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1. Introduction

A toric vector bundle 7 : £ — P™ is a vector bundle equipped with the additional
information of an algebraic action by the torus 7' = (C*)™. This action is required to
intertwine with the usual action on P™, and induce linear maps between fibers. We let PE
denote the projectivization of £. Like toric varieties, projectivized toric vector bundles
are a rich class of algebraic varieties which display a wide range of behavior, yet admit
a combinatorial description.

In [16], Kaneyama shows that any toric vector bundle on P™ of rank < n must split
into a direct sum of line bundles, and gives a complete classification of the irreducible
toric vector bundles of rank n. Let O(a) for a € Z denote the line bundle of degree a
over P". Any irreducible toric vector bundle of rank n can be described as the cokernel
Ea of amap O — @?:0 O(a;) where a = {ag,...,an} C Z=g, or as the dual &) of such
a bundle. In particular, the tangent bundle 7P" and cotagent bundle 7VP" are the case
a; = 1. In this paper we study the projectivizations P&, and P& of these bundles.

1.1. Mori dream spaces

Recall that a complete, normal variety X is said to be a Mori dream space if its Cox
ring R(X) is finitely generated. See the book [1] for background on Cox rings. In [13],
Hering, Mustata, and Payne ask when a projectivized toric vector bundle is a Mori dream
space. The first work on this question is due to Hausen and Siif8 [14], where they answer
the question in the positive for tangent bundles of toric varieties. In [12], Gonzaléz shows
that all rank 2 vector bundles give Mori dream spaces. Many non-examples are found
by Gonzaléz, Hering, Payne, and Siif} [9] by relating projectivized toric vector bundles
to blow-ups of projective spaces. In what follows we let R(PE) denote the Cox ring of
the projectivized bundle PE.

In [21], Kaveh and the 2nd author show that the data of a toric vector bundle can be
encoded in a pair (L, D), where L is a linear ideal, and D is an integral matrix called the
diagram. Sufficient conditions for this data to define a bundle £ with P& is a Mori dream
space are given [21], [11], [10]. In Section 2 we find pairs (L, Da) and (L), DY) for &,
and &, respectively. Notably, the ideals L,, and L) depend only on the dimension n.

Theorem 1.1. For any a C Zso the diagram D, is the diagonal matriz with entries a,
and the ideal L, C Clyo, ..., yn] is generated by yo+- - - +yn. The ideal L), C Clz;; | 0 <
i < j < n] is generated by the forms zyx — zij — 2k, for all i < j < k, and the diagram
DY has i,jk-th entry 0 if i ¢ {j,k} and —a; otherwise.

Example 1.2. Let a = {ag,a1,a2,a3} C Zso, and let &, and &) be the corresponding
irreducible bundles of rank 3 on P3. We describe the pairs (L3, D) and (LY, DY) for
these bundles.
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For £, we have Lz = (yo + y1 + v2 + y3) C Clyo,¥1,¥2,y3), and

@w 0 0 0
o a 0 o0
Da=10 0 a 0
0 0 0 as

Vv VvV
For &) we have Ly = (203 —202—223, 202 —201— 212, 213—212—%223) C C[201, 202, 203, 212, 713,
223}7 and

—ap —ap —Qao 0 0 0

Dv _ | —a1 0 0 —a; —ai 0
a 0 —a2 0 —a2 0 —Qa2
0 0 —as 0 —az —as

The matroid defined by the ideal L) is that of the type A, root system, or equiva-
lently, the graphical matroid defined by a complete graph on n+ 1 vertices. Theorem 1.1
has several nice corollaries when it is paired with results from [11]. For any toric vector
bundle £ there is an associated full flag bundle FL(E), see [11], and Section 3.

Corollary 1.3. Let V be a finite dimensional vector space, and a C Zq, then P(E,QV),
PEY @V), FLEL®V), and FL(EY @ V) are Mori dream spaces.

In Section 3 we give complete presentations of the Cox rings R(PE&,), R(PEY) and
R(FL(Ea). By Kaneyama’s result [16], any toric vector bundle of rank < n on P splits,
so the statement of Corollary 1.3 actually applies to any toric vector bundle of rank < n
on P". For an example of a rank 3 bundle on P? which is not a Mori dream space, see
[21, Example 6.9].

The ideals Z, and Z\ which appear in the presentations of R(PE&,) and R(PE) are
interesting in their own right. After reindexing, the ideal Z is generated by modified
Pliicker relations ([26, Section 14.4]), see Proposition 3.6. In particular, a generating set
for 7/ can be obtained by taking the Pliicker relations on P;; for 0 <i < j <n+ 1, and
replacing any instance of Py; with Py; (see Fig. 1).

The notion of well-poised ideal was introduced by the 2nd author and Ilten in [15] to
describe favorable properties of the initial ideals of complexity one T-varieties. An ideal
I is said to be well-poised if any initial ideal in,,(I) associated to a tropical point w €
Trop(I) is a prime ideal. It’s significantly easier to compute a Newton-Okounkov body
[25], [19] for a variety with a well-poised embedding. There is a Newton-Okounkov body
associated to every maximal face of Trop([) for a well-poised ideal I. Work of Escobar and
Harada [5] on wall-crossing for Newton-Okounkov bodies shows that there are piecewise-
linear bijections relating bodies associated to adjacent faces. The quintessential example
of a well-poised ideal is the ideal generated by the Pliicker relations which cut out the
1, which

presents the Cox ring of the projectivized cotangent bundle P7VP™. The following is a

Grassmannian variety Gra(n + 2). This ideal is known to coincide with Z;

.....

natural generalization of this fact.
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Fig. 1. The complete graph on 5 vertices, representing the generators P;; of R(]P’E,:). The highlighted edges
correspond to the distinguished generators Py; and their exponents in the equations for R(PEY), where
a = (a1, az,a3,a4).

Theorem 1.4. The ideals T, and I are well-poised.

Using Theorem 1.4 we give a procedure to compute Newton-Okounkov bodies for the
projectivization of any irreducible toric vector bundle of rank n on P& in Section 3.5.
We also show that we can control the Mori dream space property under pullback along
any toric blow-up BL,P™ — P" corresponding to adding a ray to the fan of P", see
Corollary 3.13

Remark 1.5. The Grassmannian variety Gro(n 4 2) is also a cluster variety. It would be
interesting to identify a connection between the bundles PEY and the theory of cluster
varieties.

1.2. Divisors and Fujita’s conjectures

For a smooth, projective variety X we let CL(X) denote the divisor class group, and
Kx denote the canonical class of X. The following are Fujita’s freeness and ampleness
conjectures, respectively.

