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Abstract—Due to the exponential growth of endpoints in the
Internet of Things (IoT), new protocols have been proposed to
utilize cellular infrastructures, allowing a large amount of IoT
devices to communicate through them. These novel protocols
make up the Cellular IoT (C-I0oT). In C-IoT, the energy efficiency
of endpoints is essential in order to reduce both operational
cost and required maintenance. One method of energy reduction
is discontinuous reception (DRX). DRX allows a device’s radio
frequency (RF) circuitry to turn off for brief periods of time.
While off, the device experiences a tradeoff between saving energy
and an increase in expected latency, which can be tuned by
how long the device spends asleep. In this article, we model
DRX as a Markov decision process (MDP). This MDP is solved
using a low-complexity “DRX-aware’ value iteration algorithm,
then verified through simulation and analytical analysis. Further,
the energy-latency tradeoff is explored by varying the device’s
priority on either energy or latency in addition to varying the
traffic intensity. Finally, a method of traffic estimation is applied,
and the model’s performance in an environment with time-
varying traffic intensity is explored. This approach is compared
with a reinforcement learning approach, showing that the traffic
estimation approach is better suited to the problem of DRX
optimization.

Index Terms—Cellular Internet of Things (C-IoT), constrained
devices, device management, discontinuous reception (DRX), effi-
cient communications and networking, energy efficient devices,
Markov decision processes (MDPs).

I. INTRODUCTION

O HELP account for the massive growth of the Internet of

Things (IoT), Cellular IoT (C-IoT) networking protocols
have been proposed. These C-IoT protocols allow IoT traffic
to communicate using existing cellular infrastructures. Two
popular novel C-IoT protocols are narrowband IoT (NB-IoT),
introduced by 3GPP in 2016 [1], and long term evolution
(LTE) Cat-M. These protocols allow user equipments (UEs) to
communicate using a more narrow bandwidth when compared
with legacy cellular protocols, such as LTE. This, in turn,
allows more users to coexist in the same cell. While the
bandwidth limitation imposed by NB-IoT and LTE Cat-M

Manuscript received 15 April 2024; revised 3 June 2024 and 12 August
2024; accepted 20 August 2024. Date of publication 5 September 2024; date
of current version 9 October 2024. This work was supported in part by the
National Science Foundation under Grant 2105230. (Corresponding author:
Filippo Malandra.)

The authors are with the Department of Electrical Engineering, University at
Buffalo, Buffalo, NY 14260 USA (e-mail: naccurso@buffalo.edu; nmastron @
buffalo.edu; filippom@buffalo.edu).

Digital Object Identifier 10.1109/JI0T.2024.3452487

deter many applications, it is ideal for typical IoT applications,
such as smart city scenarios, in which devices communicate
infrequently and increased delays are tolerable to some extent.

Compared to its competitors, such as long range wide area
network (LoRaWAN) and Sigfox, C-IoT protocols offer better
network performance in many areas, such as throughput and
latency. Also, C-IoT offers greater reliability. For instance,
NB-IoT employs a coverage enhancement feature, which
allows for reliable transmissions at a greater range thanks
to repeated packet transmissions. In addition to improved
network performance, the deployment of C-IoT is much
simpler, since the cellular infrastructures that are used by
C-IoT are already in place around the world. Thus, a C-IoT
network can be deployed through a software upgrade rather
than replacing the hardware itself [2].

Another important aspect of C-IoT protocols is reducing the
energy consumption of UEs [3]. This can be done primarily
in three ways: 1) improving the scheduling and routing of
information through the network; 2) processing data using
more energy efficient methods (e.g., the cloud computing); and
3) introducing sleep modes for nodes in the network. There are
three direct consequences of improving energy efficiency in
such networks: the amount of waste generated as a byproduct
of the device’s operation is reduced, maintenance of devices
is decreased, and the cost of operation is reduced.

However, it is rarely the case that a reduction in energy
consumption does not come at a cost. Two prime examples of
this are discontinuous reception (DRX) and power save mode
(PSM) which are two techniques introduced in LTE to extend
the battery life of end devices. DRX and PSM allow devices
to briefly turn off their radio frequency (RF) circuitry, which
would otherwise consume considerable energy while on. At
the same time, however, the device is not reachable by the
network. If a packet is sent to the device while it is in this off
state, significant delays can be incurred since any downlink
(DL) traffic will need to be buffered at the base station (BS).
Thus, DRX and PSM have an inherent energy-latency tradeoff.
In essence, by tuning the various timers that facilitate DRX
and PSM operation, we also tune this tradeoff. In addition to
changing timers, this tradeoff is also affected by the traffic
conditions in the network. In this article, we formulate the
problem of DRX off duration optimization considering traffic
conditions as a Markov decision process (MDP). An MDP
was selected to model this problem because it allows the
modeling of a time varying environment in which an agent
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makes decisions that will impact both immediate and future
network performance.

The main contributions of our work are as follows.

1) The problem of DRX off duration selection is formu-
lated as an MDP, under the assumption that the traffic
arrival distribution is known. In this model, the DRX and
PSM mechanisms are jointly modeled as a controlled
discrete-time Markov chain.

2) A single parameter is introduced that can tune the
energy-delay tradeoff of the system. The introduction
of such a parameter allows us to closely examine the
various possible operating points resulting in changes to
the overall system. In our survey on energy efficiency
in C-IoT networks [3], we found that this tradeoff has
not yet been thoroughly studied.

3) The MDP is solved using value iteration for varying
traffic intensities and varying energy/delay priorities.
The value iteration algorithm was modified to exploit the
limited number of possible next states given the current
state, resulting in drastically reduced computational
complexity.

4) An analytical model is formulated to compute the
expected energy consumption and delay in each of the
high-level modes of operation for DRX. These models
are compared with our model.

5) These results are validated via simulation, where the cost
of operation is calculated for varying DRX off durations.
Further, the delay and energy costs are separated to allow
us to observe the delay versus energy tradeoff curves.

6) A method is proposed to allow the optimal DRX off
timer selection policy to be deployed in a network
where the traffic intensity is either unknown or time
varying. This method estimates the traffic load and
employs the appropriate DRX off timer according to the
MDP. This method is compared with an reinforcement
learning (RL) approach, showing that a traffic estimation
approach is more effective in the context of DRX
optimization.

This work is an extension of our previous work [4]. One
of the main novelties of this work is the formulation of an
analytical model to compute the expected energy and delay
in each high-level DRX state. Additionally, in this work
we offer a much more thorough problem formulation with
slight modifications to our model to improve computational
complexity. Namely, we model the transition to PSM from
DRX stochastically, eliminating the need to count the number
of DRX cycles elapsed which decreases the size of the
state space and thus decreases the computational complexity
required to find the optimal solution. Further, the value
iteration algorithm is modified in this work to significantly
improve computational efficiency. Finally, several new results
are presented, including a method in which the optimal DRX
off timer can be efficiently deployed in an online environment.

The remainder of this article is organized as follows. In
Section II, we discuss the related work. In Section III, we
formulate the problem as an MDP and solve it using the value
iteration. In Section IV, we present an analytical model for
the expected delay and energy in each of the macro states.
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In Section V, we present and analyze our results. Finally, in
Section VI, we conclude the work.

II. RELATED WORK

There exist a number of diverse ways that a device can save
energy in C-IoT. A comprehensive survey of such techniques
is provided in [3]. One method is through the modification of
scheduling, which can be done in the uplink direction [5], the
DL direction [6], or in both the uplink and DL directions [7].
In this method, the ways in which time-frequency resources are
utilized and how information is routed through the network is
altered to minimize energy consumption. Another approach is
to modify how, where, and when a computational task is
executed in order to more efficiently use energy. There are
three primary ways this can be achieved: by minimizing
the transmitted data [8], through the use of approximate
circuitry [9], or by employing task offloading methods [10]. A
third approach to energy saving is to allow the activity of the
RF circuitry in a node to be reduced or stopped entirely, i.e.,
enter a sleep mode. This can be done in the BS [11], [12], but
this technique is more commonly applied to the UE.

