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ABSTRACT

We design an almost linear-size sketching scheme for computing

edit distance up to a given threshold : . The scheme consists of

two algorithms, a sketching algorithm and a recovery algorithm.

The sketching algorithm depends on the parameter : and takes

as input a string G and a public random string d and computes a

sketch B:d (G ;:), which is a compressed version of G . The recovery

algorithm is given two sketches B:d (G ;:) and B:d (~;:) as well as
the public random string d used to create the two sketches, and

(with high probability) if the edit distance ED(G,~) between G and~

is at most : , will output ED(G,~) together with an optimal sequence

of edit operations that transforms G to ~, and if ED(G,~) > :

will output large. The size of the sketch output by the sketching

algorithm on input G is :2$ (
√
log(=) log log(=) ) (where = is an upper

bound on length of G ). The sketching and recovery algorithms both

run in time polynomial in =. The dependence of sketch size on : is

information theoretically optimal and improves over the quadratic

dependence on: in schemes of Kociumaka, Porat and Starikovskaya

(FOCS’2021), and Bhattacharya and Koucký (STOC’2023).
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1 INTRODUCTION

The edit distance of two strings G and ~ measures how many edit

operations (removing a symbol, inserting a symbol or substituting

a symbol by another) are needed to transform G to ~. Computing

edit distance is a classical algorithmic problem. For input strings

of length at most =, edit distance can be computed in time $ (=2)
using dynamic programming [13, 19, 22]. Assuming the Strong

Exponential Time Hypothesis (SETH), this cannot be improved to

truly sub-quadratic time $ (=2−n ) [2]. When parameterized by the

edit distance : = ED(G,~), the running time has been improved to

$ (=+:2) [18]. The edit distance of two strings can be approximated

within a constant factor in time $ (=1+n ) [1, 5, 6, 17].
This paper concerns sketching schemes for edit distance, which

consist of a sketching algorithm, parameterized by an integer : , that

takes a string G and (using a public random string d) maps it to a

short sketch skd (G ;:), and a recovery algorithm that takes as input

two sketches skd (G ;:) and skd (~;:) and the public random string

d and, with high probability (with respect to d), outputs ED(G,~)
when ED(G,~) ≤ : and outputs large otherwise.

The goal is to get polynomial time sketch and recovery algo-

rithms that achieve the smallest possible sketch length. Jin, Nelson

and Wu [14] proved that sketches must have length Ω(:). For edit
distance it is not apriori clear whether sketches of size :$ (1)=> (1)

exist, even non-uniformly. The �rst sketching scheme with ?>;~ (:)
sketch size was found by Belazzougui and Zhang [3] who attained

sketch size $̃ (:8). (Here, and throughout the paper, $̃ (C) means

C log$ (1) =, where= is a an upper bound on the length of the strings.)
This was improved to $̃ (:3) by Jin, Nelson and Wu [14], and then

to $̃ (:2) by Kociumaka, Porat and Starikovskaya [16]. The above

sketches used CGK random walks on strings [7] to embed the edit

distance metric into the Hamming distance metric with distortion

$ (:), plus additional techniques. A di�erent approach, based on

a string decomposition technique, was used by Bhattacharya and

Koucký [4]. Here we will also use this technique.

The quadratic dependence on : in the (very di�erent) sketches

of [16] and [4] and also in the exact computation algorithm of [18]

is suggestive that there may be something intrinsic to the problem

that requires quadratic dependence on: for both sketching and eval-

uation. In this paper, we show that this is not the case, by presenting

an e�ciently computable sketch of size $ (:2$ (
√
log(=) log log(=) ) )

which is : times a "slowly" growing function of =, that is interme-

diate between logl (1) = and => (1) . Our main result is:

Theorem 1.1 (Sketch for edit distance). There is a randomized

sketching algorithm ED-sketch that on an input string G of length

at most = with parameter : < = and using a public random string

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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d produces a sketch skd (G) of size $ (:2$ (
√
log(=) log log(=) ) ), and

recovery algorithm ED-recover such that given two sketches skd (G)
and skd (~) for two strings G and ~ and d , with probability at least

1 − 1/= (with respect to d), outputs ED(G,~) if ED(G,~) ≤ : and

large otherwise. The running time of the ED-sketch is =$ (1) and the

running time of ED-recover is $̃ (min(=2, :32$ (
√
log(=) log log(=) ) )).

We remark that we did not attempt to optimize the running

time, or poly-log factors in the sketch sizes. The running time

of ED-sketch is largely determined by the running time of the

Ostrovsky-Rabani embedding [20] (see below) which runs in poly-

nomial time, but we don’t know the exponent. The amount of

randomness the algorithm uses can be reduced to poly-logarithmic

in =.

Our sketch has the additional property that the recovery algo-

rithm also determines an optimal sequence of edit operations that

transforms G to ~.

Sketching for Hamming distance has been studied extensively

and is well understood. Several approaches yield sketches of size

$̃ (:) that can recover the Hamming distance and can solve the

harder problem of mismatch recovery, i.e., reconstructing the set of

positions where the two strings di�er, see e.g. [9, 21]; this sketch

size is information theoretically optimal. Our construction for edit

distance uses sketches for Hamming distance, but we need a more

re�ned version of Hamming distance sketches that allow for recov-

ery of all di�erences in regions of the strings where the density of

di�erences is low, even if the overall Hamming distance is large.

We call this new sketch a hierarchical mismatch recovery scheme.

This is the main new technical tool.

Not much is known about sketching edit distance when we only

want to approximate edit distance from the sketches. For Hamming

distance, there are known sketches of poly-logarithmic size in =

that allow recovery of Hamming distance within a (1 + n)-factor
[10]. For edit distance nothing like that is known. A more stringent

notion of sketching is that of embedding edit distance metrics into

ℓ1 metrics. The best known result in this direction, by Ostrovsky

and Rabani [20], gives an embedding of edit distance into ℓ1 with

distortion (approximation factor) BOR (=) = 2$ (
√
log(=) log log(=) ) .

Interestingly, our sketch relies on this embedding to �ngerprint

strings by their approximate edit distance. The dependence of our

sketch size on = in Theorem 1.1 can be stated more precisely as

$̃ (BOR (=)2). Since our use of their embedding is “black box”, any

improvement on the distortion factor for embedding edit distance

into ℓ1 would give a corresponding improvement in our sketch size.

2 OUR TECHNIQUE

The starting point of our sketch is the string decomposition algo-

rithm of Bhattacharya andKoucký [4], The algorithm basic-decomp

(see Section 4.3) takes a string G and partitions it into fragments so

that each fragment can be described concisely by a small context-

free grammar. The size of the grammar is at most:′ for some chosen

parameter :′. (In [4] this :′ is chosen to be $̃ (:).) The partition-
ing uses randomness to select the starting point for each fragment

and has the property that for any given position in the string, the

probability that it will start a fragment is at most ? ≈ 1/:′.

The partitioning process is locally consistent, i.e., when applied to

two strings G and~ with ED(G,~) ≤ : then with probability at least

1 − $̃ (ED(G,~)/:′) the decompositions of G and ~ are compatible,

which means that they have the same number of fragments and

ED(G,~) is equal to the sum of edit distance of corresponding frag-

ments.We say that a pair of fragments of G and~ is consistent if they

are corresponding fragments in some compatible decomposition.

If G and~ are compatibly split then to recover ED(G,~) it su�ces

to reconstruct each corresponding pair of fragments of G and ~

that are di�erent; then the edit distance is just the sum of the edit

distances of these pairs.

In [4] this decomposition procedure was used to obtain edit dis-

tance sketches of size $̃ (:2) by reducing the problem of sketching

for edit distance to the easier problem of sketching for (Hamming)

mismatch recovery mentioned in the introduction. This is the prob-

lem of sketching two strings so that from the sketches of two equal

length strings G and ~, one can recover all the locations where G

and ~ di�er. As mentioned earlier, there are known sketches of size

$̃ (:) for this problem.

The reduction to mismatch recovery sketches is as follows. Since

each fragment has a grammar of size (number of rules) :′, each such
grammar can be encoded by a bit string of length poly(:′) so that

each encoding has $̃ (:′) 1’s, and for two di�erent fragments, (1) the

grammar encodings have atmost $̃ (:)mismatches and (2) given the

set of locationswhere the grammar encodings di�er one can entirely

recover both grammars and therefore both fragments. To sketch

a string G we construct the grammar encodings of each fragment

in its decomposition, concatenate them, and then compress this

using a mismatch recovery sketch. Given the sketches of G and

~, the mismatch recovery algorithm �nds all the locations where

their concatenated grammar encodings di�er. From these, one can

reconstruct each corresponding pair of unequal fragments, compute

the edit distance for each pair, and sum them. If ED(G,~) ≤ : then

there are at most : corresponding pairs of fragments that di�er,

and each pair di�ers in at most :′ = $̃ (:) bits, so the mismatch

recovery sketch must handle up to $̃ (:2) mismatches, which can

be done with sketches of size $̃ (:2).
The sketch length is $̃ (:2) because the sketch must handle two

di�erent extremes. If all edit operations appear in large clusters of

size :/� , for � = $̃ (1), and each cluster is contained in a single

fragment pair, then there are at most � fragment pairs that are

unequal and these could be handled by sketches of size $̃ (:). On
the other hand, if the edit operations are well separateds, then we

could choose a value of :′ that is $̃ (1) resulting in a partition into

much smaller fragments each of which has grammar size $̃ (1). In
this case the edit operations may appear in Ω(:) di�erent fragment

pairs, but because the grammar size of the fragments is $̃ (1) we
can again manage with sketch size $̃ (:). Of course, the distribution
of edit operations will rarely match either of these extremes, there

may be clusters of edit operations of varying size and density.