Conjecture 1.6. Let X be smooth of dimension n and let A € CL(X) be ample, then

(1) form >n+1, Kx +mA is globally generated,
(2) form >n+2, Kx +mA is very ample.
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By Mori’s cone theorem ([24, Theorem 1.5.33]), Conjecture 1.6 can be proven for a
variety X by showing that any Nef class on X is basepoint-free, and any ample class on X
is very ample. Techniques for computing positivity properties of divisors on a projectived
toric vector bundle P& are developed in [10]. In Section 4 we apply modifications of those
techniques to compute the pseudo-effective and Nef cones, along with the effective and
semiample monoids, for any P&, and PEY. We then deduce the following.

Theorem 1.7. For any a C Z~q, a divisor on PE, or PEY is basepoint free if it is Nef,
and very ample if it is ample. As a consequence, PE, and PE) satisfy Fujita’s freeness
and ampleness conjectures.

The Fujita conjectures are known for smooth toric varieties. In the non-smooth toric
case, freeness holds by work of Fujino [8], and a theorem of Payne [28] establishes ample-
ness in the case of Gorenstein singularities. Working by way of dimension, curves satisfy
both conjectures by Riemann-Roch, and results of Reider [29] prove the surface case.
The freeness conjecture has been proved for smooth projective varieties up to dimension
5 [6,18,31]. For toric vector bundles, if the rank of £ is 2, then P& is a complexity-1
T-variety, and therefore satisfies Fujita’s freeness conjecture by a result of Altmann and
Ilten [2]. We credit Altmann and Ilten for the suggestion to study the Fujita conjectures
for projectivized toric vector bundles. For Mori dream spaces, Fahrner [7] has developed
algorithms which test the freeness conjecture.

We prove Theorem 1.7 by showing that P&, and PE) both carry embeddings into
split projectivized toric vector bundles in such a way that both the class groups and
semiample monoids are isomorphic to those of the ambient space (Proposition 4.3). We
call a map with these properties a neat and tidy embedding, see Section 4.

Acknowledgments: We thank Kiumars Kaveh for many useful discussions about toric
vector bundle.

2. Linear ideals and diagrams

In what follows let E denote the fiber of a toric vector bundle £ over the identity point
of a torus 7', thought of as a dense, open subvariety of a smooth toric variety X (3). The
data of a toric vector bundle £ can be packaged in a number of ways. Kaneyama’s
classification [17] is by certain GL(E) cocycles. Klyachko [20] uses an arrangement of
filtrations of E labeled by data from the representation theory of T'. In [22], Kaveh and
the 2nd author show that £ can be captured in a prevaluation v : E — Oy where the
latter denotes the integral piecewise-linear functions with a finite number of domains
of linearity on the support of the fan ¥. The operations on Ox; are “multiplication,”
computed as pointwise sum, and “addition,” computed as pointwise minimum. We regard
oo as the additive identity of O|x|, and 0 serves as the multiplicative identity. Under these
operations, O|x| has the structure of a semifield.
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Definition 2.1. A prevaluation v : E' — Oy is a function which satisfies:

(1) 0(0) = oo,
(2) o(Cf) = v(f) for any C € C\ {0},
(3) o(f +g) = min{o(f),v(g)}

Klyachko’s compatibility conditions, and Kaneyama’s cocycle data can be wrapped
up in the axioms of prevaluations, along with the requirement that there be an linear
adapted basis B, for the restriction v|,: £ — 0|, of v to each maximal face of the fan X.
This means that there is some vector space basis B, C E with the property that v|, (b)
agrees with an integral linear form on |o|, and for any f € E with f =3, g c;ib; we
have v |, (f) = min{v(b;) | ¢; # 0}.

Because of the adapted bases B, C E and the smoothness of 3, the prevaluation
v is entirely determined by its values on the ray generators of ¥. The fact that v is a
prevaluation implies that its specialization v(u) : E — Z at a ray generator determines
an integral, decreasing filtration of E by the spaces:

Er=AfTo(u)(f) = r}.

The integral filtration F™ of E can be used to define an integral valuation on the poly-
nomial ring Sym(E). A choice of spanning set B = {b1,...,b,} C E determines a
presentation of Sym(FE) by a linear ideal L C Clyy,...,ym], and by taking values on
B C E, the valuation defined by F* specializes to a point w(u) in the tropical variety
Trop(L) by evaluation on the image of the generators yi, ..., ym, in Sym(E). The point
w(u) completely determines F'* in that F is the span of those elements of B whose
w(u) entries are larger than r. Such a set always defines a flat of the matroid M (L)
determined by L on the set y1,...,Ym.

If we take B to be any spanning set of £ containing adapted bases B, we arrive at
the characterization of toric vector bundles in [21, Theorem 1.4]. A toric vector bundle
can be captured by a configuration wy,...,w, of points on a tropicalized linear space
Trop(L) such that for any face ¢ € ¥ the rows w; for p; € o(1) must all belong to a
common apartment Ag C Trop(L). Apartments Ag C Trop(L) are distinguished poly-
hedral subcomplexes of Trop(L). There is an apartment Ag for each basis B ¢ M(L),
in particular, Ap is the set of (v1,...,v,) € Trop(L), where v; is equal to the minimum
of the vy, where y; appears in the B-expression for y;. It is straightforward to show that
the apartments cover Trop(L) and that each Ap is piecewise-linear isomorphic to Q.
We organize the configuration into an n x m matrix D, where the i-th row of D is w;.
In this way, a toric vector bundle £ is determined by a pair (L, D).

We let ¥, denote the fan of P™. The ray generators of ¥, are the elementary basis
vectors eq,...,e,, along with eg = — Z?Zl e;. We let o; denote the maximal face of
3, which is spanned by all ray generators except e;. Recall that a T-linearized line
bundle O(rg,...,7,) on P" is determined by a tuple (rg,...,7,) € Z"Tt. There is a
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corresponding piecewise-linear function ¢ on X,, determined by the properties that ¢

oj
is linear, and ¢(e;) = r;.

Tensoring a bundle £ by a line bundle £ does not change the projectivization, so we
may replace the diagram of £ by the diagram of £ ® £ without changing the geometry
of PE. Tensoring a toric vector bundle €& which corresponds to the pair (L, D) by the
T-linearized line bundle O(ro,...,r,) amounts to adding r; to each entry of the j-th
row of the diagram D. For this reason we may speak of the non-negative form of a
(L, D), where we have added non-negative integers to the row of D so that each entry is
non-negative.