One common approach that has been studied extensively
in this regard is the use of duty cycling, especially in the
context of wireless sensor networks (WSNs). Specifically,
duty cycling is used to minimize the amount of idle time a
device is monitoring the network. Since this idle time often
wastes energy, employing duty cycling reduces the overall
energy consumption of the device. A survey of duty cycling
techniques employed in WSNs can be found in [13], where
they highlight a critical need for accurate models to estimate
the effect of duty cycling on data transmission latency. In
this article, we provide accurate analytical models for latency
and energy consumption in DRX, and provide approaches
to characterize and optimize the achievable energy-latency
tradeoff.

A common approach in studying and modeling duty cycling
problems is through the use of MDPs. Trinh et al. [14]
modeled duty cycling in a wireless multimedia sensor network
as an MDP and solve it using RL. The goal of the model
is to find the best times to be awake or asleep given energy
consumption, latency, and throughput Quality of Service (QoS)
constraints. Chan et al. [15] proposed an adaptive duty cycling
scheme that takes into account a device’s harvesting of ambient
energy. This work models the problem as an MDP, modeling
the probabilistic dynamics of the problem as a continuous
time Markov chain. Overall, the objective is to minimize the
energy consumption of the device subject to latency and packet
loss constraints. In [16], the duty cycling of a solar energy
harvesting WSN node is modeled. The action taken in the
model is to increment/decrement the duty cycle (i.e., the ratio
of awake to asleep time), and the objective is to maximize
the amount of data transmitted from the node, which requires
a level energy to be maintained through harvesting. Sandoval
et al. [17] seek to find the optimal transmission policies,
maximizing the number of reported events for LoRa and
Sigfox technologies. In this problem, events that need to be
transmitted over the network are generated stochastically, and
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the packet reception probability of events of varying priority is
to be maximized. In [18], a duty-cycling optimization problem
is formulated as an MDP and solved using RL. In this problem,
the considered device has an active state during which data
transmission may take place, and an inactive state during
which the device saves energy. Overall, the authors employ
Q-learning to optimize energy consumption—given as the ratio
of time spent active—and throughput by altering the time spent
active in each frame.

There are some commonalities between each of the above
duty cycling works. First, each of these consider a duty cycle
that consists of only an “on” and “off” state. This allows for a
more simple modeling of the system, for example the energy
efficiency can be simply defined as the ratio of time spent on to
the time spent off. Our work parts from the existing literature
in this sense by considering a duty cycling dynamic which
contains more than these two states. We model DRX as having
four unique macro sleep states (radio resource control (RRC)
connected, DRX on, DRX off, and PSM), each with their
own potentially nondeterministic amount of energy consumed
and varying effects on the latency of packets. Also, many
works in this area do not consider the continuous tradeoff that
exists between latency and energy efficiency in duty cycling
problems ([14] is an exception, though only considers an on
and off state). In our work, we model this tradeoff exactly
and thoroughly study the interplay between energy efficiency,
latency, and the sleep duration in the DRX mechanism.

There are two primary sleep modes for UEs in C-IoT:
1) DRX and 2) PSM. Sultania et al. [19] introduced both
of these mechanisms, provide an analytical model for each,
and evaluate the performance of both mechanisms through
their implementation in network simulator 3 (NS3) using the
NB-IoT protocol.

In [20], the DRX mechanism is evaluated through a cross-
layer analytical model with traffic distributed according to a
Poisson process. Results show that the introduction of the
DRX mechanism yields a considerable improvement (up to
three times) in the energy efficiency of the device. Further,
results show that, for given DRX timers, there is a certain
traffic load at which the energy efficiency improvement of
the mechanism is optimum. This illustrates the importance of
choosing DRX timers according to traffic load to achieve the
best energy efficiency and delay results.

Numerous attempts have been made to study and optimize
DRX. Moradi et al. [21] expanded the typical 3-state semi-
Markov model of DRX to a five-state semi-Markov model to
study DRX in Device to Device (D2D) communications. In
the typical three-state model, the device can be either active,
in short DRX cycles, or in long DRX cycles. Moradi et al.
introduced two additional states, i.e., discovery states for both
the short and long cycle states. In the discovery states, UEs
monitor the physical sidelink discovery channel (PSDCH)
where other devices can send discovery messages. In the case
where a discovery message is received, the devices can then
establish a link. These additional states are added between
the short/long cycles and the active state, where the device
monitors the channel for discovery messages. After this, the
device continues DRX operation as normal, checking for the
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existence of DL data and waking up/sleeping accordingly. This
model, while useful, only offers the modeling of DRX using
two possible DRX off timers: 1) short and 2) long. Our work,
in contrast, offers a method in which the DRX off timers can
be selected from a finite set of possible timers.

Moradi et al. [22] considered DRX in a video streaming
environment where the channel capacity is changing over time.
They utilize a channel prediction method in order to minimize
the energy consumption of the UE while simultaneously
preventing significant receiver buffer underflows, which would
indicate a significant incurred delay. The authors present their
results as separate plots of energy versus video bitrate and
number of buffer underflows versus video bitrate, but they do
not closely examine the relationship between energy and the
number of buffer underflows.

Zhou et al. [23] proposed an actor—critic algorithm to
improve the latency-energy tradeoff that exists in DRX. The
authors consider a modified DRX mechanism consisting of
four states: 1) continuous reception; 2) on duration of DRX
cycle; 3) off duration of DRX cycle; and 4) RRC Idle. The
algorithm learns over time through the modification of the
timers that facilitate state transitions (e.g., on duration of DRX
cycle). The authors show how their algorithm performs in
terms of both energy and delay compared to simpler DRX
implementations; however, they do not provide a detailed study
on the tradeoff between energy and delay that is inherent to
DRX. In contrast to this work, we formulate the DRX problem
in such a way where we can tune the energy-delay tradeoff to
more closely examine the complex relationship between the
DRX off timer, energy, and delay.

Koc et al. [24] modeled DRX in an LTE-A network
according to a semi-Markov process. In their model, they
consider two types of traffic: 1) active traffic, where there
are frequent packet calls and 2) background traffic, where
there are less frequent transmissions (e.g., updates from a
weather app). The authors propose a weighted sum approach
in which they attempt to minimize energy consumption while
also minimizing delay. In deployment, the authors propose
two modes of operation — one for each type of traffic. During
active traffic, all weight is placed on delay, thus the objective
is to minimize delay subject to an energy constraint. During
background traffic, all weight is placed on energy, thus the
objective is to minimize energy subject to a delay constraint.
While the approach of this work is similar to ours in the
sense that the problem is formulated as the minimization of a
weighted sum of energy and delay, this work only considers
the two extreme cases where all priority is placed on either
energy or delay. In contrast to this, our work more closely
examines the energy-delay tradeoff by varying the priority on
energy/delay over a range of possible values. This allows us
to achieve a more complete understanding of the complex
relationship between the DRX off timer, energy, and delay.