Decomposition tree. A natural approach to handling this is to

build decompositions for many di�erent values of :′. We start with

a decomposition obtained from parameter :′ = :0 which is larger,

but not much larger than : . We then apply the decomposition to

each fragment of the �rst decomposition, using the smaller parame-

ter :1 = :0/2. We iterate this recursively where the value :8 of :
′ at
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recursion level 8 is :0/28 where :0, stopping when :8 is $̃ (1). This
would decompose the string into smaller and smaller fragments

ending with fragments described by constant size grammars. We

call this a decomposition tree of the string. We can then do sepa-

rate sketches for each of the levels of the tree. The sketches at the

top of the tree (small 8) are used to �nd edit operations that occur

together in a large cluster, and there can’t be too many of these

clusters. Sketches at the bottom of the tree (large 8) are used to

�nd edit operations in regions where the edit operations are well

spread. These edit operations may be spread over Ω(:) pairs of
fragments, but each such pair has edit distance $̃ (1). The interme-

diate levels would handle cases where the density of edit operations

is intermediate between these extremes.

To be more explicit, the sketch associated to decomposition level

8 is responsible for recovering pairs of compatible fragments at level

8 whose edit distance is (roughly) comparable to or larger than :8 ,

that could not be recovered from the sketches for previous levels of

the decomposition. There are at most :/:8 such pairs of fragments

(counting only compatibly split pairs). Since the fragments are

represented by grammars of size at most :8 , the level 8 scheme will

need to �nd at most 2: mismatches.

For compatible pairs of fragments at level 8 whose edit distance is

small compared to :8 , the decomposition procedure will split them

compatibly (with fairly high probability1) and the edit distance for

these will be recovered from the sketches corresponding to deeper

levels of the decomposition. In this way, all of the edit operations

will be found by some level of the decomposition.

While the sketch for level 8 only needs to identify at most 2:

mismatches, it can not use an ordinary mismatch recovery sketch

for 2: mismatches, because the strings of G and ~ consisting of the

grammar encodings for their level 8 fragments may di�er in many

more than 2: positions, since the 2: positions account only for the

di�erences due to pairs of fragments that must be recovered at level

8 . but not those due to di�erences coming from other fragment pairs.

To deal with this, we will need the extension of mismatch recovery

mentioned earlier that handles hierarchical mismatch recovery

(which will be discussed in more detail later in this section.)

Grammar representation. The sketch at a level 8 encodes the

concatenation of the grammars of size at most :8 that represent

the fragments in the level 8 decomposition. We aim to use this

sketch to recover those pairs of corresponding fragments whose

edit distance is roughly :8 but were not recovered from the sketches

at earlier levels. Fragment pairs having edit distance less than :8
will not be recovered by level 8 but will be further partitioned so

that the di�erences between them will be recovered at deeper levels

of the decomposition tree. The grammar representations we use

have the important property that for two fragments of edit distance

3 , the encodings of their grammar are at Hamming distance at

most $̃ (3). This ensures that if two strings G and ~ are compatibly

split, then the hamming distance between the concatenation of the

grammar encodings of their fragments will be $̃ (ED(G,~)). This
is important because the size of mismatch recovery sketches is at

least the Hamming distance between the strings.

1Here fairly high probabilitymeans probability at least 1−1/poly log= for a su�ciently
large poly-logarithmic function.

Watermarking using edit distance �ngerprints. For the level 8

encoding, we want that if two corresponding fragments are at

edit distance at least :8 , then recovering the mismatches in their

grammar encodings is enough to fully recover both grammars and

therefore both fragments. To ensure this, we will watermark the

grammar encodings by a special �ngerprint (computed from the

entire fragment), and replace each 1 in the grammar encoding by the

�ngerprint, Assuming that the watermark of the two fragments are

di�erent, then this will allow one to recover both grammars from

the set of mismatches. The watermark we use is a threshold edit

distance �ngerprints. This is a randomized �ngerprinting scheme

depending on parameter C , that maps each string to an integer so

that if two strings have edit distance more than C , their �ngerprints

di�er with high probability, and if two strings have edit distance

less than C/% , for some parameter % > 1 then their �ngerprints

will be the same with fairly high probability (with no promise

if the edit distance lies in the interval [C/%, C].) The parameter %

is a measure of the quality of the �ngerprinting algorithm; with

smaller % being higher quality. Such a �ngerprinting scheme can be

obtained from an embedding of the edit distance metric into the ℓ1
metric. We use the embedding of Ostrovsky and Rabani [20] which

has distortion BOR = 2
√
log= log log= and this distortion translates

into the parameter % of the �ngerprinting scheme.

Canonical edit operations. For the sketching procedure as out-

lined, the recovery algorithm will recover corresponding pairs of

unequal but compatible fragments and compute their edit distance.

While the recovered fragment pairs are likely to encompass most

edit di�erences between the two strings, it will typically miss some

pairs, and may also incorrectly recover a small fraction of the frag-

ment pairs. This means that the set of edit operations recovered will

only be approximate. To address this we will need to do multiple

independent sketches and when doing recovery, we combine the

outcomes recovered from each independent sketch (as described

below). As mentioned earlier if ED(G,~) = : , there could be many

di�erent sets of : edit operations that transform G to ~. To output

edit operations consistently among independent runs of the sketch-

ing algorithm we will always opt for a canonical choice of the edit

operations. The canonical choice prefers insertions into G over sub-

stitutions which in turn are preferred over deletions from G . This

preference is applied on edit operations from left to right in G so

the choice of edit operations corresponds to the left-most shortest

path in the usual edit distance graph of G and ~. Importantly, the

canonical path is consistent under taking substrings of G and ~. See

Section 3.2 for details on the choice of the path.

Bad splits. For two strings G and ~, as we split the fragments

of each through successive levels we will inevitably split some

fragments near an edit operation; this is called a bad split. A bad

split might cause G to be divided at a location but not ~. This causes

two problems: (1) sub-fragments of the badly split fragment may

not align, and (2) the bad split may cause fragments to the right of

the badly split fragment to be misaligned. Both problems need to

be dealt with.

Regularization of trees. To handle the second issue we regularize

the decomposition tree. The decomposition tree is of depth at most

$ (log=) and it might have degree up to =. We make it regular

as follows: for any node with fewer than = children we append
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dummy children to the right of the real children; these are thought

of as representing empty strings. We do this at all levels so that

the tree has degree = in all the internal nodes and all the leaves are

at depth exactly 3 = $ (log: +
√
log= log log=). Each node of the

tree is labeled by a fragment of G and its corresponding grammar.

This ensures that the underlying tree for the decomposition is the

same for every input string. Now, in constructing the level 8 + 1

decomposition from the level 8 , the fragments that correspond to

the children of node E in the two trees are paired with each other.

A bad split arising from the decomposition of the two fragments

corresponding to tree node E may cause misalignment among the

descendants of E but will not a�ect the alignment of nodes to E ’s

right.

Sparse representation. The regularized tree is of super-polynomial

size ≤ =log= , but only has $̃ (=) nontrivial nodes that represent
non-empty strings. As a result, the tree can be constructed in poly-

nomial time, and represented concisely by the set of ordered pair of

(node,fragment) for nonempty fragments. Furthermore the sketch-

ing algorithm works well with the sparse representation and its

running time is at most polynomial in the number of non-trivial

nodes.

Mismatch �oods. The more signi�cant issue caused by bad splits

is the �rst one, that a bad split at a node may result in bad splits at

many of its descendants. Indeed, if the partition of the fragments GE
and ~E of G and ~ at node E are not compatibly split, then the frag-

ment pairs of its children will not be aligned and the edit distances

between fragments corresponding to children of E may be arbitrar-

ily large, This misalignment will propagate down the tree possibly

resulting in huge edit distance between fragments for many nodes

in the subtree rooted at E , and the grammar encodings of these

fragments may have a very large Hamming distance.

A node in the tree that is in the subtree of a badly split node is

referred to as �ooded (with errors). At level 8 of the tree, we only

need to recover the grammars corresponding to the un�ooded nodes

of the level (because the edit operations for eacy �ooded nodewill be

recovered by the sketches corresponding to an un�ooded ancestor

in the tree.) The usual mismatch recovery sketch does not allow for

such selective recovery of un�ooded portions, because the �ooded

portion may cause the total number of mismatches to far exceed the

capacity of the mismatch recovery scheme. Thus we design a new

variant of Hamming schemes, which we call hierarchical mismatch

recovery scheme, that recovers di�erences in the un�ooded parts.

