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Abstract

Although substantial progress has been made in audio-
driven talking video synthesis, there still remain two major
difficulties: existing works 1) need a long sequence of train-
ing dataset (>1h) to synthesize co-speech gestures, which
causes a significant limitation on their applicability; 2) usu-
ally fail to generate long sequences, or can only generate
long sequences without enough diversity. To solve these
challenges, we propose a Disentangled Recurrent Repre-
sentation Learning framework to synthesize long diversified
gesture sequences with a short training video of around 2
minutes. In our framework, we first make a disentangled
latent space assumption to encourage unpaired audio and
pose combinations, which results in diverse “one-to-many”
mappings in pose generation. Next, we apply a recurrent
inference module to feed back the last generation as initial
guidance to the next phase, enhancing the long-term video
generation of full continuity and diversity. Comprehensive
experimental results verify that our model can generate re-
alistic synchronized full-body talking videos with training
data efficiency.

1. Introduction

Generating realistic human speech video from input au-
dio is a long-standing objective in computer graphics and
computer vision with key applications to virtual humans.
Many existing works focused on speech video generation
with a head part only [14, 64, 66] or head and shoulder to-
gether [24,54,68], while others extended to the synthesis
of body gestures as well, thus increasing the overall expres-
siveness of the results. Among these works, early methods
utilize heuristics and rules to generate gestures triggered
from a predefined audio-to-gesture mapping [10, 44, 45].
This will, however, result in repetitive gestures and a lack
of person-specific idiosyncrasies given similar input audio.
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Figure 1. Comparison illustration of state-of-the-art and our
method. 1) Training phase: existing methods require long train-
ing data (>60 mins) while our method can be applied with only 2
mins short videos. 2) Testing phase: existing methods only con-
sider the diversity of short video fragments (every 4s), while our
method can generate endless video sequences with high diversity
and continuity.

Recent works [23,38,42,49] apply data-driven approaches
to predict more diverse gestures by learning human speech
behaviors from collected data. However, their applicabil-
ity is significantly limited by: 1) large training data needed,
and 2) less diversity in long sequence generation:

* In the training phase, prevailing methods require long-
term training sequences (>1h) of the same actor [23,

] or multi-actors with similar gestures [36, 42] as
shown in Fig. 1. It creates a challenge for common ap-
plications where it is usually infeasible to collect suffi-
cient data for one specific actor. In addition to the dif-
ficulty in data collection, speech gestures vary in terms
of speech content, camera position, and speech scenes,
spanning over sitting, standing, and moving scenarios.
Fitting models with monotonous training data could
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Table 1. Comparisons of state-of-the-art speech synthesis methods and our proposed method.

Short Training Facial Realistic ~ Short Diversified Long Diversified
Methods . .
Dataset Expression Video Gesture Gesture

Speech2Gesture [23] X X v X X
SDT [49] X 4 v v X
Audio2Gesture [36] X X X v X
HA2G [42] X X X v X
Ours v v v v v

lead to less diversity as shown in Tab. 1.

* In the testing phase, earlier adversarial learning mod-
els [23] take input audio as guidance and generate the
corresponding gestures. In addition to the difficulty
of training, these models fail to capture the “one-to-
many” mapping of audio-to-gestures. As shown in Fig.
1, recent ideas to solve this [30, 49] take short se-
quenced gestures (e.g., 4s) beyond audio as input for
generation. However, these methods fail to generate
long diversified sequences. The reason is that their
gesture features only represent body motion in a few
seconds, and only the same gesture features could ap-
pear in each test, which leads to fragmented gener-
ation with possible repetition among short sequences
and discontinuity between two adjacent sequences.

In this paper, we aim to answer this question: how to
generate long-term speech video with continuity and diver-
sity by using only short-term training data? We propose a
novel Disentangled Recurrent Representation (DR?) learn-
ing mechanism for this data-efficient speech video synthesis
task. Prevailing models aim to embed input audio and pose
sequences into a unified latent space while learning a “one-
to-one” mapping of audio and poses. Unlike this learning
framework, we disentangle the learning of audio and poses
and use only one-shot initial pose and input guidance, leav-
ing the network a rich imagined space to disentangle au-
dio and pose features. Besides the paired learning of audio
and poses, we construct a state bank to store feasible initial
poses but different from the paired one. During the train-
ing phase, we randomly select the unpaired pose and audio
features to encourage the diversity of “one-to-many” map-
ping. Benefiting from the one-shot pose state, we develop a
recurrent inference module for synthesizing arbitrarily-long
sequences. In Fig. 1, the pose state generated by the last
sequence serves as the initial prior and gesture template to
guide the generation of the following sequence, resulting in
long-term diverse videos with continuity.