In our work, we formulate the DRX problem as a
multiobjective optimization where the objective functions are
delay and energy. There are a number of approaches used in
the literature to solve such a problem. One of the most pop-
ular methods is linear scalarization, applied in [25] and [26].
Linear scalarization is the process of translating the vector of
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objective functions to a scalar value through a weighted sum LIST OF NOTATION
of the vector elements. Scalarization opens the doors to more
straightforward, well known solutions, such as value iteration. SRRC RRC Connected State
In contrast to the previous work, this work formulates the Son DRX On State
. B . . . SoFF DRX off State
DRX mechanism in full as a single discrete MDP. In doing Sps PSM State
so, we are able to directly solve the MDP through dynamic Torr DRX off Timer
rogramming. In much of the available literature, the energy- Topp Optimal DRX off" Timer
prog g . . ; i gy T58% Maximum possible DRX off Timer
delay tradeoff in DRX is examined through setting a delay P Packet Arrival Probability

constraint and attempting to minimize energy consumption
subject to that constraint. However, in this work, we define
a single continuous variable which can be used to tune this
tradeoff in either direction, i.e., varying emphasis can be
placed on either energy or delay. In doing so, this allows for
a much wider range of operating points. To the best of our
knowledge, this inherent tradeoff between energy and delay in
DRX has not been thoroughly studied. Finally, we propose a
practical deployment of our results in C-IoT networks where
the traffic intensity is either unknown or time varying.

III. PROBLEM FORMULATION

In what follows, we first provide a high-level overview of
the DRX mechanism. Next, we describe the general structure
and objectives of MDPs. Then, the remainder of the section is
dedicated to rigorously defining how we model DRX as an
MDP. That is, we define the state space, the action space, the
transition probability function (TPF), and the cost function.
Finally, we introduce the method we use to solve the MDP —
the DRX-aware value iteration algorithm. A list of the notation
used throughout is given in Table I.

A. DRX Overview

In many instances, devices in IoT networks can go extended
periods of time without the existence of DL traffic. In
such instances, devices would waste considerable energy by
unnecessarily monitoring DL control channels continuously.

P(s',a,s) Transition Probability Function
C(s,a) Cost Function
Q(s,a) Action-Value Function
V(s) Value Function
TrRRC RRC Inactivity Timer
Ton DRX On Duration
Tpsm PSM Timer Duration

DRX offers a solution to this problem of wasted energy. A
system model diagram of the DRX mechanism is given in
Fig. 1, where the various modes of operation are illustrated
and transmission timings are shown. Additionally, a timing
diagram of the DRX mechanism is illustrated in Fig. 2. In
DRX, if the device has gone a certain period of time without
having received a packet, it will enter DRX cycles. Each of
these DRX cycles consists of an off and on period. When the
device is off, it will minimize the activity of its RF circuitry
to not waste energy monitoring channels. During this period,
the device is saving energy, but it is unable to receive DL
packets. During the on period, the device will consume energy
to wake up and check the radio control channel, to see if there
are any incoming DL packets. If there are none, the device
will go back into the off mode, and these cycles will continue.
However, if there are any packets, the device will wake up
fully, and exit these DRX cycles. A list of all possible timer
values that facilitate these transitions can be found in [27].
While there are also many other timers listed, such as the RRC
release timer, DRX on timer, etc., this work only focuses on
the DRX off timer.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 15:11:06 UTC from IEEE Xplore. Restrictions apply.



32718

RRC Connected RRC Idle
5
=2 N m DRX cycles
GE; £ RRC Inactivity
c 3 Timer DRX Cycle : PSM
We : —>
(]
=) i=) =)
& & &
DL Reception Time

Fig. 2. DRX timing diagram.

PSM is an additional sleep mode, which allows the device
to sleep for much longer periods. PSM is triggered by the
device going through m consecutive DRX cycles without any
DL packets. In PSM, the device saves energy by turning off its
RF circuitry for an extended period of time, but is unreachable
by the network. Eventually, the device will wake up from PSM
and go back to regular operation.

Fig. 2 illustrates the operation of DRX according to when
packets arrive. When a DL packet arrives in the RRC con-
nected state, there is no added delay due to sleeping, since the
packet can be immediately forwarded from the BS to the UE.
When a packet arrives in DRX off, this packet must be queued
at the BS until the UE exits DRX off, observes the packet in
DRX on, and transitions to RRC connected. The added delay
due to this is indicated in red. When a packet arrives in DRX
on, the UE can immediately transition to RRC connected and
receive the packet. Finally, in PSM, the packet needs to be
queued for the full duration of PSM until the UE enters RRC
connected again, incurring an additional delay.

B. Markov Decision Processes

To model the DRX mechanism, an MDP is introduced.
An MDP is used to model an agent making decisions in a
stochastic environment in which immediate decisions impact
the current and future costs. MDPs are a common choice to
model and analyze complex systems [23], [28], [29]. We will
consider a discrete-time MDP with uniform time steps At. In
each time step, the agent first observes the current state s €
S. The agent then takes action a € A(s) accordingly, where
A(s) denotes the set of available actions in state s. Finally,
the environment stochastically transitions to state s’ € S. The
probabilities of transitions between states are defined by the
following TPF P:

P(s/,a, s) =Pr[s/|s, a],s, s €S,ae Als). (1

The fourth component of an MDP is the cost function
C(s,a). This cost function measures how ‘“expensive” the
action a was in state s. The fifth and final part of an MDP is
the discount factor y € [0, 1). y defines how much the model
cares about future costs. When y is zero, all the weight is
placed on immediate cost while as y approaches one, more
emphasis is placed on anticipated future costs. Details about
the states, actions, and TPF in the proposed MDP are provided
in the sections below.
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Fig. 3. DRX state transitions overview, showing the events that trigger state
transitions.

Overall, in an MDP, we look to minimize the infinite
horizon discounted sum of costs, specifically

o
min ) " y'Clsr, 7(s1) )
=0
where 7 : & — A denotes the decision policy, which maps
states to actions.

In the remainder of this section, we describe how DRX
is modeled by mapping the DRX mechanism onto each of
these four MDP components. Namely, in Section III-C1 we
define the state space, in Section III-C2 we define the actions
the agent can take, in Section III-C3 we provide the TPF,
in Section III-C4 we introduce our problem’s cost function,
and finally in Section III-C5 we describe our low-complexity
“DRX-aware” value iteration algorithm that will be used to
solve the MDP.

C. DRX System Model

In this section, we describe how we model DRX as an MDP
through the four elements of an MDP: 1) the state space; 2)
the action space; 3) TPF; and 4) the cost function. We then
introduce the method we use to solve the MDP — DRX-aware
value iteration algorithm.

1) States: Similar to the model in [23], our base model of
DRX will consist of four primary states, i.e., RRC Connected
(SRRC)7 DRX on (SON)’ DRX off (SOFF), and PSM (SPSM), as
illustrated in Fig. 3 where each of these four states are color
coded. In Srrc, the device is fully awake and can transmit
or receive packets at any time. In this state, the device is
sacrificing its energy for a potential improvement in network
performance, specifically latency, as any packets that arrive in
this state will be transmitted immediately and therefore have
zero delay. If no packets are received in the timer duration
Trrc, the state will transition to the DRX on state, denoted
by Son, and will begin a series of DRX cycles. However, if a
packet is received in Sgrc at any time, Trrc iS reset.

The second state, Son, is illustrated in the top right of
Fig. 3. In this state, the device is in the awake part of its
DRX cycles, and is able to receive a packet at any time during
this state. Similar to the RRC Connected state, in this state
the device is sacrificing energy for a potential improvement in
network performance. If a packet is received during Son, the
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TABLE II
DRX STATE ARRAY FOR SRrC

Timer State
5At 4At 3AtL 2At 1At 0At
SRRC states: Srrc,5,0  Srrc,;4,0  Srrc,3,0  Sgrrc,2,0  Sgrrc,1,0  Srrc,0,0

state transitions back to Srrc. However, if no packet has been
received, the device will transition to PSM if m DRX cycles
have elapsed, and transition to Sorr (DRX off) otherwise.

