gives an effective class of FLr. The Picard variety of FLr is a point, so 

this implies that λ is a positive combination of the ωi. In this case, the global sections 

of (d, λ) can be realized as the following section space on X(Σ):

H0(FL(E), O(d, λ)) ∼= H0(X(Σ), O(d) ⊗ Sλ(E)).

In the special case that λ =
∑r

i=1 niωi with ni = 0 for i < r − 1, Sλ(E) is of the 

form Symn(
∧r−1

E). In this way we see that the Cox ring of P (
∧r−1

E) is naturally the 

subalgebra of R(FL(E)) supported on the subgroup CL(X(Σ)) × Zωr−1 ⊂ CL(FL(E)). 

Finally, 
∧r−1

E and E∨ differ by tensoring by the determinant line bundle det−1(E), so 

their projectivizations agree. We summarize these observations below.

Proposition 3.6. Under the grading by CL(FL(E)), R(P (E∨)) is the subalgebra of 

R(FL(E)) supported on the subgroup CL(X(Σ)) × Zωr−1 ⊂ CL(FL(E)).

Now we apply a little bit of invariant theory to find a presentation of R(P (E∨
a

)).

Proposition 3.7. The Cox ring R(PE∨
a

) is the quotient of the polynomial ring C[xi, Zjk |

0 ≤ i, j < k ≤ n] by the ideal I∨
a

generated by the relations x
aj

j Zik − xak

k Zij − xai

i Zjk for 

i < j < k, and the quadratic Plücker relations on the Zij.

Proof. By Proposition 3.6, R(P (E∨
a

)) is the subalgebra of R(FL(Ea)) generated by the 

xi, along with the top Plücker generators Pτ , where |τ | = n − 1. We let Zij denote the 

Plücker generator corresponding to the complement of {i, j} in {0, . . . , n}. The CL(FLn)

components of the CL(FL(Ea)) degrees of a Plücker generator Pτ ∈ R(FL(Ea)) are the

fundamental weight ωk, where k = |τ |. Consequently, any relation among the Zij must 

come from the ωn−1 component of the ideal, which is in turn generated by the Plücker 

relations on the Zij . �

Remark 3.8. In the case aj = 1, Ea is the tangent bundle of P n, making E∨
a

the cotangent 

bundle T ∨P n. The presentation above shows that the transformation xi → P0,i+1, Zij →

Pi+1,j+1 takes the Cox ring R(PT ∨P n) isomorphically onto the Plücker algebra of the 

Grassmannian variety Gr2(n + 2). See [9] for a different account of this isomorphism.

3.4. The ideals Ia and I∨
a

are well-poised

Well-poised ideals were introduced in [15], where it is shown that any rational, 

complexity-1 T -variety has a well-poised embedding. Operations which preserve the 

well-poised property, in particular GIT quotients and the construction of T -varieties 

from certain polyhedral divisors, were studied in [4]. The following is the main result of 

[3], which gives a classification of well-poised hypersurfaces.
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Theorem 3.9. Let p =
∑m

i=1 Cai
xai ∈ C[x1, . . . , xn], then every initial form of p generates 

a prime ideal if and only if:

(1) the supports of the monomials xai are disjoint,

(2) for any i, j, the greatest common divisor of the list {ai, aj} is 1.

Theorem 3.9 immediately implies that Ia is well-poised. In particular, Ia is generated 

by 
∑n

j=0 xai

j Yj , which has disjointly supported monomials whose exponent vectors always 

contain a 1.

The Plücker ideal I2,n+2 provides another example of a well-poised ideal. The initial 

ideals coming from the tropical variety Trop(I2,n+2) were first studied by Speyer and 

Sturmfels in [30]. The initial ideals of points from the interior of a maximal face of 

Trop(I2,n+2) are precisely the prime binomial ideals which cut out certain toric varieties 

related to trivalent trees. In particular, as a consequence of [30, Theorem 3.4], it is 

known that the maximal faces of Trop(I2,n+2) are in bijection with trivalent trees T

with n + 2 leaves labeled in some way with the set {0, . . . , n + 1}. Let CT denote the 

face associated to the labeled tree T . Let E(T ) denote the set of edges of a trivalent tree 

T . Let pij ∈ ZE(T ) denote the indicator vector of the unique path from leaf i to leaf j

in T . We let ST ⊂ ZE(T ) be the affine semigroup generated by the indicator vectors pij

for 0 ≤ i < j ≤ n + 1. The following is the main result we will need in what follows.