2.1. The pair (Ln, Da)

Fix a = {ag,...,an} C Zso. In [16], Kaneyama constructs half of the irreducible
bundles of rank n on P™ as cokernels of the maps O — @?:0 O(aj). We partially
reconstruct Kaneyama’s result by supposing we have an exact sequence of toric vector
bundles:

0— 0(0) = Pow) & & —o,
=0

with & irreducible and rank n, where each D; € Z"*! satisfies Y ., D;; = a;, and
determines an action of 7" on the total space of O(a;). We let (E,v) be the prevalued
vector space corresponding to €.

Now we let Vp = @_, O(D;) and V = @_; Cy;. Each tuple D; determines the
piecewise-linear function ¢; € Opn, where ¢;(e;) = D;;. We let vp : V — Opn be the
prevaluation with adapted basis {yo,...,yn} such that vp(y;) = ¢,. By [21, Section 3],
this corresponds to a map of prevalued vector spaces (V,vp) — (E, v). The surjectivity of
7 implies in particular that the induced maps 7, : (Vp), — &, over the torus fixed points
of X (¥) are also surjective. Consequently, the images b, ..., b, of the yo,...,y, € V
contain an adapted basis for v|,,, for each maximal face of ¥,. Accordingly, we may
take the spanning set B = {bg,...,b,} C E. As E has dimension n, precisely one
linear relation can hold among the b;. Without loss of generality, we take this to be
bop + ...+ b, = 0. We conclude that L = (yo + -+ + yn), and D = [Dq--- D,] for the
bundle £. The following proposition finishes our analysis.

Proposition 2.2. The bundle &, is comes from the pair (Ly, Da), where Ly, = (yo+- - -+yn)
and Dy is the diagonal matriz with the a; along the diagonal.

Proof. First, we observe that each collection of n rows of D, must share a common
adapted basis. This implies that for each such collection, there is a column with all 0
entries in the associated rows; namely the column corresponding to the element left out
of the basis. Next, observe that if any two collections have the same adapted basis, then
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all rows have the same adapted basis. This would imply that the resulting bundle would
be split, contradicting the irreducibility of &,. It follows that each of the n+1 collections
of rows have a distinct adapted basis. There are exactly n + 1 bases of the matroid
defined by L,,, and each element of yy, ..., y, is left out of some basis. Accordingly, each
column of D, has at most one non-zero entry in the location not in the corresponding
complementary set of rows, and irreducibility again implies that this entry is positive.
We can therefore assume that Dy, is a diagonal matrix with the a; along the diagonal. O

2.2. The pair (L), DY)

Let (E,v) be a prevalued vector space, and let £ be the corresponding toric vector
bundle over a toric variety X (3). The dual bundle £Y corresponds to a prevaluation
v/ : EY — Oy on the dual EY of E. The function v" is determined by what it does
on the duals of the adapted bases BY C EV for ¢ € . Following [21, Example 3.27], we
take B to be the dual basis of B,, and we have v |, (b)) = —v|, (b;).

Now we wish to go from the data (EY,v") to a pair (LY, D") for a dual bundle. The
ideal is obtained by taking LY to be the relations which vanish on the set BY = UyenBY.
Now fix a face o € X, and consider the rows of DY which come from the rays o(1).
The entries of these rows coming from BY are determined by the formula v¥|, (b)) =
—vl, (b;), and any value for b € BY \ BY is computed by expressing b as a unique
linear combination of elements of BY

o

and taking the minimum value which appears.
This method determines all entries of DV.

We now apply this construction to €. Let E = V/{yg + - --yn). We view EV as the
space of linear functionals z : V' — C such that 3°7_ z(y;) = 0. For any basis member
y; € V we have a dual y; : V' — C, and the difference z;; = y; — y; of any two dual
basis members is always an element of EV.

Fix a face o; in ¥, then B,, has adapted basis the images of the y; with j # i. It
is then easy to check that BY, = {z;; | j # i} C E. Moreover, vy (z;;) = —0a(y;), this
vector is 0 for each ray in o; except the j-th ray, where it is —a;. To simplify matters
we take BY = {zj; | j < i} C EY; then this set contains an adapted basis for each o;.

Proposition 2.3. The ideal L, is generated by the circuits zy, = zij + zji for i < j < k.
The non-negative diagram D) has rows wy with the property that the ij-th entry is —ay
if £ =1 or j and 0 otherwise.

Proof. Fix i < j <k, then z;; + zjr. = y;' —y] + vy — y)/ = zix. These are the relations
of the type A, root system, so they define a quotient space of rank n, and generate L. .
Now fix a row w, of DY. The (-th ray appears in the face o;, where j # £, which has
adapted basis z;;. If ¢ = £, then the £, ij-th entry is —a,; otherwise this entry is 0. This
determines DY. O
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We have determined the pair (L), D)) of the dual bundle &), however the diagram
DY has negative entries. The non-negative form of this pair, which best describes P&
has diagram D}, where the £, ij-th entry is 0 if £ = ¢ or j and ay otherwise.

3. Cox rings

In this section we find presentations of the Cox rings R(PE&,), R(PEY) of the projec-
tivizations of the irreducible toric vector bundles of rank n on P". First we use a result
n [21] to show that R(PE&,) is presented by a single hypersurface. The matrix D, is
diagonal, so we are able to use a theorem from [11] to conclude that the full flag bundle
FL(E,) is also a Mori dream space. We find a presentation of the Cox ring R(FL(E,))
by adapting an argument from [11]. We then use an invariant theory construction to find
a presentation of R(PEY). The ideals Z,, Z, of these presentations are then shown to
be well-poised.

3.1. The Cox ring R(PE,)

The irreducible bundle &, is an example of a sparse bundle ([21], [11]). In particular,
the diagram D) has at most one non-zero entry in each row. The Klyachko filtrations of
sparse bundles have at most one intermediary step, which are also codimension 1. Sparse
bundles were first studied in [9], where it was shown they are Mori dream spaces, and
explicit presentations of their Cox rings were constructed. The following presentation
comes from [21, Corollary 6.7], which states that the Cox ring of a sparse pair (L, D) is
presented by appropriate homogenizations of a minimal generating set of L. In particular,
the Cox ring of the projectivization of a sparse bundle is always a complete intersection,
and any sparse bundle is a CT bundle, see [21, Proposition 6.2].

Proposition 3.1. The Cox ring R(P&,) is the quotient of the polynomial ring in 2(n+1)
variables Clzo, ..., xn; Yo, ..., Ys] by the ideal Tn = (377, x?’Yﬂ

Example 3.2. The tangent bundle TP” is the case a = (1,...,1), we recover the well-
known fact that the Cox ring of PTP" is presented by the polynomial xqYy+---+z,Y,,.