The third state, Sofr, is illustrated in the bottom right of
Fig. 3. In this state, the device is in its off period of the DRX
cycles. The device is consuming a reduced amount of energy,
but it cannot be reached by the network, so any DL packet that
arrives in this state will have an added delay. In this state, the
device will stay asleep until the timer Topr expires, in which
case it will transition back to Son.

The final state, Spsm, is illustrated in the bottom left of
Fig. 3. In this state, the device sleeps for a long period of
time. Similar to Sorr, in PSM, the device is saving energy and
hoping that its network performance does not suffer. After the
timer Tpsm expires, the device wakes back up and transition
to state SRrc, Where the entire process can begin again.

We define S, to be the set of all possible “macro” states,
ie., Siu = {Srrc, SoN, SOrr, Spsm}. Each of these macro
states is composed of a number of substates, as shown in
Table II. To define these substates, a couple of additional
variables must be considered. The first addition is a timer
state that will help facilitate the transitions between these main
states. The set of possible timer values ¢ € 7 depends on the
current DRX state as follows:

[0, Trrcl, if s = SrrC
[0, Ton], if s = Son

[07 ngl)é]y if s, = SorF
[0, Tpsml], if s;, = Spsm

re 3)

where TEE is the largest possible DRX off timer. It is worth
noting that all timer values specified can be only integers. We
will slightly abuse notation and let the closed interval [x, y]
denote the integers x,x+ 1, ...,y and the open interval (x, y)
denote the integers x + 1, x+2,...,y — 1.

The second addition is a Boolean packet indicator state,
indicating the existence of a packet, i.e., this indicator will be
1 if there is a packet waiting and 0 otherwise. Note that, this
indicator can only be 1 in states where immediate reception
of the packet is not possible (Sorr and Spsm); hence

Sy € {0, 1}, if 5, € {SoFF, Spsm}
P {0}, if s, € {SrrC, SoN}-

It is possible that multiple packets arrive during a single off
duration. In this case, all packets would need to be buffered
at the BS until the device wakes. In practice, this is quite
unlikely as devices operating with DRX tend to communicate
infrequently. Currently, as to not significantly expand the state
space unnecessarily, our model assumes that at most one
packet will be waiting in the BS at any given time.

The resulting state space S is then defined as a subset of the
Cartesian product of the macro state, timer state, and packet

4)
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Fig. 4. RRC connected state transitions.

indicator state

S C S xT X Spia. 5)

It is important to note that not all elements resulting from
this Cartesian product are actually possible. For instance,
assuming Ton < Trrc, then the state s = (Son, Trrc — 1, 0)
is a state within this Cartesian product, but is not reachable.
An example of a possible sequence of the resulting reachable
states is given in Table II. The sequence begins in Srrc
timer state 5. In each subsequent time step, the timer step is
decremented by 1.

After all these considerations, the size of the state space is
given as follows:

IS| = Trre + Ton + 2(TOes + Tesm). (6)

2) Actions: The action considered in this model is the
length of time the device spends in the off period of its DRX
cycles, i.e., Topr. We define this action space A(s) to be
a discrete set of predetermined timer values whose entries
depend on the current state. A discrete action space is selected
because 3GPP standards [27] define a discrete and finite set
of possible DRX timers. Recall that this action is only taken
immediately prior to switching to Sopr. Thus, the action space
only contains possible selections at this specific state, i.e.,
s = (Son, 0, 0). For all other states, .A(s) is the empty set

{a1, a2, a3, ..., Tofg), if s = (Sow, 0, 0)
Als) € {V), otherwise

(7

where a; is a valid timer selection and a; < a;41. It should
be noted that in all states where the action space is the empty
set, our MDP is reduced to a Markov reward process [30].

3) Transition Probability Function: Now that the state
space and the transitions between states have been modeled,
all that is needed before we arrive at the TPF is a model of the
incoming traffic. To this end, we use a Bernoulli-distributed
traffic model [31], [32]. In each time step, there is a probability
p of there being an incoming packet. This distribution keeps
the model simplest, as the probability of a packet arrival in a
given time slot does not vary with time. This results in a TPF
that also does not vary with time.

With this traffic distribution defined, the TPF can be
constructed. The high level view is illustrated through the
macro state transition diagram in Fig. 3. Note that, in these
state transition diagrams, states with a dashed border describe
a general macro state, while a solid border indicates a specific
state.

Next, we will go through the transition probabilities within
each of these high level states, beginning with Srrc, illustrated
in Fig. 4. The system is initialized in this state, with a timer

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 06,2024 at 15:11:06 UTC from IEEE Xplore. Restrictions apply.



32720

(1 —p)/m /

-
|
=
’
'
'
'
\

1-p

1-p
Ton — 1 Ton —2

Select Topr € A(s) To \\I
P P (1-p)(1 -4 N\ Serr
P -

. N

A

v Srrc |

" ¥

Fig. 5. DRX on state transition probabilities.

state of Trrc — 1. With each time step, the timer state is
decremented with the probability that no packet arrives 1 — p,
and gets reset to timer state Trrc with the probability of a
packet arrival p. In essence, if the system is in timer state ¢, it
will move to timer state t — 1 with probability 1 — p, and will
move to timer state Trrc Wwith probability p. Once the timer
state reaches 0, it will instead transition to timer state Ton of
DRX on with probability 1 — p. Formally, we have

P((SRRC1 r— 17 0)7 a, (SRRCs ts O))

_J1—p, ifre[l, Trre)
a {0, ifr=0 ®)
P((Srrc» TRrC — 1,0), @, (Srre. 1, 0)) = p
t € [0, Trre) ©)

P((Son. Tox — 1,0), a, (Srrc. 0,0)) =1 —p.  (10)

These stochastic timer transitions occur similarly in the state
Son, as illustrated in Fig. 5, i.e., the timer is decremented with
probability 1 —p. The only difference is that with the probability
of a packet arrival p the state will transition back to timer
state Trrc — 1 in the macro state Sgrc. Recall that at the end
of the DRX on period, it will transition to Spsy if m DRX
cycles have elapsed, and will move to Sopr otherwise. If we
were to model this exactly, each timer state in DRX cycles
would have to be replicated m times, expanding the state space
significantly. In general, the computational complexity of value
iteration is given as O(|S|*|.Al),! quadratic in the size of the
state space. Replicating the DRX states for each unique cycle
would increase the number of states by (m — 1)(Ton + 2T0oFF)
and therefore increase the complexity overall. To avoid this
significant increase in computational complexity, the transition
to PSM is modeled stochastically. When the system reaches
timer 0 of Son, assuming there is no packet arrival, it will
transition to Spsy with probability 1/m and will transition to
Sorr with probability 1 — 1/m. Thus, the transition to PSM
is approximated as being geometrically distributed with an
expectation of m trials. The transition probabilities in Son are
given by

P((Son,t—1,0), a, (Son. 1, 0))

_{O, if t =0, b
P((Srrc: Trre — 1,0), a, (Son. £,0)) = p
t € [0, Ton) (12)

n our model, this complexity is actually slightly less since an action is
only taken in one state.
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Fig. 6.
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Fig. 7.