In our disentangled recurrent learning framework, we re-
sort to SMPL-X [46] model as the intermediate 3D repre-
sentation for constructing physiologically reasonable mod-

els, which avoids unnatural deformations in conventional
keypoint-based representations. Beyond the basic represen-
tation in previous methods, we extend the generation ob-
jective by incorporating 3D hand embedding and extend the
application scenarios to sitting, standing, and moving status.
Finally, we develop a neural rendering network to synthe-
size these 3D models into vivid 2D videos. Comprehensive
evaluations on both public and our self-captured datasets
demonstrate the effectiveness of our method.

The main contributions are as follows: 1) We propose a
novel Disentangled Recurrent Representation (DR?) learn-
ing framework to synthesize arbitrarily-long diversified ges-
ture sequences from short training videos of around 2 min-
utes only. 2) We propose a disentangled module with a state
bank to encourage the learning of unpaired pose and audio
embedding, resulting in diverse “one-to-many’” mappings in
pose generation. 3) We develop a recurrent inference mod-
ule to feed back the last generation as initial pose prior and
gesture template, which determines both the start pose and
the general appearance of the next sequence, resulting in
arbitrarily-long diverse poses with full continuity.

2. Related Work

Audio/Text-driven gesture synthesis. Traditional rule-
based gesture generation methods [10, 11,44,45] are always
phoneme-dependent and restricted to special language-
specific rules. However, early data-driven methods find
appropriate audio-to-gesture mapping based on statistical
modeling techniques, such as Markov models [9, 34, 35],
conditional Restricted Boltzmann Machine [16], condi-
tional random fields [17] and dynamic Bayesian Network
[50]. Recent deep-learning techniques have started to be
widely used in gesture synthesis. Text-driven gesture pre-
diction usually builds a mapping between text semantic in-
formation to co-speech gestures [2, 8,29, 63], while audio-
driven gesture generation methods usually predict 2D or
3D gestures using diverse neural network architecture base
such as RNN [32], GRU [60], GAN [1,7,25,26], LSTM [3,

,28,51,53]. Audio2gesture [36] split the VAE latent code
of motion gestures into shared code and motion-specific
code to regress training data and generate diverse motions.
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Other methods [70] exploit multi-modal information to im-
prove the correlation between generated gestures and other
modalities, including audio, text transcripts, speaker identi-
ties, styles, and expressions [4,33,37,40-42,61,62]. Ges-
ticulator [33] generates beat and semantic gestures together
from audio and text input, and Ao et al. [4] extend this by
regularizing the rhythmically and semantically consistency.
Ghorbani et al. propose ZeroEGGS [22] to generate ges-
tures with zero-shot style control and a new multi-modal
dataset with multiple styles. Liu e al. present DisCo [39]
that captures both high and low-frequency occurrence in-
formation with more diverse motions by disentangling mo-
tion data into implicit content and rhythm features. Yang
et al. [59] synthesize natural co-speech gestures due to its
novel quantization-based and phase-guided motion match-
ing framework. The other line of work [5] utilizes diffusion
models to generate stylized co-speech gestures with flex-
ible style control. Besides, Zhu et al. [69] utilize a Dif-
fusion Audio-Gesture Transformer to obtain coherent ges-
tures with better mode coverage and stronger audio corre-
lations. Yang et al. [58] introduce cross-local attention and
self-attention models to the gesture diffusion pipeline to ob-
tain stylized and diverse gestures. These models rely on
large-scale training datasets, such as [39, 59] that use dis-
entanglement to enrich audio information with additional
features, aiming to prevent overly smoothed results when
training on large datasets. However, they still face difficul-
ties with short training datasets. In this manner, we use the
disentanglement method with paired and unpaired training
to address data-efficiency issues.

