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Fig. 1. A gallery of our topology-preserving 3D medial axis results. The input shapes are shown in transparency, while the computed medial axis are shown in
blue (left) and brown (right) colors. The left side displays the medial axis computed on CAD models, and the right side shows those on organic models.

We present a novel topology-preserving 3D medial axis computation frame-
work based on volumetric restricted power diagram (RPD), while preserving
the medial features and geometric convergence simultaneously, for both
3D CAD and organic shapes. The volumetric RPD discretizes the input 3D
volume into sub-regions given a set of medial spheres. With this intermedi-
ate structure, we convert the homotopy equivalency between the generated
medial mesh and the input 3D shape into a localized contractibility check-
ing for each restricted element (power cell, power face, power edge), by
checking their connected components and Euler characteristics. We further
propose a fractional Euler characteristic algorithm for efficient GPU-based
computation of Euler characteristic for each restricted element on the fly

∗Corresponding author

Authors’ Contact Information: Ningna Wang, University of Texas at Dallas,
Texas, USA, ningna.wang@utdallas.edu; Hui Huang, Shenzhen University, Shen-
zhen, China, hhzhiyan@gmail.com; Shibo Song, Independent Researcher, Shang-
hai, China, longmaythess@outlook.com; Bin Wang, Tsinghua University, Beijing,
China, wangbins@tsinghua.edu.cn; Wenping Wang, Texas A&M University, Texas,
USA, wenping@tamu.edu; Xiaohu Guo, University of Texas at Dallas, Texas, USA,
xguo@utdallas.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7368/2024/12-ART218
https://doi.org/10.1145/3687763

while computing the volumetric RPD. Compared with existing voxel-based
or point-cloud-based methods, our approach is the first to adaptively and
directly revise the medial mesh without globally modifying the dependent
structure, such as voxel size or sampling density, while preserving its topol-
ogy andmedial features. In comparison with the feature preservationmethod
MATFP [Wang et al. 2022], our method provides geometrically comparable
results with fewer spheres and more robustly captures the topology of the
input 3D shape.
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1 Introduction
As a fundamental geometric structure1, the medial axis [Blum et al.
1967] captures the topological equivalence and geometric protru-
sions of the input shape. The medial axisM of a shape S is defined
as the set of vertices with two or more nearest neighbors on the
shape boundary 𝜕S. The medial axis transform (MAT) is a combina-
tion of the medial axis and its radius function. The topological and
geometric properties of medial axis allow it to become the founda-
tion for other skeletal shape descriptors [Tagliasacchi et al. 2016]
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and has been used in approximating [Ge et al. 2023; Hu et al. 2022,
2023; Lan et al. 2020; Petrov et al. 2024; Yang et al. 2018, 2020], simpli-
fying [Dou et al. 2022; Li et al. 2015; Yan et al. 2016], and analyzing
shapes [Dou et al. 2020; Fu et al. 2022; Hu et al. 2019; Lin et al. 2021;
Liu et al. 2024; Noma et al. 2024; Xu et al. 2023, 2024, 2022]. Some lit-
erature [Jalba et al. 2013; Kustra et al. 2016; Tagliasacchi et al. 2016]
refers to the term ‘medial axis’ as 2D skeletons and uses ‘medial
surface’ for 3D structures. For clarification, we consider ‘medial axis’
as a broader definition that includes both 2D and 3D. However, in
this paper, we focus exclusively on the 3D medial axis.

(a)

(b) (c)

(d)

(e)

Fig. 2. We propose a novel volumetric RPD-based framework for computing
the medial axis while preserving topology, medial features, and geometry.
(a) Input tetrahedral mesh with pre-detected surface sharp features; (b) the
RPD; (c) the generated medial mesh; (d) the generated external (in black)
and internal (in red) features; (e) a zoomed-in view of the generated medial
mesh.

Since an exact 3D medial axis is notoriously difficult to compute,
most existing methods resort to computing an approximated MAT.
This approximation aims to retain as many properties of the medial
axis as possible, both topologically and geometrically, while being
capable of handling various inputs, including smooth shapes (i.e.,
organic models) and non-smooth shapes (i.e., CADmodels). Existing
MAT approximation methods often consider these properties as a
trade-off. For instance, the Voxel Cores (VC) method [Yan et al. 2018]
provides a strong theoretical guarantee, allowing it to approximate
the medial axes of C2 smooth shapes with homotopy equivalence.
However, it performs poorly in terms of geometric convergence
when approximating CAD models with non-smooth external fea-
tures (i.e., convex sharp edges and corners). Recent progress for
computing MAT has demonstrated advantages in preserving medial
features (see Fig. 2 (d) and Sec. 3.1) as well as geometric convergence
for CAD models using the surface restricted power diagram (RPD)
based framework [Wang et al. 2022]. However, it cannot guarantee
the topological preservation for its generated medial mesh w.r.t. to
the input model, as their experiments show inconsistency of the Eu-
ler characteristics. The topology preservation property (also called
‘homotopy equivalence’) of the medial axis with respect to the input
shape refers to the concept that these two spaces can be continu-
ously deformed into one another without tearing or gluing, ensuring
they share the same fundamental shape or structure. Without this
property, the computed medial mesh may encounter challenges in
various downstream applications. For example, Fig. 3 shows two
medial meshes generated using MATFP [Wang et al. 2022] and our

method for the Ant model, along with two skeletonization results
from the Q-MAT algorithm [Li et al. 2015], using either method as
the initial medial mesh for MAT simplification to identify significant
and stable parts of the medial axis. Due to the lack of homotopy
equivalence in MATFP [Wang et al. 2022], both the initial and simpli-
fied medial meshes for the Ant model exhibit ‘broken’ legs, whereas
our method successfully preserves this property.
In this paper, we present a novel framework for computing a

topology-preserving MAT that is homotopy-equivalent to the in-
put 3D shape. Our framework can also preserve medial features
(Sec. 3.1) and ensure the geometric approximation accuracy. We
have found that the volumetric restricted power diagram (RPD, see
the definition in Sec. 3.2) serves as a simple but effective intermedi-
ate structure between the input volumetric shape and the generated
medial mesh. The medial mesh is generated as the dual structure
of the volumetric RPD, followed by a thinning process (Sec. 5.3).
This structure allows us to localize the topological inconsistencies
between the restricted power elements (cells, faces, edges, vertices)
and its dual mesh simplices (vertices, edges, triangles, tetrahedrons),
based on the Nerve Theorem (Sec. 3.3). Owing to recent progress in
GPU-based 3D power diagram computations [Basselin et al. 2021;
Liu et al. 2020; Ray et al. 2018], we propose a volumetric RPD-based
strategy for topological checking and fixing that amends the medial
mesh in a local manner. Additionally, we introduce a novel fractional
Euler characteristic strategy for efficient GPU-based computation
of the Euler characteristic of each restricted element (such as cells,
faces, edges) on the fly while computing the volumetric RPD.

MATFPEuler= 4
CC= 3

OursEuler= 1
CC= 1

(a) (b)

Fig. 3. Illustration of the importance of the medial axis’s homotopy equiva-
lence property. (a) Two medial meshes generated by MATFP [Wang et al.
2022] and our method. Both initial medial meshes contain approximately
5𝑘 medial spheres. The Euler characteristic of MATFP’s mesh is 4, while our
result is 1 (the ground truth is 1). The connected component (CC) results
are 3 and 1, respectively (the ground truth is 1). (b) Two simplified medial
meshes generated using the simplification algorithm Q-MAT [Li et al. 2015]
with the target number of medial spheres set to 170. Both the initial and
simplified medial meshes from MATFP [2022] exhibit ‘broken’ legs, whereas
our method preserves the structure.

The initial medial mesh is generated using a small number of
spheres (e.g., 50 spheres), which is then revised iteratively by adding
new spheres in local regions and updating the corresponding partial
RPD. Each revision only happens locally, involving the checking of
each individual restricted power cell (Sec. 4.1), their relation with
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neighboring power cells (Sec. 4.2), and their approximation to the in-
put surface boundary (Sec. 4.3). Compared with existing point-cloud-
based methods [Amenta et al. 2001; Miklos et al. 2010], voxel-based
methods [Yan et al. 2018], and surface-RPD based method [Wang
et al. 2022], our adaptive strategy can approximate the medial axis
of both 3D CAD shapes and organic models with the preservation of
homotopy equivalence, medial features, and geometric convergence,
requiring a lower number of medial spheres.
The main contributions of this paper include:
• We present a complete volumetric RPD-based framework for
computing 3D medial mesh of both CAD models and organic
models, while preserving the homotopy equivalence, medial
features, and geometric convergence.

• For input volumetric shapes with no cavities, we propose
an adaptive partial-RPD updating strategy for topological
checking and amendment. This approach involves localized
assessment of the connected components and Euler charac-
teristics of each restricted element.

• We propose a novel fractional Euler characteristic algorithm
for the efficient GPU-based computation of Euler character-
istic for each restricted cell, face, and edge on the fly while
computing the volumetric RPD in parallel.