Hierarchical mismatch recovery. The hierarchical mismatch recov-

ery scheme is applied to a vector that is indexed by the leaves of a

tree. The speci�cation of the problem includes an assignment of

a positive capacity ^E to each node E in the tree, where all nodes

at level 8 have the same capacity ^8 . For any two strings G and ~,

the capacity function induces a load function ̂̂, where the value
̂̂E is 1 on leaves where G and ~ di�er and 0 on other leaves, and

the load on a node E is the minimum of the sum of the loads of its

children and its own capacity, A node E is underloaded if its load

is less than ^E/' for some parameter ', and a leaf is accessible if

every node on its path is underloaded. The scheme is required to

recover the mismatch information for all underloaded leaves. The

sketch is implemented as follows: Let 3 be the depth of the tree. For

each node at level 3 − 1 we apply a (standard) mismatch recovery

scheme to the vector of its children that handles (slightly more

than) ^3−1 mismatches. Then working the way up the tree, for each

node we apply a mismatch recovery to the vector consisting of the

sketches computed at each of its children. This is passed upwards

and the �nal sketch at the root is the output. The speci�c mismatch

recovery scheme used is a a superposition schemewhich is described

in Section 5.2. The hierarchical sketches for two strings G and ~

will allow for recovery of mismatches occurring at all accessible

leaves. The intuition behind this is as follows. For two strings G and

~, label each node by the pair of intermediate sketches for G and ~

at that node. This pair of sketches encodes information about the

mismatches of G and ~ at the leaves of its subtree. This information

at node E is a compression to $̃ (^8 ) bits of the information from its

children. Inductively one can show that for an underloaded node

the compressed string it computes has enough bits to preserve the

information about accessible mismatches that is encoded in the

sketches of its children. For overloaded nodes, the compression

will destroy the information about its children, but this is not a

problem because the scheme is not required to recover mismatch

information for leaves below an overloaded node. An important

thing to note is that the impact of overloaded nodes among E ’s

children (which may have a large number of mismatches among its

leaves) is controlled by the fact that the sketch size at those nodes

is restricted by its capacity.

In our application to sketching the grammars we assign the ca-

pacity to each level of the tree so that the capacity is proportional

to the grammar size :8 we expect at that level in the decompo-

sition tree. Nodes that correspond to misaligned fragments (due

to a bad split at an ancestor) and have a huge edit distance will

correspond to overloaded nodes, and as discussed above, the hier-

archical scheme contains the damage caused by the error �ood to

the subtree below the occurrence of the bad split. The idea behind

the choice of the parameters is that the probability of a bad split is

proportional to the number of edit operations in the fragment; it is

roughly $̃ (# of edit op’s/:8 ). Hence, in expectation each edit opera-

tion is responsible for $̃ (1) mismatches resulting from bad splits

that contribute to possible �ooding of a node. We can adjust the

parameters so that the �ooding of a node is in expectation only a

tiny fraction of its capacity. We can then apply Markov’s inequality

to argue that with a good probability nodes along a chosen path

are not overloaded, i.e., �ooded.

Details for our hierarchical mismatch recovery scheme are given

in Section 5.1.

Parameters. For our edit distance sketch we will set the parame-

ters as follows: ^0 = $̃ (B2
OR

:), ^8 = ^0/28 , :0 = $̃ (BOR:), :8 = :0/28

and C0 = $̃ (BOR:), C8 = C0/28 . Our sketch will be obtained by apply-

ing the hierarchical mismatch recovery scheme to each level of the

decomposition tree with those parameters.

Infrequent bad splits. The decomposition procedure is designed

so that for a node E at level 8 with G and ~ fragments GE and ~E ,

if ED(GE, ~E) ≤ :8/� where � = polylog(:8 ) the decompositions

of GE and ~E will be compatible with probability 1 − 1/polylog(:8 ).
While this is near 1, it is likely a non-trivial fraction of nodes will

fail to be compatibly split even though the edit distance between

the strings is small compared to :8 . As a result, for any given edit

operation, there may be a small but non-trivial chance that the
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recovery algorithm fails to recover it. To ensure that we get all of

the edit operations, we will need to run the scheme $ (log=) times

and include those edit operations produced by more than half the

runs to guarantee that every edit operation gets recovered with

good probability.

Location, location, location! The recovery procedure identi�es

pairs of fragments that di�er, and can therefore reconstruct the

canonical edits between those fragments. But as described so far,

there is nothing that allows the reconstruction to pinpoint where

these fragments appear in the full string. Without this information,

we can not combine information obtained from the independent

sketches just described. Our sketch will need an additional compo-

nent to properly position each recovered fragment.

Location tree.Wewill use technique of Belazzougui and Zhang [3]

(suggested to us by Tomasz Kociumaka). We turn the decomposition

tree into a binary tree by expanding each node with = children

into a binary tree of depth log(=) with = leaves. For each node in

the binary tree, we record the length of the substring represented

by its left child. We watermark this size by the usual Karp-Rabin

�ngerprint of the node substring, and we sketch the sizes using

the hierarchical mismatch sketch as in the grammar tree, i.e., level

by level. Fragments that contain edit operations will di�er in the

Karp-Rabin �ngerprint so they will reveal the size of their left child.

For a given node that contains an edit operation all of its ancestors

on the path to the root will also be watermarked. Hence we will

be able to recover the information about the size of all the left

children along the path. That su�ces to calculate the position of

each di�ering fragment. We will use the same setting of capacities

for the hierarchical mismatch scheme that we use for grammars.

That is clearly su�cient as grammars are larger objects than a

single integer.

Putting things together. The actual sketch consists of multiple

independent sketches. Each of these sketches is the output of the

hierarchical mismatch recovery scheme applied to each of the levels

of the grammar decomposition tree, and applied to each of the levels

of the binary location tree.

Recovery.We brie�y explain the recovery of edit operations from

sketches for two strings. The reconstruction starts by running

the recovery procedure for all the hierarchical mismatch recovery

sketches. This recovers various pairs of grammars with informa-

tion about their location within the original input strings G and ~.

From those grammars we pick only those which do not have any

ancestor grammar node recovered as well. (Descendant grammars

are superseded by the ancestor grammars.) For every pair of gram-

mars we reconstruct the fragments they represent and compute the

associated edit operations. (The edit operations could be actually

computed without decompressing the grammars [12].) For each

pair of recovered fragments, we use the location tree sketches to

recover the exact location of that fragment.

So for each pair of recovered fragments we calculate the canoni-

cal sequence of edit operations and given the exact location of the

fragment, we can determine the exact location assign within G and

~ where each edit occurred. We repeat this for each independent

copy of the sketch. Our �nal output is the set of edit operations

that appear in the majority of the copies.

Due to space restrictions this extended abstract will only pro-

vide details for the main technical tool: the hierarchical mismatch

recovery scheme. The full description of our edit distance sketch

and its proof of correctness are in the full version of the paper that

appears on arXiv.

3 PRELIMINARIES

3.1 Strings, Sequences, Trees, and String

Decomposition

For an alphabet Γ, Γ∗ denotes the set of (�nite) strings of symbols

from Γ, Γ= is the strings of length exactly = and Γ
≤= is the set of

strings of length at most =. We write Y for the empty string of length

0. The length of string G is denoted |G |. For an index 8 ∈ {1, . . . , |G |},
G8 is the 8-th symbol of G .

We will consider the input alphabet of our strings to be Σ =

{0, 1, . . . } which is the set of natural numbers. For strings of length

at most = we assume they are over sub-alphabet Σ= = {0, 1, . . . , =3−
1} so typically we will assume our input comes from the set Σ≤=

= .

This assumption is justi�ed as for computing edit or Hamming

distance of two strings of length at most = we can hash any larger

alphabet randomly to the range Σ= without a�ecting the distance

of the two strings with high probability.

If Γ is linearly ordered then Γ
∗ is also linearly ordered under

lexicographic order, denoted by <lex, given by G <lex ~ if G is pre�x

of ~ or if G 9 < ~ 9 where 9 is the least index 8 for which G8 ≠ ~8 . We

usually write G < ~ instead of G <lex ~.

We write G ◦ ~ for the concatenated string G followed by ~ and

for a list I1, . . . , I: of strings we write ⊙:
8=1I8 for I1 ◦ · · · ◦ I: .

Substrings and fragments. For a string G and an interval � ⊆
{1, . . . , |G |}, a string I is a substring of G located at � if |I | = |� | and
for all 8 ∈ � , I8−min(� )+1 = G8 . We denote this substring by G� . When

using intervals to index substrings, it is convenient to represent

intervals in the form (8, 9] = {8 + 1, . . . , 9} and (8, 8] denotes the
empty set for any 8 . (So a substring is always a consecutive sub-

sequence of a string.) We can also say that I is the substring of G

starting at position min(� ). Furthermore, I is a substring of G if I is

a substring of G starting at some position. However, the statement

that I is a substring of G says nothing about where I appears in G ,

and there may be multiple (possibly overlapping) occurrences of I

in G . For us it will be important where a substring appears. For a

string G and an interval � ⊆ {1, . . . , |G |}, the fragment located at � is

the pair G� together with � .

Sequences and Hamming Distance. We will consider �nite se-

quences of elements from some domain. It will be convenient

to allow sequences to have index sets other than the usual inte-

gers {1, . . . , =}. If � is any set, a �-sequence is an indexed col-

lection 0 = (08 : 8 ∈ �). A �-sequence over the set � is a �-

sequence with entries in�.�� denotes the set of �-sequences over

�. The Hamming Distance Ham(G,~) between two �-sequences

G and ~ is the number of indices 8 ∈ � for which G8 ≠ ~8 . We let

�≠ (G,~) = {8 ∈ � ;G8 ≠ ~8 }.