3.2. The full flag bundles FL(Ea) and FL(EY)

The next proposition is largely the content of [11], although we have added a treatment
of the dual bundle €Y. If the full flag bundle FL(£) is a Mori dream space, an infinite
collection of projectivized toric vector bundles and their full flag bundles must also
be Mori dream spaces. The methods used to prove this result draw on the theory of
representation stability and non-reductive representation theory, see [11] for details.
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Proposition 3.3. Let £ be a toric vector bundle, and suppose FL(E) is a Mori dream
space, then for any finite-dimensional vector space V, P(EQV), FLIEQV), FL(EV®V),
and P(EY @ V) are Mori dream spaces.

Proof. The fact that P(E®V) and FL(EQV') are Mori dream spaces is [11, Theorem 1.3,
Corollary 1.4]. If FL(E ®V) is a Mori dream space, then P((E@V)V) =P(EV@VY)isa
Mori dream space for all V' by [11, Corollary 5.9], see also the discussion in Section 3.3.
But this implies that FL(EY ® V') is a Mori dream space for all V. O

Corollary 3.4. Let £ be an irreducible toric vector bundle of rank n on P™, then P(EQV)
and FL(E @ V) are Mori dream spaces.

Proof. By Proposition 3.3, it suffices to show that FL(&,) is a Mori dream space, but
this is [11, Corollary 5.8]. O

Now we give a presentation of the Cox ring R(FL(E,)). Our treatment follows the
construction of the Cox ring of FL(7TP™) in [11] (this is the special case a = (1,...,1)).
For toric vector bundle & of rank n, the Cox ring R(FL(E)) can be constructed as the
algebra of invariants by the natural action of the unipotent group U,_1 of n—1xn—1
upper triangular matrices with 1’s on the diagonal on the Cox ring R(P(£ ® C*~1)). In
the case Ea, the algebra R(P (€, ® C™~1)) is presented by the polynomial ring C |z, Yi; |
0<j<mn,1<i<n-—1], which also carries an action by U, _;. The unipotent actions
extend to an action by the reductive group GL,_1(C), hence we obtain a surjection:

Clr;, Yy [0< 5 <n1<i<n—1]"" = R(FL(E)) = 0.

The algebra Clz;,Y;; [0 < j<n,1<i<n-—1]Y1 CClz;,V;; |0<j<n1<i<
n — 1] is a polynomial ring in n + 1 variables over the Pliicker algebra of upper-justified
minors of the matrix of variables [Y;;]. For background on the Pliicker relations see [26,
Section 14.2]. Accordingly, we can present R(FL(E,)) as a quotient of the polynomial
ring Clzj, P, Py, |0<j<n,7Cn].

The Cox ring R(FL(Ea)) is the image of the map ¥, : Clz;, Pr, Po.r] = Clt;, yij]
defined by:

\Ija(zj) = tj_lv
Va(Pr) = detly(r)}t*,

Ua(Por) =Y detly(j, 7)ot
j=1

Here y(7) denotes the minor on the first |7| rows and the 7 columns of [y;;], and a,
denotes the part of the tuple a supported on 7. The quadratic Pliicker relations hold
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among the P, and Py . Moreover, it is straightforward to vary that > idr x?j P, =0
using the definition of ¥,. We show that these relations suffice to present R(FL(E,)).

The proof of Theorem 3.5 involves a modification of the semigroup GZ,, of Gel’fand-
Zetlin patterns with n rows. A Gel’fand-Zetlin pattern g € GZ,, is an array of integers
arranged in n rows, where the i-th row has n +1 — 7 entries g;;. These integers satisfy
additional inequalities: g;; > ¢i+1,5 > Gi,j+1- Let GZ,T be the set of patterns with g1, = 0.
The generators of GZ,I are in bijection with strict subsets 7 C [n], where the pattern
g(7) corresponding to 7 is the unique pattern with |[rN[n—i+1]| I’s and |[n—i+ 1]\ 7|
0’s in row 4.

A solution to the word problem for a semigroup S with generators Ai,...,A,, is
a minimal set of relations of the form A; ---A;, = A; --- A, which can be used to
transform an arbitrary relation to a trivial relation by substitution.

Theorem 3.5. The ideal ker(V,) is generated by the Plicker relations among the Py and
Py.-, along with relations of the form ZMT x?j P, =0.

Proof. The argument proceeds as in [23, Algorithm 1.8]. We select a monomial ordering
on C[t;,y;;] which satisfies y;; < t; for all 4, 7, ¢, such that the initial form in_ det[y(7)]
is the product of the diagonal terms. This ordering also defines a partial ordering on the
variables x;, Pr, Py . The initial forms of U, (x;), ¥a(P;), and ¥a(Fy ) with respect to
this ordering generate a semigroup in GZ,, x Z"!. To prove the theorem, it suffices to
show that there is a generating set of the binomial relations which vanish on these initial
forms which are themselves the initial forms of the described set of relations with respect
to the induced partial ordering on the polynomial ring C[z;, P, Fp ;).

Now we identify the initial forms in.<tj_1, in_ det[y(7)]t?", and in det[y(0, 7)]t5ot>"
with elements of the semigroup GZ,, x Z"*'. The form in<t;1 is sent to (0, —e;) € GZ,, x
Z"*1, the form in det[y(7)]t?" is sent to (g(7), Yjer aje;) € GZp X Z"H | and finally,
the form in< 377 ) det[y(j, 7)Jt5"t? is sent to (g(7*),a0e0 + 3, aje;) € GZ, % VASES
Here 7* denotes the set 7 U {¢}, where ¢ is the first element of [n] not in 7. In particular,
if eg appears in the support of u € Z"*1, where (g(n),u) is a generator, then the first
index in the support of 7 is smaller than the first non-zero index of u.

Next, we find a generating set of the prime binomial ideal which vanishes on these
patterns by solving the word problem. If [b] C n then we have:

[0, —aves][g(n), Y _ aje;] = [0, —aeol[g(n), aoeo + Y aje)]
Jjen Jen\{b}

Here [g(n),_,c, aj€;] is the representative of in det[y(n)]t*", and [g(n), aoeo +
2 jen\ (b} j€;] is the representative of in > j— det[y(j,n\ {b})]t5ot2n\ 1. We also have
the standard binomial relations among the Gel’fand-Zetlin generators:

[9(7), > ajellg(n), Y ase] = [g(rUmn), Y arellg(rnn), D acedl.

JjeT i€n keTun LeTnn
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These binomials hold among the initial forms of in det[y(7)]¢?7; it is straightforward to
verify that the versions involving in_ Z;.Lzl det[y (7, 7)]t5°t* work in the same way.

