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Abstract—Due to the exponential growth of endpoints in the
Internet of Things (IoT), new protocols have been proposed to
utilize cellular infrastructures, allowing a large amount of IoT
devices to communicate through them. These novel protocols
make up the Cellular IoT (C-IoT). In C-IoT, the energy efficiency
of endpoints is essential in order to reduce both operational
cost and required maintenance. One method of energy reduction
is discontinuous reception (DRX). DRX allows a device’s radio
frequency (RF) circuitry to turn off for brief periods of time.
While off, the device experiences a tradeoff between saving energy
and an increase in expected latency, which can be tuned by
how long the device spends asleep. In this article, we model
DRX as a Markov decision process (MDP). This MDP is solved
using a low-complexity “DRX-aware” value iteration algorithm,
then verified through simulation and analytical analysis. Further,
the energy-latency tradeoff is explored by varying the device’s
priority on either energy or latency in addition to varying the
traffic intensity. Finally, a method of traffic estimation is applied,
and the model’s performance in an environment with time-
varying traffic intensity is explored. This approach is compared
with a reinforcement learning approach, showing that the traffic
estimation approach is better suited to the problem of DRX
optimization.

Index Terms—Cellular Internet of Things (C-IoT), constrained
devices, device management, discontinuous reception (DRX), effi-
cient communications and networking, energy efficient devices,
Markov decision processes (MDPs).

I. INTRODUCTION

T
O HELP account for the massive growth of the Internet of

Things (IoT), Cellular IoT (C-IoT) networking protocols

have been proposed. These C-IoT protocols allow IoT traffic

to communicate using existing cellular infrastructures. Two

popular novel C-IoT protocols are narrowband IoT (NB-IoT),

introduced by 3GPP in 2016 [1], and long term evolution

(LTE) Cat-M. These protocols allow user equipments (UEs) to

communicate using a more narrow bandwidth when compared

with legacy cellular protocols, such as LTE. This, in turn,

allows more users to coexist in the same cell. While the

bandwidth limitation imposed by NB-IoT and LTE Cat-M
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deter many applications, it is ideal for typical IoT applications,

such as smart city scenarios, in which devices communicate

infrequently and increased delays are tolerable to some extent.

Compared to its competitors, such as long range wide area

network (LoRaWAN) and Sigfox, C-IoT protocols offer better

network performance in many areas, such as throughput and

latency. Also, C-IoT offers greater reliability. For instance,

NB-IoT employs a coverage enhancement feature, which

allows for reliable transmissions at a greater range thanks

to repeated packet transmissions. In addition to improved

network performance, the deployment of C-IoT is much

simpler, since the cellular infrastructures that are used by

C-IoT are already in place around the world. Thus, a C-IoT

network can be deployed through a software upgrade rather

than replacing the hardware itself [2].

Another important aspect of C-IoT protocols is reducing the

energy consumption of UEs [3]. This can be done primarily

in three ways: 1) improving the scheduling and routing of

information through the network; 2) processing data using

more energy efficient methods (e.g., the cloud computing); and

3) introducing sleep modes for nodes in the network. There are

three direct consequences of improving energy efficiency in

such networks: the amount of waste generated as a byproduct

of the device’s operation is reduced, maintenance of devices

is decreased, and the cost of operation is reduced.

However, it is rarely the case that a reduction in energy

consumption does not come at a cost. Two prime examples of

this are discontinuous reception (DRX) and power save mode

(PSM) which are two techniques introduced in LTE to extend

the battery life of end devices. DRX and PSM allow devices

to briefly turn off their radio frequency (RF) circuitry, which

would otherwise consume considerable energy while on. At

the same time, however, the device is not reachable by the

network. If a packet is sent to the device while it is in this off

state, significant delays can be incurred since any downlink

(DL) traffic will need to be buffered at the base station (BS).

Thus, DRX and PSM have an inherent energy-latency tradeoff.

In essence, by tuning the various timers that facilitate DRX

and PSM operation, we also tune this tradeoff. In addition to

changing timers, this tradeoff is also affected by the traffic

conditions in the network. In this article, we formulate the

problem of DRX off duration optimization considering traffic

conditions as a Markov decision process (MDP). An MDP

was selected to model this problem because it allows the

modeling of a time varying environment in which an agent
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makes decisions that will impact both immediate and future

network performance.

The main contributions of our work are as follows.

1) The problem of DRX off duration selection is formu-

lated as an MDP, under the assumption that the traffic

arrival distribution is known. In this model, the DRX and

PSM mechanisms are jointly modeled as a controlled

discrete-time Markov chain.

2) A single parameter is introduced that can tune the

energy-delay tradeoff of the system. The introduction

of such a parameter allows us to closely examine the

various possible operating points resulting in changes to

the overall system. In our survey on energy efficiency

in C-IoT networks [3], we found that this tradeoff has

not yet been thoroughly studied.

3) The MDP is solved using value iteration for varying

traffic intensities and varying energy/delay priorities.

The value iteration algorithm was modified to exploit the

limited number of possible next states given the current

state, resulting in drastically reduced computational

complexity.

4) An analytical model is formulated to compute the

expected energy consumption and delay in each of the

high-level modes of operation for DRX. These models

are compared with our model.

5) These results are validated via simulation, where the cost

of operation is calculated for varying DRX off durations.

Further, the delay and energy costs are separated to allow

us to observe the delay versus energy tradeoff curves.

6) A method is proposed to allow the optimal DRX off

timer selection policy to be deployed in a network

where the traffic intensity is either unknown or time

varying. This method estimates the traffic load and

employs the appropriate DRX off timer according to the

MDP. This method is compared with an reinforcement

learning (RL) approach, showing that a traffic estimation

approach is more effective in the context of DRX

optimization.

This work is an extension of our previous work [4]. One

of the main novelties of this work is the formulation of an

analytical model to compute the expected energy and delay

in each high-level DRX state. Additionally, in this work

we offer a much more thorough problem formulation with

slight modifications to our model to improve computational

complexity. Namely, we model the transition to PSM from

DRX stochastically, eliminating the need to count the number

of DRX cycles elapsed which decreases the size of the

state space and thus decreases the computational complexity

required to find the optimal solution. Further, the value

iteration algorithm is modified in this work to significantly

improve computational efficiency. Finally, several new results

are presented, including a method in which the optimal DRX

off timer can be efficiently deployed in an online environment.

The remainder of this article is organized as follows. In

Section II, we discuss the related work. In Section III, we

formulate the problem as an MDP and solve it using the value

iteration. In Section IV, we present an analytical model for

the expected delay and energy in each of the macro states.

In Section V, we present and analyze our results. Finally, in

Section VI, we conclude the work.

II. RELATED WORK

There exist a number of diverse ways that a device can save

energy in C-IoT. A comprehensive survey of such techniques

is provided in [3]. One method is through the modification of

scheduling, which can be done in the uplink direction [5], the

DL direction [6], or in both the uplink and DL directions [7].

In this method, the ways in which time-frequency resources are

utilized and how information is routed through the network is

altered to minimize energy consumption. Another approach is

to modify how, where, and when a computational task is

executed in order to more efficiently use energy. There are

three primary ways this can be achieved: by minimizing

the transmitted data [8], through the use of approximate

circuitry [9], or by employing task offloading methods [10]. A

third approach to energy saving is to allow the activity of the

RF circuitry in a node to be reduced or stopped entirely, i.e.,

enter a sleep mode. This can be done in the BS [11], [12], but

this technique is more commonly applied to the UE.