PSM state transition probabilities.

d—=p)(m—1)
m

P((Sorr. a— 1,0), a, (Son, 0,0)) = (13)

p

1 —
P((Spsm. Tesm — 1, 0), a, (Sow. 0, 0)) = o (14)

Further, this final timer state of DRX on is the state at which
Torr will be selected. To model this, when the system does
transition to Sofr, it will transition to the corresponding timer
value, as illustrated in Fig. 6. That is, if a DRX off timer
Torr is selected, it will transition to timer state Topr — 1 in
Sorr. From there, the timer state will be decremented each
time step until the timer state reaches zero, at which point
it will transition back to Son if there is no packet and to
Srre otherwise.? In each time step of Sofr, if there is not
yet a buffered packet, there is a probability p of a packet
arrival, thus setting the packet indicator state to 1 in the next
time step. If the packet indicator is already 1, then the timer
simply decrements in the following time step. The transition
probabilities in Sopp are given by

P((SOFF7 r— ]’ O)’ a, (SOFFs ts 0))

1= pifre[1, T

10, if t =0, (15)
P((SOFFV [ 17 1)7 a, (SOFFs 1, 0))

p, if 1 € [1, TH)

=1o0,ifr=0, (16)
P((SOFF7 t— 15 1)’ a, (SOFF5 t5 1))

[ 1 if e [1, TR

=10, ifr=0, an
P((Son. Ton — 1,0), a, (Sorr, 0,0)) = 1 (18)
P((Srrc: Trre — 1,0), a, (Sor, 0, D) = 1. (19)

The PSM state transitions are illustrated in Fig. 7. In Spswm,
the timer state is decremented with each time step until timer
state zero is reached, at which point the state is transitioned
back to Sgrc. The transition probabilities in Spsy are given by

2In practice, there would need to be a brief transition to SgN regardless of
the existence of a packet. However, it can be assumed without much loss that
if there is a packet, there can be a direct transition from Sopp to SRrc-
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P((SPSMs r— 17 0)7 a, (SPSMs tv O))

_J1=p ifre[l, Tesm)

1o, if t=0, (20)
P((SPSMa r— 17 1)7 a, (SPSMv ta O))

_Jp if r € [1, Tpsm)

“10,ifr=0, @D
P((SPSM5 r— 17 1)7 a, (SPSMa t’ 1))

_ | 1, if r € [1, Tpsm)

=10, ifr=0, 22)
P((Srrc, Trre — 1, 0), (Spsm, 0, %)) = 1. (23)

4) Immediate Cost: The immediate cost C(s) incurred in
state s is defined by considering a weighted sum of delay and
energy costs as follows:

C(s) = D(s) + AE(s) 24)

where D(s) is the delay cost in state s, E(s) is the energy cost
in state s, and A is a coefficient that adjusts the weight placed
on energy as opposed to delay. For example, when A = 0 the
UE places all priority on reducing latency no matter the cost
in terms of energy. In practice, the value of A will be adjusted
according to the application using DRX. While an application,
such as smart metering may be able to use higher values of A
to achieve greater energy savings, applications, such as health
monitoring systems may wish to employ a lower value of X to
decrease the risk of significant delays. In terms of the physical
interpretation of delay and energy, the considered delay for
a given packet is computed as the number of time steps the
packet has been waiting at the BS buffer while the UE is
asleep. In essence, D(s) = 1 every time step that the packet
is waiting at the BS buffer. For the energy consumption, we
assume a certain amount of energy €p is consumed per time
step in Srrc and Son, no energy is consumed in Spsy, and a
fraction o € [0, 1] of ¢y is consumed in Sopp. It is important
to note that the scale of energy and delay relative to each
other is not important since we consider a weighted sum of
each metric, where the weight can adjust the importance of
one metric versus the other.

The values of D(s), E(s), and C(s) for each state are given
in Table III. In Srrc and Son, the delay cost is always 0 and
the energy cost is always €g. This is because in these states,
the UE is consuming maximum energy to stay awake and
minimize delay. In Sofr, the energy cost is always

E(s) = aep (25)

where € is the energy consumed in Sgrc and « is the fraction
of the energy €g consumed in Sorp. The delay cost in this state
is 0 when there is no packet waiting and 1 when there is a
packet waiting. Similarly, in Spsm, there is no cost associated
with energy loss, and a delay cost of 0 when there is no packet
waiting and 1 when there is a packet waiting.

Note that, the immediate cost function defined in (24) does
not depend on the action a, so it will simply be denoted as
C(s). Specifically, the calculation of this function amounts to a
lookup in Table III based on the current state. While the action
does not affect the immediate cost, it does affect the proba-
bilities of visiting certain states in the future. Since the cost
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TABLE III
IMMEDIATE COST TABLE

Packet Waiting No Packet Waiting
State D(s) E(s) C(s) D(s) E(s) C(s)
SRRC 0 €0 Aeo 0 €0 A€o
Son 0 €0 Aeo 0 €0 Aeg
SorF 1 aeg 1+ aXey 0 aeg aley

Spsm 1 0 1 0 0 0

Algorithm 1 DRX-Aware Value Iteration Algorithm
Input: S,A,P,C,y
Output: Q,V, n
Initialization:
y,d
. Q(s, a), V(s) arbitrarily
2 Voia s.t. maxg|V(s) — V()| > 8
: while max;|V(s) — Vy4(s)| > & do
for s € S do
Define &’ = {s' € S|P(s', a, s) > 0}
for a € A(s) do
0G5, @) < C() + 7 Lyes P(s', 4, 9)V(s))
end for
Voia(s) <= V(s)
11: V(s) < min,Q(s, a)
12:  end for
13: end while
14: return Q,V,

R A A S ol S

._
e

function depends on the state, the action indirectly affects
future observed costs. More specifically, in our problem, the
selection of Topr does not immediately influence the cost.
Instead, it influences how long the device will sleep in the
future, and thus influences the expected future costs.

It should be noted that this problem formulation can be
achieved through two distinct methods. The first method is
to first construct a constrained MDP, which then can be
translated to an unconstrained MDP using the Lagrangian
multiplier method found in [33]. The second method involves
constructing the problem as a multiobjective optimization,
where the objective functions are delay and energy. Then,
through linear scalarization, a single objective optimization is
reached.

5) DRX-Aware Value Iteration Algorithm: Now, all the
necessary components of the MDP have been constructed and
the DRX model is complete. Next, the optimal actions need
to be found. To do this, value iteration is employed. Value
iteration is described in [30].

The value iteration algorithm given in Algorithm 1 takes as
an input the MDP, i.e., S, A, P(s, a, s), C(s), and y. As an
output, the algorithm provides two functions: 1) the action-
value function Q(s, a), which tells us how good or bad it is to
take action a in state s and then follow the optimal policy 7 *
thereafter and 2) the value function V(s), which tells us how
good or bad being in state s is assuming the optimal policy
s* is followed. The final output is the optimal policy 7 *. This
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optimal policy is simply the action with the lowest associated
value in the state s = (Son, 0, 0).

After the two output functions are initialized to arbitrary
values, the value iteration algorithm consists of two steps that
are repeated for all possible states until an exit condition is
met. In the first step in line 7 of Algorithm 1, a form of the
Bellman’s equation is used to update the action-value function
for every possible action aq, i.e.,

0(s,a) < C(s) +y Z P(s',a, s)V(s).
s'eS

(26)

This equation consists of the summation of two parts. The
first part is simply the immediate cost from the MDP model.
The second part is a measure of expected future costs. This part
is multiplied by a discount factor, y € [0, 1), which quantifies
how much the algorithm should care about the future.

In the second step of the algorithm given in line 9 of
Algorithm 1, the value function is updated based on the current
best action to take in each state, i.e.,

V(s) = minge 45 Q(s, ). 27)

These two steps are repeated until the value function is
relatively static for all states. This is checked after step 2 using
the old and new value functions and a threshold 4, i.e.,

stop ifmaxg|Vyew (s) — Vola(s)| < 8. (28)

In the case of this problem, an action is only taken in the
final timer state of DRX on, s* = (Son, 0, 0). So, we only
need to look at the optimal action in this state to determine
the optimal timer: i.e.,

Torr = argmian(s*, a). (29)

Our improvement to this algorithm comes in line 6 of
Algorithm 1, where we define S’ to be the set of next states
for which there is a nonzero transition probability from state
s. In the case of our MDP, there are only at most two possible
next states from each state, so |S’| < 2. In the traditional value
iteration, updating the value function consists of a summation
over the expected value of all possible next states. By limiting
this summation to only the set S’ instead of S, we significantly
limit the computation required to update each state in each
iteration.