The two families of binomials described lift to > idr x?j > = 0, and Pliicker relations,
respectively. Therefore, if we check that these relations suffice to generate the binomial
ideal which vanishes on the initial forms, we have shown that the required relations
generate ker(¥,). We suppose we have two words Ay --- A,, By -+ B, whose product
maps to the same extended Gel’fand-Zetlin pattern. We must show that after applications
of the above binomial relations, these words can be taken to a common word.

First we observe that the contributions to the Z"*! component from either word
agree, and that if e, appears with multiplicity b, we can divide by by a, and factor the
resulting number of copies of [0, —ey] off both words. In particular, we may assume with-
out loss of generality that the contribution of e, is divisible by a,. Similarly, any [0, —e/]
not supported by a pattern elsewhere in the words can be read off of the Z"*! compo-
nent, and factored off both sides. Also, any [0, —ase] for [(] C 7 for [g(7),> ,c,
appearing the word can be converted to [0, —ageg] using the first relation above. So we

aje;]

may assume without loss of generality that both words do not contain a generator of the
form [0, —aye,] for any ¢ € {0,...,n}.

Now, using the Gel’fand-Zetlin binomial relations, we can ensure that the underly-
ing Gel'fand-Zetlin patterns in both words are the same, with possibly different Z"*!
components. Select a leading pattern on both sides, say A; = [g(T),ZjET\{bl} a;e;]
and By = [9(7), > jen\ (e} €], and suppose that by < c¢1. We must have that
[b1] € 7 and [c;] C 7. Moreover, the Z"™! components of both words agree,
so there must be some Az = [g(n), X4, (e} @€k With [c1] C 7. This means
bi,c1 € 7, and ¢1 € [e1] C 7, so also by € n. Now we may apply the conse-
quence of the Gel'fand-Zetlin relations: [g(7), 3" e (5,3 4€5119(0), Zpen (o1} W€K] =

[g(T)7Zje~r\{c1}ajej][g(n)72ken\{b1}akek]’ and factor off [g(T)’ZjET\{cl}ajej]' This
completes the proof. O

3.8. The Coz ring R(P(EY))

In this section we obtain a presentation the Cox ring R(PE&)) from a presentation of
the Cox ring R(FL(E,)). For a general toric vector bundle £ of rank r over a smooth,
projective toric variety X (%) the class group of FL(€) is naturally a product:

CL(FL(E)) = CL(X (X)) x CL(FL,),

where FL, denotes the full flag variety of the vector space C”, see [11, Proposition 3.5].
For a moment we draw from representation theory and write CL(FL,) as EB:;% Zw;,
where w; denotes the i-th fundamental weight of the reductive group SL,. Each positive
r—1

combination A = ).

;  Njw; corresponds to a Schur functor Sy, which is an operation

which applies to both vector spaces and vector bundles. These are precisely the effective
classes on FL,. If (d,\) € CL(FL(E)) is effective, restriction of this class to the identity
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fiber of FL(E) gives an effective class of FL,. The Picard variety of FL, is a point, so
this implies that A is a positive combination of the w;. In this case, the global sections
of (d,\) can be realized as the following section space on X (X):

HY(FL(E),0(d,\) = HY(X(X),0(d) ® SA(E)).

In the special case that A\ = Y. nw; with n;, = 0 for i < 7 — 1, S5(€) is of the
form Sym™(A" ' €). In this way we see that the Cox ring of P(A" "' &) is naturally the
subalgebra of R(FL(E)) supported on the subgroup CL(X (X)) X Zw,_1 C CL(FL(E)).
Finally, A" " € and & differ by tensoring by the determinant line bundle det™}(£), so
their projectivizations agree. We summarize these observations below.

Proposition 3.6. Under the grading by CL(FL(E)), R(P(EY)) is the subalgebra of
R(FL(E)) supported on the subgroup CL(X (X)) x Zw,_1 C CL(FL(E)).

Now we apply a little bit of invariant theory to find a presentation of R(P(E))).

Proposition 3.7. The Coz ring R(PE) is the quotient of the polynomial ring Clx;, Zjy, |
0 <i,j <k <n] by the ideal I.] generated by the relations x?j Zik —xy* Zij — xi' Zjy, for
1 < j <k, and the quadratic Pliicker relations on the Z;;.

Proof. By Proposition 3.6, R(P(£Y)) is the subalgebra of R(FL(Ea)) generated by the
x;, along with the top Pliicker generators P., where |7| = n — 1. We let Z;; denote the
Pliicker generator corresponding to the complement of {i,j} in {0,...,n}. The CL(FL,)
components of the CL(FL(E,)) degrees of a Pliicker generator P, € R(FL(E,)) are the
fundamental weight wy, where k = |7|. Consequently, any relation among the Z;; must
come from the w,_; component of the ideal, which is in turn generated by the Pliicker
relations on the Z;;. O

Remark 3.8. In the case a; = 1, &, is the tangent bundle of P, making & the cotangent
bundle 7YP™. The presentation above shows that the transformation z; — Py 41, Zij —
P; 11,41 takes the Cox ring R(P7YP™) isomorphically onto the Pliicker algebra of the
Grassmannian variety Gra(n + 2). See [9] for a different account of this isomorphism.

3.4. The ideals To and I, are well-poised

Well-poised ideals were introduced in [15], where it is shown that any rational,
complexity-1 T-variety has a well-poised embedding. Operations which preserve the
well-poised property, in particular GIT quotients and the construction of T-varieties
from certain polyhedral divisors, were studied in [4]. The following is the main result of
[3], which gives a classification of well-poised hypersurfaces.



802 C. George, C. Manon / Journal of Algebra 659 (2024) 789-810

Theorem 3.9. Letp = Y " | Ca,2® € Clay,...,x,], then every initial form of p generates
a prime ideal if and only if:

(1) the supports of the monomials x® are disjoint,
(2) for any i,j, the greatest common divisor of the list {a;,a;} is 1.

Theorem 3.9 immediately implies that Z, is well-poised. In particular, Z, is generated
by Z?:o .’L‘;l Y;, which has disjointly supported monomials whose exponent vectors always
contain a 1.

The Pliicker ideal I ;2 provides another example of a well-poised ideal. The initial
ideals coming from the tropical variety Trop(I2,+2) were first studied by Speyer and
Sturmfels in [30]. The initial ideals of points from the interior of a maximal face of
Trop(la,,+2) are precisely the prime binomial ideals which cut out certain toric varieties
related to trivalent trees. In particular, as a consequence of [30, Theorem 3.4], it is
known that the maximal faces of Trop(l2,+2) are in bijection with trivalent trees T
with n + 2 leaves labeled in some way with the set {0,...,n + 1}. Let Cy denote the
face associated to the labeled tree 7. Let E(7) denote the set of edges of a trivalent tree
T. Let p;j € ZE(T) denote the indicator vector of the unique path from leaf i to leaf j
in 7. We let S C ZZ(T) be the affine semigroup generated by the indicator vectors Dij
for 0 <i < j <n+ 1. The following is the main result we will need in what follows.