One common approach that has been studied extensively

in this regard is the use of duty cycling, especially in the

context of wireless sensor networks (WSNs). Specifically,

duty cycling is used to minimize the amount of idle time a

device is monitoring the network. Since this idle time often

wastes energy, employing duty cycling reduces the overall

energy consumption of the device. A survey of duty cycling

techniques employed in WSNs can be found in [13], where

they highlight a critical need for accurate models to estimate

the effect of duty cycling on data transmission latency. In

this article, we provide accurate analytical models for latency

and energy consumption in DRX, and provide approaches

to characterize and optimize the achievable energy-latency

tradeoff.

A common approach in studying and modeling duty cycling

problems is through the use of MDPs. Trinh et al. [14]

modeled duty cycling in a wireless multimedia sensor network

as an MDP and solve it using RL. The goal of the model

is to find the best times to be awake or asleep given energy

consumption, latency, and throughput Quality of Service (QoS)

constraints. Chan et al. [15] proposed an adaptive duty cycling

scheme that takes into account a device’s harvesting of ambient

energy. This work models the problem as an MDP, modeling

the probabilistic dynamics of the problem as a continuous

time Markov chain. Overall, the objective is to minimize the

energy consumption of the device subject to latency and packet

loss constraints. In [16], the duty cycling of a solar energy

harvesting WSN node is modeled. The action taken in the

model is to increment/decrement the duty cycle (i.e., the ratio

of awake to asleep time), and the objective is to maximize

the amount of data transmitted from the node, which requires

a level energy to be maintained through harvesting. Sandoval

et al. [17] seek to find the optimal transmission policies,

maximizing the number of reported events for LoRa and

Sigfox technologies. In this problem, events that need to be

transmitted over the network are generated stochastically, and
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the packet reception probability of events of varying priority is

to be maximized. In [18], a duty-cycling optimization problem

is formulated as an MDP and solved using RL. In this problem,

the considered device has an active state during which data

transmission may take place, and an inactive state during

which the device saves energy. Overall, the authors employ

Q-learning to optimize energy consumption–given as the ratio

of time spent active–and throughput by altering the time spent

active in each frame.

There are some commonalities between each of the above

duty cycling works. First, each of these consider a duty cycle

that consists of only an “on” and “off ” state. This allows for a

more simple modeling of the system, for example the energy

efficiency can be simply defined as the ratio of time spent on to

the time spent off. Our work parts from the existing literature

in this sense by considering a duty cycling dynamic which

contains more than these two states. We model DRX as having

four unique macro sleep states (radio resource control (RRC)

connected, DRX on, DRX off, and PSM), each with their

own potentially nondeterministic amount of energy consumed

and varying effects on the latency of packets. Also, many

works in this area do not consider the continuous tradeoff that

exists between latency and energy efficiency in duty cycling

problems ([14] is an exception, though only considers an on

and off state). In our work, we model this tradeoff exactly

and thoroughly study the interplay between energy efficiency,

latency, and the sleep duration in the DRX mechanism.

There are two primary sleep modes for UEs in C-IoT:

1) DRX and 2) PSM. Sultania et al. [19] introduced both

of these mechanisms, provide an analytical model for each,

and evaluate the performance of both mechanisms through

their implementation in network simulator 3 (NS3) using the

NB-IoT protocol.

In [20], the DRX mechanism is evaluated through a cross-

layer analytical model with traffic distributed according to a

Poisson process. Results show that the introduction of the

DRX mechanism yields a considerable improvement (up to

three times) in the energy efficiency of the device. Further,

results show that, for given DRX timers, there is a certain

traffic load at which the energy efficiency improvement of

the mechanism is optimum. This illustrates the importance of

choosing DRX timers according to traffic load to achieve the

best energy efficiency and delay results.

Numerous attempts have been made to study and optimize

DRX. Moradi et al. [21] expanded the typical 3-state semi-

Markov model of DRX to a five-state semi-Markov model to

study DRX in Device to Device (D2D) communications. In

the typical three-state model, the device can be either active,

in short DRX cycles, or in long DRX cycles. Moradi et al.

introduced two additional states, i.e., discovery states for both

the short and long cycle states. In the discovery states, UEs

monitor the physical sidelink discovery channel (PSDCH)

where other devices can send discovery messages. In the case

where a discovery message is received, the devices can then

establish a link. These additional states are added between

the short/long cycles and the active state, where the device

monitors the channel for discovery messages. After this, the

device continues DRX operation as normal, checking for the

existence of DL data and waking up/sleeping accordingly. This

model, while useful, only offers the modeling of DRX using

two possible DRX off timers: 1) short and 2) long. Our work,

in contrast, offers a method in which the DRX off timers can

be selected from a finite set of possible timers.

Moradi et al. [22] considered DRX in a video streaming

environment where the channel capacity is changing over time.

They utilize a channel prediction method in order to minimize

the energy consumption of the UE while simultaneously

preventing significant receiver buffer underflows, which would

indicate a significant incurred delay. The authors present their

results as separate plots of energy versus video bitrate and

number of buffer underflows versus video bitrate, but they do

not closely examine the relationship between energy and the

number of buffer underflows.

Zhou et al. [23] proposed an actor–critic algorithm to

improve the latency-energy tradeoff that exists in DRX. The

authors consider a modified DRX mechanism consisting of

four states: 1) continuous reception; 2) on duration of DRX

cycle; 3) off duration of DRX cycle; and 4) RRC Idle. The

algorithm learns over time through the modification of the

timers that facilitate state transitions (e.g., on duration of DRX

cycle). The authors show how their algorithm performs in

terms of both energy and delay compared to simpler DRX

implementations; however, they do not provide a detailed study

on the tradeoff between energy and delay that is inherent to

DRX. In contrast to this work, we formulate the DRX problem

in such a way where we can tune the energy-delay tradeoff to

more closely examine the complex relationship between the

DRX off timer, energy, and delay.

Koc et al. [24] modeled DRX in an LTE-A network

according to a semi-Markov process. In their model, they

consider two types of traffic: 1) active traffic, where there

are frequent packet calls and 2) background traffic, where

there are less frequent transmissions (e.g., updates from a

weather app). The authors propose a weighted sum approach

in which they attempt to minimize energy consumption while

also minimizing delay. In deployment, the authors propose

two modes of operation – one for each type of traffic. During

active traffic, all weight is placed on delay, thus the objective

is to minimize delay subject to an energy constraint. During

background traffic, all weight is placed on energy, thus the

objective is to minimize energy subject to a delay constraint.

While the approach of this work is similar to ours in the

sense that the problem is formulated as the minimization of a

weighted sum of energy and delay, this work only considers

the two extreme cases where all priority is placed on either

energy or delay. In contrast to this, our work more closely

examines the energy-delay tradeoff by varying the priority on

energy/delay over a range of possible values. This allows us

to achieve a more complete understanding of the complex

relationship between the DRX off timer, energy, and delay.

In our work, we formulate the DRX problem as a

multiobjective optimization where the objective functions are

delay and energy. There are a number of approaches used in

the literature to solve such a problem. One of the most pop-

ular methods is linear scalarization, applied in [25] and [26].

Linear scalarization is the process of translating the vector of
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Fig. 1. Timing diagram showing data transmission and delays in each DRX macro state.

objective functions to a scalar value through a weighted sum

of the vector elements. Scalarization opens the doors to more

straightforward, well known solutions, such as value iteration.