Theorem 3.10. Let ρ ∈ CT , then the affine semigroup algebra C[ST ] is isomorphic to the 

quotient algebra C[Pij | 0 ≤ i < j ≤ n + 1]/inρ(I2,n+2).

Recall that a solution to the word problem for a semigroup S with generators 

A1, . . . , Am is a minimal set of relations of the form Ai1
· · · Ait

= Aj1
· · · Ajs

which 

can be used to transform an arbitrary relation to a trivial relation. Theorem 3.10 can 

be restated as saying that the binomial initial forms of the Plücker generators of I2,n+2

with respect to ρ ∈ CT solve the word problem for ST . We show that an almost identical 

statement holds for the ideals I∨
a

and a semigroup which is closely related to ST . First 

we define a map of polynomial rings which relates I2,n+2 to the I∨
a

:

Φa : C[Pij | 0 ≤ i < j ≤ n + 1] → C[xi, Zj,k | 0 ≤ i, j < k ≤ n]

Φa(P0,i+1) = xai

i

Φa(Pj+1,k+1) = Zj,k

The Plücker generators of I2,n+2 map precisely to the generators of I∨
a

found in Propo-

sition 3.7 under this map. As a consequence, the prime ideal Φ∗
a
(I∨

a
) is the Plücker ideal 

I2,n+2. Let ST (a) ⊂ QT be the affine semigroup generated by the indicator vectors pij

for 0 < i < j ≤ n + 1, and 1
ai

p0i for 0 < i ≤ n + 1.

Theorem 3.11. The ideal I∨
a

is well-poised.
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Proof. There is an induced map Φ∗
a

: Trop(I∨
a

) → Trop(I2,n+2), which is always onto 

by [27, Lemma 3.2.13]. For ρ = (x0, . . . , xn, . . . , zij , . . .) ∈ Trop(I∨
a

) the pullback map 

on tropical varieties gives Φ∗
a
(ρ) = (a0x0, . . . , anxn, . . . , zij , . . .) ∈ Trop(I2,n+2), which is 

1 − 1.

Now fix ρ ∈ Trop(I∨
a

), and suppose that Φ∗
a
(ρ) lands in the interior of CT ⊂

Trop(I2,n+2). We have 〈Φa(inΦ∗
a

ρ(I2,n+2))〉 ⊂ inρ(I∨
a

). The initial forms of the generating 

set of I∨
a

are the image of the CT -initial forms of the Plücker generators of I2,n+2, and so 

are contained in the set Φa(inΦ∗
a

ρ(I2,n+2)). Therefore, it suffices to show that these initial 

forms generate a prime ideal of height equal to the height of I∨
a

. We show this by arguing 

that these initial forms solve the word problem for ST (a). Let p1 · · · pm = q1 · · · qm be 

an equation in the generators of ST (a), in particular, the induced weighting w of E(T )

by these two words coincide. For either word, the contribution of 1
ai

p0i modulo ai can 

be read off the edge containing the i-th leaf of T in its boundary. It follows that if we 

assume (without loss of generality) that p1 · · · pm and q1 · · · qm share no generators, the 

contribution of each 1
ai

p0i to each must be divisible by ai. Now, after grouping these 

generators into subwords of length ai, we have a word problem identical to that of ST . 

This is solvable by the initial forms inρ(I∨
a

) by construction. Finally, we observe that I∨
a

is prime and homogeneous, so the fact that any ρ ∈ Trop(I∨
a

) has a prime initial ideal 

follows from this fact for a ρ coming from the interior of a maximal face. �

For a divisor class (α, β) ∈ CL(PE) let R(α,β)(PE) denote the graded subring given 

by the global sections of the positive multiples of (α, β). The following is a consequence 

of [4, Theorem 3.1].

Corollary 3.12. Let E be an irreducible toric vector bundle of rank n on P n, and let (α, β)

be a pseudo-effective divisor class on PE, then the ring R(α,β)(PE) has a presentation 

by a well-poised ideal.

For ρ ⊂ |Σn| a ray we let BlρP n denote the corresponding toric blow-up of projective 

space and βρ : BlρP n → P n be the blow-down map. Given a toric vector bundle E

over P n with PE a Mori dream space, it is natural to ask when the projectivization of 

the pullback bundle β∗
ρE is also a Mori dream space. A sufficient condition for this to 

occur, along with a presentation of the Cox ring of Pβ∗
ρE is given in [21, Theorem 6.13]. 