Trees. Our algorithm will organize the processed data in a tree

structure. To simplify our presentation we will give the tree very

regular structure. For �nite sets !1, . . . , !3 ,) (!1 × · · · ×!3 ) denotes
the rooted tree of depth 3 where for each 9 ∈ {1, . . . , 3} every

internal node E at depth 9 has |!9 | children, and the edges from E
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to its children are labeled by distinct elements of !9 . Each node E

at depth 9 is identi�ed with the length 9 sequence of edge labels

on the path from the root to E ; under this correspondence the set

of nodes at level 9 is !1 × · · · × !9 . The root is therefore the empty

sequence Y. For an internal node E at depth 9 − 1, its children are

nodes of the form E ◦ 0 where 0 ∈ !9 . Also the path from Y to E at

depth 9 is equal to the sequence of nodes E≤0, E≤1, . . . , E≤ 9 where

E≤8 is the pre�x of E of length 8 .
Usually in this paper, the sets !1, . . . , !3 are all equal to the same

set ! and in this case ) (!1 × · · · × !3 ) is denoted ) (!3 ). Usually,
! is a linearly ordered set and it is useful to visualize the planar

drawing of ) in which the left-to-right order of the children of an

internal node corresponds to the total ordering on the edge labels.

String decompositions, and tree decompositions. A string decom-

position of a string G is a sequence I1, . . . , IA of strings such that

G = ⊙A
8=1I8 . More generally if ! is a linearly ordered set then an

!-sequence (I8 : 8 ∈ !) where each I8 is a string is a decomposition

of G if G = ⊙8∈!I8 where the concatenation is done in the order

determined by !. Given a string decomposition I, each substring

I8 is naturally associated to a location interval Loc(I)8 = (B8 , C8 ]
where B8 =

∑
9∈!,9<8 |I 9 | and C8 = B8 + |I8 |.

Consider a string decomposition of string G whose substrings

are indexed by the set !3 (in lexicographic order). Let us view !3

as the set of leaves of the tree) (!3 ) as de�ned above. We can label

the leaves by the corresponding substrings of the decomposition,

and then extend the labelling to the set !≤3 of all tree nodes. We

identify the labeling of leaves with I, and extend it so for E ∈ !≤3 ,
IE is the concatenation, in lexicographic order, of the strings of all

the leaves below it. Note also that IE is the concatenation of the

strings labeling the children of E . We refer to the labeling I as a

string decomposition tree for G induced by the string decomposition

I. Given a string decomposition tree, we extend the de�nition of

location interval as Loc(I)E = (BE, CE] where BE =
∑
D∈!3 ,D<E |ID |

and CE = BE + |IE |. Hence, GLoc(I )E = IE .

3.2 Edit Distance and its Representation in Grid

Graphs

For G ∈ Σ
∗, we consider three edit operations on G :

• ins(8, 0) where 8 ∈ {1, . . . , |G | + 1} and 0 ∈ Σ, which means

insert 0 immediately following the pre�x of length 8 − 1. In

the resulting sequence the 8-th entry is 0.

• del(8) where 8 ∈ {1, . . . , |G |}, deletes the 8-th entry of G .

• sub(8, 1): replace G8 by 1.
For strings G,~, the edit distance of G and ~, ED(G,~), is the

minimum length of a sequence of operations that transforms G to

~. It is well-known and easy to show that ED(G,~) = ED(~, G).

Representing edit distance by paths in weighted grids. We de�ne

Grid to be the directed graph whose vertex set + (Grid) is the set
N×N (points) and whose edge set E(Grid) consists of three types of
directed edges: horizontal edges of the form ⟨8, 9⟩ → ⟨8+1, 9⟩, vertical
edges of the form ⟨8, 9⟩ → ⟨8, 9 + 1⟩ and diagonal edges of the form

⟨8, 9⟩ → ⟨8 +1, 9 +1⟩ for any 8, 9 ≥ N. For non-empty intervals � , � ⊆
N not-containing zero, we de�ne theGrid�× � to be the subgraph of

Grid induced on the set (�∪{min(� )−1})×(�∪{min(� )−1}), and for
% ⊆ � (Grid), the restriction of % to � × � is %�× � = % ∩� (Grid�× � ).

We call � × � a box. A directed path from ⟨min(� ) − 1,min(� ) − 1⟩
to ⟨max(� ),max(� )⟩ is called a spanning path of Grid�× � .

As is well known, the edit distance problem for a pair of strings

G,~ can be represented as a shortest path problem on a grid with

weighted edges (see e.g. [18]). The grid of G,~, Grid(G,~), is the
subgraph Grid(0, |G | ]× (0, |~ | ] with edge set E(G,~) ⊆ E(Grid). For
an edge 4 = ⟨8, 9⟩ → ⟨8′, 9 ′⟩ in Grid(G,~), let G4 = G8′ if 8

′
= 8 + 1

and G4 = Y otherwise. Similarly, let ~4 = ~ 9 ′ if 9
′
= 9 + 1 and

~4 = Y otherwise. We assign a cost to edge 4 to be 0 if ~4 = G4
and it is 1 otherwise. In particular, every horizontal edge and every

vertical edge costs 1, and diagonal edges cost 0 or 1 depending

on whether the corresponding symbols of G and ~ di�er. An edge

of non-zero cost is costly. If % is a set of edges, the costly part of

% , costly(%), is the set of costly edges. De�ne the cost of % to be

cost(%) = |costly(%) |.
We de�ne an annotated edge to be a triple (4, 0, 1) where 0, 1 ∈

Σ ∪ {Y}. The (G,~)-annotation of 4 is the annotated edge (4, G4 , ~4 ),
which is denoted 4+ (G,~). An annotated edge (4, 0, 1) is said to

be (G,~)-consistent or simply consistent if 0 = G4 and V = ~4 . We

emphasize that each edge 4 has a unique consistent annotation

(with respect to given G and ~).

For a set of edges % we write %+ (G,~) for the set of annotated
edges {4+ (G,~) : 4 ∈ %}. For a path % , costly(%+ (G,~)) is the set
of costly edges of % with their G,~-annotations. When the pair G,~

of strings is �xed by the context (which is almost always the case)

we write 4+ for 4+ (G,~) and for a set % of edges, we write %+ for

%+ (G,~). In particular, E+ for the set {4+ : 4 ∈ E(G,~)}.
It is well known and easy to see that there is a correspondence

between spanning paths of Grid(G,~) and sequences of edit opera-

tions that transform G to ~ where a sequence of : edit operations

corresponds to a spanning path of cost : . Thus, we will refer to a

spanning path of Grid(G,~) as an alignment of G and ~. We have:

Proposition 3.1. ED(G,~) is equal to the minimum cost of an

alignment of G and ~.

A pair G,~ of strings together with a box � × � with � ⊆ (0, |G |]
and � ⊆ (0, |~ |] speci�es the edit distance sub-problem ED(G� , ~� ).
Grid�× � (G,~) denotes the (edge-weighted) sub-graph ofGrid(G,~)
induced on (� ∪ {min(� ) − 1}) × (� ∪ {min(� ) − 1}).

There may be many optimal alignments. We will need a canon-

ical alignment for each G and ~ that is unique. For any graph

Grid�× � (G,~), de�ne the canonical alignment of Grid�× � (G,~) as
follows: Associate each path inGrid to the sequence from {vertical,
diagonal, horizontal} which records the edge types along the path.

The canonical alignment of Grid�× � (G,~) is the optimal spanning

path of Grid�× � (G,~) that is lexicographically maximum with re-

spect to the order vertical > diagonal > horizontal. The canonical

alignment canon(G,~) of G and ~ is the canonical alignment of

Grid(G,~).
The proof of the following is left to the reader.

Proposition 3.2. For strings G,~ and box � × � ⊆ (0, |G |] × (0, |~ |],
the (edge-weighted) graph Grid�× � (G,~) is isomorphic (in the graph

theoretic sense) to Grid(G� , ~� ) and so ED(G� , ~� ) is equal to the

length of the shortest spanning path ofGrid�× � (G,~). Also, the canon-
ical alignment of G� and ~� is isomorphic to the canonical alignment

of Grid�× � (G,~) (when viewed as paths of their respective graphs).
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Let % be an alignment of G and ~. A box � × � is compatible

with % provided that % passes through ⟨min(� ) − 1,min(� ) − 1⟩
and ⟨max(� ),max(� )⟩, and for such a box, the restriction %�× � of
% to � × � is the portion of % joining ⟨min(� ) − 1,min(� ) − 1⟩ and
⟨max(� ),max(� )⟩. This restriction is an alignment forGrid�× � (G,~).
The following proposition is straightforward.

Proposition 3.3. If % is an optimal alignment of G and ~ and

� × � is compatible with % then %�× � is an optimal alignment for the

sub-problem Grid�× � (G,~).

For strings G and ~, we say a box � × � is (G,~)-compatible if � × �

is compatible with the canonical alignment canon(G,~). We have:

Proposition 3.4. Let G,~ be strings and let � × � be a box that

is (G,~)-compatible. The restriction canon(G,~)�× � is equal to the
canonical alignment of Grid�× � (G,~).

4 THREE AUXILIARY PROCEDURES

Our sketching scheme for edit distance uses several auxiliary sketch-

ing schemes. Three of these are from previous work and one is new

to this paper. In this section, we describe the key properties of the

previous three schemes.