Audio-driven talking video generation. Many recent re-
searchers start to apply audio-driven face expression and
gesture synthesis techniques in realistic talking video gen-

eration [23, 38, 46, 49].  One type method is the face
generation [14, 18,20, 64, 66, 67]. Another category of
methods work on the head and shoulders (upper torso) to-
gether [13,24,43,47,52, 54,65, 68]. So far only a few

audio-to-gesture works [23, 38, 49] are focusing on gener-
ating half-body talking videos. Speech2gesture [23] first
leverages a UNet-based framework to predict 2D half-body
gestures, and then utilizes a video-to-video network [12] to
synthesize the final talking video. Liao et al. [38] trained an
LSTM-based network to predict SMPL-X parameters [46],
whose 3D joints information is further fed into a video-to-
video network [55] to synthesize final output videos. SDT
[49] learns a set of gesture template vectors to control the
style of 2D gestures, and uses an image warping and transla-
tion module [6] to generate final synthesized talking images
per frame. Note that all these previous works are not data-
efficient, and generate long gesture sequences with repeti-
tive patterns. In contrast, our method only needs a shorter
training sequence and generates diverse long sequences of
gestures and the corresponding talking videos (Tab. 1).
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Figure 2. Comparison of conventional learning and our disen-
tangled representation assumptions. (Left) Conventional methods
learn the generation from paired audio and pose encoding. (Right)
Our method assumes the pose and audio features of related clips
can be disentangled and composed into new diverse generations.

3. The Method
3.1. Assumption

Given an input V, ~ V (the zth video clip in the
training data), we denote the paired audio-gesture state
s (A;,P,) € V,. As shown in Fig. 2 (Left), con-
ventional video synthesis methods assume that the au-
dio features and pose gestures should be encoded in the
same latent space to get a fused embedding Z,_, =
[Eo({Asi 1), Ep({Pyi}7—1)], where E, and E,, are au-
dio and pose encoders, n represents the number of frames
in a clip, and A, ; and P, ; denote the ith frame audio and
pose in each clip respectively. From this latent space, the
encoding Z,_ are further decoded by D,, and D} to gener-
ate the synthesized pose sequences P, and face sequences
F,. However, this prevailing learning framework [23, 49]
requires a long sequence of training data with similar iden-
tities and would lead to overfitting due to the strong prior
encoded by the gesture sequences.

As the gesture generation of speech video synthesis is
an ill-posed problem, i.e., one can perform different ges-
tures with the same speech content, learning a strict one-
to-one mapping in prevailing works encounters challenges
whenever there is no sufficient data collected. Toward this
end, we design a disentangled latent space for gesture and
audio combinations to embed this loose correlation. As
shown in Fig. 2 (Right), our method works in a one-
shot fashion, which only adopts the first pose state P, 1
as initial input while leaving the network a huge imagined
space to fill in the subsequent ones P ».,,. Let V, be an-
other clip sampled from the same video space V and P,
be the gesture state in V. Different from existing meth-
ods, we then use the one-shot guidance with random noise
& ~ N(0,0) to obtain: (1) the paired latent encoding
Zy» = [E,({Azi}1, Ep(Py1 + §)); and (2) the un-
paired encoding Z,_, = [E,({As,}lq, Ep(Py1 + )]
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Figure 3. Pipeline of our disentangled recurment representation learning framework. Given an input audio A . and an initial pose state
P: 1 as guidance, our network generates a paired face, hand and body embedding as the basic supervision. The second stream encodes
the sample audio A, but with one different initial state P, ; to compose into an unpaired generation. During the inference phase, we feed
back the last pose state P ,, € V., as the initialization P, 1 of the next generation.

We assume that Z,_ is also a reasonable latent encoding
and can be decoded into complete pose and face sequences,
{Fratica = Dy(Zz—y), {Pyaliz1 = Dp(dz_y). Note
that we use the weight-sharing pose decoder Dy for paired
x — = and unpaired = — y latent encodings. Thus our de-
signed framework looses the coupling of the audio and pes-
ture from the same video frame while encouraging the di-
versity of poses in the video space V.

