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ABSTRACT

With the popularity of monocular videos generated by video
sharing and live broadcasting applications, reconstructing and
editing dynamic scenes in stationary monocular cameras has
become a special but anticipated technology. In contrast to
scene reconstructions that exploit multi-view observations,
the problem of modeling a dynamic scene from a single
view is significantly more under-constrained and ill-posed.
Inspired by recent progress in neural rendering, we present
a novel framework to tackle 4D decomposition problem
for dynamic scenes in monocular cameras. Our framework
utilizes decomposed static and dynamic feature planes to rep-
resent 4D scenes and emphasizes the learning of dynamic
regions through dense ray casting. Inadequate 3D clues from
a single-view and occlusion are also particular challenges in
scene reconstruction. To overcome these difficulties, we pro-
pose deep supervised optimization and ray casting strategies.
With experiments on various videos, our method generates
higher-fidelity results than existing methods for single-view
dynamic scene representation.

Index Terms— Single-view Reconstruction, Dynamic
Scene Reconstruction, Neural Radiance Field

1. INTRODUCTION

In recent years, the popularity of short videos and live broad-
casts has led to the generation of a lot of video data, most
of which are dynamic content from a single perspective of a
fixed camera. We try to efficiently reconstruct and realisti-
cally render dynamic scenes in single view videos. Dynamic
scenes in the video may be disturbed or obscured by other
objects, such as hands (Fig. 2) and wires (Fig. 3). Our goal
is to accurately recover the entire static and dynamic scene of
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Fig. 1. Framework of the proposed DRSM.

interest to the viewer while removing occluding objects. Neu-
ral Radiation Fields (NeRF) [1] tackles novel view synthesis
of static scene by learning implicit representations of objects
from multiple captured views. To model dynamic scenes,
many works [2] propose the ray deformation paradigms that
parameterizes a deformed scene as a NeRF in canonical space
with a time-dependent deformation for dynamic reconstruc-
tion [3, 4, 5, 6, 7]. Other works learn the 4D scene represen-
tation by decoupling static and dynamic scenes with different
NeRFs [8, 9]. For example, D2NeRF [8] achieves dynamic
and static decoupling, which can remove all dynamic objects
in the scene. But this does not solve the problem where we
want to reconstruct dynamic and static scenes simultaneously.

Typically, dynamic NeRFs rely on video flow captured
by multi-view cameras [10, 11] or one free-viewpoint camera
[3, 4, 5, 6, 7] to get full view perception of dynamic scenes.
Different with them, we aim to solve the problem of modeling
dynamic scene in single view, which is ill-posed and challeng-
ing due to limited geometric perception. Many works exploit
auxiliary information to help understand the structure of the
scene, such as SMPL [12] prior to help constrain human mo-
tion space [13, 14] or depth prior to help recover geometry of
objects [15, 16]. Among them, NDR [15] solves the geomet-
ric reconstruction of moving objects and can be modified as a
background reconstruction technique to solve our problem.

Moreover, the optimization for dynamic NeRFs is com-
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putationally intensive since it requires multiple MLP evalu-
ations. To avoid huge memory footprint of previous meth-
ods [17], we decouple spatial and temporal features via planar
factorization [18] to model 4D field for single-view videos.

Overall, our technical contributions are as follows: 1) We
propose an efficient 4D decomposition framework (DRSM)
with planar factorization for fast Dynamic Reconstruction in
Stationary Monocular Cameras; 2) we address the inherent
motion-appearance ambiguity for single-view using depth
prior; 3) we propose an efficient importance sampling strat-
egy (ISDM) based on dynamic and mask regions to improve
the reconstruction quality for time-variant and occluded re-
gions; 4) we demonstrate a convincing rendering quality and
smooth point clouds on multiple short-form videos.

2. METHOD

The architecture of our network DRSM is shown in Fig. 1.
We take a video V = {Ii,Di,Mi : i ∈ [1, T ]} from a single
viewpoint as input, where Ii is the i-th frame image, Di is the
corresponding depth image and Mi is the mask of occluded
objects to be removed. The object mask can be obtained by
combining the Segment Anything Method (SAM) [19] with
the OSTrack tracking model [20]. The video duration is nor-
malized to [0, 1]. Thus, time of the i-th frame is i/T .

Our network starts by randomly picking a frame for train-
ing. We employ the ISDM sampling strategy to identify high-
priority region and build casting rays. For sampling points
along casting ray, we use bilinear interpolation to query their
features on spatial and temporal tri-planes and construct the
fused features, which are then passed to MLP decoders to pre-
dict color and density. We apply volume rendering to gener-
ate color and depth for each casting ray, and design rendering
losses for supervision. After training, the network learns 4D
representation and can reconstruct video, point cloud and syn-
thesize novel views.