4.1 Fingerprinting

The �ngerprinting problem for a Σ∗ is to de�ne a family of sketching

functions that distinguishes between distinct elements of Σ∗. More

formally, given a parameter=wewant a family fingerprintd (·;=) :
Σ
≤=
= → Z+ such that for any strings G,~ ∈ Σ

≤=
= with G ≠ ~

Prd [fingerprintd (G ;=) = fingerprintd (~;=)] < 1/=4 .
The following classic result of Karp-Rabin [15] provides an ef-

�cient �ngerprinting scheme. We refer to it as the Karp-Rabin

�ngerprint.

Theorem 4.1. There is an e�ciently computable randomized func-

tion fingerprintd (·;=) : Σ≤=
= → {1, . . . , =5} such that for any G,~ ∈

Σ
≤=
= with G ≠ ~, Prd [fingerprintd (G ;=) = fingerprintd (~;=)] <

1/=4. The number of bits needed to describe d is $ (log=). The time

to compute fingerprintd (G ;=) is $ ( |G | · log$ (1) =).

4.2 Threshold Edit Distance Fingerprinting

In the threshold edit distance �ngerprinting we are given a parameter

= and a threshold parameter : . We want a family of sketching func-

tions ted-fingerprintd (·;:, =) : Σ∗ → Z+ such that for all G,~ ∈
Σ
≤=
= such that ED(G,~) ≥ : , Pr[ted-fingerprintd (G ;:, =) =

ted-fingerprintd (~;:, =)] ≤ 1/=4, i.e. the sketch is very likely

to distinguish strings G,~ that are far. We also want that for some

inaccuracy gap B > 1, for strings G,~ such that ED(G,~) <
:
B ,

Pr[ted-fingerprint(G) ≠ ted-fingerprint(~)] is small. Precisely

we want that for all G,~:

Pr[ted-fingerprintd (G) ≠ ted-fingerprintd (~)] ≤
ED(G,~)

:
·B .

Note that the requirement becomes easier as B gets larger. The

problem of constructing a threshold edit distance �ngerprinting

scheme with inaccuracy gap B > 1 is closely related to the problem

of �nding an approximate embedding function 5 that maps strings

to vectors in R3 (for some 3) so that ED(G,~) is approximated by

|5 (G) − 5 (~) |1 =
∑3
8=1 |5 (G) − 5 (~) | within a factor B . This latter

problem was investigated by Ostrovsky and Rabani [20] and their

results yield the following consequence:

Theorem 4.2. There is an algorithm OR-fingerprint(G ;:, =) for
the threshold edit distance �ngerprinting problem that for arbitrary

:, = ∈ N has inaccuracy gap BOR = 2$ (
√
log(=) log log(=) ) and for any

string G ∈ Σ
≤=
= gives a �ngerprint of value at most$ (=4). The �nger-

printing algorithm uses a randomness parameter of length $ (log3 =)
and runs in time polynomial in = and : .

We refer to OR-fingerprint(G ;:, =) as Ostrovsky-Rabani �n-
gerprint.

We make a few remarks on this theorem.2 [20] does not provide

explicit bound on the amount of randomness needed. In particular,

Lemma 9 samples random subsets and uses tail-bound inequalities

to bound the probability of bad events. One can use $ (log=)-wise
independent samples to reduce the necessary randomness [11].

4.3 The Procedure basic-decomp

The sketch for edit distance from [4] gave sketches of size $̃ (:2). A
key procedure in their algorithm is an essential part of our sketch-

and-recover scheme. We restate the properties of algorithm basic-

decomp in a form suitable for us. The algorithm takes as input a

string G , parameter = and an integer sparsity parameter : , where

|G | ≤ =. We denote this by basic-decomp(G ;=, :).
basic-decomp(G ;=, :) is either undefined or outputs:

• A string decomposition of G , I = (I8 : 8 ∈ , ), where,
is the set {0, 1}⌈log=⌉ with the lexicographic order. (Some

strings may be empty.)

• A collection grams = (grams8 : 8 ∈ , ) of :-sparse bit-

vectors (a bit-vector is C sparse if it has at most C 1’s) of

length # = =60 such that basic-decode(grams8 ) = I8 if

I8 ≠ Y (so grams8 is a :-sparse encoding of I8 ) and if I8 = Y

then grams8 is the all 0 vector 0
# . Furthermore, grams8 has

the followingminimality property: for any bit-vector 1 that is

bit-wise less than grams8 , basic-decode(1) is undefined.
(For technical ease we require basic-decode(0# ) to also be

undefined although 0# represents the empty string.) Each

grams8 is represented as a list of positions that are set to 1.

Theorem 4.3. The algorithm basic-decomp has the following

properties for all =, : :

(1) For any input G , the probability that basic-decomp(G ;=, :) is
undefined is atmost 1

=4 . The running time of basic-decomp(G ;
=, :) as well as the total number of ones in grams8 ’s is bounded

by $ ( |G | · log$ (1) =).
(2) For any pair of inputs G,~ for which the basic-decomp(G ;:)

and basic-decomp(~;:) is not undefined, suppose I = (I8 :
8 ∈ , ) and grams = (grams8 : 8 ∈ , ) is the output on G

2We had di�culties reading the paper [20]. Indeed, there is a minor correctable issue
in the way Lemmas 8 and 9 are presented in the paper. The lemmas claim output from
ℓ1 which allows for vectors with arbitrary real numbers. Indeed, because of the scaling
in their proofs they do output vectors with real numbers. However, both lemmas need
to be applied iteratively and they assume input to be a 0-1-vector. This disparity can
be corrected using standard means but it requires additional e�ort.

962



STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Michal Koucký and Michael E. Saks

and I′ = (I′8 : 8 ∈, ) and grams′ = (grams′8 : 8 ∈, ) is the
output on ~.

(a) With probability at least 1 − Bsplit ·
ED(G,~)

:
where Bsplit =

$ (log4 =), for all 8 ∈, , the box Loc(I)8×Loc(I′)8 is (G,~)-
compatible whenever I8 is non-empty, and I8 is non-empty

i� I′8 is non-empty.

(b) For all 8 ∈, ,Ham(grams8 , grams′8 ) ≤ BE→H ·ED(I8 , I′8 )
where BE→H = $ (log2 =).

The point of Item 2a is that if for each 8 ∈, , the box Loc(I)8 ×
Loc(I′)8 is (G,~)-compatible then ED(G,~) = ∑

8∈, ED(I8 , I′8 ).
Note, for Item 1, [4] claims success probability of decomposi-

tion to be only $ (1/=) so we apply their construction with their

parameter = to be set to our =4. For Item 2a, they do not specify

the success probability explicitly the way we do but our formula

is immediate from their analysis of probability of what they call

undesirable split. The upper bound on the di�erence between two

grammars in terms of edit distance of G and ~ is also implicit in the

same analysis.

Given a grammar� by its sparse representation as a list of C posi-

tions of 1’s, basic-decode(�) runs in time$ (C + |G |) if� represents

a string G and in time $ (C) otherwise. A grammar representing G

contains at most BE→H · |G | ones.

5 SKETCH-AND-RECOVER SCHEMES

A sketch-and-recover scheme consists of two algorithms: a sketching

algorithm that takes a string G over some alphabet and produces

a shorter string sk(G) (a sketch) perhaps over a di�erent alphabet,
and a recovery algorithm that takes two sketches sk(G) and sk(~)
and recovers a sequence of edit operations that turn G into ~ and

vice-versa.

The schemes are randomized and typically take some list ℓ of

auxiliary parameters (such as the maximum input length handled

by the sketch). Thus the sketch skd (G ; ℓ) is a randomized function.

The recovery algorithm requires that skd (G ; ℓ) and skd (~; ℓ) were
created using the same randomizing parameter d , which we think

of as coming from public randomness accessible to all, and the

same ℓ , and it needs to know d . We allow the sketch function on

a given input to fail (output undefined) with a small probability

(with respect to d), and similarly for the recovery algorithm. We

usually suppress d and ℓ and write simply sk(G).
E�ciency of sketch-and-recover schemes is measured by:

• The sketch length bit-length(skd (G ;:, =)), which is the num-

ber of bits in the binary encoding of skd (G ;:, =).
• The parameter length bit-length(d) is the number of bits (the

binary encoding of) the parameter d .

• The running time of the sketch and recovery functions.

Our primary focus here is on achieving small sketch length. We

also want the running time of the sketch and recovery algorithms

to be at most polynomial in the length of the strings being sketched,

but in this paper we are not trying to optimize the polynomial.

Our goal in this paper is a sketch-and-recover scheme that allows

for recovery of edit distance ED(G,~) given the sketches of G and ~.

For this problem the list ℓ of sketching parameters is =,: were = is

an upper bound on the length of strings and : is an upper bound on

ED(G,~) for which the recovery algorithm must �nd the distance.

For Hamming distance sketches, there are known sketches that

recover not only Ham(G,~) but also the mismatch information for

G,~, MIS(G,~), which is the set {(8, G8 , ~8 ) : 8 ∈ �≠ (G,~)}. Note that
given MIS(G,~) and either string one can recover the other string.