• We propose a GPU-based local geometric metric that enables
us to adaptively refine the 3Dmedial mesh until its enveloping
volume (see 12) achieves a desired geometric accuracy relative
to the input shape.

2 Related Works
In this section, we review several representative works for approxi-
mating the 3D medial axis. Additionally, since our work relies on
the computation of power diagrams in restricted domains, we also
review algorithms for computing restricted Voronoi and power dia-
grams in volumes.

2.1 Medial Axis Computation
The approximation of the 3D medial axis mainly falls into three
categories. Additionally, there are many regularization methods for
pruning noisy branches of the medial axis [Dou et al. 2022; Li et al.
2015; Wang et al. 2024; Yan et al. 2016], which require either an
initial approximation of the 3D medial axis or initial candidate inner
balls as input. Please refer to survey materials [Siddiqi and Pizer
2008; Tagliasacchi et al. 2016] for further discussion on this topic.

Algebraic methods. These methods tend to create exact and ana-
lytic representation of MAT from a given boundary representation
while tracing the features of medial axes from the shape boundary
inward (e.g., seam and junction) [Culver et al. 2004; Milenkovic
1993; Sherbrooke et al. 1996]. However, these methods are algo-
rithmically challenging and computationally expensive due to the
need for solving nonlinear systems, which limits their applicability
to a simple class of shapes (e.g., polyhedron meshes with at most
hundreds of faces).

Voxel-based methods. These methods attempt to approximate the
3D medial axis with a piecewise-constant interpolation based on
a uniform sampling (i.e., voxels) [Saha et al. 2016; Sobiecki et al.

2014; Yan et al. 2018]. Many voxel-based methods are guided by a
Euclidean distance field [Hesselink and Roerdink 2008; Rumpf and
Telea 2002], a derived gradient field [Siddiqi et al. 2002], or more
global shape information [Jalba et al. 2015].

Point-cloud-based methods. These methods place sample points
around the boundary of the shape and consider either an interior
subset of Voronoi diagram of those surface samples or some deriv-
ative structures. Sphere-shrinking-based (SS) methods [Jalba et al.
2013; Kustra et al. 2016] generate maximal inscribed balls (so-called
medial spheres) from given point clouds with normals using the
sphere-shrinking algorithm [Ma et al. 2012]. Angle-based filtering
methods [Amenta et al. 2001; Brandt and Algazi 1992; Dey and Zhao
2002, 2004] are approaches to filter the Voronoi diagram and select
the subset of Voronoi diagram of the boundary samples that meets
an angle criterion. 𝜆-medial axis methods [Chazal and Lieutier 2005,
2008] discard a medial sphere if its radius is smaller than a given
filtering threshold 𝜆. The scale axis transform (SAT) [Miklos et al.
2010] exploits union-of-balls (UoB) and removes spikes while retain-
ing small features by scaling medial spheres. MATFP [Wang et al.
2022] uses the inner Voronoi vertices as initial sphere centers, then
updates those spheres’ centers and radii as close as possible to the
ground truth (GT), through an energy optimization framework.

Table 1. Summary of properties for five selected 3D medial axis approxima-
tionmethods: PC [Amenta et al. 2001], SAT [Miklos et al. 2010],𝜆MA [Chazal
and Lieutier 2005, 2008], SS [Jalba et al. 2013; Kustra et al. 2016], VC [Yan
et al. 2018], MATFP [Wang et al. 2022], and our method. The ✓means the
property is fulfilled and ⊚ represents the property is conditionally satisfied.

Property PC 𝜆MA SAT SS VC MATFP Ours
Homotopy ⊚ ⊚ ⊚ ⊚ ✓
Medial Features ⊚ ⊚ ⊚ ⊚ ✓ ✓
Thinness ✓ ✓ ✓ ✓
Centeredness ⊚ ⊚ ⊚ ✓ ⊚ ✓ ✓
Reconstructibility ⊚ ⊚ ⊚ ⊚ ⊚ ✓ ✓
Scalability ✓ ✓ ✓ ✓

We select several representative methods mentioned above, and
discuss several important properties of 3D medial axis that are
addressed by these methods. The summary is given in Table 1.

Homotopy Equivalence. While most existing methods maintain
the homotopy equivalence between the extracted 3D medial axis
with the input shape, such equivalence is often conditioned on the
sampling rate of points on the shape boundary. For example, both
the PC [Amenta et al. 2001] method and SAT [Miklos et al. 2010]
method rely on the 𝑟 -sample condition measured by the local feature
size (LFS) as the ‘sufficiently dense’ input sample density. The 𝜆-
medial axis [Chazal and Lieutier 2005] is homotopy equivalent to
the medial axis when 𝜆 is less than the weak feature size. Similarly,
VC [Yan et al. 2018] shows that for any voxel sizes smaller than
(2
√
3/3)𝑟 , the union of voxels is homeomorphic to the original shape.

Our method, on the contrary, has no assumption on the sampling
density of the input shape in order to preserve the topology of
the generated medial mesh. Both the SS method [Jalba et al. 2013;
Kustra et al. 2016] and the MATFP method [Wang et al. 2022] do not
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provide any guarantee on the topology of their generated medial
axis approximation.

Medial Feature Preservation. Please refer to Sec. 3.1 for a detailed
discussion of the medial sphere classification and medial features
(external features and internal features), which are also intensively
discussed in seminal works [Kustra et al. 2016; Tagliasacchi et al.
2016;Wang et al. 2022]. To the best of our knowledge, MATFP [Wang
et al. 2022] is the first method that attempts to approximate medial
axes with non-smooth regions, such as convex sharp edges and
corners (so called external features). Our method uses the same
strategy for external feature preservation, by placing zero-radius
spheres on non-smooth regions, as described in Sec. 4.2. All other
methods mentioned in Table. 1 perform poorly in terms of external
features preservation. Internal features are hidden structure of the
shape, which consists of spheres with more than two tangent points
on the surface (i.e., on seams or junctions). The SS methods [Jalba
et al. 2013; Kustra et al. 2016] are not able to preserve internal fea-
tures. This limitation arises because the sphere-shrinking algorithm
only provides medial spheres of type 𝑇2 (on sheet), as each sphere
is only tangent to two surface points. For medial spheres with more
than two tangent points on the surface, such as 𝑇3 (on seam) or
𝑇4 (on junction), these methods cannot generate spheres that lie
on the internal features of the 3D medial axis. The MATFP [Wang
et al. 2022] and our method are able to detect the ill-posed regions
where the internal feature spheres (e.g., 𝑇3 or 𝑇4) are lacking, and
use sphere-optimization algorithm to insert new spheres. All other
sampling-based methods (PC, 𝜆MA, SAT, VC) in Table. 1 require
dense sampling rate (as discussed above) in order to generate ap-
proximated internal feature spheres.

Thinness. By definition, the 3D medial axis is a thin structure, so
the approximated medial mesh should contain no 3-dimensional
cells. This property does not hold for PC [Amenta et al. 2001] and
SAT [Miklos et al. 2010], as their results contain large amounts of
‘closed pockets’. The per-manifold connectivity strategy proposed
by Kustra et al. [2016] does not consider the thinness property of the
3Dmedial axis. A subset of Voronoi diagram from a sufficiently close
and dense noisy sampling, filtered as the 𝜆MA [Chazal and Lieutier
2005, 2008] methods, retains the thinness property as no element of
this subset is dual to a 0-dimensional vertex. Similarly, the VC [Yan
et al. 2018] method achieves this thinness because the voxel core is a
direct consequence of its duality with Delaunay triangulation. Our
method follows the same thinning process as MATFP [Wang et al.
2022] (described in Sec. 5.3) to preserve this property.

Centeredness. The PC [Amenta et al. 2001], 𝜆MA [Chazal and
Lieutier 2005, 2008], SAT [Miklos et al. 2010], and VC [Yan et al.
2018] methods all require a certain sampling density to ensure that
the centeredness of the generated medial spheres is preserved. This
requirement arises because these methods use inner Voronoi balls as
initial candidate spheres and then select a subset of them. However,
Voronoi balls often protrude from the surface as they are naturally
circumscribed over the sampling points. The MATFP method [Wang
et al. 2022] addresses this by updating and pushing these protruding
inner Voronoi balls to be tangential to the surface. Our method
inherits this advantage fromMATFP and preserves the centeredness

property by directly creating medial spheres tangent to at least
two points on the surface using the sphere-shrinking and sphere-
optimization algorithms described in Sec. 5.1. The SS methods [Jalba
et al. 2013; Kustra et al. 2016] can also maintain the centeredness
property as they use the sphere-shrinking algorithm [Ma et al. 2012]
to generate spheres tangent to exactly two points on the surface.

Reconstructibility. Since only the MATFP method [Wang et al.
2022] and our method take external features (also see the discussion
of Medial Features above) into account, all other methods shown
in Table 1 would reconstruct rounded shapes for 3D CAD models
with convex sharp edges and corners. Our method also proposes
a local geometric metric that can adaptively refine the 3D medial
mesh until its enveloping volume, as the main component of the
reconstruction, reaches a desired accuracy.