In contrast to the previous work, this work formulates the

DRX mechanism in full as a single discrete MDP. In doing

so, we are able to directly solve the MDP through dynamic

programming. In much of the available literature, the energy-

delay tradeoff in DRX is examined through setting a delay

constraint and attempting to minimize energy consumption

subject to that constraint. However, in this work, we define

a single continuous variable which can be used to tune this

tradeoff in either direction, i.e., varying emphasis can be

placed on either energy or delay. In doing so, this allows for

a much wider range of operating points. To the best of our

knowledge, this inherent tradeoff between energy and delay in

DRX has not been thoroughly studied. Finally, we propose a

practical deployment of our results in C-IoT networks where

the traffic intensity is either unknown or time varying.

III. PROBLEM FORMULATION

In what follows, we first provide a high-level overview of

the DRX mechanism. Next, we describe the general structure

and objectives of MDPs. Then, the remainder of the section is

dedicated to rigorously defining how we model DRX as an

MDP. That is, we define the state space, the action space, the

transition probability function (TPF), and the cost function.

Finally, we introduce the method we use to solve the MDP –

the DRX-aware value iteration algorithm. A list of the notation

used throughout is given in Table I.

A. DRX Overview

In many instances, devices in IoT networks can go extended

periods of time without the existence of DL traffic. In

such instances, devices would waste considerable energy by

unnecessarily monitoring DL control channels continuously.

TABLE I
LIST OF NOTATION

DRX offers a solution to this problem of wasted energy. A

system model diagram of the DRX mechanism is given in

Fig. 1, where the various modes of operation are illustrated

and transmission timings are shown. Additionally, a timing

diagram of the DRX mechanism is illustrated in Fig. 2. In

DRX, if the device has gone a certain period of time without

having received a packet, it will enter DRX cycles. Each of

these DRX cycles consists of an off and on period. When the

device is off, it will minimize the activity of its RF circuitry

to not waste energy monitoring channels. During this period,

the device is saving energy, but it is unable to receive DL

packets. During the on period, the device will consume energy

to wake up and check the radio control channel, to see if there

are any incoming DL packets. If there are none, the device

will go back into the off mode, and these cycles will continue.

However, if there are any packets, the device will wake up

fully, and exit these DRX cycles. A list of all possible timer

values that facilitate these transitions can be found in [27].

While there are also many other timers listed, such as the RRC

release timer, DRX on timer, etc., this work only focuses on

the DRX off timer.
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Fig. 2. DRX timing diagram.

PSM is an additional sleep mode, which allows the device

to sleep for much longer periods. PSM is triggered by the

device going through m consecutive DRX cycles without any

DL packets. In PSM, the device saves energy by turning off its

RF circuitry for an extended period of time, but is unreachable

by the network. Eventually, the device will wake up from PSM

and go back to regular operation.

Fig. 2 illustrates the operation of DRX according to when

packets arrive. When a DL packet arrives in the RRC con-

nected state, there is no added delay due to sleeping, since the

packet can be immediately forwarded from the BS to the UE.

When a packet arrives in DRX off, this packet must be queued

at the BS until the UE exits DRX off, observes the packet in

DRX on, and transitions to RRC connected. The added delay

due to this is indicated in red. When a packet arrives in DRX

on, the UE can immediately transition to RRC connected and

receive the packet. Finally, in PSM, the packet needs to be

queued for the full duration of PSM until the UE enters RRC

connected again, incurring an additional delay.

B. Markov Decision Processes

To model the DRX mechanism, an MDP is introduced.

An MDP is used to model an agent making decisions in a

stochastic environment in which immediate decisions impact

the current and future costs. MDPs are a common choice to

model and analyze complex systems [23], [28], [29]. We will

consider a discrete-time MDP with uniform time steps �t. In

each time step, the agent first observes the current state s ∈

S . The agent then takes action a ∈ A(s) accordingly, where

A(s) denotes the set of available actions in state s. Finally,

the environment stochastically transitions to state s′ ∈ S . The

probabilities of transitions between states are defined by the

following TPF P:

P
(

s′, a, s
)

= Pr
[

s′|s, a
]

, s, s′ ∈ S, a ∈ A(s). (1)

The fourth component of an MDP is the cost function

C(s, a). This cost function measures how “expensive” the

action a was in state s. The fifth and final part of an MDP is

the discount factor γ ∈ [0, 1). γ defines how much the model

cares about future costs. When γ is zero, all the weight is

placed on immediate cost while as γ approaches one, more

emphasis is placed on anticipated future costs. Details about

the states, actions, and TPF in the proposed MDP are provided

in the sections below.

Fig. 3. DRX state transitions overview, showing the events that trigger state
transitions.

Overall, in an MDP, we look to minimize the infinite

horizon discounted sum of costs, specifically

min
π

∞
∑

t=0

γ tC(st, π(st)) (2)

where π : S → A denotes the decision policy, which maps

states to actions.

In the remainder of this section, we describe how DRX

is modeled by mapping the DRX mechanism onto each of

these four MDP components. Namely, in Section III-C1 we

define the state space, in Section III-C2 we define the actions

the agent can take, in Section III-C3 we provide the TPF,

in Section III-C4 we introduce our problem’s cost function,

and finally in Section III-C5 we describe our low-complexity

“DRX-aware” value iteration algorithm that will be used to

solve the MDP.

C. DRX System Model

In this section, we describe how we model DRX as an MDP

through the four elements of an MDP: 1) the state space; 2)

the action space; 3) TPF; and 4) the cost function. We then

introduce the method we use to solve the MDP – DRX-aware

value iteration algorithm.

1) States: Similar to the model in [23], our base model of

DRX will consist of four primary states, i.e., RRC Connected

(SRRC), DRX on (SON), DRX off (SOFF), and PSM (SPSM), as

illustrated in Fig. 3 where each of these four states are color

coded. In SRRC, the device is fully awake and can transmit

or receive packets at any time. In this state, the device is

sacrificing its energy for a potential improvement in network

performance, specifically latency, as any packets that arrive in

this state will be transmitted immediately and therefore have

zero delay. If no packets are received in the timer duration

TRRC, the state will transition to the DRX on state, denoted

by SON, and will begin a series of DRX cycles. However, if a

packet is received in SRRC at any time, TRRC is reset.

The second state, SON, is illustrated in the top right of

Fig. 3. In this state, the device is in the awake part of its

DRX cycles, and is able to receive a packet at any time during

this state. Similar to the RRC Connected state, in this state

the device is sacrificing energy for a potential improvement in

network performance. If a packet is received during SON, the
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TABLE II
DRX STATE ARRAY FOR SRRC

state transitions back to SRRC. However, if no packet has been

received, the device will transition to PSM if m DRX cycles

have elapsed, and transition to SOFF (DRX off ) otherwise.

The third state, SOFF, is illustrated in the bottom right of

Fig. 3. In this state, the device is in its off period of the DRX

cycles. The device is consuming a reduced amount of energy,

but it cannot be reached by the network, so any DL packet that

arrives in this state will have an added delay. In this state, the

device will stay asleep until the timer TOFF expires, in which

case it will transition back to SON.

The final state, SPSM, is illustrated in the bottom left of

Fig. 3. In this state, the device sleeps for a long period of

time. Similar to SOFF, in PSM, the device is saving energy and

hoping that its network performance does not suffer. After the

timer TPSM expires, the device wakes back up and transition

to state SRRC, where the entire process can begin again.