The analog of mismatch information for Hamming distance is

the set of costly annotated edges of the canonical alignment (see

Section 3.2), which is enough to determine the canonical alignment

5.1 Hierarchical Mismatch Recovery

We will need sketch-and-recover schemes for Hamming distance

over the set of �-sequences over some alphabet Γ that recover the

mismatch informationMIS(D,F) de�ned in Section 5. We refer to

this as mismatch recovery. We will need a more general formula-

tion of mismatch recovery in which we only require recovery of

mismatch information for certain indices. Those indices will be

determined for each pair of strings D andF separately.

This more general formulation is called targeted mismatch recov-

ery. Before giving a formal de�nition, we motivate it with an exam-

ple. Consider sequences of length = =<2 for some integer<, where

we think of a sequence D as consisting of< fragments D1, . . . , D<

each of length<, where fragment 8 is the substring D (< (8−1),<8 ] .
For strings D,F we say that fragment 8 is overloaded if there is

more than one mismatch in the fragment, and underloaded if there

is at most one mismatch in the fragment. Let � (D,F) be the set

of mismatch indices belonging to underloaded fragments. The set

� (D,F) de�nes a targeted mismatch recovery problem where our

goal is to provide sketching and recovery algorithms so that for

any pair D,F ∈ Γ
� , given the sketches of D and F , the recovery

algorithm �nds all mismatch indices belonging to � (D,F). This
particular example can be solved using a sketch of size $̃ (<) as
it will become clear later. One needs to recover at most < mis-

matches in underloaded fragments while not being distracted by

the overloaded fragments.

In general, a targeted mismatch recovery problem is speci�ed

by a target function � which for each pair D,F ∈ Γ
� , satis�es

� (D,F) ⊆ �≠ (D,F). The targeted mismatch recovery problem for a

target function � is denoted TMR(� ). The output of the recover
function applied to two sketches is required to be a set of triples

(8, 0, 1) where 8 ∈ � and 0, 1 ∈ Γ. Such a triple is called a mismatch

triple. The success conditions for TMR(� ) for the pair D,F are:

Soundness. recover(sk(D), sk(F)) ⊆ MIS(D,F), i.e. every mis-

match claim is correct.

Completeness. � (D,F) ⊆ recover(sk(D), sk(F)) so the algo-

rithm recovers all mismatch triples from � (D,F).
Notice, we do not require that recover(sk(D), sk(F)) ⊆ � (D,F).

Indeed, the recovery algorithm by itself might not know � (D,F).
So the Completeness depends on the target � but Soundness does

not. A scheme for targeted mismatch recovery with target function

� has failure probability at most X provided that for any D,F ∈ Γ
� ,

with probability at least 1 − X , both Completeness and Soundness

hold. Here, the probability is taken over the randomness of the

sketching and recovery algorithms. (Our recovery algorithms will

actually be deterministic, so all the randomness is coming from the

sketch.)

Hierarchical mismatch recovery (HMR) is a special case of tar-

geted mismatch recovery where the target function depends on a
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capacitated tree () (!3 ), ^) which consists of a rooted tree ) (!3 )
and an integer-valued capacity function ^ on levels of the tree. For

an integer 9 we write ^ 9 for the capacity of nodes at level 9 so we

think of ^ = (^0, . . . , ^3 ). We require 1 = ^3 ≤ ^3−1 ≤ · · · ≤ ^0.

We use () (!3 ), ^) to formulate a targeted mismatch recovery

problem for !3 -sequences over Γ. The target set for D and F de-

pends on () (!3 ), ^) and an overload parameter ', and is denoted

�) (!3 ),^,' (D,F). We de�ne it next. The load function ̂̂(D,F) as-
sociated to ^ and a pair D,F is de�ned on the vertices of the tree

) (!3 ) as follows:
• For a leaf E ∈ !3 , ̂̂E = 1 if DE ≠ FE , and is 0 otherwise.

• For an internal node E at level 9 < 3 ,

̂̂E = min(^ 9 ,
∑

E′∈child(E)
̂̂E′ ).

Clearly ̂̂E ≤ ^ 9 for every vertex E at level 9 . We say that an

internal node E at level 9 is '-overloaded, for parameter ' > 1, if

̂̂E ≥ 1
'^ 9 and is '-underloaded otherwise. (Later we will �x the

parameter ' to be 43 , and refer to nodes simply as overloaded or

underloaded.)

Intuitively, the leaves below a '-overloaded node are “crowded”

with mismatches so we do not require them to be recovered. Notice

that a '-underloaded E satis�es ̂̂E =
∑

E′∈child(E) ̂̂E′ . A leaf is

said to be '-accessible if its path to the root consists entirely of

'-underloaded nodes.

We de�ne �) (!3 ),^,' (D,F) to be the set '-accessible leaves ℓ

where Dℓ ≠ Fℓ . We denote by HMR() (!3 ), ^, ') the targeted mis-

match recovery problem with target function �) (!3 ),^,' . In Sec-

tion 5.4 we will prove:

Theorem 5.1. Let ) (!3 ) be a level-uniform tree as de�ned in

Section 3.1 and let ^ = (^0, . . . , ^3 ) be a capacity function 1 = ^3 ≤
^3−1 ≤ · · · ≤ ^0 ≤ |!3 |. Let |!3 | and all ^ 9 be powers of two. Let

Γ = F? where ? ≥ 4|!3 |2. There is a sketch-and-recover scheme for

hierarchical mismatch recovery for !3 -sequences over Γ de�ned by

procedures hmr-sketch and hmr-recover that given X > 0 satis�es:

(1) The scheme solves HMR() (!3 ), ^, ') for any ' ≥ 43 with

failure probability at most X .

(2) The sketch bit-size is$ (^0 · log |Γ | · (log |!3 | + log(1/X))) bits.
(3) The sketching algorithm runs in time $ ( |!3 | · log$ (1) |Γ | ·

log(1/X)).
(4) The recovery algorithm runs in time$ (^0·log$ (1) |Γ |·log(1/X)).
(5) If the !3 -sequence D is given via the sparse representation

{( 9, D 9 ) : 9 ∈ supp(D)} where supp(D) = { 9 ∈ !3 : D 9 ≠ 0}
then the time to construct the sketch is $ ((^0 + |supp(D) |) ·
log$ (1) |Γ | · log(1/X)).

(6) The number of mismatch pairs output by the algorithm is at

most the capacity ^0 of the root.

The function hmr-sketch depends on ) (!3 ), ^, ', and X and

so these are input parameters to hmr-sketch. In what follows

we write hmr-sketch(D;) (!3 ), ^, ', X) for the sketch of D for the

capacitated tree () (!3 ), ^) and overload parameter ', and error

parameter X , and hmr-recover(D,F) for the recovery function

which takes as input the sketches D andF ′ output by hmr-sketch

on two strings.

In our application we will also use a hierarchical mismatch recov-

ery scheme for the special case of the tree ) ({0, 1}3 ) where 3 = 0.

In that case we will need to sketch only a single value from Γ so

we assume that its sketch consists of the value itself. The recovery

procedure from two such sketches is straightforward.

We remark that the theorem easily generalizes to the case where

the edges labeling edges at level 8 come from a set !8 with the sets

!1, !2, . . . , !3 being di�erent.

5.2 Superposition Sketch-and-Recover Schemes

This subsection and the next give a general approach to targetedmis-

match recovery. We apply this approach in Section 5.4 to construct

the sketch-and-recover scheme hmr-sketch and hmr-recover for

hierarchical mismatch recovery and prove Theorem 5.1.

We make the following assumptions:

• � = {0, . . . , |� | − 1}.
• Γ is the �eld F? for some prime larger than |� | so � ⊆ Γ.

If these assumptions do not hold we can often reduce our situa-

tion to one where it does hold. We do not need � to be integers; it

is enough that there is an easily computable 1-1 mapping< from

� to the nonnegative integers. Letting< = max9∈�<( 9) + 1, we

can think of � as a subset of {0, . . . ,<− 1}, and enlarge the domain

to {0, . . . ,< − 1} de�ning any �-sequence to be 0 on those indices

outside of � . Similarly we can replace the range Γ by F? for some

? whose size is at least max{|Γ |, |� |}, where we interpret Γ as a

subset of F? via some easily computable 1-1 map.

Let D,F be �-sequences over Γ. Here we use a basic technique

from [21] (see also [8, 9] for related constructions), that allows for

the recovery of MIS(D,F) at a speci�c index 8 . For a parameter

U ∈ Γ, the trace of D ∈ Γ
� (with respect to U), denoted trU (D) is the

�-sequence over Γ4 where for each 8 ∈ � , trU (D)8 has entries:

trU (D)8,value = D8 ,

trU (D)8,product = 8 · D8 ,
trU (D)8,square = D28 ,

trU (D)8,hash = U8D8 .

All the calculations are done over F? . We refer to a vector in Γ
4

with indices from {value, product, square, hash} as a trace vector
and we refer to U as the trace parameter

For D,F ∈ Γ
� , the trace di�erence of D,F is ΔU (D,F) = trU (D) −

trU (F). Here, for each 8 , ΔU (D,F)8 = trU (D)8 − trU (F)8 is a trace
vector obtained by coordinate-wise subtraction.

De�ne the function restore which maps trace vectors C to Γ
3 as

follows:

restore(C)index =
Cproduct

Cvalue

restore(C)x-val =
Csquare + C2

value

2Cvalue

restore(C)y-val =
Csquare − C2

value

2Cvalue
.