Scalability. The VC method [Yan et al. 2018] requires fine vwoxel
resolution, hence incurring higher computational cost to achieve a
comparable geometric accuracy as point-cloud-based methods such
as PC [Amenta et al. 2001], 𝜆MA [Chazal and Lieutier 2005, 2008],
and SAT [Miklos et al. 2010]. Both RPD-based methods in Table 1
(MATFP [Wang et al. 2022] and Ours) requires multiple runs of sur-
face or volumetric RPD computation through the clipping process,
which is inevitably more time-consuming than others. Please see
Sec. 7 for more discussions.

2.2 Restricted Voronoi and Power Diagram in Volumes
Robust and accurate computation of 3D volumetric RPD is not a
trivial task. The classical clipping algorithm [Yan et al. 2010] and
industrial-quality libraries, such as CGAL [Fabri and Pion 2009] and
Geogram [Lévy and Filbois 2015], are still overly time-consuming
to be used in tasks that require frequent iterative RPD computa-
tions. Fortunately, recent GPU-based approaches has shown strong
ability to compute Voronoi and power diagrams on highly paral-
lel architectures, where the geometry of each Voronoi or power
cell can be evaluated independently [Basselin et al. 2021; Liu et al.
2020; Ray et al. 2018]. Basselin et al. [2021] proposed a method to di-
rectly evaluate the integrals over every restricted power cell without
computing the combinatorial structure of power diagram explicitly.
Since our work requires explicit structure of each power cell, we
build upon the ‘Tet-Cell’ strategy proposed by Liu et al. [2020]. After
discretizing the volume into a tetrahedral mesh [Hu et al. 2020],
the intersection of a tetrahedron (tet for short) with a cell can be
calculated in a parallel manner. This parallel GPU-based volumetric
RPD implementation reduces the computational cost significantly,
e.g., from 8s to 0.6s for a model with 10k tets and 10k cells.

3 Preliminaries

3.1 Medial Axis and Medial Mesh
Medial Aixs. Themedial axisM of a closed, oriented, and bounded

shape S ∈ R2\R3, as shown in Fig. 4 (a), is defined as the locus of
centers of spheres that are tangent to at least two boundary points
of S, without containing any other boundary points in its interior.
The medial axis transform (MAT) is formed by the medial axisM
and its radius function. It has been shown that any bounded open
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set S is homotopy equivalent to its medial axisM [Lieutier 2004;
Lieutier and Wintraecken 2023; Miklos et al. 2010].

T4

T31
T21

T3
T2

Medial Features. We follow the same nota-
tion for classifying medial spheres as MATFP
[Wang et al. 2022]. Taking the medial axis
of a cube model as an example. The medial
spheres of type 𝑇2 are tangent to the bound-
ary of the shape 𝜕S at exactly two distinct
tangential points, which is the most ordinary
case as they lie on 2-manifold sheets of M. The intersection of
three or more sheets forms a seam ofM, consisting of a set of 𝑇3
medial spheres tangent to 𝜕S at three distinct points. Multiple seams
could intersect at a junction sphere of 𝑇≥4. The internal features
of medial axis include those internal spheres located on seams and
junctions. For a non-smooth model (i.e., CAD model) that contains
sharp edges and corners, either convex or concave, we use a dihedral
angle less than 𝜋−𝜙 and greater than 𝜋+𝜙 to define the convex sharp
edge and concave sharp edge respectively [Abdelkader et al. 2020;
Wang et al. 2022]. Here 𝜙 is a user-defined variable and the user can
also mark sharp edges manually. For CADmodels, the external fea-
tures of medial axis consist of those convex sharp edges and their
associated corners. The medial axis should pass through those sur-
face points that are locally convex and non-smooth. As zero-radius
spheres are placed on external features, these medial spheres can
be either 𝑇 2

1 (on a convex edge) or 𝑇 ≥3
1 (on a convex corner). Please

refer to Wang et al. [2022] for a more complete categorization.

Medial Mesh. Following the convention in Q-MAT [Li et al. 2015],
we approximate the MAT of a 3D shape using a non-manifold sim-
plicial complex, called medial mesh M𝑠 , consisting of three types of
medial primitives: vertices, edges and triangles. Each vertex of M𝑠

represents amedial spherem = (𝜽 , 𝑟 ), with center 𝜽 ∈ R3 and radius
𝑟 ∈ R. The union of enveloping volume of all the medial primitives
can be used to reconstruct the surface. The enveloping volume of
an edge ofM𝑠 is called a medial cone. As shown in Fig. 4 (b), medial
cone e𝑖 𝑗 is a linear interpolation of two spheres e𝑖 𝑗 = 𝑡m𝑖+(1−𝑡)m𝑗 ,
𝑡 ∈ [0, 1]. Similarly, the enveloping volume of a triangle f𝑖 𝑗𝑘 of M𝑠

is called medial slab, shown in Fig. 4 (c).

(a) (b) (c)

𝜕S
M

m𝑖

m𝑗

m𝑖

m𝑗

m𝑘

Fig. 4. (a) The medial axis M of a shape S in R2. (b) The medial cone as a
linear interpolation of two medial spheres m𝑖 and m𝑗 . (c) The medial slab
as a linear interpolation of three spheres m𝑖 , m𝑗 , and m𝑘 .

3.2 Volumetric Restricted Power Diagram and its Dual
We follow a similar RPD-based strategy as MATFP [Wang et al.
2022] to construct the medial mesh M𝑠 as the approximation of
the 3D MATM. Here,M𝑠 is generated from the restricted regular
triangulation (RRT), which is the dual of restricted power diagram

(RPD). The main difference is that MATFP computes the medial
mesh M𝑠 by selecting a subset of simplices in regular triangulation
(RT) whose dual elements in power diagram (PD) has non-empty
intersections with the input shape S, as MATFP relies on surface-
RPD only. In this paper, we construct M𝑠 directly from the dual of
volumetric RPD (see Sec. 5.2 for technical details). In this section,
we discuss the formal definitions of RPD and its dual.

(a) (b)

m𝑖

m𝑗 m𝑘

Fig. 5. The duality between the volumetric RPD (a) of three medial spheres
and the generated medial mesh (b)

As a generalization of the Voronoi diagram, the power diagram
(PD) [Aurenhammer 1987] is generated by a set of weighted points,
and coincides with the Voronoi diagram in the case of equal weights.
The power diagram of a set of medial spheres Γ = {m𝑖 }𝑛𝑖=1 is a
partition of the domain Ω ⊂ R𝑑 into a set of power cells. Each power
cell Ω𝑝𝑜𝑤

𝑖
consists of the points x ∈ Ω closest to a particular sphere

m𝑖 as:

Ω
𝑝𝑜𝑤

𝑖
: {x ∈ Ω |𝑑𝑝𝑜𝑤 (x,m𝑖 ) ≤ 𝑑𝑝𝑜𝑤 (x,m𝑗 ), 𝑗 ≠ 𝑖}, (1)

where 𝑑𝑝𝑜𝑤 (x,m𝑖 ) = | |x − 𝜽 𝑖 | |2 − 𝑟2
𝑖
is the power distance between

the point x and the medial sphere m𝑖 = (𝜽 𝑖 , 𝑟𝑖 ).
A power diagram restricted within a bounded shape S is called

the restricted power diagram (RPD) as:

Q(Γ) =
⋃
m𝑖 ∈Γ

𝜔c (m𝑖 ), (2)

where each sub-domain 𝜔c (m𝑖 ) is the restriction of the power cell
Ω
𝑝𝑜𝑤

𝑖
of the medial sphere m𝑖 within S:

𝜔c (m𝑖 ) = Ω
𝑝𝑜𝑤

𝑖
∩ S. (3)

Fig. 5 (a) shows the RPD of three spheres, where the input vol-
ume S is divided into three sub-domains clipped by three radical
hyperplanes. We show its duality in Fig. 5 (b). The duality between
the volumetric RPD and the medial meshM𝑠 can be summarized
as follows:

• Each sub-domain𝜔c (m𝑖 ) is called a restricted power cell (RPC)
of medial sphere m𝑖 , which is dual to a vertex on M𝑠 .

• The face shared by two adjacent RPCs is called a restricted
power face (RPF), 𝜔f (m𝑖 ,m𝑗 ) = 𝜔c (m𝑖 ) ∩ 𝜔c (m𝑗 ), which is
dual to an edge e𝑖 𝑗 on M𝑠 .

• The edge shared by three RPCs is called a restricted power
edge (RPE), 𝜔e (m𝑖 ,m𝑗 ,m𝑘 ) = 𝜔c (m𝑖 ) ∩ 𝜔c (m𝑗 ) ∩ 𝜔c (m𝑘 ),
which is dual to a triangle face f𝑖 𝑗𝑘 on M𝑠 .