We define Sm to be the set of all possible “macro” states,

i.e., Sm = {SRRC, SON, SOFF, SPSM}. Each of these macro

states is composed of a number of substates, as shown in

Table II. To define these substates, a couple of additional

variables must be considered. The first addition is a timer

state that will help facilitate the transitions between these main

states. The set of possible timer values t ∈ T depends on the

current DRX state as follows:

t ∈

⎧

⎪

⎪

«

⎪

⎪

¬

[0, TRRC], if sm = SRRC

[0, TON], if sm = SON
[

0, Tmax
OFF

]

, if sm = SOFF

[0, TPSM], if sm = SPSM

(3)

where Tmax
OFF is the largest possible DRX off timer. It is worth

noting that all timer values specified can be only integers. We

will slightly abuse notation and let the closed interval [x, y]

denote the integers x, x + 1, . . . , y and the open interval (x, y)

denote the integers x + 1, x + 2, . . . , y − 1.

The second addition is a Boolean packet indicator state,

indicating the existence of a packet, i.e., this indicator will be

1 if there is a packet waiting and 0 otherwise. Note that, this

indicator can only be 1 in states where immediate reception

of the packet is not possible (SOFF and SPSM); hence

Spkt ∈

{

{0, 1}, if sm ∈ {SOFF, SPSM}

{0}, if sm ∈ {SRRC, SON}.
(4)

It is possible that multiple packets arrive during a single off

duration. In this case, all packets would need to be buffered

at the BS until the device wakes. In practice, this is quite

unlikely as devices operating with DRX tend to communicate

infrequently. Currently, as to not significantly expand the state

space unnecessarily, our model assumes that at most one

packet will be waiting in the BS at any given time.

The resulting state space S is then defined as a subset of the

Cartesian product of the macro state, timer state, and packet

Fig. 4. RRC connected state transitions.

indicator state

S ⊂ Sm × T × Spkt. (5)

It is important to note that not all elements resulting from

this Cartesian product are actually possible. For instance,

assuming TON < TRRC, then the state s = (SON, TRRC − 1, 0)

is a state within this Cartesian product, but is not reachable.

An example of a possible sequence of the resulting reachable

states is given in Table II. The sequence begins in SRRC

timer state 5. In each subsequent time step, the timer step is

decremented by 1.

After all these considerations, the size of the state space is

given as follows:

|S| = TRRC + TON + 2
(

Tmax
OFF + TPSM

)

. (6)

2) Actions: The action considered in this model is the

length of time the device spends in the off period of its DRX

cycles, i.e., TOFF. We define this action space A(s) to be

a discrete set of predetermined timer values whose entries

depend on the current state. A discrete action space is selected

because 3GPP standards [27] define a discrete and finite set

of possible DRX timers. Recall that this action is only taken

immediately prior to switching to SOFF. Thus, the action space

only contains possible selections at this specific state, i.e.,

s = (SON, 0, 0). For all other states, A(s) is the empty set

A(s) ∈

{

{a1, a2, a3, . . . , Tmax
OFF}, if s = (SON, 0, 0)

∅, otherwise
(7)

where ai is a valid timer selection and ai < ai+1. It should

be noted that in all states where the action space is the empty

set, our MDP is reduced to a Markov reward process [30].

3) Transition Probability Function: Now that the state

space and the transitions between states have been modeled,

all that is needed before we arrive at the TPF is a model of the

incoming traffic. To this end, we use a Bernoulli-distributed

traffic model [31], [32]. In each time step, there is a probability

p of there being an incoming packet. This distribution keeps

the model simplest, as the probability of a packet arrival in a

given time slot does not vary with time. This results in a TPF

that also does not vary with time.

With this traffic distribution defined, the TPF can be

constructed. The high level view is illustrated through the

macro state transition diagram in Fig. 3. Note that, in these

state transition diagrams, states with a dashed border describe

a general macro state, while a solid border indicates a specific

state.

Next, we will go through the transition probabilities within

each of these high level states, beginning with SRRC, illustrated

in Fig. 4. The system is initialized in this state, with a timer
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Fig. 5. DRX on state transition probabilities.

state of TRRC − 1. With each time step, the timer state is

decremented with the probability that no packet arrives 1 − p,

and gets reset to timer state TRRC with the probability of a

packet arrival p. In essence, if the system is in timer state t, it

will move to timer state t − 1 with probability 1 − p, and will

move to timer state TRRC with probability p. Once the timer

state reaches 0, it will instead transition to timer state TON of

DRX on with probability 1 − p. Formally, we have

P
(

(SRRC, t − 1, 0), a, (SRRC, t, 0)
)

=

{

1 − p, if t ∈ [1, TRRC)

0, if t = 0
(8)

P
(

(SRRC, TRRC − 1, 0), a, (SRRC, t, 0)
)

= p

t ∈ [0, TRRC) (9)

P
(

(SON, TON − 1, 0), a, (SRRC, 0, 0)
)

= 1 − p. (10)

These stochastic timer transitions occur similarly in the state

SON, as illustrated in Fig. 5, i.e., the timer is decremented with

probability 1−p. The only difference is that with the probability

of a packet arrival p the state will transition back to timer

state TRRC − 1 in the macro state SRRC. Recall that at the end

of the DRX on period, it will transition to SPSM if m DRX

cycles have elapsed, and will move to SOFF otherwise. If we

were to model this exactly, each timer state in DRX cycles

would have to be replicated m times, expanding the state space

significantly. In general, the computational complexity of value

iteration is given as O(|S|2|A|),1 quadratic in the size of the

state space. Replicating the DRX states for each unique cycle

would increase the number of states by (m − 1)(TON + 2TOFF)

and therefore increase the complexity overall. To avoid this

significant increase in computational complexity, the transition

to PSM is modeled stochastically. When the system reaches

timer 0 of SON, assuming there is no packet arrival, it will

transition to SPSM with probability 1/m and will transition to

SOFF with probability 1 − 1/m. Thus, the transition to PSM

is approximated as being geometrically distributed with an

expectation of m trials. The transition probabilities in SON are

given by

P
(

(SON, t − 1, 0), a, (SON, t, 0)
)

=

{

1 − p, if t ∈ [1, TON)

0, if t = 0,
(11)

P
(

(SRRC, TRRC − 1, 0), a, (SON, t, 0)
)

= p

t ∈ [0, TON) (12)

1In our model, this complexity is actually slightly less since an action is
only taken in one state.

Fig. 6. DRX off state transition probabilities.

Fig. 7. PSM state transition probabilities.

P
(

(SOFF, a − 1, 0), a, (SON, 0, 0)
)

=
(1 − p)(m − 1)

m
(13)

P
(

(SPSM, TPSM − 1, 0), a, (SON, 0, 0)
)

=
1 − p

m
. (14)

Further, this final timer state of DRX on is the state at which

TOFF will be selected. To model this, when the system does

transition to SOFF, it will transition to the corresponding timer

value, as illustrated in Fig. 6. That is, if a DRX off timer

TOFF is selected, it will transition to timer state TOFF − 1 in

SOFF. From there, the timer state will be decremented each

time step until the timer state reaches zero, at which point

it will transition back to SON if there is no packet and to

SRRC otherwise.2 In each time step of SOFF, if there is not

yet a buffered packet, there is a probability p of a packet

arrival, thus setting the packet indicator state to 1 in the next

time step. If the packet indicator is already 1, then the timer

simply decrements in the following time step. The transition

probabilities in SOFF are given by

P
(

(SOFF, t − 1, 0), a, (SOFF, t, 0)
)

=

{

1 − p, if t ∈ [1, Tmax
OFF)

0, if t = 0,
(15)