It is easy to check:
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Proposition 5.2. The mismatch information for (D,F) at 8 is
completely determined by ΔU (D,F)8 as follows: 8 is a mismatch index

of D,F if and only if ΔU (D,F)8 ≠ 0 and for such an 8 ,

restore(ΔU (D,F))8,index = 8,

restore(ΔU (D,F))8,x-val = D8 ,

restore(ΔU (D,F))8,y-val = F8 ,

and therefore restore(ΔU (D,F))8 = (8, D8 ,F8 ) = MIS(D,F)8 .

We remark that the division by 2 in the de�nition of restore is

the reason why we need that Γ does not have characteristic 2. Also,

note that trU (D)8,hash is not used in restore, but is used later to

check soundness. In standard binary representation of integers, all

arithmetic operations over F? that are necessary to compute trace

or its restoration at a single coordinate can be computed in time

$ (log$ (1) ?).
We are now ready to de�ne the class of superposition sketches

for functions from � to Γ.

De�nition 5.3 (Superposition sketch). Let ( be a set, ℎ : � → (

and U ∈ Γ. The superposition sketch induced by (U,ℎ) is the function
trU,ℎ that maps D ∈ Γ

� to trU,ℎ (D) ∈ (Γ4)( where for 9 ∈ ( :

trU,ℎ (D) 9 =
∑

8∈ℎ−1 ( 9 )
trU (D)8 .

In words, the function ℎ is used to partition � into |( | classes
ℎ−1 ( 9), and trU,ℎ (D) at 9 ∈ ( is the sum of the trace vectors of D

corresponding to indices of � in the class ℎ−1 ( 9). The size (in bits)

of the output is $ ( |( | log |Γ |).

Note that we can compute the superposition sketch of any �-

sequence over Γ easily: Initialize trU,ℎ (D) to all zero and then for

each 8 ∈ � add the trace vector trU (D)8 to trU,ℎ (D) 9 where 9 = ℎ(8).
For D,F ∈ Γ

� and ℎ : � → Γ, a mismatch index 8 ∈ � is

recoverable for D,F,ℎ if ℎ−1 (ℎ(8)) ∩ �≠ (D,F) = {8}. We now de�ne

a procedure recoverU,ℎ that recovers all recoverable indices.

recoverU,ℎ (trU,ℎ (D), trU,ℎ (F), U, ℎ)
Input: Traces trU,ℎ (D), trU,ℎ (F) for two strings D,F ∈ Γ

� ,

trace parameters U ∈ Γ, ℎ : � → ( .

Output: The set"U,ℎ (D,F) of mismatch triples.

1 Let ΔU,ℎ (D,F) = trU,ℎ (D) − trU,ℎ (F).
2 Let � be the set of 9 ∈ ( such that ΔU,ℎ (D,F) 9,value ≠ 0.

3 Rebuilding step: For each 9 ∈ � let

I 9 = restore(ΔU,ℎ (D,F) 9 ).
4 Filtering step: Let � = { 9 ∈ � , I 9,index <

|� | ∧ ΔU,ℎ (D,F) 9,hash = UI 9,index (I 9,x-val − I 9,y-val)}.
5 Return"U,ℎ (D,F) = {I 9 : 9 ∈ � }.

In the rebuilding step, the algorithm produces a list of mismatch

triples by applying restore to every trace vector it can among the

ΔU,ℎ (D,F) 9 . In the �ltering step, it eliminates some of these mis-

match triples, and then it outputs the rest. The following lemma

shows that (1) The rebuilding step produces all mismatch triples

corresponding to recoverable indices (and possibly some others)

and (2) The �ltering step with high probability eliminates all mis-

match triples corresponding to indices that are not recoverable, so

Soundness holds with high probability.

Lemma 5.4. Let D,F ∈ Γ
� and ℎ : � → ( be �xed. Let � and �

are as in the recoverU,ℎ (D,F). For each 9 ∈ ( :

(1) If |ℎ−1 ( 9) ∩ �≠ (D,F) | = 0 then 9 ∉ � .

(2) If |ℎ−1 ( 9) ∩ �≠ (D,F) | = 1 then I 9 ∈ "U,ℎ (D,F) and I 9 =

(8, D8 ,F8 ) where 8 is the unique mismatch index such that

ℎ(8) = 9 .

(3) The probability that "U,ℎ (D,F) outputs a triple that is not

inMIS(D,F) (i.e. that Soundness fails) is at most
( |� |−1) · |( |

|Γ |
over a uniformly random choice of U ∈ Γ.

The following result gives upper bounds on the running time of

the sketch and recover algorithms, and on the space needed for the

sketch

Proposition 5.5. Let Γ = F? and let � = {0, . . . , |� | − 1} with
|� | ≤ ? . Let ( be a set, ℎ : � → ( and U ∈ Γ. The superposition

sketch trU,ℎ maps a �-sequence D over Γ to a sketch of bit-length

$ ( |( | log |Γ |). The running time for the sketch algorithm is$ ( |� | ·) )
and the running time of the recover algorithm is$ ( |( | ·) ), where) is

an upper bound on the time to perform a single arithmetic operation

over Γ and evaluate ℎ at a single point.

Furthermore if a �-sequence D over Γ is given via a sparse rep-

resentation, via {( 9, D 9 ) : 9 ∈ supp(D)} where supp(D) = { 9 ∈
� : D 9 ≠ 0} then the running time of the sketch algorithm is

$ (( |( | + |supp(D) |) ·) ).

5.3 Randomized Superposition Sketches

In order to apply the superposition sketch we need to select a good

ℎ. However, one can hardly hope that if ( is comparable in size

to MIS(D,F) then one can �nd a single ℎ : � → ( for which all

mismatch indices �≠ (D,F) will be recoverable. Hence, we will try su-
perposition sketches for multiple randomly chosen ℎ’s. Fix a (small)

family � ⊆ {ℎ : � → (} and a probability distribution ` on � (not

necessarily uniform). For V ≤ 1, we say that 8 is V-recoverable for

D,F, ` provided that for ℎ ∼ `, the probability that 8 is recoverable

for D,F,ℎ is at least V . (Recall that if 8 is recoverable for D,F,ℎ then

for any choice of U , the output of recovery procedure from the

sketches trU,ℎ (D) and trU,ℎ (F) includes the triple (8, D8 ,F8 ).)
We select hash functions ℎ1, . . . , ℎℓ independently according

to `, for some redundancy parameter ℓ . We also select trace pa-

rameters U1, . . . , Uℓ uniformly at random from Γ. The sketch of D

consists of the sequences ℎ1, . . . , ℎℓ and U1, . . . , Uℓ together with

trU1,ℎ1
(D), . . . , trUℓ ,ℎℓ (D). For the recovery algorithm, given the

sketches for D and F we compute each of the sets "U8 ,ℎ8 (D,F)
for 8 ∈ [ℓ] and de�ne"U1,...,Uℓ ,ℎ1,...,ℎℓ (D,F) to be the set of triples

that appear in strictly more than half of the sets.

We refer to a scheme of the above type as a randomized super-

position scheme. Such a scheme is determined by the distribution

(�, `) over hash functions and the redundancy ℓ .

The size of the sketch in bits (not including the description of

the hash functions used) is$ (ℓ · |( | · log |Γ |). The description of the

hash functions depends on the method used to represent members

of � . For standard explicit choices of � (such as explicit families of
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$ (1)-wise independent functions), members of ℎ are represented

in $ (log |� |) space.

Proposition 5.6. Let � and ( be sets and let Γ be a �eld of size

at least 4( |� | − 1) | · |( |. For each pair of strings D,F ∈ Γ
� , suppose

� (D,F) is a subset of � . Let (�, `) be a distribution over hash func-

tions from � to ( . Suppose that for every D,F , every index belonging

to � (D,F) is 3/4-recoverable forD,F, `. Then for any X > 0, the super-

position sketch using (�, `) with redundancy ℓ ≥ 8(ln |� | + ln 1
X
+ 2)

satis�es the Completeness and Soundness conditions for � with failure

probability at most X .

5.4 Proof of Theorem 5.1

In this section we show how to apply the randomized superposition

schemes of Section 5.3 to construct a sketch-and-recover scheme

for the hierarchical mismatch recovery and prove Theorem 5.1. The

reader should review the set-up for hierarchical mismatch recovery

in Section 5.1.

Recall that the scheme gets a capacitated tree () (!3 ), ^) where
^ = (^0, . . . , ^3 ) and for each 9 , ^ 9 ≥ ^ 9+1. In preparation for

describing the sketch-and-recover scheme, we associate to each

node E at level 9 of ) (!3 ), a set of buckets which are ordered pairs

(E, 8) where 1 ≤ 8 ≤ ^ 9 . We refer to (E, 8) as a E-bucket, and a bucket
of the root is a root-bucket. Each leaf ℓ has only one bucket, (ℓ, 1).

The hash functions of our superposition scheme are leaf→root

functions, which are functions that map !3 (the set of leaves) to

the set of root-buckets. We will use Proposition 5.6 to prove that

the scheme works by:

(1) Describing a distribution ` over leaf→root functions.

(2) Showing that for any pair of strings D,F , every leaf that

belongs to �) (!3 ),^,' (D,F) is 3/4-recoverable for D,F, `.