• A vertex shared by four RPCs 𝜔v (m𝑖 ,m𝑗 ,m𝑘 ,m𝑠 ) is called a
restricted powper vertex (RPV), which is dual to a tetrahedron
onM𝑠 , if it exists. Note that all tetrahedra in the medial mesh
will be pruned using a geometry-guided thinning algorithm
proposed by MATFP [Wang et al. 2022] (see 5.3 for details).
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3.3 Nerve Theorem and Homotopy Equivalence
In this section, we present our assumptions on the input model,
as well as the theoretical foundation of our RPD-based topology-
preserving strategy, grounded on the Nerve Theorem.

Assumption. The input for our method is a manifold tetrahedral
mesh with a single connected component, no self-intersection, and no
cavity. It should be noted that this “no cavity” assumption holds for
all CAD models and organic models that we found online.

Definition 1 (Nerve). Let 𝑋 be a topological space, and U =

{𝑈𝑖 }𝑖∈𝐼 be any covering of 𝑋 where 𝐼 is a set of indices, so 𝑋 =⋃
𝑖∈𝐼 𝑈𝑖 . The nerve of U, denoted N(U), is defined as a set of

finite subsets of the index set 𝐼 . It contains all finite subsets 𝐽 ⊆ 𝐼

such that the intersection of the 𝑈𝑖 whose sub-indices are in 𝐽 is
non-empty [Carlsson and Vejdemo-Johansson 2021]:

N(U) =
{
𝐽 ⊆ 𝐼 :

⋂
𝑗∈ 𝐽

𝑈 𝑗 ≠ ∅, 𝐽 finite set
}
. (4)

Theorem 1 (Nerve Theorem). If for each finite subset 𝐽 ⊆ 𝐼 , the set⋂
𝑗∈ 𝐽 𝑈 𝑗 is either empty or contractible, then N(U) is homotopy-

equivalent to 𝑋 =
⋃U, that is, U is a good cover [Leray 1950].

In the context of this paper, the input shape S defines the topo-
logical space 𝑋 , and RPD Q(Γ) is a coveringU of 𝑋 given the set of
𝑛 medial spheres Γ = {m𝑖 }𝑛𝑖=1. That is, the RPD Q(Γ) is a covering
of the shape S. The medial mesh M𝑠 , which is computed from the
dual of the RPD Q(Γ), can be considered as the nerve of the RPD
Q(Γ). This is because every simplex of the mesh M𝑠 , i.e., vertex,
edge, triangle, tetrahedron, is exactly dual to each RPC, intersecting
face (RPF) of two adjacent RPCs, intersecting edge (RPE) of three
adjacent RPCs, and intersecting vertex (RPV) of four adjacent RPCs,
respectively.

According to the Nerve Theorem, if every restricted elements (i.e.,
RPCs, RPFs, RPEs, RPVs) are contractible, then the medial meshM𝑠

is homotopy-equivalent to the input shape S.

(a)

m1

(b)

m1 m2

(c)

m1 m2

m3

Fig. 6. The duality between the medial mesh (top) and volumetric RPD
(bottom) for a 3D torus shape, where the homotopy equivalence does not
hold for case (a) and case (b). An additional medial sphere m3 needs to be
inserted in order to maintain the homotopy equivalence, as shown in (c).
The dual edges are depicted as black dotted lines.

If we use 𝜔 to represent any type of restricted element, including
RPC 𝜔c, RPF 𝜔f , RPE 𝜔e, or RPV 𝜔v, the Euler-Poincaré formula
shows:

X(𝜔) = 𝛽0 (𝜔) − 𝛽1 (𝜔) + 𝛽2 (𝜔), (5)
where X is the Euler characteristic and 𝛽𝑘 is the 𝑘th Betti number
representing the number of 𝑘-dimentional holes in 𝜔 . Since our

input shape S contains no cavity, i.e., 𝛽2 (S) = 0, all restricted
elements also contains no cavity 𝛽2 (𝜔) = 0. The formula can be
rewritten as:

X(𝜔) = 𝛽0 (𝜔) − 𝛽1 (𝜔) . (6)

To test whether 𝜔 is contractible, we need to check whether 𝜔
is homotopy-equivalent to a one-point space. That is to say, the
contractibility of 𝜔 could be tested by two topological indicators:
(1) whether its number of connected components 𝛽0 (𝜔) = 1; and if
so, (2) whether its Euler characteristic X(𝜔) = 1, which implies that
its number of ‘circular’ holes 𝛽1 (𝜔) = 0.

Let us take the shape torus in Fig 6 as an example. When we use
a single medial sphere m1 to represent the shape, its RPC 𝜔c (m1)
covers the whole torus but does not have the same topology as the
medial sphere, as 𝛽0 = 1 butX = 0. The RPC𝜔c (m1) in Fig. 6 (b) has
𝛽0 = 1 andX = 1 as expected, but its associated RPF𝜔f (m1,m2) has
𝛽0 = 2. In Fig. 6 (c) all restricted elements have 𝛽0 = 1 and X = 1 for
all three medial spheres m1, m2 and m3. Note that only RPCs and
RPFs exist in this example (c) without any RPEs, hence only vertices
and edges exist in the dual medial mesh. This contractibility testing
process inspires our topology preservation algorithm proposed in
Sec. 4.1.

4 Method
Given a manifold tetrahedral mesh (satisfying the Assumption in
Sec. 3.3) with its surface features (sharp edges and corners) pre-
detected, our pipeline starts with an initial medial mesh of a small
number (e.g., 50) of randomly placed medial spheres computed with
the sphere-shrinking (Sec 5.1) algorithm [Ma et al. 2012]. The me-
dial mesh is then refined iteratively through the following three
steps. First, we preserve the homotopy equivalence of the generated
medial mesh w.r.t. the input 3D shape by examining two topologi-
cal indicators (𝛽0 and X) of all restricted elements for each medial
sphere (Sec 4.1), as shown in Fig 7 (b). Then, the medial features are
preserved by assessing if the RPCs of two adjacent medial spheres
covers the same surface regions (Sec. 4.2), as shown in Fig 7 (c).
Finally, we ensure the geometric convergence by checking if the
distance error between the shape boundary 𝜕S and the enveloping
volume of medial meshM𝑠 is smaller than a user-defined thresh-
old 𝛿𝜖 (Sec. 4.3), as shown in Fig 7 (d). Each examination step is
performed locally and new medial spheres are inserted for each
preservation using two sphere generation strategies described in
Sec. 5.1. For each iteration, we only update the RPD partially for
cells that are related to the newly added medial spheres, rather than
re-computing the whole RPD for all medial spheres. Please refer to
both Sec. 5 and Supplementary Document for more implementation
details.

4.1 Topology Preservation
As discussed in Sec. 3.3, the homotopy equivalence between the
input shape S and the generated medial meshM𝑠 is enforced by ex-
amining the following two topological indicators for each individual
RPC and its associated RPFs and RPEs:

• The number of connected components (CC number) 𝛽0 tells us
the maximal subset of a topological space;
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(a) (b) (c) (d) (e)

Fig. 7. The overview of our computational pipeline. Given a tetrahedral mesh with surface features (sharp edges and corners) pre-detected as input, our
method starts with an initial medial mesh of a small number of spheres (i.e., 2 spheres) using the sphere-shrinking algorithm [Ma et al. 2012], shown in (a).
Then the homotopy equivalence of the generated medial mesh w.r.t. the input shape is preserved by examining the topological equivalence of individual RPCs
(Sec 4.1), shown in (b). We preserve the medial features using the same method as MATFP [Wang et al. 2022] (Sec 4.2), shown in (c). Finally we preserve the
geometric convergence based on a user-defined error threshold 𝛿𝜖 (Sec 4.3), shown in (d). We repeat this process until both topological preservation and
geometric convergence are satisfied, and output the final result of generated medial mesh, shown in (e).

• The Euler characteristic X describes a topological space’s
structure regardless of the way it is bent. It can be calcu-
lated using following formula: 𝐸𝑢𝑙𝑒𝑟 =𝑉 − 𝐸 + 𝐹 −𝐶 , where
𝑉 is the number of vertices, 𝐸 is the number of edges, 𝐹 is the
number of faces, and 𝐶 is the number of volumetric cells.

To ensure homotopy equivalence, we are expecting each restricted
element (i.e., RPC, RPF, RPE) to have𝐶𝐶 𝛽0 = 1 and 𝐸𝑢𝑙𝑒𝑟 X = 1. For
each medial spherem𝑖 , we perform a localized topological check for
its corresponding restricted elements, and apply a straightforward
refinement by adding new medial spheres if either their 𝐶𝐶 ≠ 1 or
𝐸𝑢𝑙𝑒𝑟 ≠ 1. The details of our preservation strategy for those two
topological indicators are given in Sec. 4.1.1 and Sec. 4.1.2.