Roughly speaking, one tests whether or not a certain point of Trop(L) derived from ρ

belongs to a certain polyhedral complex derived from Trop(I). If the ideal I presenting 

the Cox ring of PE is well-poised, this subcomplex is all of Trop(L), meaning that Pβ∗
ρE

is always a Mori dream space, regardless of the choice of ray ρ. This leads us to the 

following corollary.

Corollary 3.13. Let E be an irreducible bundle of rank n on P n, then for any ray ρ, 

P (β∗
ρE) is a Mori dream space.
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3.5. Newton-Okounkov bodies

In this section we describe how to compute Newton-Okounkov bodies for projectiviza-

tions of the irreducible toric vector bundles of rank n on P n. The reader can follow the 

constructions of this section in Example 3.17.

In [10] methods are described for computing global Newton-Okounkov bodies and 

the Newton-Okounkov bodies of divisors for a projectivized toric vector bundle PE with 

R(PE) generated in Sym-degree 1. Any irreducible toric vector bundle of rank n on P n

has this property by Proposition 3.1 and 3.7.

The procedure in [10, Section 3] uses the prime cone method for computing Newton-

Okounkov bodies introduced in [23]. This method proceeds by first choosing a face of 

the tropical variety (with respect to the fan structure induced by Gröbner fan) with 

associated initial ideal a prime ideal. Such a face is called a prime cone. After a prime 

cone C has been selected, a matrix M with rows chosen from C is constructed, and 

the corresponding Newton-Okounkov bodies can be described as the images of certain 

polyhedra under the linear transformation defined by M .

Now we describe how to construct the matrix M . In what follows, let eA ∈ Zn+1

denote the indicator vector of a subset A ⊂ {0, . . . , n}. Suppose that the toric vector 

bundle E comes from the pair (L, D) with L ⊂ C[y1, . . . , ym], and that R(PE) is presented 

by the ideal I ⊂ C[Y1, . . . , Ym, x1, . . . , xn]. Let K ⊂ Trop(L) be a maximal face. The 

face K corresponds to a full flag of flats F1 ⊂ · · · ⊂ Fr = M(L), and is spanned by the 

indicator vectors eFi
for 1 ≤ i ≤ r. We let EK be the r × m matrix whose rows are the 

eFi
. We let M be the following matrix:

M =

[

D −I
EK 0

]

.

For any of the bundles E we consider, R(PE) is generated in Sym-degree 1, hence the 

effective monoid of PE is spanned by the class-group degrees of the generators x1, . . . , xn

and Y1, . . . , Ym. Over P n, these degrees are deg(xi) = (−1, 0) and deg(Yj) = (dj , 1), 

where dj =
∑n

i=0 Dij .

For a divisor class (α, β) ∈ Z2 ∼= CL(P n) × Z ∼= CL(PE) we let Pα,β ⊂ Qm+n
≥0 be 

the rational polytope of points (y1, . . . , ym, x1, . . . , xn) where β =
∑m

j=1 yj and α =
∑m

j=1 yjdj −
∑n

i=1 xi. We define two polyhedra using the matrix M :

ΔC = M ◦ Qm+n
≥0

ΔC(α, β) = M ◦ Pα,β .

Finally, for L and I as above, there is a surjection φ : Trop(I) → Trop(L):

φ(v1, . . . , vm, m1, . . . , mn) = (. . . , vj +

n
∑

i=1

miDij , . . .),
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which takes faces of Trop(I) into faces of Trop(L). The map s : Trop(L) → Trop(I)

given by s(v1, . . . , vm) = (v1, . . . , vm, 0, . . . , 0) is a section to φ. Any point in Trop(I)

can be translated to a point in the image of s by an element of the linearity space of 

Trop(I). The following is [10, Proposition 3.2].

Proposition 3.14. Let E be a toric vector bundle over P n with R(PE) generated in Sym-

degree 1, and let C ⊂ Trop(I) be a prime cone of the form C = φ−1K for a maximal 

face K ⊂ Trop(L), then ΔC is a global Newton-Okounkov body of PE and ΔC(α, β) is 

the Newton-Okounkov body of the divisor class (α, β).