P
(

(SOFF, t − 1, 1), a, (SOFF, t, 0)
)

=

{

p, if t ∈ [1, Tmax
OFF)

0, if t = 0,
(16)

P
(

(SOFF, t − 1, 1), a, (SOFF, t, 1)
)

=

{

1, if t ∈ [1, Tmax
OFF)

0, if t = 0,
(17)

P
(

(SON, TON − 1, 0), a, (SOFF, 0, 0)
)

= 1 (18)

P
(

(SRRC, TRRC − 1, 0), a, (SOFF, 0, 1)
)

= 1. (19)

The PSM state transitions are illustrated in Fig. 7. In SPSM,

the timer state is decremented with each time step until timer

state zero is reached, at which point the state is transitioned

back to SRRC. The transition probabilities in SPSM are given by

2In practice, there would need to be a brief transition to SON regardless of
the existence of a packet. However, it can be assumed without much loss that
if there is a packet, there can be a direct transition from SOFF to SRRC.
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P
(

(SPSM, t − 1, 0), a, (SPSM, t, 0)
)

=

{

1 − p, if t ∈ [1, TPSM)

0, if t = 0,
(20)

P
(

(SPSM, t − 1, 1), a, (SPSM, t, 0)
)

=

{

p, if t ∈ [1, TPSM)

0, if t = 0,
(21)

P
(

(SPSM, t − 1, 1), a, (SPSM, t, 1)
)

=

{

1, if t ∈ [1, TPSM)

0, if t = 0,
(22)

P
(

(SRRC, TRRC − 1, 0), (SPSM, 0, x)
)

= 1. (23)

4) Immediate Cost: The immediate cost C(s) incurred in

state s is defined by considering a weighted sum of delay and

energy costs as follows:

C(s) = D(s) + λE(s) (24)

where D(s) is the delay cost in state s, E(s) is the energy cost

in state s, and λ is a coefficient that adjusts the weight placed

on energy as opposed to delay. For example, when λ = 0 the

UE places all priority on reducing latency no matter the cost

in terms of energy. In practice, the value of λ will be adjusted

according to the application using DRX. While an application,

such as smart metering may be able to use higher values of λ

to achieve greater energy savings, applications, such as health

monitoring systems may wish to employ a lower value of λ to

decrease the risk of significant delays. In terms of the physical

interpretation of delay and energy, the considered delay for

a given packet is computed as the number of time steps the

packet has been waiting at the BS buffer while the UE is

asleep. In essence, D(s) = 1 every time step that the packet

is waiting at the BS buffer. For the energy consumption, we

assume a certain amount of energy ε0 is consumed per time

step in SRRC and SON, no energy is consumed in SPSM, and a

fraction α ∈ [0, 1] of ε0 is consumed in SOFF. It is important

to note that the scale of energy and delay relative to each

other is not important since we consider a weighted sum of

each metric, where the weight can adjust the importance of

one metric versus the other.

The values of D(s), E(s), and C(s) for each state are given

in Table III. In SRRC and SON, the delay cost is always 0 and

the energy cost is always ε0. This is because in these states,

the UE is consuming maximum energy to stay awake and

minimize delay. In SOFF, the energy cost is always

E(s) = αε0 (25)

where ε0 is the energy consumed in SRRC and α is the fraction

of the energy ε0 consumed in SOFF. The delay cost in this state

is 0 when there is no packet waiting and 1 when there is a

packet waiting. Similarly, in SPSM, there is no cost associated

with energy loss, and a delay cost of 0 when there is no packet

waiting and 1 when there is a packet waiting.

Note that, the immediate cost function defined in (24) does

not depend on the action a, so it will simply be denoted as

C(s). Specifically, the calculation of this function amounts to a

lookup in Table III based on the current state. While the action

does not affect the immediate cost, it does affect the proba-

bilities of visiting certain states in the future. Since the cost

TABLE III
IMMEDIATE COST TABLE

Algorithm 1 DRX-Aware Value Iteration Algorithm

Input: S, A, P, C, γ

Output: Q, V, π

Initialization:

1: γ, δ

2: Q(s, a), V(s) arbitrarily

3: Vold s.t. maxs|V(s) − Vold(s)| > δ

4: while maxs|V(s) − Vold(s)| > δ do

5: for s ∈ S do

6: Define S ′ = {s′ ∈ S|P(s′, a, s) > 0}

7: for a ∈ A(s) do

8: Q(s, a) ← C(s) + γ
∑

s′∈S ′ P(s′, a, s)V(s′)

9: end for

10: Vold(s) ← V(s)

11: V(s) ← minaQ(s, a)

12: end for

13: end while

14: return Q, V, π

function depends on the state, the action indirectly affects

future observed costs. More specifically, in our problem, the

selection of TOFF does not immediately influence the cost.

Instead, it influences how long the device will sleep in the

future, and thus influences the expected future costs.

It should be noted that this problem formulation can be

achieved through two distinct methods. The first method is

to first construct a constrained MDP, which then can be

translated to an unconstrained MDP using the Lagrangian

multiplier method found in [33]. The second method involves

constructing the problem as a multiobjective optimization,

where the objective functions are delay and energy. Then,

through linear scalarization, a single objective optimization is

reached.

5) DRX-Aware Value Iteration Algorithm: Now, all the

necessary components of the MDP have been constructed and

the DRX model is complete. Next, the optimal actions need

to be found. To do this, value iteration is employed. Value

iteration is described in [30].

The value iteration algorithm given in Algorithm 1 takes as

an input the MDP, i.e., S , A, P(s′, a, s), C(s), and γ . As an

output, the algorithm provides two functions: 1) the action-

value function Q(s, a), which tells us how good or bad it is to

take action a in state s and then follow the optimal policy π∗

thereafter and 2) the value function V(s), which tells us how

good or bad being in state s is assuming the optimal policy

π∗ is followed. The final output is the optimal policy π∗. This
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optimal policy is simply the action with the lowest associated

value in the state s = (SON, 0, 0).

After the two output functions are initialized to arbitrary

values, the value iteration algorithm consists of two steps that

are repeated for all possible states until an exit condition is

met. In the first step in line 7 of Algorithm 1, a form of the

Bellman’s equation is used to update the action-value function

for every possible action a, i.e.,

Q(s, a) ← C(s) + γ
∑

s′∈S

P
(

s′, a, s
)

V
(

s′
)

. (26)

This equation consists of the summation of two parts. The

first part is simply the immediate cost from the MDP model.

The second part is a measure of expected future costs. This part

is multiplied by a discount factor, γ ∈ [0, 1), which quantifies

how much the algorithm should care about the future.

In the second step of the algorithm given in line 9 of

Algorithm 1, the value function is updated based on the current

best action to take in each state, i.e.,

V(s) = mina∈A(s)Q(s, a). (27)

These two steps are repeated until the value function is

relatively static for all states. This is checked after step 2 using

the old and new value functions and a threshold δ, i.e.,

stop ifmaxs|Vnew(s) − Vold(s)| < δ. (28)

In the case of this problem, an action is only taken in the

final timer state of DRX on, s∗ = (SON, 0, 0). So, we only

need to look at the optimal action in this state to determine

the optimal timer: i.e.,

T∗
OFF = argminaQ

(

s∗, a
)

. (29)

Our improvement to this algorithm comes in line 6 of

Algorithm 1, where we define S ′ to be the set of next states

for which there is a nonzero transition probability from state

s. In the case of our MDP, there are only at most two possible

next states from each state, so |S ′| f 2. In the traditional value

iteration, updating the value function consists of a summation

over the expected value of all possible next states. By limiting

this summation to only the set S ′ instead of S , we significantly

limit the computation required to update each state in each

iteration.