3.2, Disentangled Recurrent Representation

Framework. Based on this idea of disentangled latent
space, we first build a paired construction module as in the
top half of Fig. 3. With the audio encoder E; of all n
frames, we first use the initial pose state P, ; with a ran-
dom noise £ to build a self-supervised output of pose pes-
tures {P,,}™ , and facial expressions {F ,}"_, for all n
frames. For the unpaired training branch in the lower half
of Fig. 3, we first construct a state bank B to store all initial
states from the unpaired poses, and then select an unpaired
one YPy, € B Py # P:i. Analogous to the paired
training, we then replicate Py, ; features by n times to fuse
with the audio feature A.. After that, the encoded feature
Z,_. (paired) and Z,_,, (unpaired) are decoded separately
by two decoders: the pose decoder Dy, to generate hand and
body gestures, and face decoder I); to generate facial ex-
pressions. Note that the general appearance (body and hand
gestures) shows a sirict correlation with the initial pose state
while the gestures’ movements have a melatively high cor-
relation with the audio input to encourage diversity. With
the limitation of short training data (less than 1/30 of other
datasets), our disentangled representation learning is specif-
ically designed for such constraints: 1) we do not input a
full pose sequence of n frames but only the initial frame

to encourage the strict correlation with initial pose; 2) we
loose the coupling of audio and pose and use the unpaired
training to enhance the diversity of poses; 3) the random
noises are used to add a slight perturbation for initial states
while still maintaining them in a reasonable range.
Recurrent inference for arbitrarily-long sequences. Ex-
isting works encounter great challenges when encoding and
generating long-term diverse sequences. As shown in Fig. 2
{Left), these methods propose to encode a certain length of
poses e.g., a clip of 128 frames, and to decode and pen-
erate an output of 128 frames. This encoding-decoding
framework would lead to two problems (Especially for short
dataset): 1) Input pose sequences strictly constrain the pen-
eration results to be similar. However, the training and in-
ference audios usually show a huge distribution gap, which
makes them hard to generalize. 2) The generated sequence
can be consistent within each clip, but it is hard to guar-
antee the continuity between two adjacent clips since they
are generated separately. To address this, we propose recur-
rent feedback of the pose state as shown in Fig. 3. At the
t-th clip our framework generates {f‘,li}:;l{t}, and in the
(t + 1)-th clip, we have:

(P (1) = Dp(Ea({Azi(£)},), Ep(Pza(t))),
Poa(t+1) « Pt
(1)

With such recurrent scheme, the penerated ending pose of
the current clip is used as an initial puidance and gesture
template of the next clip. The random noise £ is removed for
sequences continuity during inference stage. Thus we can
generate arbitrarily-long diverse video sequences. Besides,
as we only encode the pose of first frame as guidance, our
generated video shows rich pose diversity.
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3.3. Models and Learning Objective

3D-aware audio2gesture network. Directly predicting
3D joints or 2D keypoints without articulation constraints
would lead to physiologically unreasonable movements in
gesture generation. Hence we use a 3D parametric model
SMPL-X [15] as the intermediate representation to regular-
ize the movement of body parts. As shown in Fig. 3, given
an input audio A, we first use DeepSpeech [77] as fea-
ture extractor E,({Ar,}" ;) € BR* " (o encode it into
latent space. We use SMPL-X to represent 3D pose, which
is composed of a body gesture of Pbﬂdy e B3 gnd a
hand gesture of Ppang € R24*®, For simplicity, they are
noted as pose gestures in this paper. The facial decoder Dy
generates a face expression of F € R19%" The SMPL-X
model is then applied to map these parameters to its skin
mesh vertices M € R10475%3x7 apd joints J € R127*3%7,
Learning objectives. After fitting the training video with
SMPL-X, we can obtain the c:grc:-um:l—t_rutll face expressions
F©, and hand-body poses P For frame ¢ in video V-, we
use ]?‘,1; < R and 15” € B to represent the predicted
facial expressions and pose gestures respectively. Random
noise £ ~ N(0, «) is applied to both Pf and P, toenhance
the diversity of generated sequences. Please refer to our
supplementary for more details.