The assumption that the inverse image of any K ⊂ Trop(L) consists of prime points 

in Trop(I) is satisfied by Ea and E∨
a

due to Theorems 3.10 and 3.11. Next we show that 

for any maximal face K of Trop(Ln) (respectively Trop(L∨
n)), the inverse image lies in 

a face of Trop(Ia) (respectively Trop(I∨
a

)). Then we describe the indicator matrices EK

for certain faces of Trop(Ln) and Trop(L∨
n).

Proposition 3.15. For the bundle Ea, and any flag of subsets A1 ⊂ · · · ⊂ An−1 ⊂ An =

{0, . . . , n} with |Ai| = i for i < n, we can take the matrix EK to have rows the indicator 

vectors of the Ai.

Proof. First, any collection A ⊂ {0, . . . , n} with |A| < n is a flat of M(Ln). A point in 

u ∈ K is positive weighted combination u =
∑n

i=1 vieAi
. The image s(u) ∈ Trop(Ia)

does not affect the xi variables, and weights precisely two Yj equal and less than the 

others. It follows that the initial form of 
∑n

j=0 x
aj

j Yj is the same for any point of K. �

The case L∨
n is more involved. Our argument works by interpreting s(u) ∈ Trop(I∨

a
)

for u ∈ K ⊂ Trop(L∨
n) as a weighted trivalent tree. The latter determines a point of 

the tropical variety of the Grassmannian Gr2(n + 2) by [30], and therefore a point of 

Trop(I∨
a

) by Theorem 3.11. In particular, we show that the tree type of s(u) is the same 

for all u taken from the interior of K. To simplify matters we deal with flats which are 

spanned by subsets of the basis {z01, . . . , zn−1,n}. Other cases are related to this case by 

the action of the permutation group. Let a set F ⊂ {zij | i < j} have the property that 

for indices k < �, if {zk,k+1, . . . , z�−1,�} ⊂ F then zk,� ∈ F .

Proposition 3.16. For the bundle E∨
a

, and any flag of subsets F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn =

{zij | i < j} we can take the matrix EK to have rows the indicator vectors of the Fi.

Proof. Each set F with the above property is a flat of M(L∨
n).

A point u ∈ K is a weighted combination 
∑n

i=1 vieFi
. The first flat F1 is of the form 

{zi,i+1}. We start by building the tree T1 which has leaves labeled i + 1, i + 2, along with 

a new leaf w′′, all tied to an internal vertex w′. We label the edge between w′ and w′′

with v1.
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Now suppose the tree Tj has been built, and that its leaves are labeled by the indices 

appearing in the elements of Fk shifted up by 1, along with a “root” leaf w. Moving to 

Fk+1 introduces a single new element of the form zj,j+1. If both indices do not appear 

in Fk, we add in new leaves labeled j + 1, j + 2, a new internal vertex w′, and connect 

w′ to both indexed leaves and the root w. We the label the edge between w and w′ with 

vk+1. If zj,j+1 shares an index with Fk, we add in a single new leaf labeled by the new 

index, a new root w′, and connect the old root w to the new root w′. The edge between 

the old and new root is then labeled vk+1. The last root is given the label 0. Keeping 

with the definition of the section function, we then choose the weights on the leaf edges 

to be negative numbers so that the total weight of any path from 0 to an index i is 0. 

We then divide every weight on the resulting tree T by 2.

We compute a point on Trop(I∨
a

) by sending xi to the negative of the total weight of 

those edges in the unique path from 0 to the vertex i + 1, and zij to the negative of the 

total weight of those edges in the unique path from i + 1 to j + 1. In the second case, 

this is the sum of those vk corresponding to the flats Fk which contain zij . In the first 

case, it is always 0. As a consequence, the tree T produces the point s(u) ∈ Trop(I∨
a

). 