IV. ANALYTICAL MODEL

In this section, we develop an analytical model for

the expected delay and energy in each of the macro

states, given by Dsm and Esm, respectively, where sm ∈

{RRC, ON, OFF, PSM}.

In SRRC and SON, there is no delay, thus

E[DRRC] = E[DON] = 0. (30)

In SOFF and SPSM, a normalized delay of 1 is incurred each

time step during which a packet is waiting at the BS. We

define a random variable Y to be the number of time steps t

it takes for the first packet to arrive at the BS during either

SOFF or SPSM. Specifically, Y is a geometrically distributed

random variable with success probability p. Further, a success

at each time instance t has an associated delay. For instance,

if a packet arrives in the first time step, then Y = 1 and the

delay of this packet is equal to TOFF. For any time t, the delay

is given as

DOFF =

{

TOFF − Y + 1, if 1 f Y f TOFF

0, if Y > TOFF.
(31)

The expectation of this delay is

E[DOFF] =

TOFF
∑

t=1

(TOFF − t + 1)P(Y = t) =

TOFF
∑

t=1

P(Y f t). (32)

Similarly, the expected delay for SPSM is

E[DPSM] =

TPSM
∑

t=1

P(Y f t). (33)

In SRRC, the overall energy consumed over the duration

of the state depends on how long the device spends in the

RRC connected state. We define the random variable X to

represent the amount of time spent in SRRC. X is defined as a

piecewise function as follows. If X < TRRC, then we can be

certain the transition has not occurred yet. At X = TRRC, then

the probability of transition is the probability no packets have

arrived in the duration TRRC. Finally, if X > TRRC, then it is

necessary that the final TRRC + 1 time steps before transition

are exactly a packet arrival followed by TRRC consecutive

time steps with no packet arrival. It is also necessary that the

transition has not occurred at a prior time. Thus, the probability

of X taking on a value i is defined as follows:

P(X = i)

=

⎧

⎪

«

⎪

¬

0, if i < TRRC

(1 − p)TRRC , if i = TRRC

p(1 − p)TRRC

[

1 −
∑i−TRRC−1

z=1 P(X = z)
]

, if i > TRRC.

(34)

Now that we have derived a random variable describing the

time spent in SRRC, to get the expected energy consumption

in the state we need only to multiply the expectation of this

random variable by the energy consumed in each time step

of SRRC. We should note that this expectation is calculated

numerically by summing over a sufficiently large range of i

as follows:

E[ERRC] = ε0E[X] = ε0

∞
∑

i=0

iP(X = i). (35)

For each of the other macro states, this calculation is simpler

as the duration of the macro state is deterministic. For each

of these macro states, the expected energy consumption is

simply the duration of the macro state multiplied by the energy

consumed per time step in that macro state. The expected

energy consumption in these states is thus

E[EON] = TONε0 (36)

E[EOFF] = TOFFαε0 (37)

E[EPSM] = 0. (38)
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TABLE IV
LIST OF SIMULATION PARAMETERS

With these analytical models for the expected delay and

energy in each macro state formulated, these models can

be compared to our MDP by calculating the expected cost,

specifically

E[Csm] = E[Dsm] + λE[Esm]. (39)

We should note that this analytical model is only capable

of analyzing the individual parts of the problem. In order

to derive a complete analytical solution to the problem of

optimizing the DRX sleep duration, it is also crucial to know

the amount of time spent in each macro state relative to one

another. The only way this information can be gathered is

through steady-state analysis of the MDP.

V. RESULTS

In this section, we will first present, discuss, and analyze

results obtained from solving our MDP with value iteration.

Then, we present our simulation setup. Next, we present

simulation results in order to validate our model. Further,

we discuss two additional simulations: one to more closely

examine the energy-delay tradeoff and another to compare

stochastic and deterministic PSM transitions. Finally, we

discuss a method to apply these results in an environment

where traffic conditions are unknown, and present simulation

results using this method.

A. System Parameters

The list of parameters used in all results unless specified

otherwise is given in Table IV. The list of all possible values

for such timers is given in [27]. The values we have chosen

correspond to realistic system values based on this standard.

The range of values used for TOFF should be wide enough to be

sure to contain the optimal timer and fine enough to accurately

find the optimal timer. In this model, 30 values of TOFF were

used in a range from 10 to 300 ms at 10 ms intervals. It should

be noted that this range can be extended arbitrarily toward

infinity, since if there is no traffic in the network, it would be

optimal for this timer to be infinite. However, in the interest

of practicality and for the range of traffic used in this work,

the timer range of 10 to 300 ms is adequate.

Fig. 8. Optimal DRX off timer versus p for different values of the tradeoff
parameter λ.

For the base energy consumption considered in an on mode

ε0, we have selected this to be a value of 1 for simplicity. It

is important to note that while we normalize this parameter,

it can be selected as any arbitrary value based on the UE

hardware itself. This is possible because the selected value

is weighted according to the value of λ in the cost function,

so if a different energy consumption is considered, λ can

just be scaled accordingly. Finally, for each of the remaining

parameters that dictate DRX operation, we simply selected

moderate values based on the list of all possible values given

in [27].

B. Value Iteration Results

In the first test, we varied the probability of a packet arrival

in each time step p. With each p, we performed the value

iteration algorithm and recorded the optimal DRX off duration

T∗
OFF. This was done using varying values of λ. The data

obtained is plotted in Fig. 8. Note that, the constant time step

interval �t was set to be equal to 10 ms, which we have

determined is an adequate time granularity for the DRX system

without adversely affecting the computational complexity of

the model.

These results show exactly what was to be expected. For

very low traffic rates (very small p), T∗
OFF becomes very large,

trending toward the maximum allowed TOFF at p = 0. This

was expected because at very low traffic rates, the device

can be in a sleep mode more often without risking too much

network performance degradation. The opposite is also true:

as p increases, the optimal DRX off timer becomes shorter. In

this case, the system realizes that the probability of missing a

packet when sleeping increases with increasing traffic rate, so

it decides to stay awake more often.

Further, the effect of λ can be seen by comparing the

different curves in Fig. 8. For lower values of λ corresponding

to cases where less priority is placed on saving energy, T∗
OFF is

very small, while when λ is increased, T∗
OFF is also increased.

Similar conclusions can be reached in Fig. 9, which shows

the direct relationship between λ and T∗
OFF. Again, it can be

seen that, with increasing λ, T∗
OFF increases exponentially.
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Fig. 9. Optimal DRX timer versus λ for different values of the packet arrival
probability p.

Also, it can be seen by comparing the different curves

corresponding to different values of p that lower values of

p lead to greater values of T∗
OFF, which is consistent with

Fig. 8. Further, it is clear from this figure that there is a λ

at which T∗
OFF = Tmax

OFF, i.e., the optimal DRX off timer is

the maximum allowed timer, regardless of the incoming traffic

rate. This point occurs when it becomes more costly to be

awake than to remain asleep, even when there is a buffered

packet accumulating delay. This occurs when the cost of being

awake is greater than the cost of sleeping with a packet waiting

λε0 g 1 + λαε0 (40)

where αε0 is the amount of energy consumed in SOFF

expressed as a fraction of the power ε0 consumed in SRRC.