Ouwr learning objective comprises three parts: 1) initial
state reconstruction; 2) paired sequence reconstruction; 3)
unpaired sequence reconstruction. The initial pose recon-
struction follows the standard MSE constraint, which aims
to guarantee the stable initialization of each generated clip.
YWV, e M

L = ||Pry —PZI5 +1Fzn —FZ 5. )
The paired sequence loss of poses consists of two terms,
which regress the pose sequence reconstruction and main-
tain the motion between adjacent frames to be similar:

LE7(P) = || Dp(Ep(PS ), Ea({A£4}7)) — PE 113

(3)

{PI,HI_P’:,LJ (P:;+1 P::G,::'”Q'

Similarly, the paired sequence loss of facial expressions is
defined as:

LEN(F) = | Dy (Ep(PS,), En({AL17) —FS 113

(4)
+—L A - Z (P e — Fre) — (FE,,, — FE )2,
t=1

Besides the paired training, our disentangled represen-
tation learning constructs unpaired constraints by selecting
another video clip from the state bank. V¥V (V., V) €

V. ¥V # V. The overall motion and the detailed per-
frame movements are further disentangled for unpaired ges-
ture kearning:

L3 (P) = || Dy(Ep(PY 1), Ea({Az 1T)) — P 113
(5)
(PS., —PEIE.

wi+l — pmt} -

The first term of Eq. (5) is a reconstruction loss that con-
tribuies to the overall motion of the whole sequence condi-
tioned on the initial unpaired pose prior P . The second
term is a frame motion loss that cunmhrut:s tu the detailed
movements (e g, related to audio beats) and is learned by
the velocity of the paired Pf to maintain the multi-modal
consistency, indicating a similar motion velocity generated
from the same audio beat.

The unpaired facial learning follows the similar con-
straint as in Eq. (4) but with a different input Py 1, and also
indicates the strong correlations of face and audio:

L3y (F) = | Dy (Ep(Pyy), Ea({Az}7)) — FZ 13

Ar (6)
+—Z||+:Fn+1— Fro) — (FS 0 —FE)IB.

Thus the overall learning objective has the form:

Egum — Aliﬂiﬂ'ﬂ- +£'l-ﬂ-f:-} +A (Eﬂﬂ
+ A3(L32, (F) + LEXI(F)),

y(P)+ LEZL(P))

()

where .3 are the balancing weights for different losses.
Gestures2video neural rendering. In order to generate the
realistic speech video for a given audio sequence, we first
render synthetic human mesh images from the predicted
SMPL-X model parameters. Then, the gestures?video net-
work is employed to translate the rendered images R into
the final photo-realistic frames. By following previous
works [12, 45, 65], we adopt a conditional-GAN architec-
ture for our gestures2?video rendering network. Specifically,
to ensure the continuity of the generated frames, we use
a window of size 2N, with the current frame at the cen-
ter of the window. The generator takes the stacked tensor
{m};’fﬁ" as input and outputs a photo-realistic image I of
the target person. A multi-scale discriminator is designed
to guarantee the quality of penerated images that are opti-
mized in an adversarial manner. The loss function for our
gestures2video rendering network is defined as:

Lrender = w1Lyvaa(L 1) + waly(1,1I9) ®
+wilgan +walrar,

where Ly o denotes the perceptual loss that was proposed
in previous image synthesis works [15, 30]. We use I and
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Figure 4. Comparisons of state-of-the-art models with our method. Note that Speech2Gesture [23] and SDT [49] relies on 2D skeletons
as intermediate representation while Audio2gesture [36] only generates sequences of 3D models. Compared with these works, our results
show sufficient gesture diversity with varying input audios. Please refer to the supplementary video for detailed qualitative comparison.

I to represent the predicted frames and original frames re-
spectively. Laan represents the GAN adversarial loss and
L is the feature-matching loss [56] of the discriminator.

4. Experiments

Dataset. For dataset construction, we collect videos from
two major sources. 1) Online videos: we use the public
Oliver dataset [23] in A that is in sitting gestures, and TEDx
videos in B! and C 2, which have speakers in standing ges-
tures. 2) Self-captured: we capture a customized dataset
with both sitting in D and standing gestures in E, forming a
comprehensive benchmark. (See supplementary.)