Theorem 3.10. Let p € C'r, then the affine semigroup algebra C[St] is isomorphic to the
quotient algebra C[P;; | 0 < i < j < n+1]/in,(I2n+2)-

Recall that a solution to the word problem for a semigroup S with generators
Aq,..., Ay is a minimal set of relations of the form A;, ---A;, = Aj, ---A;, which
can be used to transform an arbitrary relation to a trivial relation. Theorem 3.10 can
be restated as saying that the binomial initial forms of the Pliicker generators of I3 ;12
with respect to p € Cy solve the word problem for S7. We show that an almost identical
statement holds for the ideals Z/ and a semigroup which is closely related to S7. First
we define a map of polynomial rings which relates I5 ,, o to the Z,):

By :ClP; |0<i<j<n+1]—Cla,Ziy|0<i,j<k<n]
Pa(Po,i+1) = 7"
Pa(Pjt1,k+1) = Zjk
The Pliicker generators of I ,+2 map precisely to the generators of Z) found in Propo-
sition 3.7 under this map. As a consequence, the prime ideal ®%(Z)) is the Pliicker ideal

I3 ny2. Let ST(a) € Q7 be the affine semigroup generated by the indicator vectors p;;
for0<i<j<n+1,and %pm for0<z<n+1.

Theorem 3.11. The ideal I, is well-poised.
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Proof. There is an induced map ®% : Trop(Z)) — Trop(l2,,+2), which is always onto
by [27, Lemma 3.2.13]. For p = (x¢,...,Zn,...,2j,...) € Trop(Z}) the pullback map
on tropical varieties gives @7 (p) = (aoZo, - - ., anTn, - .., 2ij, - . .) € Trop(Ia ny2), which is
1-1.

Now fix p € Trop(Z)), and suppose that ®%(p) lands in the interior of Cy C
Trop(I2,n+2). We have (P4 (ing: ,(I2,n42))) C iny(Zy). The initial forms of the generating
set of Z) are the image of the C'r-initial forms of the Pliicker generators of I ,, 12, and so
are contained in the set @, (ing:,(/2,n+2)). Therefore, it suffices to show that these initial
forms generate a prime ideal of height equal to the height of Z). We show this by arguing
that these initial forms solve the word problem for Sy(a). Let p1 -+ pm = ¢1 - Gm be
an equation in the generators of Sy(a), in particular, the induced weighting w of E(T)
by these two words coincide. For either word, the contribution of a%pm- modulo a; can
be read off the edge containing the i-th leaf of 7 in its boundary. It follows that if we
assume (without loss of generality) that py - - p,, and q1 - - - g, share no generators, the
contribution of each a%pOi to each must be divisible by a;. Now, after grouping these
generators into subwords of length a;, we have a word problem identical to that of St.
This is solvable by the initial forms in,(Z}) by construction. Finally, we observe that Z,/
is prime and homogeneous, so the fact that any p € Trop(Z)) has a prime initial ideal
follows from this fact for a p coming from the interior of a maximal face. O

For a divisor class (o, 3) € CL(PE) let R4 5)(IPE) denote the graded subring given
by the global sections of the positive multiples of («, ). The following is a consequence
of [4, Theorem 3.1].

Corollary 3.12. Let £ be an irreducible toric vector bundle of rankn on P™, and let («, 3)
be a pseudo-effective divisor class on PE, then the ring R(a,3)(PE) has a presentation
by a well-poised ideal.

For p C |¥,]| a ray we let BI,P™ denote the corresponding toric blow-up of projective
space and §, : Bl,P® — P" be the blow-down map. Given a toric vector bundle &
over P™ with PE a Mori dream space, it is natural to ask when the projectivization of
the pullback bundle 5;& is also a Mori dream space. A sufficient condition for this to
occur, along with a presentation of the Cox ring of IP3;& is given in [21, Theorem 6.13].
Roughly speaking, one tests whether or not a certain point of Trop(L) derived from p
belongs to a certain polyhedral complex derived from Trop(Z). If the ideal Z presenting
the Cox ring of P€ is well-poised, this subcomplex is all of Trop(L), meaning that P B,E
is always a Mori dream space, regardless of the choice of ray p. This leads us to the
following corollary.

Corollary 3.13. Let £ be an irreducible bundle of rank n on P™, then for any ray p,
P(B,€) is a Mori dream space.



804 C. George, C. Manon / Journal of Algebra 659 (2024) 789-810

3.5. Newton-Okounkov bodies

In this section we describe how to compute Newton-Okounkov bodies for projectiviza-
tions of the irreducible toric vector bundles of rank n on P™. The reader can follow the
constructions of this section in Example 3.17.

In [10] methods are described for computing global Newton-Okounkov bodies and
the Newton-Okounkov bodies of divisors for a projectivized toric vector bundle P& with
R(PE) generated in Sym-degree 1. Any irreducible toric vector bundle of rank n on P™
has this property by Proposition 3.1 and 3.7.

The procedure in [10, Section 3] uses the prime cone method for computing Newton-
Okounkov bodies introduced in [23]. This method proceeds by first choosing a face of
the tropical variety (with respect to the fan structure induced by Grobner fan) with
associated initial ideal a prime ideal. Such a face is called a prime cone. After a prime
cone C' has been selected, a matrix M with rows chosen from C' is constructed, and
the corresponding Newton-Okounkov bodies can be described as the images of certain
polyhedra under the linear transformation defined by M.

Now we describe how to construct the matrix M. In what follows, let e4 € Z™*!
denote the indicator vector of a subset A C {0,...,n}. Suppose that the toric vector
bundle £ comes from the pair (L, D) with L C Clys, ..., ym], and that R(PE) is presented
by the ideal Z C C[Y3,..., Y, 21,...,2,]. Let K C Trop(L) be a maximal face. The
face K corresponds to a full flag of flats Fy C --- C F. = M(L), and is spanned by the
indicator vectors ep, for 1 < i <r. We let Ex be the r x m matrix whose rows are the
er,. We let M be the following matrix:

D I

M= { 25 } .