After solving for λ, we arrive at

λ g
1

ε0(1 − α)
. (41)

C. Simulation Setup

In order to test our model, a simulation scenario was set

up using Python. In this scenario, we consider a discrete time

simulation in which there exists one BS and one UE that is

using the DRX mechanism and employing a policy π(s). In

each discrete time step of the simulation, the BS first observes

the current state consisting of the macro state, the current timer

values, and whether or not there is a DL packet. Next, the

cost is calculated from this observed state. Then, the BS will

take action a ∈ A if the current state is the final timer state

of SON. Finally, the state transitions stochastically based on

the current state and the existence of a DL packet arrival. It is

important to note that in the following simulations, stochastic

transitions to PSM were employed unless specified otherwise.

To compare our simulations results with the results from

our model, we calculate the expected cost of our model as

C =
∑

s∈S

μsC(s) (42)

Fig. 10. Steady state distribution for different values of p and TOFF = 70 ms.

where μs is the stationary distribution of the TPF P. More

specifically, μs is calculated as

Pμs = μs. (43)

This stationary distribution can provide insight in the form

of telling us how frequently each state is being visited. An

example of this distribution for varying traffic is given in

Fig. 10. In this example, the DRX off duration is set statically

at 70 ms. Here, we can see that as p increases, more time

is spent in SRRC because each time a packet is received, the

device will transition back to SRRC. Conversely, as p decreases,

more time is spent in SOFF and SPSM since lower traffic rates

allow for larger expected interpacket arrival times leading to

more time spent in off modes.

Finally, one additional consideration must be made prior to

comparing simulation results with our model. In the model,

we use a discount factor γ to calculate the infinite horizon

discounted sum of costs, while this process is not done in

the simulation. Simply averaging the observed simulated cost

would therefore introduce a mismatch. To overcome this,

the first-visit Monte Carlo method given in Algorithm 2 is

used [28]. First, a simulation of n time steps was conducted,

and the state visited at each time step s(t) was recorded.

Through this entire simulation, the action a is fixed. After the

simulation, the discounted future costs of the first visit of each

state was calculated. This process is shown in lines 8 through

13 of Algorithm 2. First, the first visit of state s is located,

and the time at which this occurred is marked as time t. Next,

for all times after t until the end of the simulation t′ f n, the

value of state s is updated according to the following equation:

V(s) ← V(s) + γ t′−tC
(

s(t′)
)

(44)

where γ is the discount factor and C(s(t′)) is the cost of the

state visited at time t′. Note that, after this value is computed,

it will need to be normalized by a factor of 1 − γ so we can

directly compare values for different discount factors. After

repeating this for all states, V(s) is returned. This process was

repeated for all a ∈ A.
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Algorithm 2 Value Function Approximation Algorithm

Input: S, A, γ, C, π

Output: V

Initialization:

1: V(s) arbitrarily

2: t = 0

3: s0 = (SRRC, TRRC, 0)

4: while t < n do

5: at = π(st)

6: s(t) = st

7: st ← st+1

8: end while

9: for s ∈ S do

10: t = arg mint(s(t) == s)

11: for t f t′ f n do

12: V(s)+ = γ t′−tC(s(t′))

13: end for

14: end for

15: return (1 − γ )V(s)

Fig. 11. Average observed cost versus policy for various γ and n.

D. Model Validation

The results of this simulation are provided in Fig. 11. Here,

the value function approximation algorithm was conducted for

various discount factors γ and simulation times n. It is clear

from this figure that, when the simulation time is increased, the

average cost tends toward the expected cost. It can also be seen

that in general, when γ is increased, the average cost again

tends toward the expected cost. From these two observations,

it can be concluded that in an ideal simulation environment,

i.e., γ infinitely close to 1 and n = ∞, the observed cost in the

simulation would match the expected cost exactly, verifying

the integrity of the model.

Additionally, we compare our value iteration results with

that of the analytical model and the simulation. For each of

the macro states, the average cost in each macro state was

computed for the three methodologies used in this work –

analytical, through the steady state distribution of the MDP,

and via simulation. The resulting costs were plotted in Fig. 12,

where a 95% confidence interval is shown for the simulation.

Results show a high degree of similarity between all three

approaches.

Fig. 12. Cost in each macro state for the analytical model, MDP, and
simulation.

Fig. 13. Energy versus delay cost for varying values of λ between 0 and 1.

E. Energy-Delay Tradeoff

An additional discrete-time simulation was conducted to

further explore the tradeoff between energy and delay. The

results of this simulation are shown in Fig. 13, where each

curve is a different value of p and the points making up each

curve result from changes in λ. For each value of p, λ was

varied between 0 and 1. For each pair of p, λ, the optimal

timer T∗
OFF was gathered from the value iteration results. Using

this timer, a simulation of 10000 time steps (i.e., 100 s) was

conducted and the average energy costs and delay costs are

recorded. As λ increases, more emphasis is placed on saving

energy, thus T∗
OFF is increased. This reduces the energy cost

while increasing the delay cost. When p is increased, the

energy cost increases while the delay cost increases. This

occurs because the device becomes less likely to enter an off

state, resulting in more energy consumption in SRRC and less

opportunity to be asleep during packet arrivals.

F. Deterministic Versus Stochastic PSM Transitions

Finally, one more simulation was conducted using deter-

ministic transitions to PSM. Recall that in our model and in

the previous simulations, we employ stochastic transitions to

PSM, i.e., at the end of each DRX cycle, there is a probability

1/m of transitioning to PSM. The comparison between these
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Fig. 14. Stochastic versus deterministic PSM transitions for different discount
factors. n = 10 000.

Fig. 15. State visitation distribution for stochastic and deterministic PSM
transitions (n = 10 000 and TOFF = 300 ms).

two approaches is illustrated in Fig. 14. It can be seen in this

plot that for the majority of DRX off timers (TOFF < 200),

both approaches match closely. However, with greater DRX

off durations, these two approaches begin to diverge, with a

deterministic PSM transition incurring a slightly greater cost.

This can be explained by taking a deeper look at how these

two approaches affect the state distribution in the simulation.

This state distribution was plotted for both approaches in

Fig. 15. In both of these simulations, TOFF was set to its

maximum value of 300 ms. In this plot we can see that in the

deterministic approach, almost no time is spent in SPSM. This

makes sense because in order to enter SPSM deterministically,

it must go through SRRC and m = 3 consecutive DRX

cycles without an incoming packet. With long DRX cycles,

this becomes very unlikely. The stochastic approach, however,

spends approximately 11% of the time in SPSM. This is also

logical since after going TRRC consecutive time slots without

an incoming packet, there is a 1/m = 1/3 probability of

immediately entering SPSM. Since less energy is consumed

in SPSM compared to SOFF, there is an overall lower cost

for the stochastic simulation as TOFF increases. Despite this

difference, it is important to note that these two approaches

lead to minimum costs at similar DRX off timers. In this

Fig. 16. Average observed cost under a static timer versus a dynamic timer,
determined by estimating p.

example, both sets of curves have a minimum at TOFF = 70

ms. It is because of this similarity that this approximation can

be used, since both approaches will return the same optimal

off timer.

G. Traffic Estimation

In addition to the case where the traffic distribution is known

a priori, we have also analyzed the case where the traffic

intensity is unknown and the probability p to generate a packet

needs to be estimated. Prior to its implementation, a set of

optimal timers is precomputed using the value iteration for

a range of traffic conditions p in the range [0, 0.4] with a

granularity of 0.01. This scenario consists of two UEs, one

of which is the oracle which knows the value of p while the

other one does not. The UE that does not know the value of p

assumes that the traffic arrivals are Bernoulli in each time slot

and estimates the traffic rate p by averaging from the previous

time slots by means of the following equation:

pest = a/t (45)

where a is the number of packets that have arrived during the

time duration t. This estimation is done each time the device is

about to enter DRX off, when the DRX off timer is set. From

this estimated p value, the device looks up the precomputed

optimal timer for these traffic conditions and implements it.