Implementation details. All experiments are conducted on
a single NVIDIA 2080-Ti GPU using Adam [31]. In au-

Thttps://youtu.be/B99G5_T9xX4
Zhttps://youtu.be/ZoLZCIHQcqU

dio2gestures, we use a sliding window of size T' = 128
to extract training samples of audio and video. A total of
100 epochs are trained with a batch size of 4 and a learning
rate of 0.0001. For the gestures2video network, the train-
ing takes 50 epochs with a batch size of 1 and a learning
rate of 0.0001. In our experiments, the parameters used in
Egs. (3)-(8) are: A\, = 10,Af = 2, = 40, Ay = 10,
)\3 = 40, w1 = 10, Wy = 50, w3 = 1, and Wy = 2.

4.1. Comparison with State-of-the-Arts

4.1.1 Qualitative Evaluation

As shown in Fig. 4, we compare our work with three state-
of-the-art methods [23, 36, 49]. In Speech2Gesture [23],
only pose gestures are generated by their generator network,
so we add the face part in the output layer of the generator
network. SDT [49] adopts a template of gestures as the con-
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Table 2. Quantitative comparisons to state-of-the-art methods [23,36,49]. Best values are highlighted in bold.

Dataset Method ‘ Offset/confidence LPIPS CPBD FVD Diversity Multimodality
Speech2Gesture [23] -3/1.751 0.267 0.520 636.7 6.430 -
Online SDT [49] -3/1.923 0.253  0.511 544.0 8.810 7.796
videos Audio2Gesture [36] - - - - 13.647 11.747
Ours -2/2.328 0.156 0.569 387.3 16.915 15.931
Speech2Gesture [23] 1/0.570 0.196 0492 310.1 8.913 -
Self-captured SDT [49] -2/1.275 0.187 0.502 3024 8.513 8.159
videos Audio2Gesture [36] - - - - 11.318 12.553
Ours 1/2.029 0.135 0.526 246.5 13.447 16.472

With Initial
State Pq

Figure 5. Illustrations of our one-to-many pose generation. With
the same audio but different initial poses, our disentangled repre-
sentation learning can generate different diverse sequences.

ditional input, which can determine the general appearance
of the generated gesture sequence. Both Speech2Gesture
and SDT are keypoint-based methods. By using 3D dataset,
Audio2Gesture [36] predicts the gestures defined on 3D
skeleton. In contrast, with Disentangled Recurrent Rep-
resentation (DR?) Learning, our method generates diver-
sified and photo-realistic talking videos with gestures and
face motions. Please refer to our supplementary video for a
detailed comparison.

4.1.2 Quantitative Evaluation

Following prevailing works, we adopt the lip sync, image
quality, and gesture diversity metrics for comparisons. Tab.
2 shows the comparison with state-of-the-art methods, indi-
cating the superior performance of our models.

Lip-sync metric: We evaluate the synchronization of lip
motion with input audio by SyncNet [19], which calcu-
lates the Audio-Visual (AV) Offset and Confidence scores
to determine the lip-sync error. Under this challenging lip-

syncing with limited data, our results are better than the
baseline, which is attributed to our approach of separating
the learning of pose and face for high stability.

Image quality metric: The image quality is evaluated by
learned perceptual image patch similarity (LPIPS) and cu-
mulative probability blur detection (CPBD). Our results
demonstrate superior performance in terms of image clar-
ity and sharpness.

Temporal-level metric: We apply Fréchet Video Distance
(FVD) to evaluate the realism of results at temporal level.
Compared to baselines, FVD not only measures the quality
of generated videos but also indicates that our video gesture
distribution is closer to that of real videos.

Diversity: We adopt the gesture diversity metric [36] to
evaluate how many different poses/motions have been gen-
erated within a long sequence. For a fair comparison, we
project the human model joints into 2D space and select the
corresponding keypoints for measurement. From the diver-
sity result, our training significantly preserves the effective-
ness of gestures compared to the baselines. This is due to
our disentangled training approach and the incorporation of
elements like noise to expand training possibilities.
Multi-modal diversity: We measure the multi-modal di-
versity [360] by generating motion sequences N times given
the same audio and then calculating the average L; distance
of N motion sequences. As there is a one-to-many map-
ping relationship between audio and gesture, our method
also achieves robust results in terms of multi-modality.