2.1. Preliminaries

NeRF [1] learns a regression function F that takes the encoded
coordinates of a 3D point x = (x, y, z) observed from a view
direction d = (θ, ϕ) as input, and outputs the corresponding
radiance c and volume density σ: FNeRF : (x,d) → (c, σ).
The estimated color Ĉ (r) and depth D̂(r) of a pixel can be
rendered by integrating the radiance by tracking a ray r(s) =
o+ sd, cast from the camera toward the center of the pixel:

Ĉ(r) =

∫ sf

sn

T (s)σ(r(s))c(r(s),d), (1)

D̂(r) =

∫ sf

sn

T (s)σ(r(s))s ds, (2)

T (s) = exp

(
−
∫ s

sn

σ(r(p)) dp

)
. (3)

T (s) is the accumulated transmittance along the ray r up to s.

2.2. 4D decomposition for dynamic scenes

A dynamic scene could be naively represented as a 4D volume
V. Inspired by [21], we decompose V into a static volume and
a dynamic volume by planar factorization:

V = {Vs{PXY , PXZ , PY Z},Vd{PXT , PY T , PZT }}. (4)

Here static volume Vs is projected to a tri-plane representing
only spaces of xy, xz, and yz. The dynamic volume Vd is
projected to a tri-plane representing spaces and time, xt, yt,
and zt. Each plane has dimension N × N × W , where N
is the resolution and W is the number of feature channels.
This approach allows us to represent a 4D volume efficiently
using six planes (Fig. 1b). For a 4D point v = (x, y, z, t), we
can query its features f(v) by projecting it onto these planes
and use bilinear interpolation ψ to obtain the corresponding
values:

f(v) = ψ(PXY , x, y)⊙ ψ(PXZ , x, z)⊙ ψ(PY Z , y, z)

⊙ψ(PXT , x, t)⊙ ψ(PY T , y, t)⊙ ψ(PZT , z, t),
(5)

where ψ(PXY , x, y) means given regularly spaced feature
plane PXY and the x, y coordinates, using bilinear interpo-
lation to calculate the plane feature of v. The ⊙ represents
Hadamard product to get fused features.

We use two small MLPs (Fig. 1c) to decode the fused fea-
tures f(v) like Instant-NGP [22]. The features and positional
encoding are concatenated and fed into the geometry MLPEg

to obtain density σ and high dimensional features f ′(v):

σ(v), f ′(v) = Eg(f(v), γ(v)). (6)

Here, γ(·) is an encoding function [1]. Then, we concatenate
the feature f ′(v) with the positional encoding of view direc-
tion (θ, ϕ) and feed it into the color MLP Ec to obtain the
radiance:

c(r, g, b) = Ec(f
′(v), γ(θ, ϕ)). (7)

2.3. ISDM sampling strategy

Previous scene representation methods [2] usually randomly
sample a batch of pixels/rays on the whole input image for
training. In our work, we focus on learning the representa-
tion for dynamic scene of interest while removing occlud-
ing objects. Uniform sampling is no longer suitable for our
method because dynamic areas and occluded areas require
higher sampling weights.

We propose the importance sampling strategy based on
dynamic and mask regions. For the occlusion mask Mi of
frame i (0 for occluded pixels), we ignore those pixels in oc-
cluded region in the ray selection. We create an importance
map P̃i to guide the pixel sampling, assigning higher prob-
ability for those regions with higher occlusion frequencies



Fig. 2. Comparison of DRSM and other methods on dynamic reconstruction results. We remove the hand in video and show
PSNR metric of each method.

across all frames. The sampling importance map is calculated
according to element-wise division:

P̃i = MiT/(
T∑

k=1

Mk + ε). (8)

In addition to occlusion areas, we should also prioritize sam-
pling dynamic areas. In uniform sampling, a large proportion
of selected pixels may fall into the static background, which
contributes less to the dynamic reconstruction. To identify the
dynamic region, we calculate temporal difference of pixels on
frames i and j [11]:

Pi = P̃i ⊙min(
1

3
∥Ii − Ij∥1 , α), j ∈ (i− τ, i+ τ), (9)

where α is a lower-bound parameter controlling the sampling
weights of the dynamic region and τ is set to 25 in the ex-
periment. ISDM sampling adjusts the sampling probability
of time-varying and occlusion areas, which helps improve re-
construction quality and speed up training.

2.4. Optimization

We supervise scene reconstruction in terms of reconstructed
image Ĉ, depth D̂, and regularization loss to optimize the pa-
rameters of feature planes and MLPs. For each batch of train-
ing data, there are R rays sampled by ISDM strategy on one
frame. We first minimize the difference between the ground
truth color and the predicted color, as shown in Eq. (1). To as-
sist in scene representation for single-view input, we further
optimize the geometry using depth supervision. The color
loss and depth loss are shown in the following equations:

Lcolor =
1

|R|
∑
r∈R

∥∥∥C(r)− Ĉ(r)
∥∥∥2
2
, (10)

Ldepth =
1

|R|
∑
r∈R

∥∥∥D(r)− D̂(r)
∥∥∥2
2
. (11)

Dynamic scene reconstruction in stationary monocular cam-
era is a severely ill-posed problem. To achieve robust recon-
struction, we apply strong regularizers. We adopt 2D total
variation (TV) loss LTV-2D for space planes in [22] and 1D
TV loss LTV-1D on the space axis for space-time planes and a
similar smooth loss Lsmooth on the time axis. The total opti-
mization objective is:

L = Lcolor + λ1Ldepth + λ2L2D + λ3L1D + λ4Lsmooth. (12)

3. EXPERIMENTS

Experimental settings. We normalize the scene into device
coordinates (NDC) to handle monocular videos and then sam-
ple casting rays within the NDC space. We use a model with
four symmetric spatial resolutions 64, 128, 256 and 512. The
feature length W at each scale is set to 32. We set the fre-
quencies of positional encoding γ(·) for sampling points and
view direction to 4. In each training iteration, a batch con-
tains R = 2048 sampling rays. The loss weights in Eq.(12)
are empirically set as λ1 = 1.0, λ2 = 0.0002, λ3 = 0.0001,
λ4 = 0.001. Adam [23] optimizer is adopted for training,
and the initial learning rate is set to 0.01. We train all scenes
with 5k and 10k iterations on a single RTX 3090 GPU, which
take around 15 and 35 minutes, respectively. We build a video
dataset, including life videos related to box, marionette, web
page, xiangqi, calligraphy and toy. We use the “Record3D”
app on iPhone and RGBD camera to record videos. Each
video lasts for 5 ∼ 7 seconds and we sample 10 frames per
second for training.



Fig. 3. Ablation study on a marionette dancing video. We remove manipulating wires and show the reconstructed point clouds.

Table 1. Quantitative comparisons on our collected dataset. We report PSNR↑, SSIM↑, LPIPS↓ and training time (minutes).

Model “Box” “Marionette” “Web page” “Xiangqi” “Calligraphy” “Toy” Time
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

D-NeRF* 37.02 0.945 0.084 33.62 0.885 0.058 35.80 0.947 0.068 35.21 0.959 0.049 36.27 0.911 0.095 37.14 0.944 0.088 477min
NDR 34.95 0.942 0.094 33.74 0.909 0.053 35.37 0.944 0.086 35.24 0.955 0.062 35.02 0.890 0.139 35.03 0.940 0.097 666min
Ours-5K 38.07 0.945 0.071 34.12 0.918 0.044 37.79 0.954 0.047 35.20 0.930 0.048 37.20 0.928 0.073 37.05 0.942 0.089 15min
Ours-10K 39.36 0.953 0.070 36.42 0.945 0.023 39.38 0.964 0.043 37.27 0.964 0.037 38.51 0.943 0.058 38.42 0.950 0.079 35min

Comparison experiments. We compare our method with
other dynamic scene reconstruction methods for monocular
videos, such as D-NeRF [3] and NDR [16]. D-NeRF builds
a deformable neural radiance field based on a canonical 3D
representation and time-guided motion fields. However, the
model performance of D-NeRF depending on a canonical
frame suffers when objects exhibit long-distance translations
[24]. NDR focuses on modeling dynamic foreground objects
based on bijective motion map and implicit representations
of MLPs. Using an MLP with a specific bandwidth to learn
both spatial and temporal variations simultaneously results in
suboptimal reconstruction of complex scenes.

As shown in Fig. 2, D-NeRF* and NDR are modified ver-
sion of original models with depth supervision for fair com-
parison with our method. D-NeRF* failed to capture the de-
formation of long-distance moving objects, i.e., the charac-
ters on the box. The predicted color of the doll predicted by
NDR is affected by the movement of the box. This is be-
cause NDR’s bijective map focuses on learning the geometric
changes of moving objects not the high-frequency details of
static part. Our network is specifically designed for the recon-
struction of combined static and dynamic scenes, resulting in
better video appearance reconstructions.

In Table 1, we show the indicators such as PSNR, SSIM
and LPIPS of 6 videos to quantitatively evaluation the recon-
struction. Our model outperforms the existing methods on
multiple aspects and requires shorter training time.

Ablation study. We present ablation experiments on net-
work modules and the reconstructed point clouds in Fig. 3.

The marionette dancing video contains some manipulating
wires to be removed. Without planar factorization, our net-
work failed to reconstruct high quality texture details in static
region (color prediction error in yellow ellipse) as well as dy-
namic region (sleeves and decorations in yellow box). Fur-
thermore, we observe severe distortions in the reconstructed
point cloud when depth supervision is disabled, indicating
that the network is unable to learn the correct geometry from
single-view input without prior. Without ISDM sampling,
predicted high-frequency textures also become blurry. We
provide the corresponding PSNR indicator to further demon-
strate the effectiveness of proposed modules. Our complete
model produces high-fidelity reconstructions.

4. CONCLUSION

This paper presents a novel neural 4D decomposition for dy-
namic reconstruction from single-view videos. Without ob-
servation from multi-viewpoints, the problem of modeling
dynamic scenes is typically quite challenging. We apply pla-
nar decomposition to static and dynamic scenes respectively
to improve the model’s modeling ability of 4D scenes. To ad-
dress the ambiguous geometry, we utilize depth prior to con-
strain the motion space. The adaptive sampling strategies aid
the reconstruction on moving objects and occluding regions.
The ablation study demonstrates the effectiveness of proposed
network. We conduct rich experiments to show the superior-
ity of our network than existing methods on the special task
of single-view dynamic scene construction.
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