Fig. 16 illustrates the performance of two different methods

of timer selection. In the blue curve, TOFF is set initially to five

time steps (50 ms), which is the optimal timer for p = 0.1.

This value does not change through the entire simulation. The

red curve, however, estimates the incoming traffic rate and

selects TOFF accordingly.

For the first 3000 time steps, p is set to 0.01. In this case, the

static timer (blue) of 50 ms is far from optimal. The dynamic

timer (red) on the other hand is able to learn the incoming

traffic rate and adjust TOFF accordingly, leading to a lower cost

than the static timer. From time steps 3000 to 6000, p is set

to 0.1. This is the optimal traffic intensity for the static timer,

so it performs well. For the dynamic timer, a small spike in

cost is observed initially before settling on the optimal timer,
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Fig. 17. Average observed cost for traffic estimation method versus optimal
static timer—elderly sensor devices scenario.

leading to a cost equal to that of the static timer. This initial

spike can be explained by the time it takes for the dynamic

timer to learn the incoming traffic rate. In the final 3000 time

steps, the performance of both timer selection methods are

again equal despite the static timer being suboptimal. This

is because with greater values of p, it becomes increasingly

unlikely that DRX cycles are entered at all. With almost all

time being spent in SRRC and TOFF is nearly irrelevant, and

will not affect the observed cost.

An additional experiment was conducted using a more real-

istic traffic model. For this experiment, we use IEEE’s “elderly

sensor devices” traffic model [34], where the interarrival times

of traffic are distributed according to a Poisson process with

a mean of 60 s. The results of this experiment are shown in

Fig. 17, where the value of λ used is 0.2. Here, we compare

our traffic estimation method (dynamic timer) with a static

timer that is aware of the traffic distribution and sets its

timer optimally. It is clear that both implementations arrive at

the same operating point, which illustrates that our model is

transferable to more realistic settings.

H. Computational Complexity Analysis

In this section, we analyze the computational complexity of

our improved value iteration algorithm and compare it with

the computational complexity of traditional value iteration. All

simulation is run on a Windows 11 operating system with

an AMD Ryzen 7 3700X 8-core processor at 3.6 GHz with

16 GB RAM.

Both algorithms are computed for a single pair (p, λ) =

(0.05, 0.6) and the convergence threshold δ = 0.001. For each

algorithm, the number of total states is adjusted by increasing

or decreasing the timer values. Both value iteration algorithms

are conducted on the modified state space and the amount of

time required for convergence is recorded. The results for the

improved and traditional value iteration algorithms are shown

in Fig. 18, where our improved algorithm is also magnified.

The first clear observation that can be made is that with our

improved value iteration algorithm, the computational com-

plexity is reduced by approximately two orders of magnitude

when compared with the traditional algorithm. Second, it is

clear that the improved algorithm exhibits a linear relationship

between complexity and the size of the state space while the

traditional algorithm’s complexity is proportional to the size

of the state space squared. The computational complexity of

Fig. 18. Algorithm runtime as a function of the number of states (p = 0.05,
λ = 0.6, and δ = 0.001).

traditional value iteration is given as O(|S|2|A|), where |S|

and |A| are the size of the state and action space, respectively.

With the improved algorithm applied to our problem, this is

reduced to O(|S|), since the number of possible next states

from a given state is constant, meaning it does not depend

on the total number of states. Overall, the improved algorithm

shows a significant improvement in computational time while

also demonstrating better scalability in terms of the size of the

state space when compared with the traditional algorithm.

I. Comparison to Q-Learning

We compare our solution with an RL approach, an approach

also taken in [23]. Note that, in [23], they apply an actor-

critic algorithm due to the continuous nature of their problem

formulation. Rather than comparing our results directly to

actor–critic, we compare them to a Q-learning approach, which

is a more appropriate methodology for our discrete model.

A simulation of 10 000 time steps was conducted for the

static values p = 0.05 and λ = 0.6. Both Q-learning and our

proposed traffic estimation approach were used. The simula-

tion was conducted 100 times for each, and the cumulative

average cost for both were recorded and plotted in Fig. 19

along with a 95% confidence interval. It is clear by the end

of the simulation that on average, the value iteration solution

will provide a lower cost. This is largely due to Q-learning not

having nearly enough learning opportunities. The action taken

in the DRX model is the selection of the DRX off timer, which

does not happen frequently. This in turn results in infrequent

meaningful learning updates, and thus a greater observed cost.

Our traffic estimation approach, on the other hand, quickly

estimates the incoming traffic intensity and applies the optimal

timer accordingly, allowing the cost to settle at a lower value.

Table V shows the cumulative average observed cost over

a simulation of 10 000 time steps for both Q-learning and

traffic estimation methods for various values of p and λ.

Additionally, the percent improvement of traffic estimation

relative to Q-learning is reported. In some cases, traffic

estimation is shown to outperform Q-learning by up to 38%. In
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TABLE V
COMPARING TRAFFIC ESTIMATION AND Q-LEARNING—AVERAGE COST OBSERVED OVER 10 000 TIME STEPS FOR VARYING p, λ

Fig. 19. Cumulative average observed cost for both Q-learning and traffic
estimation approaches (p = 0.05 and λ = 0.6).

other cases, the improvement is minimal, but traffic estimation

outperforms Q-learning in all cases.

VI. CONCLUSION

In this work, the energy-latency tradeoff inherent to DRX

was closely examined. First, the problem of optimizing DRX

sleep duration was formulated as a MDP. In this MDP, the

action taken is the selection of a DRX off duration from a

discrete set of possible timers. The state of the device evolved

according to a discrete Markov chain realistically simulating

DRX operation. A single parameter λ was introduced to

facilitate the tradeoff between energy and latency in the cost

function of the MDP. This MDP was solved using an improved

version of value iteration.

The results of value iteration were analyzed by examining

the effects of λ and the incoming traffic intensity p on the

optimal timer selection. These results were verified through

a simulation during which all possible DRX off timers were

selected and the average cost was observed. As predicted by

the value iteration results, there exists a timer at which the

observed cost is at a minimum.

Additionally, a method was proposed to deploy our results.

By observing the traffic intensity, the DRX off timer can

be selected via a precomputed list of optimal timers. Very

often in practice, a single DRX off timer will be selected,

which is suboptimal for traffic rates higher or lower than

expected. With our traffic estimation approach, we showed

an improvement in observed cost in comparison with this

traditional approach in environments where the traffic is either

unknown or time-varying. Finally, the performance of this

method was compared to an RL approach, which showed our

traffic estimation approach outperforms the RL approach.

In the future, we are planning two possible extensions of this

work. First, we are planning to include more timers in addition

to the DRX off timer in the action space. While the DRX

off timer most directly affects the energy-latency tradeoff, the

other DRX related timers, such as the RRC connectivity timer

and PSM timer can also affect this tradeoff. Additionally, we

plan on expanding the scenario to consider multiple UEs in

a single heterogeneous network. In such a scenario, the UEs

may place different priority on energy or delay depending on

their application. By adding a constraint to this scenario, such

as an energy budget for the entire network, the UEs would

need to work together to meet this constraint while jointly

minimizing their delay.
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