4.2. Ablations and Performance Analysis

Disentangled representation learning. To evaluate the ef-
fectiveness of our disentangled representation learning, we
conduct ablation studies as in Tab. 3. The baseline model in
the first line indicates the conventional one-to-one learning
with paired audio and pose sequences, which shows less se-
quence diversity during speech and cannot generate differ-
ent outputs with the same input, i.e., -’ in the multi-modal
diversity. In the second row, as we only use the one-shot
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Table 3. Ablation for disentangled learning on Oliver data. Each
line adds a new component compared to its previous line.

Method Diversity 1 ‘ Multimodality 1
Baseline 8.753 -
+Initial State 8.036 9.943
+Disentangled Training | 21.749 23.740
+Random Noise 23.055 24.898

frame as initial input, the long sequence diversity shows
a slight performance drop. However, the employment of
the initial state enables the generation of one-to-many map-
pings. Moreover, it provides the continuity of adjacent gen-
erated clips. As the most crucial part of our disentangled
representations, adding the disentangled training module in
the third row greatly enhances the diversity of generated
long sequences and multiple modalities. Besides, the results
in the last row show that adding random noise can further
benefit the generalization of various inference scenarios.
One-to-many generation. Existing models usually rely
on the paired “one-to-one” mapping for learning pose se-
quences, while the disentangled representation learning en-
ables our network with the “one-to-many” generation abil-
ity. Fig. 5 visualizes the generated sequences with two
different initial poses P; and P,. It shows that our method
can generate different high-quality sequences with the sam-
ple input audio by modifying the initial input with any pos-
sible random state.

Motion-audio correlation. Beyond the diversity exhib-
ited by our method, a high-quality synthesized result should
also demonstrate motion-audio correlations that are close
to ground-truth cases. Therefore, landmark velocity differ-
ence [57,68] is adopted to evaluate the speech-gestures cor-
relation. We designed the ablation study with three differ-
ent settings: random unpaired sequence, w/o motion loss in
L3, (P), and w/ motion loss (ours). The results in Tab. 4
verify the synchronization of our co-speech gestures.

4.3. User Studies

To gauge the quality of generated videos from a human-
centric standpoint, we carried out a user study involving
20 volunteers. The evaluation criteria consisted of four
key aspects: Audio-Lip Synchronization, Photo-realistic
Image Quality, Gesture Diversity, and Overall Preference.
Each participant was instructed to evaluate every video four
times, once for each criterion. We employed a scoring sys-
tem ranging from O (Very Poor) to 4 (Excellent). Each
volunteer reviewed a set of 12 video clips with a length
of 10-20 seconds. Each video contains two baselines and
our method. We calculated the average evaluation scores
for each criterion and for each method. The summarized

Table 4. Motion-audio correlation study on Oliver data. Each test-
ing included 25 sequences and we recorded the average score and
the best score (in parentheses).

Method ‘ Landmark velocity difference |

21.941 (20.442)
19.802 (17.987)
18.401 (16.785)

Random sequence
w/o motion loss
w/ motion loss

Lip-sync Image quality Diversity Preference

3.1

2.8
2.7

25

22
21

16 16

0.5

Speech2Gesture SDT Ours

Figure 6. User Study. We calculated the average scores (rang-
ing from O to 4) given by users across four evaluation metrics for
two baselines and our method. The results show that our method
outperforms the baselines.

results, presented in Fig. 6, reveal that our approach outper-
forms state-of-the-art methods from the human evaluators.

5. Conclusion and Future Work

In this paper, we make the disentangled audio-pose la-
tent space assumptions for training a full-body talking video
with only short-term video dataset of only 2 minutes. Based
on this assumption, we develop the disentangled training
module and infinite inference module for generating long-
term diverse co-speech gestures. In our future work, we
would like to model the explicit mutual effect of audio and
pose latent embedding and explore the diverse generation
with more challenging “in the wild” data. For example,
modeling various speech scenarios by training with dozens
of short video clips of only a few seconds.
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