To describe the distribution ` on leaf→root functions, we con-

sider a speci�c representation of a leaf→root functions, and for

this we need the notions of a trajectory and routing functions.

For a leaf ℓ ∈ !3 , the path from ℓ to the root Y in ) (!3 ) are the
nodes identi�ed by ℓ≤3 , ℓ≤3−1, . . . , ℓ0. We de�ne a trajectory for ℓ

to be a sequence of buckets one for each node on the path from

ℓ to Y, (ℓ≤3 , 83 ), (ℓ≤3−1, 83−1), . . . , (ℓ0, 80) where 8 9 ∈ {1, . . . , ^ 9 }. A
trajectory is uniquely determined by the leaf ℓ and the sequence of

indices (83 , 83−1, . . . , 80). Note that 83 must equal 1.

We want a way to specify a trajectory for every leaf. We do this

using a collection A = (A 9 : 9 < 3) of routing functions, one for

each internal level of the tree. The routing function A 9 is a function

from !× {1, . . . , ^ 9+1} to {1, . . . , ^ 9 }. For E at level 9 it maps buckets

corresponding to children of E to buckets of E as follows: for 0 ∈ !

and 8 ∈ {1, . . . , ^ 9+1}, the bucket (E ◦ 0, 8) is mapped to (E, A 9 (0, 8)).
Thus the collection of routing functions determines a trajectory

for every leaf ℓ with sequence of indices 83 (ℓ) = 1 and for 9 < 3 ,

8 9 (ℓ) = A 9 (ℓ9+1, 8 9+1 (ℓ)). This induces the leaf→rootmapping that

maps each ℓ ∈ !3 to the bucket (Y, 80 (ℓ)).
We are now ready to specify the distribution `. For each level

0 ≤ 9 < 3 , let � 9 = {ℎ : ! × {1, . . . , ^ 9+1} → {1, . . . , ^ 9 }} be a

pairwise independent family of routing functions for level 9 . Inde-

pendently select A0, . . . , A3−1 from �1, . . . , �3−1. The distribution `

on leaf→root functions is the distribution induced by the selection

of A0, . . . , A3−1. The total number of bits to represent a leaf→root

function in the family is $ (3 (log |! | + log^0)).

Lemma 5.7. Let () (!3 ), ^) be a capacitated tree. Let ` be the distri-
bution on leaf→root functions induced by choosing routing functions

A0, . . . , A3−1 independently from pairwise independent distribution.

For any two stringsD,F in Γ!
3
, every ℓ ∈ �) (!3 ),^,43 (D,F), i.e., every

43-accessible mismatch leaf, is 3/4-recoverable for D,F, `.

Proof. Let ℓ ∈ !3 be a 43-accessible leaf with respect to D,F

where Dℓ ≠ Fℓ . We must show that ℓ is 3/4-recoverable. Recall that
ℓ is 43-accessible if each node along the path from ℓ to root is 43-

underloaded, i.e., for each 9 < 3 , ̂̂ℓ≤ 9 < ^ 9/43 . Let (A 9 : 0 ≤ 9 < 3)
be the sequence of random routing functions selected as above and

let 5 be the induced leaf→root function.

Let (83 , . . . , 80) denote the sequence of indices (83 (ℓ), . . . , 80 (ℓ))
for the trajectory of ℓ . This is a random variable depending on the

choice of A0, . . . , A3−1. By de�nition, ℓ is not recoverable if and only

if there is a mismatch leaf ℓ′ ≠ ℓ such that 5 (ℓ) = 5 (ℓ′). If ℓ′ ≠ ℓ is

a leaf such that 5 (ℓ′) = 5 (ℓ) then the trajectories of ℓ and ℓ′ have
non-empty intersection. We say that ℓ and ℓ′ merge at level 9 if they

are in di�erent buckets at level 9 + 1, but in the same bucket at level

9 . (Note that once the trajectories merge, they remain the same all

the way to the root.)

For 9 ∈ {0, . . . , 3 − 1}, let MERGE9 be the event that there is a

mismatch leaf ℓ′ ≠ ℓ that merges with ℓ at level 9 . We now �x 9 and

prove that Pr[MERGE9 ] ≤ 1/43 . This will �nish the proof, since

summing over all the levels, we will get that the probability that ℓ

is not recoverable is at most 1/4.
We condition on the A 9+1, . . . , A3−1, which determines the tra-

jectory of all leaves up to level 9 + 1. In particular this determines

8 9+1, . . . , 83 ,
Consider the set of child buckets of ℓ≤ 9 . These have the form

(ℓ≤ 9 ◦0, 8) where (0, 8) ∈ !× {1, . . . , ^ 9+1}. This includes the bucket
(ℓ≤ 9 ◦ ℓ9+1, 8 9+1) on the trajectory of ℓ .

Say that a bucket (E, 8) is occupied if it lies on the trajectory of

some mismatch leaf. Let OCC be the set of pairs (0, 8) ≠ (ℓ9+1, 8 9+1)
such that (ℓ≤ 9 ◦ 0, 8) is occupied. The event MERGE9 is equivalent

to the event that there is an (0, 8) ∈ OCC such that A 9 (0, 8) =

A 9 (ℓ9+1, 8 9+1). For each (0, 8) ∈ OCC, Pr[A 9 (0, 8) = A 9 (ℓ9+1, 8 9+1)] =
1

|^ 9 | since A 9 is a pairwise independent map with range size |^ 9 |,
and so the conditional probability of MERGE9 given A3−1, . . . , A 9+1
is at most |OCC|/|^ 9 |.

We need to upper bound |OCC|. Let occ(E) denote the number of

occupied E-buckets. In the above analysis |OCC| = ∑
0∈! occ(ℓ≤ 9 ◦

0) − 1. We claim:

Proposition 5.8. For any choice of routing functions A3−1, . . . , A0:

(1) For any internal node E at level 9 ′ < 3 , occ(E) ≤ min(^ 9 ′ ,∑
E′∈child(E) occ(E ′)).

(2) For any node E at level 9 ′ ≤ 3 , occ(E) ≤ ̂̂(E).

Proof. For the �rst part, let E be an internal node. Then occ(E)
is trivially at most ^ 9 ′ . Also, a E-bucket is occupied if and only if

some occupied child maps to it, so occ(E) ≤ ∑
E′∈child(E) occ(E ′).

For the second part, if E is a leaf then occ(E) = 1 if E is a mismatch

leaf and 0 otherwise, so occ(E) = ̂̂(E). If E is an internal node,

the �rst part implies occ(E) ≤ min(^ 9 ′ ,
∑

E′∈child(E) occ(E ′)) and
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applying induction and the de�nition of ̂̂(E) we have min(^ 9 ′ ,∑
E′∈child(E) ̂̂(E ′)) = ̂̂(E). □

Thus |OCC| ≤ ∑
0∈! ̂̂(ℓ≤ 9 ◦0)−1. We know that ̂̂(ℓ≤ 9 ) ≤ ^ 9/43

and in particular, ̂̂(ℓ≤ 9 ) < ^ 9 . Hence, ̂̂(ℓ≤ 9 ) =
∑
0∈! ̂̂(ℓ≤ 9 ◦

0) > |OCC|. It follows that for any choice of the routing functions

A3−1, . . . , A 9+1, |OCC| < ^ 9/43 . Therefore Pr[MERGE9 ] ≤ 1
43
, as

required to complete the proof of the theorem. □

We are ready to conclude Theorem 5.1. Let us de�ne the sketch-

ing function hmr-sketch(D; ) (!3 ), ^, X) for targeted mismatch

recovery HMR() (!3 ), ^, 43) to be the superposition sketching

function on the tree ) (!3 ) with the capacity function ^, where

the distribution on leaf→root functions is as given in the above

lemma, and with the redundancy set to ⌈8(ln |!3 | + log(1/X) + 2)⌉.
Let us de�ne hmr-recover to be the associated recovery function.

To conclude the correctness of the scheme (the �rst item of Theo-

rem 5.1) we apply Proposition 5.6 together with Lemma 5.7 with

parameters set as follows: � = !3 , ( = {1, . . . , ^0}, redundancy
ℓ = ⌈8(ln |!3 | + log(1/X) + 2)⌉, and (�, `) as de�ned above for

() (!3 ), ^). (Notice, |Γ | ≥ 4|!3 | implies that |Γ | ≥ 4( |� | − 1) | · |( |
as required by Lemma 5.7.) The sketch consists of $ (ℓ · |( |) el-
ements from Γ so it takes $ (^0 · log |Γ | · (log |!3 | + log(1/X)))
bits. Evaluating a hash function from � at a single point takes time

$ (3 log$ (1) |Γ |) so by Proposition 5.5, the sketching algorithm runs

in time$ (ℓ · |!� | ·3 log$ (1) |Γ |) = $ ( |!� | · log$ (1) |Γ | · log(1/X)). If
D is given via its sparse representation then the time to construct the

sketch is$ ((^0 + |supp(D) |) · log$ (1) |Γ | · log(1/X)). The recovery
algorithm runs in time$ (^0 · log$ (1) |Γ | · log(1/X)) as required. Fi-
nally, each mismatch pair that is output by the recovery algorithms

must appear in more than half of the ℓ redundant sketches. As each

sketch outputs at most |( | elements, the number of mismatch pairs

output by the algorithm is at most ^0.
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