IV. ANALYTICAL MODEL

In this section, we develop an analytical model for
the expected delay and energy in each of the macro
states, given by Dy, and Eg,, respectively, where sm €
{RRC, ON, OFF, PSM}.

In Srrc and Son, there is no delay, thus

E[Drrc] = E[Don] = 0. (30)

In Sorr and Spsm, a normalized delay of 1 is incurred each
time step during which a packet is waiting at the BS. We
define a random variable Y to be the number of time steps ¢
it takes for the first packet to arrive at the BS during either
Sorr or Spsm. Specifically, Y is a geometrically distributed
random variable with success probability p. Further, a success
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at each time instance ¢ has an associated delay. For instance,
if a packet arrives in the first time step, then ¥ = 1 and the
delay of this packet is equal to Topp. For any time ¢, the delay
is given as

_JTorr =Y+ 1,if 1 <Y < Torr
Dorr = {0, if ¥ > Torf. @1
The expectation of this delay is
Torr Torr

E[Dorr] = ) (Torr — 1+ DP(Y =1) = Y P(Y <1). (32)

=1 t=1
Similarly, the expected delay for Spgy is

Tpsm
E[Dpsm] = Z P(Y <1).

t=1

(33)

In Sgrrc, the overall energy consumed over the duration
of the state depends on how long the device spends in the
RRC connected state. We define the random variable X to
represent the amount of time spent in Srrc. X is defined as a
piecewise function as follows. If X < Trrc, then we can be
certain the transition has not occurred yet. At X = Trrc, then
the probability of transition is the probability no packets have
arrived in the duration Trrc. Finally, if X > Trrc, then it is
necessary that the final Trrc + 1 time steps before transition
are exactly a packet arrival followed by Trrc consecutive
time steps with no packet arrival. It is also necessary that the
transition has not occurred at a prior time. Thus, the probability
of X taking on a value i is defined as follows:

PX = i)
0, if i < TrRrc
= (1 —P)TRRC» if i = TRRC
p(1 —p)TRRC[l — el px = z)], if i > Trre.
(34)

Now that we have derived a random variable describing the
time spent in Srrc, to get the expected energy consumption
in the state we need only to multiply the expectation of this
random variable by the energy consumed in each time step
of Srrc. We should note that this expectation is calculated
numerically by summing over a sufficiently large range of i
as follows:

E[Errc] = €0E[X] = € Z iP(X =i).
i=0

(35)

For each of the other macro states, this calculation is simpler
as the duration of the macro state is deterministic. For each
of these macro states, the expected energy consumption is
simply the duration of the macro state multiplied by the energy
consumed per time step in that macro state. The expected
energy consumption in these states is thus

E[Eon] = Toneo (36)
E[Eorr] = Torraep 37
E[Epsm] = 0. (38)
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TABLE IV
LIST OF SIMULATION PARAMETERS

Parameter [ [ Value
TRRC 100 ms
Ton 30 ms
Torr {10, 20, ... 300} ms
TPS]VI 150 ms
Number of DRX Cycles m 3
Number of States 103
Number of Actions 30
At 10 ms
Energy consumed in Sprc, SoN €0 1
a 0.1
p 0.05
A 0.6

With these analytical models for the expected delay and
energy in each macro state formulated, these models can
be compared to our MDP by calculating the expected cost,
specifically

IE[Csm] = ]E[Dsm] + )\]E[Esm]' (39)

We should note that this analytical model is only capable
of analyzing the individual parts of the problem. In order
to derive a complete analytical solution to the problem of
optimizing the DRX sleep duration, it is also crucial to know
the amount of time spent in each macro state relative to one
another. The only way this information can be gathered is
through steady-state analysis of the MDP.

V. RESULTS

In this section, we will first present, discuss, and analyze
results obtained from solving our MDP with value iteration.
Then, we present our simulation setup. Next, we present
simulation results in order to validate our model. Further,
we discuss two additional simulations: one to more closely
examine the energy-delay tradeoff and another to compare
stochastic and deterministic PSM transitions. Finally, we
discuss a method to apply these results in an environment
where traffic conditions are unknown, and present simulation
results using this method.

A. System Parameters

The list of parameters used in all results unless specified
otherwise is given in Table IV. The list of all possible values
for such timers is given in [27]. The values we have chosen
correspond to realistic system values based on this standard.
The range of values used for Torr should be wide enough to be
sure to contain the optimal timer and fine enough to accurately
find the optimal timer. In this model, 30 values of Torr were
used in a range from 10 to 300 ms at 10 ms intervals. It should
be noted that this range can be extended arbitrarily toward
infinity, since if there is no traffic in the network, it would be
optimal for this timer to be infinite. However, in the interest
of practicality and for the range of traffic used in this work,
the timer range of 10 to 300 ms is adequate.
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Optimal DRX Timer vs Packet Arrival Probability

Optimal DRX Timer (ms)
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Fig. 8. Optimal DRX off timer versus p for different values of the tradeoff
parameter A.

For the base energy consumption considered in an on mode
€0, we have selected this to be a value of 1 for simplicity. It
is important to note that while we normalize this parameter,
it can be selected as any arbitrary value based on the UE
hardware itself. This is possible because the selected value
is weighted according to the value of A in the cost function,
so if a different energy consumption is considered, A can
just be scaled accordingly. Finally, for each of the remaining
parameters that dictate DRX operation, we simply selected
moderate values based on the list of all possible values given
in [27].

B. Value Iteration Results

In the first test, we varied the probability of a packet arrival
in each time step p. With each p, we performed the value
iteration algorithm and recorded the optimal DRX off duration
TSpp- This was done using varying values of A. The data
obtained is plotted in Fig. 8. Note that, the constant time step
interval At was set to be equal to 10 ms, which we have
determined is an adequate time granularity for the DRX system
without adversely affecting the computational complexity of
the model.

These results show exactly what was to be expected. For
very low traffic rates (very small p), T becomes very large,
trending toward the maximum allowed Topp at p = 0. This
was expected because at very low traffic rates, the device
can be in a sleep mode more often without risking too much
network performance degradation. The opposite is also true:
as p increases, the optimal DRX off timer becomes shorter. In
this case, the system realizes that the probability of missing a
packet when sleeping increases with increasing traffic rate, so
it decides to stay awake more often.

Further, the effect of A can be seen by comparing the
different curves in Fig. 8. For lower values of A corresponding
to cases where less priority is placed on saving energy, Tjgy is
very small, while when A is increased, T, BFF is also increased.

Similar conclusions can be reached in Fig. 9, which shows
the direct relationship between A and T Again, it can be
seen that, with increasing A, T{pp increases exponentially.
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Fig. 9. Optimal DRX timer versus A for different values of the packet arrival
probability p.