By construction, the topology of T only depends on the chosen flag of flats. �

Example 3.17. Let a = {a0, a1, a2, a3} be positive integers. We construct Newton-

Okounkov bodies for the projectivization PE∨
a

of the irreducible bundle E∨
a

. As we are 

treating the projectivization, we use the non-negative diagram D′
a

introduced in Sec-

tion 2.2 for the “D” part of M . For the maximal flag of flats we choose F0 = 〈z01〉, 

F1 = 〈z01, z12〉, and F2 = M(L∨
3 ). The indicator vectors of this flag make the bottom 

three rows of the matrix M :

z01 z02 z03 z12 z13 z23 x0 x1 x2 x3

0 0 0 a0 a0 a0 −1 0 0 0
0 a1 a1 0 0 a1 0 −1 0 0
a2 0 a2 0 a2 0 0 0 −1 0
a3 a3 0 a3 0 0 0 0 0 −1
1 1 1 1 1 1 0 0 0 0
1 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

The global Newton-Okounkov body associated to this choice of flag is M ◦ Q6+4
≥0 . The 

Newton-Okounkov body of a divisor (α, β) ∈ Z2 ∼= CL(PE∨
a

) is the image of the polytope 

Pα,β ⊂ Q6+4
≥0 given by those tuples (z01, . . . , z23, x0, . . . , x3) satisfying:

z01 + z02 + z03 + z12 + z13 + z23 = β

(a2 + a3)z01 + (a1 + a3)z02 + (a1 + a2)z03 + (a0 + a3)z12 + (a0 + a2)z13 + (a0 + a1)z23

− x0 − x1 − x2 − x3 = α

under the matrix M .
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1 2 3 4

u v w

0

F0 F1

F2

Fig. 2. The tree T corresponding to the flag F0 ⊂ F1 ⊂ F2.

The flag F0 ⊂ F1 ⊂ F2 = M(L∨
n) corresponds to the tree in Fig. 2. We label edges of 

T by the corresponding flat of M(L∨
n).

When a = {1, 1, 1, 1}, the Cox ring R(PE∨
a

) is isomorphic to the Plücker algebra of the 

Grassmannian Gr2(5). The tree T above is recognizable as a caterpillar tree, and the 

resulting Newton-Okounkov cone for Gr2(5) is derived from the Gel’fand-Zetlin patterns 

with 2 columns and 5 rows. See [26, Section 14.4] for an account of the Gel’fand-Zetlin 

degeneration of a flag variety.

4. Positivity properties of divisors

In this section we compute the monoid Bpf(PE) ⊂ CL(PE) of basepoint-free divisor 

classes for E an irreducible toric vector bundle of rank n on P n. We then prove that any 

Nef class is basepoint-free, and any ample class is very ample on PE . The proof uses 

the fact that the Cox ring R(PE) is always generated in Sym-degree 1; this means that 

R(PE) is generated by the section spaces of the form H0(P n, O(d) ⊗ E). Generation 

in Sym-degree 1 implies that Bpf(PE) has an expression in terms of certain matroids 

associated to E .

4.1. The basepoint-free monoid

For the following see [1, Proposition 3.3.2.6]. Let X be a Mori dream space with Cox 

ring R(X) generated by f1, . . . , fm. For any point p ∈ X there is a monoid Sp ⊂ CL(X)

consisting of those divisor classes which carry a section which does not vanish at p. 

Clearly Bpf(X) =
⋂

p∈X Sp, and it is straightforward to show that each Sp is generated 

by the degrees of the fi with fi(p) �= 0. As a consequence, there are only a finite number 

of possible distinct Sp, however one still needs to find a set of representative points p.
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Now suppose we have a toric vector bundle E corresponding to a pair (L, D) over a 

smooth, projective toric variety X(Σ). For each facet σ ∈ Σ there is an initial linear ideal 

inσ(L) ([10, Section 2.1]), and an initial matroid M(inσ(L)) of M(L). Any maximal, non-

trivial flat F ⊂ M(inσ(L)) defines a point pσ,F ∈ PEσ. The following is [10, Proposition 

4.1].

Theorem 4.1. Let E and X(Σ) be as above, and suppose that R(PE) is generated in 

Sym-degree 1, then Bpf(PE) =
⋂

σ,F Spσ,F
.

Recall that if R(PE) is generated in Sym-degree 1, the effective monoid is spanned 

by the class-group degrees of the generators x1, . . . , xn and Y1, . . . , Ym. Over P n, these 

degrees are deg(xi) = (−1, 0) and deg(Yj) = (dj , 1), where dj =
∑n

i=0 Dij .

We say the bundle E is a monomial bundle [10, Section 4.2] if each initial ideal inσ(L)

is a monomial ideal. Equivalently, (L, D) defines a monomial ideal when, for any facet 

σ ∈ Σ, the minimal face of the Gröbner fan of L containing the rows of D corresponding 

to the rays σ(1) is maximal. In this case, the flats F ⊂ M(inσ(L)) are complements of 

single elements. If E is a bundle over P n and the monoids Spσ,F
of a monomial bundle 

are generated by the classes (−1, 0) and (dj , 1) for one of the generators Yj ∈ R(PE). 