4.1.1 CC Number 𝛽0. For a medial spherem𝑖 and its corresponding
restricted elements 𝜔c (m𝑖 ), 𝜔f (m𝑖 ,m𝑗 ) and 𝜔e (m𝑖 ,m𝑗 ,m𝑘 ), where
m𝑗 and m𝑘 are the neighboring medial spheres of m𝑖 , we can trace
their CC number 𝛽0 using a simple traversal algorithm effortlessly.
If 𝛽0 > 1, we add a new medial sphere to the connected component
other than the one of the current medial sphere m𝑖 . In Fig. 6 (b), the
RPF 𝜔f (m1,m2) has 𝛽0 (𝜔f ) = 2, while in Fig. 8 (a), the RPC 𝜔c (m2)
has 𝛽0 (𝜔c) = 2. To fix these issues, we randomly choose a surface
point on one of the CC of the RPF, or choose a surface point on the
other CC of the RPC (other than where the medial sphere resides),
and use it as the pin point for the sphere-shrinking algorithm (see
Sec. 5.1) to add a new medial sphere m3, as shown in Fig. 6 (c) and
Fig 8 (b).

(a) (b)

m1 m2 m1 m2

m3

Fig. 8. Illustration of solving the CC number inequivalence described in
Sec 4.1.1. The RPC of medial sphere m2 in (a) contains two connected
components, which is not contractible. Hence we add a new sphere m3
to the other connected component of the RPC of m2 for maintaining the
contractibility of each RPC.

4.1.2 Euler Characteristic X. One can compute the Euler character-
istic X of each restricted element (RPC, RPF and RPE) after obtain-
ing the explicit RPD representation through the clipping process
(Sec. 5.2). However, current GPU-based implementations either di-
rectly evaluate integrals over every cells without computing the
combinatorial data structure of power diagram [Basselin et al. 2021],
or store the dual form of cells using a simple triangle mesh [Liu et al.
2020; Ray et al. 2018], but requires costly post-processing steps to
access the exact combinatorial data structure of the cells. This is
due to the fact that these methods are well-designed for the high
parallelism of GPU, and are optimized for applications that only
requires integrals over the cells, e.g., fluid dynamics simulations.
Therefore, in this paper we propose a Fractional Euler Characteristic
strategy to collect Euler characteristics on-the-fly, by taking full
advantage of the existing GPU-based volumetric RPD computation
pipeline.

Similar to the Tet-Cell strategy proposed by Liu et al. [2020] (see
Sec. 5.2), our pipeline takes the tetrahedral mesh as input, where
the Euler characteristic is inherited during the clipping process. For
each tetrahedron of the related medial sphere m𝑖 , we clip the RPC
𝜔c (m𝑖 ) as the intersection of half-spaces bounded by the bisectors
of m𝑖 and its power neighbors [Ray et al. 2018]. Implementation
details regarding finding tet-sphere relations and sphere neighbors
are provided in the Supplementary Document.

Fractional Euler Characteristics. Fig. 9 illustrates our proposed
fractional Euler characteristics in a 2D setting, demonstrating how
these fractional numbers are inherited throughout the clipping pro-
cess during RPD computation. In this example, the target Euler
characteristic is 1 for the 2D shape, i.e., X = 4 (vertices) - 5 (edges)
+ 2 (faces) - 0 (cells) = 1. It contains 2 triangles A and B in Fig. 9
(i), and the fractional Euler characteristic of each element is shown
in Fig. 9 (ii). Note that both vertex b and d are shared between A
and B, so their fractional Euler characteristic within each triangle is
only 1

2 . The same rationale applies to the fractional Euler character-
istic 1

2 for the edge (b, d) within each triangle. As an initialization
step for our GPU-based tet-cell clipping, whenever a tetrahedral
mesh is inputted to the GPU, these fractional Euler characteristics
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(i) (ii)

(iii) (iv)

Fig. 9. 2D illustration of our GPU-based Euler characteristic computation on-
the-fly during the clipping process of RPD. The number shown in each vertex,
edge, and face represents its Fractional Euler Characteristic, as described in
Sec 4.1.2.

are included alongside the mesh, derived from the combinatorial
structure of the tetrahedral mesh.

Inheritance of Fractional Euler Characteristics during RPD Clipping.
During the parallel execution of clipping process [Ray et al. 2018],
the half-space Π+ (m𝑥 ,m𝑦) of two medial spheres m𝑥 and m𝑦 cuts
each triangle into two parts, thus new vertices and edges emerge.
The fractional Euler characteristics of new vertices are inherited
from their pre-clipped edges, and those of the new edges are inher-
ited from its pre-clipped faces. For the example of Fig. 9, the new
vertex f inherits the fractional Euler characteristic 1

2 from its pre-
clipped edge (b, d), and the new edge (e, f) inherits the fractional
Euler characteristic 1 from its pre-clipped face A. Note that during
the clipping process, although the new generated vertices, edges,
and faces could be shared between different cells, we no longer
divide their fractional Euler characteristics. For example, in Fig. 9
(iii), although the new edge (e, f) is shared between two cells A𝑥

and A𝑦 , we only set its fractional Euler characteristic as 1 for cell
A𝑥 , and 1 for cell A𝑦 . This is because the use of fractional Euler
characteristics is to facilitate the easy counting of Euler character-
istic of each restricted power element associated with a particular
sphere. For the example of Fig. 9 (iv), we are only interested in the
Euler characteristics for the restricted elements related to spheremx,
thus the fractional Euler characteristics of those newly generated
vertices and edges will not be shared with the other spheres.

Through such inheritance, the fractional Euler characteristic of
all restricted elements (RPCs, RPFs, RPEs) for sphere m𝑥 can be
obtained on-the-fly during the parallel clipping process. In Fig. 9 (iv),
the final RPFs of spherem𝑥 consists of two convex hulls A𝑥 and B𝑥 ,
and its Euler characteristic can be computed byX(A𝑥 ) +X(B𝑥 ) = 1,
where:

X(A𝑥 ) = (1 + 1 + 1
2
+ 1
2
) − (1 + 1 + 1 + 1

2
) + (1) = 1

2
,

X(B𝑥 ) = (1 + 1 + 1
2
+ 1
2
) − (1 + 1 + 1 + 1

2
) + (1) = 1

2
.

(7)

For each medial sphere, we collect the fractional Euler character-
istics for all of its restricted elements (RPCs, RPFs, RPEs) during the

runtime of clipping process, then check if the target Euler character-
istic for each element is expected or not, e.g., in Fig. 6 (a), the sphere
m1 has its RPC 𝜔c (m1) with X(𝜔c (m1)) = 0. To fix this issue, we
search all surface triangles among the RPC of sphere m1 and tar-
get the furthest one as the pin point and uses the sphere-shrinking
algorithm (see Sec. 3) to add a new sphere m2. After that, the RPF
between m1 and m2 has CC number 𝛽0 = 2, which will trigger the
insertion of a new sphere m3, with the same process described in
Sec. 4.1.1.

4.2 Medial Feature Preservation

(a) (b)

m𝑎

m𝑏

m𝑐

m𝑎

m𝑏

m𝑐
m𝑥

Fig. 10. Illustration of external feature preservation. (a) A non-featuremedial
sphere m𝑏 destroys the connectivity of two zero-radius feature spheres
m𝑎m𝑐 in the medial mesh. (b) Adding a new zero-radius medial sphere m𝑥

could preserve the connectivity of external feature.

External features, such as convex sharp edges and corners where
more than two convex sharp edges coincide, are commonly seen in
CAD models and are pre-detected as input for our algorithm. We
adopt the similar feature preservation strategies as MATFP [Wang
et al. 2022], as shown in Fig 10. Since the generated medial mesh
should pass through points where the surface is locally convex and
non-smooth, we place zero-radius 𝑇 2

1 medial spheres on convex
edges and a single zero-radius 𝑇𝑢

1 (𝑢 ≥ 3) medial sphere at each
corner. Unlike MATFP which starts with a dense number of initial
spheres, our method begins with a smaller set of non-feature medial
spheres. Hence, instead of removing redundant non-feature spheres
that ‘invade’ the RPCs of two neighboring feature spheres on a sharp
edge, we examine the individual RPC and add new zero-radius fea-
ture spheres iteratively if any sharp edge belongs to the cell of a
non-feature sphere. As a result, all convex sharp edges reside in
cells corresponding to some zero-radius feature spheres, which pre-
serves the convex sharp edges in the generated medial mesh as
a dual of volumetric RPD. For corners, we adopt the same corner
preservation strategy as MATFP [2022], where we approximate the
medial mesh structure within a small, selected region around the
corner. This scheme operates by recursively tracing the medial axis
sheets, beginning from those adjacent to convex sharp edges, until
their intersecting seams are identified. On a concave edge, the medial
spheres tangential to this feature are not zero-radius. To achieve
a smooth transition on the medial axis, similar to MATFP [2022],
we densely sample medial spheres using the sphere-shrinking algo-
rithm [2012] (see Sec. 5.1), with tangent surface points selected on
the concave edge acting as the ‘pin’. For more details on the opera-
tions used to preserve corners and concave features, please refer to
MATFP [Wang et al. 2022].