Also, it can be seen by comparing the different curves
corresponding to different values of p that lower values of
p lead to greater values of TSFF, which is consistent with
Fig. 8. Further, it is clear from this figure that there is a A
at which T = TGfg, ie., the optimal DRX off timer is
the maximum allowed timer, regardless of the incoming traffic
rate. This point occurs when it becomes more costly to be
awake than to remain asleep, even when there is a buffered
packet accumulating delay. This occurs when the cost of being
awake is greater than the cost of sleeping with a packet waiting

reg > 1+ daeg 40)

where o€y is the amount of energy consumed in Sopp
expressed as a fraction of the power €p consumed in Srrc.
After solving for A, we arrive at

1

A> —.
~ el —a)

(41)

C. Simulation Setup

In order to test our model, a simulation scenario was set
up using Python. In this scenario, we consider a discrete time
simulation in which there exists one BS and one UE that is
using the DRX mechanism and employing a policy m(s). In
each discrete time step of the simulation, the BS first observes
the current state consisting of the macro state, the current timer
values, and whether or not there is a DL packet. Next, the
cost is calculated from this observed state. Then, the BS will
take action a € A if the current state is the final timer state
of Son. Finally, the state transitions stochastically based on
the current state and the existence of a DL packet arrival. It is
important to note that in the following simulations, stochastic
transitions to PSM were employed unless specified otherwise.

To compare our simulations results with the results from
our model, we calculate the expected cost of our model as

C=) uCls)
seS

(42)
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Fig. 10. Steady state distribution for different values of p and Topg = 70 ms.

where g is the stationary distribution of the TPF P. More
specifically, w is calculated as
Pus = ps. (43)

This stationary distribution can provide insight in the form
of telling us how frequently each state is being visited. An
example of this distribution for varying traffic is given in
Fig. 10. In this example, the DRX off duration is set statically
at 70 ms. Here, we can see that as p increases, more time
is spent in Srrc because each time a packet is received, the
device will transition back to Sgrc. Conversely, as p decreases,
more time is spent in Sogr and Spsym since lower traffic rates
allow for larger expected interpacket arrival times leading to
more time spent in off modes.

Finally, one additional consideration must be made prior to
comparing simulation results with our model. In the model,
we use a discount factor y to calculate the infinite horizon
discounted sum of costs, while this process is not done in
the simulation. Simply averaging the observed simulated cost
would therefore introduce a mismatch. To overcome this,
the first-visit Monte Carlo method given in Algorithm 2 is
used [28]. First, a simulation of n time steps was conducted,
and the state visited at each time step s(#) was recorded.
Through this entire simulation, the action a is fixed. After the
simulation, the discounted future costs of the first visit of each
state was calculated. This process is shown in lines 8 through
13 of Algorithm 2. First, the first visit of state s is located,
and the time at which this occurred is marked as time ¢. Next,
for all times after ¢ until the end of the simulation # < n, the
value of state s is updated according to the following equation:

V(s) < V() + 7" 7'C(s()) (44)
where y is the discount factor and C(s(#')) is the cost of the
state visited at time 7. Note that, after this value is computed,
it will need to be normalized by a factor of 1 — y so we can
directly compare values for different discount factors. After
repeating this for all states, V(s) is returned. This process was
repeated for all a € A.
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Algorithm 2 Value Function Approximation Algorithm
Input: S,A,y,C.
Output: V
Initialization:

1: V(s) arbitrarily

2:t=0

3: 80 = (Srrc, Trre, 0)
4: while t < n do
5. a; = m(sy)
6:  s(t) =
7
8
9

St <= S+l
- end while
: for s € S do
10: ¢ = argmin(s(t) == )

11: fort<t <ndo

12: V(s)+ =y 'C(s(t))
13:  end for

14: end for

15: return (1 —y)V(s)

Cost vs DRX Off Timer

—-- y=0.998, n = 5000 y =0.9992, n = 1000
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Fig. 11. Average observed cost versus policy for various y and n.

D. Model Validation

The results of this simulation are provided in Fig. 11. Here,
the value function approximation algorithm was conducted for
various discount factors y and simulation times n. It is clear
from this figure that, when the simulation time is increased, the
average cost tends toward the expected cost. It can also be seen
that in general, when y is increased, the average cost again
tends toward the expected cost. From these two observations,
it can be concluded that in an ideal simulation environment,
i.e., y infinitely close to 1 and n = oo, the observed cost in the
simulation would match the expected cost exactly, verifying
the integrity of the model.

Additionally, we compare our value iteration results with
that of the analytical model and the simulation. For each of
the macro states, the average cost in each macro state was
computed for the three methodologies used in this work —
analytical, through the steady state distribution of the MDP,
and via simulation. The resulting costs were plotted in Fig. 12,
where a 95% confidence interval is shown for the simulation.
Results show a high degree of similarity between all three
approaches.
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Fig. 13. Energy versus delay cost for varying values of A between 0 and 1.

E. Energy-Delay Tradeoff

An additional discrete-time simulation was conducted to
further explore the tradeoff between energy and delay. The
results of this simulation are shown in Fig. 13, where each
curve is a different value of p and the points making up each
curve result from changes in A. For each value of p, A was
varied between 0 and 1. For each pair of p, A, the optimal
timer T¢p, was gathered from the value iteration results. Using
this timer, a simulation of 10000 time steps (i.e., 100 s) was
conducted and the average energy costs and delay costs are
recorded. As A increases, more emphasis is placed on saving
energy, thus T is increased. This reduces the energy cost
while increasing the delay cost. When p is increased, the
energy cost increases while the delay cost increases. This
occurs because the device becomes less likely to enter an off
state, resulting in more energy consumption in Sgrc and less
opportunity to be asleep during packet arrivals.

F. Deterministic Versus Stochastic PSM Transitions

Finally, one more simulation was conducted using deter-
ministic transitions to PSM. Recall that in our model and in
the previous simulations, we employ stochastic transitions to
PSM, i.e., at the end of each DRX cycle, there is a probability
1/m of transitioning to PSM. The comparison between these
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Fig. 15. State visitation distribution for stochastic and deterministic PSM
transitions (n = 10000 and Topp = 300 ms).

two approaches is illustrated in Fig. 14. It can be seen in this
plot that for the majority of DRX off timers (Torr < 200),
both approaches match closely. However, with greater DRX
off durations, these two approaches begin to diverge, with a
deterministic PSM transition incurring a slightly greater cost.
This can be explained by taking a deeper look at how these
two approaches affect the state distribution in the simulation.
This state distribution was plotted for both approaches in
Fig. 15. In both of these simulations, Topr was set to its
maximum value of 300 ms. In this plot we can see that in the
deterministic approach, almost no time is spent in Spsym. This
makes sense because in order to enter Spsy deterministically,
it must go through Sgrc and m = 3 consecutive DRX
cycles without an incoming packet. With long DRX cycles,
this becomes very unlikely. The stochastic approach, however,
spends approximately 11% of the time in Spsm. This is also
logical since after going Trrc consecutive time slots without
an incoming packet, there is a 1/m = 1/3 probability of
immediately entering Spsy. Since less energy is consumed
in Spsm compared to Sopp, there is an overall lower cost
for the stochastic simulation as Topg increases. Despite this
difference, it is important to note that these two approaches
lead to minimum costs at similar DRX off timers. In this
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Fig. 16. Average observed cost under a static timer versus a dynamic timer,
determined by estimating p.

example, both sets of curves have a minimum at Topr = 70
ms. It is because of this similarity that this approximation can
be used, since both approaches will return the same optimal
off timer.

G. Traffic Estimation

In addition to the case where the traffic distribution is known
a priori, we have also analyzed the case where the traffic
intensity is unknown and the probability p to generate a packet
needs to be estimated. Prior to its implementation, a set of
optimal timers is precomputed using the value iteration for
a range of traffic conditions p in the range [0, 0.4] with a
granularity of 0.01. This scenario consists of two UEs, one
of which is the oracle which knows the value of p while the
other one does not. The UE that does not know the value of p
assumes that the traffic arrivals are Bernoulli in each time slot
and estimates the traffic rate p by averaging from the previous
time slots by means of the following equation:

Dest = a/t 45)

where a is the number of packets that have arrived during the
time duration ¢. This estimation is done each time the device is
about to enter DRX off, when the DRX off timer is set. From
this estimated p value, the device looks up the precomputed
optimal timer for these traffic conditions and implements it.