In particular, any Spσ,F
in this case is freely generated.

Lemma 4.2. Let E be an irreducible toric vector bundle of rank n over P n, then E is 

monomial. In particular, for a facet σi in the fan of P n,

(1) inσi
(Ln) = 〈yi〉 ⊂ C[y0, . . . , yn],

(2) inσi
(L∨

n) = 〈zjk | i /∈ {j, k}〉 ⊂ C[zij | 0 ≤ i < j ≤ n].

Proof. For both classes of ideal we consider the face σ0 in the fan of P n spanned by 

the elementary basis vectors. The ideal Ln is generated by the form y0 + · · · + yn. The 

rows of Da corresponding to the elements of σ0(1) are each of the form (0, . . . , ai, . . . , 0)

where i �= 0. The initial ideal of the face of the Gröbner fan of Ln must be generated by 

a common refinement of the initial forms of these rows, and the only variable not given 

a positive weight by some row is y0. This shows inσ0
(Ln) = 〈y0〉.

For L∨
n we use the non-negative diagram D′

a
. Recall that the i-th row of this diagram 

weights zjk with ai if i /∈ {j, k} and 0 otherwise. We show that inσ0
(L∨

n) must contain 

zjk for any 0 < j < k. This proves the lemma for dimension reasons. The initial ideal 

of the minimal face of the Gröbner fan containing the rows from σ0(1) must itself be an 

initial ideal of the sum of any two rows. Consider the initial ideal of the sum of the j

and k-th rows; this weights z0k with aj , z0j with ak and zjk with 0. It follows that the 

initial form of z0k − z0j − zjk with respect to this sum is zjk, and that zjk ∈ inσ0
(L∨

n)

for all 0 < j < k. �
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4.2. Embeddings into toric varieties

Observe that Lemma 4.2 implies that for any irreducible toric vector bundle of rank 

n on P n, Bpf(PE) is the intersection of saturated monoids, and is therefore saturated. 

This implies that any Nef class of PE is basepoint free. In this section we recover this 

fact and more by showing that any PE comes with a useful embedding into a smooth, 

projective toric variety.

Let φ : X → Z be an embedding of a Mori dream space into a toric variety Z. 

This embedding is said to be neat ([1, Definition 3.2.5.2]) if it induces an isomorphism 

CL(X) ∼= CL(Z). We say that φ is neat and tidy it also induces Bpf(X) ∼= Bpf(Z).

In [10, Proposition 2.6] it is shown that if E is a toric vector bundle corresponding 

to the pair (L, D) with R(PE) generated in Sym-degree 1 then PE has a neat em-

bedding into the projectivization of a split toric vector bundle. In particular, if the 

Yj ∈ R(PE) corresponding to the variables yj in the polynomial ring containing L gen-

erate R(PE), one can use the split toric vector bundle VD =
⊕m

j=1 O(Dj), where O(Dj)

is the T -linearized line bundle corresponding to the j-th column of the diagram D for 

the embedding.

Proposition 4.3. Let E be an irreducible toric vector bundle of rank n on P n, then PE

has a neat and tidy embedding into the projectivization of a split toric vector bundle. As 

a consequence, any Nef class of PE is basepoint free, and any ample class of PE is very 

ample.

Proof. We consider the pairs (Ln, Da) and (L∨
n , D′

a
). In both cases, the basepoint-

free monoid of the corresponding bundle PVD is the intersection of the monoids 

Z≥0{(−1, 0), (dj , 1)}, where dj runs over all the classes corresponding to the columns of 

the diagram D. To prove the first statement, it suffices to show that the basepoint-free 

monoids of PEa and PE∨
a

have the same description. This translates to showing that for 

any yi (respectively zjk) there is a face σ� of the fan of P n for which yi (respectively zjk) 

is not in the initial ideal inσ�
(Ln) (respectively inσ�

(L∨
n)). But this is a consequence of 

Lemma 4.2.

As a consequence, any ample class of PE is the restriction of any ample class from 

PVD. Any ample line bundle on a smooth toric variety is very ample, hence any ample 

class on PE is very ample. �
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