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ABSTRACT

We design an almost linear-size sketching scheme for computing
edit distance up to a given threshold k. The scheme consists of
two algorithms, a sketching algorithm and a recovery algorithm.
The sketching algorithm depends on the parameter k and takes
as input a string x and a public random string p and computes a
sketch skp (x; k), which is a compressed version of x. The recovery
algorithm is given two sketches sk, (x; k) and sk, (y; k) as well as
the public random string p used to create the two sketches, and
(with high probability) if the edit distance ED(x, y) between x and y
is at most k, will output ED(x, y) together with an optimal sequence
of edit operations that transforms x to y, and if ED(x,y) > k
will output LARGE. The size of the sketch output by the sketching
algorithm on input x is k20 (V1og(n)loglog(n)) (where n is an upper
bound on length of x). The sketching and recovery algorithms both
run in time polynomial in n. The dependence of sketch size on k is
information theoretically optimal and improves over the quadratic
dependence on k in schemes of Kociumaka, Porat and Starikovskaya
(FOCS’2021), and Bhattacharya and Koucky (STOC’2023).
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1 INTRODUCTION

The edit distance of two strings x and y measures how many edit
operations (removing a symbol, inserting a symbol or substituting
a symbol by another) are needed to transform x to y. Computing
edit distance is a classical algorithmic problem. For input strings
of length at most n, edit distance can be computed in time O(n?)
using dynamic programming [13, 19, 22]. Assuming the Strong
Exponential Time Hypothesis (SETH), this cannot be improved to
truly sub-quadratic time O(n?~€) [2]. When parameterized by the
edit distance k = ED(x, y), the running time has been improved to
O(n+k?) [18]. The edit distance of two strings can be approximated
within a constant factor in time O(n'*€) [1, 5, 6, 17].

This paper concerns sketching schemes for edit distance, which
consist of a sketching algorithm, parameterized by an integer k, that
takes a string x and (using a public random string p) maps it to a
short sketch sk, (x; k), and a recovery algorithm that takes as input
two sketches sk, (x; k) and sk, (y; k) and the public random string
p and, with high probability (with respect to p), outputs ED(x, y)
when ED(x,y) < k and outputs LARGE otherwise.

The goal is to get polynomial time sketch and recovery algo-
rithms that achieve the smallest possible sketch length. Jin, Nelson
and Wu [14] proved that sketches must have length Q(k). For edit
distance it is not apriori clear whether sketches of size kO (1) po(1)
exist, even non-uniformly. The first sketching scheme with poly(k)
sketch size was found by Belazzougui and Zhang [3] who attained
sketch size O(k®). (Here, and throughout the paper, O(t) means
t logo(l) n, where n is a an upper bound on the length of the strings.)
This was improved to 5(k3) by Jin, Nelson and Wu [14], and then
to 5(k2) by Kociumaka, Porat and Starikovskaya [16]. The above
sketches used CGK random walks on strings [7] to embed the edit
distance metric into the Hamming distance metric with distortion
O(k), plus additional techniques. A different approach, based on
a string decomposition technique, was used by Bhattacharya and
Koucky [4]. Here we will also use this technique.

The quadratic dependence on k in the (very different) sketches
of [16] and [4] and also in the exact computation algorithm of [18]
is suggestive that there may be something intrinsic to the problem
that requires quadratic dependence on k for both sketching and eval-
uation. In this paper, we show that this is not the case, by presenting
an efficiently computable sketch of size O (k20 (Vlog(n) loglog(n)))
which is k times a "slowly" growing function of n, that is interme-

diate between Iog“’(l) n and n°(!) . Our main result is:

THEOREM 1.1 (SKETCH FOR EDIT DISTANCE). There is a randomized
sketching algorithm ED-SKETCH that on an input string x of length
at most n with parameter k < n and using a public random string
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p produces a sketch sk, (x) of size O (k20 (Vlog(n) loglog(n))y " g g
recovery algorithm ED-RECOVER such that given two sketches sk, (x)
and sk, (y) for two strings x and y and p, with probability at least
1 — 1/n (with respect to p), outputs ED(x,y) if ED(x,y) < k and
LARGE otherwise. The running time of the ED-SKETCH is n°W) and the
running time of ED-RECOVER is O (min(n?, k320 (Vlog(n) loglog(n))y)

We remark that we did not attempt to optimize the running
time, or poly-log factors in the sketch sizes. The running time
of ED-sSKETCH is largely determined by the running time of the
Ostrovsky-Rabani embedding [20] (see below) which runs in poly-
nomial time, but we don’t know the exponent. The amount of
randomness the algorithm uses can be reduced to poly-logarithmic
in n.

Our sketch has the additional property that the recovery algo-
rithm also determines an optimal sequence of edit operations that
transforms x to y.

Sketching for Hamming distance has been studied extensively
and is well understood. Several approaches yield sketches of size
5(k) that can recover the Hamming distance and can solve the
harder problem of mismatch recovery, i.e., reconstructing the set of
positions where the two strings differ, see e.g. [9, 21]; this sketch
size is information theoretically optimal. Our construction for edit
distance uses sketches for Hamming distance, but we need a more
refined version of Hamming distance sketches that allow for recov-
ery of all differences in regions of the strings where the density of
differences is low, even if the overall Hamming distance is large.
We call this new sketch a hierarchical mismatch recovery scheme.
This is the main new technical tool.