Fig. 16 illustrates the performance of two different methods
of timer selection. In the blue curve, ToFr is set initially to five
time steps (50 ms), which is the optimal timer for p = 0.1.
This value does not change through the entire simulation. The
red curve, however, estimates the incoming traffic rate and
selects Topr accordingly.

For the first 3000 time steps, p is set to 0.01. In this case, the
static timer (blue) of 50 ms is far from optimal. The dynamic
timer (red) on the other hand is able to learn the incoming
traffic rate and adjust Tofrr accordingly, leading to a lower cost
than the static timer. From time steps 3000 to 6000, p is set
to 0.1. This is the optimal traffic intensity for the static timer,
so it performs well. For the dynamic timer, a small spike in
cost is observed initially before settling on the optimal timer,
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Fig. 17. Average observed cost for traffic estimation method versus optimal
static timer—elderly sensor devices scenario.

leading to a cost equal to that of the static timer. This initial
spike can be explained by the time it takes for the dynamic
timer to learn the incoming traffic rate. In the final 3000 time
steps, the performance of both timer selection methods are
again equal despite the static timer being suboptimal. This
is because with greater values of p, it becomes increasingly
unlikely that DRX cycles are entered at all. With almost all
time being spent in Srrc and Topr is nearly irrelevant, and
will not affect the observed cost.

An additional experiment was conducted using a more real-
istic traffic model. For this experiment, we use IEEE’s “elderly
sensor devices” traffic model [34], where the interarrival times
of traffic are distributed according to a Poisson process with
a mean of 60 s. The results of this experiment are shown in
Fig. 17, where the value of A used is 0.2. Here, we compare
our traffic estimation method (dynamic timer) with a static
timer that is aware of the traffic distribution and sets its
timer optimally. It is clear that both implementations arrive at
the same operating point, which illustrates that our model is
transferable to more realistic settings.

H. Computational Complexity Analysis

In this section, we analyze the computational complexity of
our improved value iteration algorithm and compare it with
the computational complexity of traditional value iteration. All
simulation is run on a Windows 11 operating system with
an AMD Ryzen 7 3700X 8-core processor at 3.6 GHz with
16 GB RAM.

Both algorithms are computed for a single pair (p, 1) =
(0.05, 0.6) and the convergence threshold § = 0.001. For each
algorithm, the number of total states is adjusted by increasing
or decreasing the timer values. Both value iteration algorithms
are conducted on the modified state space and the amount of
time required for convergence is recorded. The results for the
improved and traditional value iteration algorithms are shown
in Fig. 18, where our improved algorithm is also magnified.

The first clear observation that can be made is that with our
improved value iteration algorithm, the computational com-
plexity is reduced by approximately two orders of magnitude
when compared with the traditional algorithm. Second, it is
clear that the improved algorithm exhibits a linear relationship
between complexity and the size of the state space while the
traditional algorithm’s complexity is proportional to the size
of the state space squared. The computational complexity of
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A = 0.6, and § = 0.001).

traditional value iteration is given as O(|S|*|.Al), where |S|
and |.A| are the size of the state and action space, respectively.
With the improved algorithm applied to our problem, this is
reduced to O(|S]), since the number of possible next states
from a given state is constant, meaning it does not depend
on the total number of states. Overall, the improved algorithm
shows a significant improvement in computational time while
also demonstrating better scalability in terms of the size of the
state space when compared with the traditional algorithm.

1. Comparison to Q-Learning

We compare our solution with an RL approach, an approach
also taken in [23]. Note that, in [23], they apply an actor-
critic algorithm due to the continuous nature of their problem
formulation. Rather than comparing our results directly to
actor—critic, we compare them to a Q-learning approach, which
is a more appropriate methodology for our discrete model.

A simulation of 10000 time steps was conducted for the
static values p = 0.05 and A = 0.6. Both Q-learning and our
proposed traffic estimation approach were used. The simula-
tion was conducted 100 times for each, and the cumulative
average cost for both were recorded and plotted in Fig. 19
along with a 95% confidence interval. It is clear by the end
of the simulation that on average, the value iteration solution
will provide a lower cost. This is largely due to Q-learning not
having nearly enough learning opportunities. The action taken
in the DRX model is the selection of the DRX off timer, which
does not happen frequently. This in turn results in infrequent
meaningful learning updates, and thus a greater observed cost.
Our traffic estimation approach, on the other hand, quickly
estimates the incoming traffic intensity and applies the optimal
timer accordingly, allowing the cost to settle at a lower value.

Table V shows the cumulative average observed cost over
a simulation of 10000 time steps for both Q-learning and
traffic estimation methods for various values of p and A.
Additionally, the percent improvement of traffic estimation
relative to Q-learning is reported. In some cases, traffic
estimation is shown to outperform Q-learning by up to 38%. In
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TABLE V
COMPARING TRAFFIC ESTIMATION AND Q-LEARNING—AVERAGE COST OBSERVED OVER 10 000 TIME STEPS FOR VARYING p, A

A=02 A =06 A=1
D Traffic Estimation | Q-learning | % Improvement Traffic Estimation | Q-learning | % Improvement Traffic Estimation | Q-learning | % Improvement
0.01 0.129 0.13 1.07% 0.225 0.294 23.34% 0.36 0.459 21.75%
0.05 0.197 0.269 26.84% 0.448 0.488 8.08% 0.673 0.679 0.9%
0.1 0.223 0.363 38.44% 0.541 0.619 12.6% 0.861 0.867 0.65%
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Fig. 19. Cumulative average observed cost for both Q-learning and traffic
estimation approaches (p = 0.05 and A = 0.6).

other cases, the improvement is minimal, but traffic estimation
outperforms Q-learning in all cases.

VI. CONCLUSION

In this work, the energy-latency tradeoff inherent to DRX
was closely examined. First, the problem of optimizing DRX
sleep duration was formulated as a MDP. In this MDP, the
action taken is the selection of a DRX off duration from a
discrete set of possible timers. The state of the device evolved
according to a discrete Markov chain realistically simulating
DRX operation. A single parameter A was introduced to
facilitate the tradeoff between energy and latency in the cost
function of the MDP. This MDP was solved using an improved
version of value iteration.

The results of value iteration were analyzed by examining
the effects of A and the incoming traffic intensity p on the
optimal timer selection. These results were verified through
a simulation during which all possible DRX off timers were
selected and the average cost was observed. As predicted by
the value iteration results, there exists a timer at which the
observed cost is at a minimum.

Additionally, a method was proposed to deploy our results.
By observing the traffic intensity, the DRX off timer can
be selected via a precomputed list of optimal timers. Very
often in practice, a single DRX off timer will be selected,
which is suboptimal for traffic rates higher or lower than
expected. With our traffic estimation approach, we showed
an improvement in observed cost in comparison with this
traditional approach in environments where the traffic is either
unknown or time-varying. Finally, the performance of this
method was compared to an RL approach, which showed our
traffic estimation approach outperforms the RL approach.

In the future, we are planning two possible extensions of this
work. First, we are planning to include more timers in addition
to the DRX off timer in the action space. While the DRX
off timer most directly affects the energy-latency tradeoff, the
other DRX related timers, such as the RRC connectivity timer
and PSM timer can also affect this tradeoff. Additionally, we
plan on expanding the scenario to consider multiple UEs in
a single heterogeneous network. In such a scenario, the UEs
may place different priority on energy or delay depending on
their application. By adding a constraint to this scenario, such
as an energy budget for the entire network, the UEs would
need to work together to meet this constraint while jointly
minimizing their delay.
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