Internal features are preserved by inserting new internal feature
spheres after detecting the deficiency, similar to MATFP [Wang et al.
2022]. We show an illustration in Fig. 11. Here we maintain a queue
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(a) (b)

m𝑎

m𝑏

m𝑎

m𝑏

m𝑥

Fig. 11. Illustration of internal feature preservation. (a) An ill-posed connec-
tion (yellow line) of two𝑇2 spheres m𝑎m𝑏 on two different medial sheets.
(b) The internal medial feature (red line) is preserved after inserting a 𝑇3
sphere m𝑥 .

of all medial edges in the medial mesh, and check whether two
connected medial spheres of each edge belong to the same medial
sheets as they touch the same surface regions using the surface part
of their RPCs.

4.3 Geometric Preservation
The medial mesh generated through the above steps is topologi-
cally correct and captures medial features. However, its reconstruc-
tion may not geometrically converge to the input shape, since we
adaptively insert spheres from a low number. We propose an error-
bounding strategy so that the geometric error from the input shape
to the enveloping volume of medial mesh is bounded by a user-
controlled threshold 𝛿𝜖 .

(a) (b)

d

m1 m2

d
x

m1 m2

m3

x

Fig. 12. Illustration of geometric preservation. (a) We compute the distance
𝑑 from the sampled points (in red) on external features to the nearest feature
enveloping cone and add zero-radiusmedial sphere (in yellow) if the distance
is too large. For other cases (b), we randomly sample surface points and
compute their distance to the nearest enveloping primitive (e.g., medial
cone) of the medial mesh, and insert a new𝑇2 medial sphere (e.g., m3) if the
distance is too large.

For preserving the geometry of external features, we sample
points directly on those pre-detected features, such as Fig 12 (a) in
red, and compute their distance 𝑑 to the nearest enveloping cone.
When the distance is larger than our threshold, which often happens
for curved feature lines, we insert a new zero-radius feature sphere
(Fig 12 (a) in yellow).

For other cases, we use the distance from any surface sample x
to its closest enveloping element s𝑡 as the metric. Each s𝑡 can be
a medial sphere, a medial cone, or a medial slab (see Sec. 3.2). For
each surface sample, we traverse all possible enveloping elements
defined by the medial mesh and compute its distance to the closest
enveloping element on GPU. Fig 12 (b) shows an example of the
distance from the surface sample x to a medial cone defined by two
medial spheres m1 and m2. If the ratio of the distance 𝑑 over the
diagonal of the bounding box is larger than a user-defined threshold
𝛿𝜖 , we insert a new non-feature sphere with the surface sample
as the pin point using the sphere-shrinking algorithm [Ma et al.
2012] (see Sec. 5.1), shown in Fig. 12 (b) as m3. As more non-feature

spheres are inserted, the enveloping volume of the medial mesh is
converging to the input shape geometrically. We show an ablation
study on the impact of the value of 𝛿𝜖 in Sec 6.4.

5 Technical Details

5.1 Generation of Medial Spheres
We use two strategies for computing medial spheres that are tangent
to at least two surface points. These two strategies enable us to
maintain the centeredness property of our generated medial mesh.

pt1

mt−1
mt

p
np

qt
ntq

pt+11nt1

pt2

nt2

pt3
nt2

pt+12

pt+13

nt+12

nt+11 nt+13

(a) (b)
Fig. 13. Illustration of two medial sphere generation algorithms. (a) Given
’pin’ point p on the model boundary 𝜕S, the sphere-shrinking algorithm [Ma
et al. 2012] decreases the sphere radius iteratively until the sphere m𝑡 is a
maximal empty ball (that is the interior ofm𝑡 contains no point of 𝜕S), while
the another tangent point touches q𝑡 . (b) The sphere-optimization algorithm
[Wang et al. 2022] iteratively updates medial spheres in two alternating
steps. The first step locks the aggregated tangent pairs { (p𝑘 , n𝑘 ) }𝑁𝑘=1 and
updates the sphere center and radius. The second step updates each tangent
pair by fixing the previously updated medial sphere.

• Sphere-shrinking algorithm [Ma et al. 2012] for computing
𝑇2 medial spheres that are on sheets of the medial structure,
and tangent to two different places on the surface, as shown
in Fig. 13 (a);

• Sphere-optimization algorithm [Wang et al. 2022] for com-
puting 𝑇𝑁 (𝑁 ≥ 3) medial spheres that are on seams or
junctions of the medial structure, and tangent to at least
three different places on the surface, as shown in Fig. 13 (b).

5.2 Computation of Restricted Power Cells
Similar to a Voronoi cell, a power cell is a convex polyhedron that is
the intersection of half-spaces. The only difference is that these half-
spaces are not generated by bisectors, but by radical hyperplanes.
We use the data structure introduced by Ray et al. [2018] to

represent the convex polyhedrons, which is highly compact andwell-
suited for GPU implementation. Each half-space of the polyhedron
is represented by a float4 storing 4 coefficients (𝑎, 𝑏, 𝑐, 𝑑) of the plane
equation 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 > 0. Each vertex of the polyhedron is
the intersection of three half-spaces, therefore, is represented by
a triplet of integers in a clockwise order, storing indices of three
adjacent half-spaces.

To restrict the power cells in an input domain, we extend the ‘Tet-
Cell’ strategy proposed by Liu et al. [2020]. Given an input shape
represented as a tetrahedral mesh [Hu et al. 2020], we compute
the intersection between the tetrahedral mesh and power cells. An
illustration of ‘Tet-Cell’ strategy in 2D is shown in Fig. 14. Each
step discussed in Sec. 4 will adaptively insert new medial spheres
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(a) (b) (c)
Fig. 14. Illustration of ‘Tet-Cell’ strategy in 2D using triangles. Here we
show the medial sphere as m𝑖 = (𝜽 𝑖 , 𝑟𝑖 ) , where 𝜽 𝑖 is the center of m𝑖 and
𝑟𝑖 is its radius. (a) For each triangle-sphere pair (t𝑡 ,m𝑖 ) , we traverse all
neighboring spheres ofm𝑖 . The searching of sphere neighbors and tet-sphere
relations are further discussed in Supplementary Document. (b) Each pair
of two spheres (m𝑖 ,m𝑘 ) defines a half-space that may potentially ‘clip’ the
triangle t𝑡 . (c) The part of the power cell inside the triangle (i.e., tet in 3D)
t𝑡 for sphere m𝑖 can be generated after the clipping process.

when topological or geometrical deficiency is detected. We thus
only update the RPD partially with cells relating to the newly added
medial spheres, instead of recomputing the whole RPD. Please refer
to our implementation details in the Supplementary Document for
further discussions.

5.3 Thinning of Medial Mesh

(a) (b) (c) (d)

𝑓1 𝑡1
𝑒2 𝑓2 𝑒3

𝑓3

Fig. 15. The thinning process for one flat tetrahedron 𝑡1 in a 3D medial
mesh. The simple tet-face pair (𝑡1, 𝑓1 ) in (a) is selected to prune with the
least importance. Then we continue pruning those face-edge simple pairs,
i.e., (𝑓2, 𝑒2 ) in (b) and (𝑓3, 𝑒3 ) in (c). The pruned result is shown in (d).

The medial mesh M𝑠 constructed as the dual of the RPD in-
evitably contains some fat but solid tetrahedrons. We apply the
geometry-guided thinning algorithm [Wang et al. 2022] that prunes
simple pairs of simplices in the medial mesh. A simple pair (𝑥,𝑦)
[Liu et al. 2010] is a pair of simplices such that 𝑦 is on the boundary
of 𝑥 , and there is no other cell in the complex with𝑦 on its boundary.
Ju et al. [2007] have shown that the removal of simple pairs will not
impact the topology of the complex. We first rank all possible tet-
face pairs by the importance factor 𝛼𝑖 𝑗𝑘 of a given medial triangle
𝑓𝑖 𝑗𝑘 in M𝑠 in ascending order. The 𝛼𝑖 𝑗𝑘 is defined as the ratio of
the length of restricted power edge (RPE) 𝜔e (m𝑖 ,m𝑗 ,m𝑘 ) over the
average diameter of three medial spheres m𝑖 , m𝑗 and m𝑘 . Note that
the RPE 𝜔e is dual to the medial triangle 𝑓𝑖 𝑗𝑘 onM𝑠 , discussed in
Sec. 3.2. Then we remove tet-face pairs iteratively with the least
importance until all tetrahedra are pruned. We continue pruning
face-edge simple pairs that belong to the original tetrahedra until
a target importance factor 𝜎 is reached as a stop sign. To avoid
over-prunning for models whose medial mesh boundaries are not
external features, we set 𝜎 = 0.3 for CAD models and 𝜎 = 0.1 for
organic models in our experiments. Fig 15 shows an illustration of
the thinning process with one tetrahedron.