For any of the bundles £ we consider, R(PE) is generated in Sym-degree 1, hence the

effective monoid of P€ is spanned by the class-group degrees of the generators x1, ..., x,

and Y7,...,Y,,. Over P", these degrees are deg(z;) = (—1,0) and deg(Y;) = (d;, 1),
where dj = Z?:O D”

For a divisor class (a,3) € Z? = CL(P") x Z = CL(PE) we let P, 3 C QU™ be
the rational polytope of points (y1,...,Ym,Z1,...,2,) Where § = Z;nzl Yj and a =
Yo yidy — >0 wi. We define two polyhedra using the matrix M:

_ m—+n
Ac=Mo 2o

Ac(a,ﬂ) = M [¢] Paﬁ.

Finally, for L and Z as above, there is a surjection ¢ : Trop(Z) — Trop(L):

n
d)(vl,...,vm,ml,...,mn) = (...,vj+Zm¢Dij,...),
i=1
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which takes faces of Trop(Z) into faces of Trop(L). The map s : Trop(L) — Trop(Z)
given by s(vi,...,v,) = (v1,...,9m,0,...,0) is a section to ¢. Any point in Trop(Z)
can be translated to a point in the image of s by an element of the linearity space of
Trop(Z). The following is [10, Proposition 3.2].

Proposition 3.14. Let £ be a toric vector bundle over P™ with R(PE) generated in Sym-
degree 1, and let C C Trop(Z) be a prime cone of the form C = ¢~ K for a marimal
face K C Trop(L), then A¢ is a global Newton-Okounkov body of PE and Ac(«, B) is
the Newton-Okounkov body of the divisor class (o, 3).

The assumption that the inverse image of any K C Trop(L) consists of prime points
in Trop(Z) is satisfied by £, and &) due to Theorems 3.10 and 3.11. Next we show that
for any maximal face K of Trop(L,) (respectively Trop(L,))), the inverse image lies in
a face of Trop(Z,) (respectively Trop(ZY)). Then we describe the indicator matrices F
for certain faces of Trop(L,) and Trop(L)).

Proposition 3.15. For the bundle E,, and any flag of subsets Ay C +-- C A1 C A, =
{0,...,n} with |A;| =i fori < n, we can take the matriz Ex to have rows the indicator
vectors of the A;.

Proof. First, any collection A C {0,...,n} with |[A| < n is a flat of M(L,,). A point in
u € K is positive weighted combination u = > ; v;e4,. The image s(u) € Trop(Za)
does not affect the x; variables, and weights precisely two Y; equal and less than the

others. It follows that the initial form of Z?:o z1’Y; is the same for any point of K. O

J

The case Ly is more involved. Our argument works by interpreting s(u) € Trop(Z)
for u € K C Trop(L,)) as a weighted trivalent tree. The latter determines a point of
the tropical variety of the Grassmannian Gra(n + 2) by [30], and therefore a point of
Trop(Zy) by Theorem 3.11. In particular, we show that the tree type of s(u) is the same
for all u taken from the interior of K. To simplify matters we deal with flats which are
spanned by subsets of the basis {21, ..., 2n—1,n}. Other cases are related to this case by
the action of the permutation group. Let a set F' C {z; | ¢ < j} have the property that
for indices k < ¢, if {zk k+1,---,2e—1,0} C F then z, ¢ € F.

Proposition 3.16. For the bundle £

a’

and any flag of subsets Fy C --- C F,,_1 C F, =
{#ij | 1 < j} we can take the matriz Ex to have rows the indicator vectors of the F;.

Proof. Each set F with the above property is a flat of M(L)).

A point u € K is a weighted combination 2?21 vier,. The first flat F; is of the form
{#ii+1}. We start by building the tree 7; which has leaves labeled i+ 1,7+ 2, along with
a new leaf w”, all tied to an internal vertex w’. We label the edge between w’ and w”
with vq.
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Now suppose the tree 7; has been built, and that its leaves are labeled by the indices
appearing in the elements of F}, shifted up by 1, along with a “root” leaf w. Moving to
Fj41 introduces a single new element of the form z; ;1. If both indices do not appear
in Fy, we add in new leaves labeled j + 1,7 + 2, a new internal vertex w’, and connect
w’ to both indexed leaves and the root w. We the label the edge between w and w’ with
V1. If 2; j41 shares an index with Fj, we add in a single new leaf labeled by the new
index, a new root w’, and connect the old root w to the new root w’. The edge between
the old and new root is then labeled viy;. The last root is given the label 0. Keeping
with the definition of the section function, we then choose the weights on the leaf edges
to be negative numbers so that the total weight of any path from 0 to an index i is 0.
We then divide every weight on the resulting tree 7 by 2.

We compute a point on Trop(Zy) by sending x; to the negative of the total weight of
those edges in the unique path from 0 to the vertex ¢ + 1, and z;; to the negative of the
total weight of those edges in the unique path from ¢ + 1 to j + 1. In the second case,
this is the sum of those v;, corresponding to the flats Fj, which contain z;;. In the first
case, it is always 0. As a consequence, the tree 7 produces the point s(u) € Trop(Z).
By construction, the topology of T only depends on the chosen flag of flats. O

Example 3.17. Let a = {ag,a1,a2,a3} be positive integers. We construct Newton-
Okounkov bodies for the projectivization PEY of the irreducible bundle &Y. As we are
treating the projectivization, we use the non-negative diagram D/ introduced in Sec-
tion 2.2 for the “D” part of M. For the maximal flag of flats we choose Fy = (z01),
F) = (201, 212), and F» = M(LY). The indicator vectors of this flag make the bottom

three rows of the matrix M:

201 R02 03 <12 <13 223 Io T T2 Zs3
0 0 0 ap Qo ao -1 0 0 0
0 ay aq 0 0 aq 0 -1 0 0
a9 0 a9 0 ag 0 0 0 -1 0
az a3 0 a3 O 0 0 0 0 -1
1 1 1 1 1 1 0 0 0 0
1 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

The global Newton-Okounkov body associated to this choice of flag is M o Q6>J64. The

Newton-Okounkov body of a divisor (, ) € Z? = CL(PEY) is the image of the polytope
Py C Qg{f given by those tuples (2¢1,. .., 223, Zg, - . . , &3) satisfying:

201 + 202 + 203 + 212 + 213 + 203 =
(a2 + a3)zo1 + (a1 + az)zo2 + (a1 + a2)zo3 + (a0 + az)z12 + (a0 + a2)z13 + (ap + a1)z23

— Xy — X1 — T2 — T3z =«

under the matrix M.
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Fo

Fig. 2. The tree T corresponding to the flag Fy C Fy; C F5.