6 Experiments
In this section, we show quantitative and qualitative evaluations of
the proposed method. We implemented our algorithm in C++ and
CUDA, using Geogram [Lévy and Filbois 2015] for linear algebra
routines. We ran our experiments on a computer with a 3.60GHz
Intel(R) Core(TM) i7-9700KCPU, NVIDIAGeForce RTX 2080 Ti GPU,
and 32 GB memory. We ran our method on the first 100 models in
the ABC dataset [Koch et al. 2019] under the 10k/test folder using
2048 as the number of mesh vertices, same as MATFP [Wang et al.
2022]. We also test our method on 14 organic models with various
topology. All model sizes are normalized to the [0, 1000]3 range. We
use fTetwild [Hu et al. 2020] for computing the initial tetrahedral
mesh from triangle mesh with parameters 𝑙 = 0.5. Our code is
available at our project website , and the generated medial mesh
can be viewed using the tool blender-mat-addon [Song and Wang
2023].

Evaluation Metrics. We use the Euler characteristicsX as the topol-
ogy measures for the generated medial mesh, and show the ground
truth Euler characteristic of the input shape as ‘GT X’. We compute
the Euler characteristic using X = 𝑉 − 𝐸 + 𝐹 − 𝐶 , where 𝑉 is the
number of vertices, 𝐸 is the number of edges, 𝐹 is the number of
faces, and 𝐶 is the number of volumetric cells. In our experiment,
we consider only tetrahedrons as the 3D-complex cells for𝐶 . We use
the two-sided Hausdorff distance error 𝜖 to measure the the surface
reconstruction accuracy using the generated medial meshes. 𝜖1 is
the one-sided Hausdorff distance from the original surface to the
surface reconstructed from MAT, and 𝜖2 is the distance in reverse
side. All Hausdorff distances are evaluated as percentages of the
distance over the diagonal lengths of the models’ bounding box. The
𝜖𝑚𝑎𝑥 is the maximum of 𝜖1 and 𝜖2. We show #𝑠 as the number of
medial spheres for the medial meshes generated from each method,
and use #𝑡 as the number of tets in the input tetrahedral mesh.

6.1 Comparison with MATFP Method
We compare our method with MATFP [Wang et al. 2022] regarding
the topology preservation. To our best knowledge, MATFP is the
state-of-the-art method for computing medial axis of CAD models,
which preserves both external and internal features. However, it also
has a clear drawback with no guarantee of topology preservation
for the generated medial mesh w.r.t. the input model. The key ad-
vantage of our method is its ability in preserving the topology, while
maintaining the ability to capture external and internal features.
We show the Euler characteristic X in Table 2 for those models that
the output of MATFP deviates from the GT X. Our method, on the
contrary, can preserve the topology while keeping a competitive
reconstruction quality.
Beside preserving topology, our method also generates almost

10 times less number of medial spheres #𝑠 than MATFP in the final
medial mesh, shown in Table 2 and Fig 16. MATFP favors preserving
external or internal features by adding as many feature spheres
as possible during each step. This will inevitable result in a large
number of medial spheres, mostly redundant, in the generated me-
dial mesh. Owing to the proposed adaptive refinement strategy,
our method can add only few (even single) number of new medial
spheres at each iteration and update the RPD partially using GPU.
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(a) Input
GT X=0

(b) PC

#𝑠 = 18𝑘
X = 32

(c) SAT

#𝑠 = 25𝑘
X = 8

(d) VC

#𝑠 = 30𝑘
X = 0

(e) MATFP

#𝑠 = 17𝑘
X = 2

(f) Ours

#𝑠 = 3.5𝑘
X = 0

Fig. 16. Qualitative comparison of topology preservation between our
method andMATFP [Wang et al. 2022], PC [Amenta et al. 2001], SAT [Miklos
et al. 2010], and VC [Yan et al. 2018]. The ground truth Euler characteristic X
is shown in (a), and #𝑠 represents the number of medial spheres generated.

Each updated partial RPD will change the medial mesh connectivity
within the corresponding local regions, as dual of volumetric RPD.
These newly added medial spheres may already satisfy the criteria
for local structures, thus avoiding other similar spheres (i.e., spheres
with similar centers and radii) to be inserted.

Since we use the same feature preservation strategy as MATFP,
our methods shows comparable if not better reconstruction quality,
as shown in Table 2 and Fig. 18. More visualizations are shown in
Fig. 22. Specifically, we use 𝛿𝜖 = 0.6 for models shown in Fig 18. For
more detailed statistics, please refer to the Supplementary Docu-
ment.

6.2 Comparison with PC, SAT, and VC Methods
We compare our method with three classical methods for approx-
imating medial axis, including two point-cloud-based methods –
PC (Power Crust [Amenta et al. 2001]) and SAT (Scaled Axis Trans-
form [Miklos et al. 2010]), and one voxel-based method VC (Voxel
Cores [Yan et al. 2018]), regarding feature and topology preserva-
tion quality (Fig 17), and surface reconstruction quality from the
generated medial mesh (Fig 18).
We test the PC [Amenta et al. 2001] method using two different

sampling densities, and experiment SAT [Miklos et al. 2010] method
using two values of sampling parameter: 𝛿 = 0.04 and 𝛿 = 0.03 in
Fig 18, and set the scale parameter as default 1.0 in all experiments.
Similar to all other point-cloud-based methods, the quality of medial
mesh generated would improve when the surface sampling density
increases. However, these two methods generate medial meshes
that are not thin with large number of flat tetrahedrons, and their
Euler characteristic X varies as shown in Fig 16, i.e., X = 32 and

Table 2. Quantitative comparison on topology preservation with
MATFP [Wang et al. 2022]. #𝑠 is the number of generated medial spheres.
𝜖𝑚𝑎𝑥 is the two-sided Hausdorff Distance between the original surface
and reconstruction, as maximum of 𝜖1 and 𝜖2 described in Sec. 6. We show
the Euler characteristic as X and ground truth as ‘GT X’. Comparing to
MATFP which has no guarantee of homotopy equivalence, our method
gives correct Euler characteristic with lower number of generated medial
spheres and competitive reconstruction quality.

Model ID MATFP Ours
(GT X) #𝑠 𝜖𝑚𝑎𝑥 X #𝑠 𝜖𝑚𝑎𝑥 X
549 (-6) 21k 1.282 -5 7.2𝑘★ 1.077 -6
4123 (-3) 17k 3.799 -1 5.1𝑘★ 1.095 -3
5227 (-5) 12k 0.442 5 3.2𝑘★ 1.419 -5
8315 (-4) 11k 3.351 -2 1.5𝑘★ 1.481 -4
8964 (-72) 25k 0.251 -37 8.7𝑘★ 0.753 -72
10836 (-1) 3k 1.067 1 2.7𝑘★ 1.496 -1
11299 (-24) 19k 2.324 -13 5.8𝑘★ 0.961 -24
11790 (0) 17k 1.79 2 5.3𝑘★ 0.819 0
11835 (0) 21k 2.252 -16 5.4𝑘★ 1.015 0
13026 (-4) 26k 2.203 -2 10𝑘★ 1.241 -4
13607 (-13) 19k 0.956 -19 7.3𝑘★ 1.486 -13
14621 (-3) 34k 2.812 -9 12𝑘★ 0.982 -3
15094 (-8) 35k 1.045 -4 7.2𝑘★ 1.462 -8

(a) Input
GT X=-8

(b) PC

#𝑠 = 23𝑘
X = 52k

(c) SAT

#𝑠 = 32𝑘
X = 1

(d) VC

#𝑠 = 69𝑘
X = −8

(e) MATFP
#𝑠 = 25𝑘
X = −7

(f) Ours
#𝑠 = 3𝑘
X = −8

Fig. 17. Comparison of the medial feature and topology preservation ability
between our method and PC [Amenta et al. 2001], SAT [Miklos et al. 2010],
VC [Yan et al. 2018], and MATFP [Wang et al. 2022]. Our method can not
only preserve medial features, but also output the correct topology of the
medial mesh.

X = 8 respectively. In addition, they cannot preserve any medial
features, both externally and internally, as shown in Fig 17.
We also compare with VC [Yan et al. 2018] method regarding

the reconstruction quality and the feature preservation quality of
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generated medial mesh. We use two voxel sizes 28 and 29 with
pruning parameters 𝜆 = 0.03, shown in Fig 18. Even though VC
can output the topologically-correct medial mesh, it requires large
number of medial spheres for outputting a smooth structure around
the internal features, almost 10 times more than our method (i.e.,
30𝑘 in Fig 16). This is due to the fact that VC controls the sampling
globally based on the size of the voxels. Smaller voxel size would
generates denser medial spheres. It cannot, however, directly control
the sampling rate of medial spheres as needed. We also found that
the medial mesh generated from VC shrinks more as the value of
pruning parameter increases, which will result in a more rounded
reconstruction result around the external features.