The flag Fy C Fy C Fy = M(L)) corresponds to the tree in Fig. 2. We label edges of
T by the corresponding flat of M(L))).
When a = {1,1,1,1}, the Cox ring R(PE&Y) is isomorphic to the Pliicker algebra of the
Grassmannian Gra(5). The tree T above is recognizable as a caterpillar tree, and the
resulting Newton-Okounkov cone for Gra(5) is derived from the Gel’fand-Zetlin patterns
with 2 columns and 5 rows. See [26, Section 14.4] for an account of the Gel’fand-Zetlin
degeneration of a flag variety.

4. Positivity properties of divisors

In this section we compute the monoid Bpf(PE) C CL(PE) of basepoint-free divisor
classes for £ an irreducible toric vector bundle of rank n on P™. We then prove that any
Nef class is basepoint-free, and any ample class is very ample on PE. The proof uses
the fact that the Cox ring R(PE) is always generated in Sym-degree 1; this means that
R(PE) is generated by the section spaces of the form HY(P", O(d) @ £). Generation
in Sym-degree 1 implies that Bpf(P£) has an expression in terms of certain matroids
associated to &.

4.1. The basepoint-free monoid

For the following see [1, Proposition 3.3.2.6]. Let X be a Mori dream space with Cox
ring R(X) generated by fi, ..., fm. For any point p € X there is a monoid S, C CL(X)
consisting of those divisor classes which carry a section which does not vanish at p.
Clearly Bpf(X) = ﬂpe « Sp, and it is straightforward to show that each S, is generated
by the degrees of the f; with f;(p) # 0. As a consequence, there are only a finite number
of possible distinct S, however one still needs to find a set of representative points p.
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Now suppose we have a toric vector bundle £ corresponding to a pair (L, D) over a
smooth, projective toric variety X (X). For each facet o € X there is an initial linear ideal
in, (L) ([10, Section 2.1]), and an initial matroid M (in, (L)) of M(L). Any maximal, non-
trivial flat £ C M(in, (L)) defines a point p, p € PE,. The following is [10, Proposition
4.1].

Theorem 4.1. Let £ and X (X) be as above, and suppose that R(PE) is generated in
Sym-degree 1, then Bpf(PE) =, 1 Sp

o,F*°

Recall that if R(PE) is generated in Sym-degree 1, the effective monoid is spanned
by the class-group degrees of the generators x1,...,z, and Y7,...,Y,,. Over P", these
degrees are deg(z;) = (—1,0) and deg(Y;) = (d;, 1), where d; = >_"" , D;;.

We say the bundle € is a monomial bundle [10, Section 4.2] if each initial ideal in, (L)
is a monomial ideal. Equivalently, (L, D) defines a monomial ideal when, for any facet
o € ¥, the minimal face of the Grébner fan of L containing the rows of D corresponding
to the rays o(1) is maximal. In this case, the flats F' C M(in, (L)) are complements of

single elements. If £ is a bundle over P™ and the monoids S of a monomial bundle

Do, F

are generated by the classes (—1,0) and (d;, 1) for one of the generators Y; € R(PE).
In particular, any S, . in this case is freely generated.

Lemma 4.2. Let £ be an irreducible toric vector bundle of rank n over P™, then &£ is
monomial. In particular, for a facet o; in the fan of P,

(1) ing,(Ln) = (i) € Clyo, - -, ynl,
(2) ing (Ly) = (zjk | i € {5, k}) € Clziy | 0 <ii < j < nl.

Proof. For both classes of ideal we consider the face oy in the fan of P™ spanned by
the elementary basis vectors. The ideal L,, is generated by the form yy + --- + y,. The
rows of D, corresponding to the elements of o¢(1) are each of the form (0,...,a;,...,0)
where i # 0. The initial ideal of the face of the Grébner fan of L,, must be generated by
a common refinement of the initial forms of these rows, and the only variable not given
a positive weight by some row is yg. This shows ing, (L) = (yo).

For LY we use the non-negative diagram D. Recall that the i-th row of this diagram
weights zj; with a; if ¢ ¢ {j,k} and 0 otherwise. We show that in,,(L,/) must contain
zjk for any 0 < j < k. This proves the lemma for dimension reasons. The initial ideal
of the minimal face of the Grébner fan containing the rows from oy(1) must itself be an
initial ideal of the sum of any two rows. Consider the initial ideal of the sum of the j
and k-th rows; this weights zo, with aj, z20; with ap and zj, with 0. It follows that the
initial form of zox — 20; — zj, with respect to this sum is z;x, and that z;, € ingo(LX)
foral0<j<k. O
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4.2. Embeddings into toric varieties

Observe that Lemma 4.2 implies that for any irreducible toric vector bundle of rank
n on P", Bpf(PE) is the intersection of saturated monoids, and is therefore saturated.
This implies that any Nef class of P& is basepoint free. In this section we recover this
fact and more by showing that any PE comes with a useful embedding into a smooth,
projective toric variety.

Let ¢ : X — Z be an embedding of a Mori dream space into a toric variety Z.
This embedding is said to be neat ([1, Definition 3.2.5.2]) if it induces an isomorphism
CL(X) =2 CL(Z). We say that ¢ is neat and tidy it also induces Bpf(X) = Bpf(Z2).

In [10, Proposition 2.6] it is shown that if £ is a toric vector bundle corresponding
to the pair (L, D) with R(PE) generated in Sym-degree 1 then P& has a neat em-
bedding into the projectivization of a split toric vector bundle. In particular, if the
Y; € R(PE) corresponding to the variables y; in the polynomial ring containing L gen-
erate R(IPE), one can use the split toric vector bundle Vp = ., O(D;), where O(D;)
is the T-linearized line bundle corresponding to the j-th column of the diagram D for
the embedding.

Proposition 4.3. Let £ be an irreducible toric vector bundle of rank n on P™, then PE
has a neat and tidy embedding into the projectivization of a split toric vector bundle. As
a consequence, any Nef class of PE is basepoint free, and any ample class of PE is very
ample.

Proof. We consider the pairs (L,,D,) and (L), D). In both cases, the basepoint-
free monoid of the corresponding bundle PVp is the intersection of the monoids
Z>0{(—1,0),(d;, 1)}, where d; runs over all the classes corresponding to the columns of
the diagram D. To prove the first statement, it suffices to show that the basepoint-free
monoids of P&, and PEY have the same description. This translates to showing that for
any y; (respectively z;;) there is a face o, of the fan of P™ for which y; (respectively z;x)
is not in the initial ideal iny,(L,) (respectively in,, (L, )). But this is a consequence of
Lemma 4.2.

As a consequence, any ample class of P& is the restriction of any ample class from
PVp. Any ample line bundle on a smooth toric variety is very ample, hence any ample
class on P& is very ample. O

Data availability
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