PC-1

𝜖1 = 1.581%
𝜖2 = 1.321%
#𝑠 = 8𝑘

PC-2

𝜖1 = 0.998%
𝜖2 = 0.715%
#𝑠 = 22𝑘

SAT-0.04

𝜖1 = 3.756%
𝜖2 = 3.719%
#𝑠 = 7𝑘

SAT-0.03

𝜖1 = 1.557%
𝜖2 = 2.723%
#𝑠 = 12𝑘

VC-28

𝜖1 = 1.597%
𝜖2 = 2.485%
#𝑠 = 16𝑘

VC-29

𝜖1 = 0.756%
𝜖2 = 1.384%
#𝑠 = 59𝑘

MATFP

𝜖1 = 0.624%
𝜖2 = 0.435%
#𝑠 = 7𝑘

Ours

𝜖1 = 0.543%
𝜖2 = 0.467%
#s = 1.5k

Fig. 18. Qualitative comparison of the medial mesh and the reconstructed
mesh among ours and PC [Amenta et al. 2001], SAT [Miklos et al. 2010],
VC [Yan et al. 2018], and MATFP [Wang et al. 2022]. Here 𝜖1 and 𝜖2 are the
Hausdorff distance errors described in Sec 6.

6.3 Comparisons on Organic Models
We also test our method on 12 organic models, and compare it with
PC [Amenta et al. 2001], SAT [Miklos et al. 2010], VC [Yan et al. 2018]
and MATFP [Wang et al. 2022]. We show the visual and quantitative

comparison in Fig. 21. More statistics can be found in Table. 3 of the
Supplementary Material.
We experiment SAT using the sampling parameter 𝛿 = 0.03 and

set the scale parameter as default value 1.0. We compare with the
VC using the voxel size 28 and the pruning parameter 𝜆 = 0.03. For
our method, we set 𝛿𝜖 = 1.5 for all organic models tested.
We have found that our method normally generates similar re-

construction accuracy with much fewer medial spheres (i.e., PC 14𝑘 ,
SAT 17𝑘 , VC 36𝑘 , MATFP 11𝑘 , and ours 4𝑘 for the ‘Fertility’ model).
Our method can also maintain the topology and thinness property
of the 3D medial axis w.r.t. the input shape, same as VC (i.e., PC 35𝑘 ,
SAT 7, VC 1, MATFP 4, and ours 1 for the Euler characteristic X of
‘Rozy’ model).

6.4 Ablation Study
Geometric Error Bound 𝛿𝜖 . One important parameter used in our

method is the user-defined geometric error bound 𝛿𝜖 , which controls
the one-sided reconstruction accuracy (from input surface to the
reconstructed mesh). Here the error is measured by the distance
from surface samples to the enveloping volume of the medial mesh.
Similar to Hausdorff distance described in Sec 6, this error is also
scaled based on the diagonal length of the shape’s bounding box.
We show the effect of two different values of the parameter 𝛿𝜖 in
Fig. 19. A smaller value of 𝛿𝜖 would generate a smoother medial
mesh around non-feature regions, as more non-feature spheres are
sampled. It can also reduce the non-smooth connections on medial
features, either external or internal ones (see the black and red
curves respectively in Fig. 19). As a result, a smaller error bound
will inevitability output a reconstructed mesh with better quality.

(a) 𝛿𝜖 = 1.5
𝛿1 = 1.48%
𝛿2 = 1.13%
#𝑠 = 1.5𝑘

(b) 𝛿𝜖 = 0.6
𝛿1 = 0.47%
𝛿2 = 0.58%
#𝑠 = 6.2𝑘

Fig. 19. Ablation study on geometric error bound 𝛿𝜖 . We use two different
error bounds: (a) 𝛿𝜖 = 1.5 and (b) 𝛿𝜖 = 0.6. Smaller error bound can
generate a medial mesh with smoother features which results in a better
reconstruction quality.

Initialization. There are two parameters that may impact our
running time. One is #𝑡 as the number of tets in the input tetrahedral
mesh; the other is #𝑠𝑖𝑛𝑖𝑡 as the number of initial spheres. We use the
‘Happy Buddha’ model [Dey et al. 2007] (genus=8) for testing with
the error bound 𝛿𝜖 = 1.5 and show the results in Fig. 20. Our method
can generate the medial mesh with the correct topology (X=-7) and
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(a) (b) (c)

#𝑡 = 7𝑘
#𝑠𝑖𝑛𝑖𝑡 = 200
X = −7

𝛿1 = 1.32%
𝛿2 = 1.25%
#𝑠 = 10𝑘
𝑇 = 639𝑠

#𝑡 = 10𝑘
#𝑠𝑖𝑛𝑖𝑡 = 200
X = −7

𝛿1 = 1.16%
𝛿2 = 1.02%
#𝑠 = 10𝑘
𝑇 = 662𝑠

#𝑡 = 7𝑘
#𝑠𝑖𝑛𝑖𝑡 = 1𝑘
X = −7

𝛿1 = 1.42%
𝛿2 = 1.14%
#𝑠 = 9𝑘
𝑇 = 357𝑠

Fig. 20. Ablation study on two initialization parameters: (1) #𝑡 as the number
of tets in the input tetrahedral mesh; (2) #𝑠𝑖𝑛𝑖𝑡 as the number of initial
spheres. The base case (a) uses #𝑠𝑖𝑛𝑖𝑡 = 200 and #𝑡 = 7𝑘 . While keeping
the same and correct topology (GT genus=8, GT X = −7) and similar
reconstruction ability, a higher number of #𝑡 would inevitably increase the
running time (b), and a higher number of #𝑠𝑖𝑛𝑖𝑡 may reduce the processing
time (c).

Table 3. Statistic of our running time in seconds. #𝑡 is the number of tets in
the given tetrahedral mesh. #𝑠 is the number of generated medial spheres.
#RPD is the number of volumetric RPD calculated. 𝑆𝑡𝑜𝑝𝑜 is the running
time of topology preservation step (Sec. 4.1). 𝑆𝑒𝑥𝑡 𝑓 and 𝑆𝑖𝑛𝑡 𝑓 is the running
time for preserving external features and internal features (Sec 4.2). The
model’s ID# correspond to those shown in Table 2.

Model ID #𝑡 #𝑠 #RPD 𝑆𝑡𝑜𝑝𝑜 𝑆𝑒𝑥𝑡 𝑓 𝑆𝑖𝑛𝑡 𝑓 𝑆𝑔𝑒𝑜 Total (s)
549 8k 7.2k 34 74 115 376 99 664
4123 1.2k 5.1k 35 15 42 109 32 198
5227 1k 3.2k 31 10 22 23 17 72
8315 4k 1.5k 37 64 73 444 112 693
8964 3.6k 8.7k 28 36 113 394 16 559
10836 3.8k 2.7k 41 30 29 126 63 248

similar reconstruction quality using different value of #𝑡 and #𝑠𝑖𝑛𝑖𝑡 .
Increasing #𝑡 (i.e., smaller value of ‘l’ parameter of fTetwild [Hu et al.
2020]) would inevitably make our RPD calculation slower as more
‘Tet-Cell’ clipping steps need to be performed. A larger number of
#𝑠𝑖𝑛𝑖𝑡 (i.e., use 1𝑘 than 200 in Fig. 20) would reduce the processing
time.

7 Limitations and future work
Our method can produce an approximated MAT that is visually
and quantitatively similar to those of MATFP [Wang et al. 2022]
geometry-wise, with less spheres and the additional benefit of topol-
ogy preservation. Although both our method and MATFP rely on
RPD, the former employs volumetric RPD, which necessitates cut-
ting tets by half-spaces inside the volume, while the latter utilizes
surface RPD, which only considers the intersection between tri-
angles and half-spaces. Consequently, our method requires more
computational time. As the runtime statistics shown in Table 3, our
method takes minutes for each model even though each step’s cal-
culation of volumetric RPD on GPU only takes about 1-3 seconds.

In the future, we will consider parallelising the feature preserving
(𝑆𝑒𝑥𝑡 𝑓 and 𝑆𝑖𝑛𝑡 𝑓 ) stage as much as possible to reduce the runtime.

Moreover, our current GPU-based implementation may fail to
compute RPD if the given tetrahedral mesh has a very large number
of tets. For example, the model #12280 in Supplementary Document
contains over 5.5 million tets even using the fTetwild [Hu et al.
2020] with the largest length parameter value 𝑙 = 1. We leave this
computational issue for future exploration.
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Fig. 21. Comparison with PC [Amenta et al. 2001], SAT [Miklos et al. 2010], VC [Yan et al. 2018] and MATFP [Wang et al. 2022] on three organic models. We
show the generated medial mesh and the color-coded distribution of two-sided Hausdorff errors between the input surface and the reconstructed surface.
Here, 𝑠 is the number of generated medial spheres. And X is the Euler characteristic of the computed medial mesh, where a wrong number is shown in red.
𝜖𝑚𝑎𝑥 is the maximum of two-sided Hausdorff error, as the best result shown in green and the second best shown with underline.
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Fig. 22. Visualization of models shown in Table 2, with their model ID and Euler characteristic X. From left to right are the input tetrahedral meshes, the
generated medial meshes, the surfaces reconstructed from our medial meshes, and the extracted medial features. For the medial features, the black curves are
the external features and the red curves are the internal features.
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