Not much is known about sketching edit distance when we only
want to approximate edit distance from the sketches. For Hamming
distance, there are known sketches of poly-logarithmic size in n
that allow recovery of Hamming distance within a (1 + €)-factor
[10]. For edit distance nothing like that is known. A more stringent
notion of sketching is that of embedding edit distance metrics into
£ metrics. The best known result in this direction, by Ostrovsky
and Rabani [20], gives an embedding of edit distance into #; with
distortion (approximation factor) sor(n) = ZO(W).
Interestingly, our sketch relies on this embedding to fingerprint
strings by their approximate edit distance. The dependence of our
sketch size on n in Theorem 1.1 can be stated more precisely as
O(sor(n)?). Since our use of their embedding is “black box”, any
improvement on the distortion factor for embedding edit distance
into #; would give a corresponding improvement in our sketch size.

2 OUR TECHNIQUE

The starting point of our sketch is the string decomposition algo-
rithm of Bhattacharya and Koucky [4], The algorithm BAsic-DECOMP
(see Section 4.3) takes a string x and partitions it into fragments so
that each fragment can be described concisely by a small context-
free grammar. The size of the grammar is at most k’ for some chosen
parameter k’. (In [4] this k’ is chosen to be O(k).) The partition-
ing uses randomness to select the starting point for each fragment
and has the property that for any given position in the string, the
probability that it will start a fragment is at most p ~ 1/k’.
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The partitioning process is locally consistent, i.e., when applied to
two strings x and y with ED(x, y) < k then with probability at least
1— O(ED(x, y)/k’) the decompositions of x and y are compatible,
which means that they have the same number of fragments and
ED(x,y) is equal to the sum of edit distance of corresponding frag-
ments. We say that a pair of fragments of x and y is consistent if they
are corresponding fragments in some compatible decomposition.

If x and y are compatibly split then to recover ED(x, y) it suffices
to reconstruct each corresponding pair of fragments of x and y
that are different; then the edit distance is just the sum of the edit
distances of these pairs.

In [4] this decomposition procedure was used to obtain edit dis-
tance sketches of size O(k?) by reducing the problem of sketching
for edit distance to the easier problem of sketching for (Hamming)
mismatch recovery mentioned in the introduction. This is the prob-
lem of sketching two strings so that from the sketches of two equal
length strings x and y, one can recover all the locations where x
and y differ. As mentioned earlier, there are known sketches of size
O(k) for this problem.

The reduction to mismatch recovery sketches is as follows. Since
each fragment has a grammar of size (number of rules) k’, each such
grammar can be encoded by a bit string of length poly(k’) so that
each encoding has O(k’) 1’s, and for two different fragments, (1) the
grammar encodings have at most 0 (k) mismatches and (2) given the
set of locations where the grammar encodings differ one can entirely
recover both grammars and therefore both fragments. To sketch
a string x we construct the grammar encodings of each fragment
in its decomposition, concatenate them, and then compress this
using a mismatch recovery sketch. Given the sketches of x and
y, the mismatch recovery algorithm finds all the locations where
their concatenated grammar encodings differ. From these, one can
reconstruct each corresponding pair of unequal fragments, compute
the edit distance for each pair, and sum them. If ED(x, y) < k then
there are at most k corresponding pairs of fragments that differ,
and each pair differs in at most kK’ = O(k) bits, so the mismatch
recovery sketch must handle up to O(k?) mismatches, which can
be done with sketches of size O(k?).

The sketch length is 5(k2) because the sketch must handle two
different extremes. If all edit operations appear in large clusters of
size k/C, for C = O(1), and each cluster is contained in a single
fragment pair, then there are at most C fragment pairs that are
unequal and these could be handled by sketches of size O(k). On
the other hand, if the edit operations are well separateds, then we
could choose a value of k’ that is O(1) resulting in a partition into
much smaller fragments each of which has grammar size 0(1).In
this case the edit operations may appear in Q(k) different fragment
pairs, but because the grammar size of the fragments is O(1) we
can again manage with sketch size O(k). Of course, the distribution
of edit operations will rarely match either of these extremes, there
may be clusters of edit operations of varying size and density.

Decomposition tree. A natural approach to handling this is to
build decompositions for many different values of k. We start with
a decomposition obtained from parameter k’ = ko which is larger,
but not much larger than k. We then apply the decomposition to
each fragment of the first decomposition, using the smaller parame-
ter k1 = ko /2. We iterate this recursively where the value k; of k’ at
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recursion level i is ko/2 where ko, stopping when k; is O(1). This
would decompose the string into smaller and smaller fragments
ending with fragments described by constant size grammars. We
call this a decomposition tree of the string. We can then do sepa-
rate sketches for each of the levels of the tree. The sketches at the
top of the tree (small i) are used to find edit operations that occur
together in a large cluster, and there can’t be too many of these
clusters. Sketches at the bottom of the tree (large i) are used to
find edit operations in regions where the edit operations are well
spread. These edit operations may be spread over Q(k) pairs of
fragments, but each such pair has edit distance O(1). The interme-
diate levels would handle cases where the density of edit operations
is intermediate between these extremes.

To be more explicit, the sketch associated to decomposition level
i is responsible for recovering pairs of compatible fragments at level
i whose edit distance is (roughly) comparable to or larger than k;,
that could not be recovered from the sketches for previous levels of
the decomposition. There are at most k/k; such pairs of fragments
(counting only compatibly split pairs). Since the fragments are
represented by grammars of size at most k;, the level i scheme will
need to find at most 2k mismatches.

For compatible pairs of fragments at level i whose edit distance is
small compared to k;, the decomposition procedure will split them
compatibly (with fairly high probability') and the edit distance for
these will be recovered from the sketches corresponding to deeper
levels of the decomposition. In this way, all of the edit operations
will be found by some level of the decomposition.

While the sketch for level i only needs to identify at most 2k
mismatches, it can not use an ordinary mismatch recovery sketch
for 2k mismatches, because the strings of x and y consisting of the
grammar encodings for their level i fragments may differ in many
more than 2k positions, since the 2k positions account only for the
differences due to pairs of fragments that must be recovered at level
i. but not those due to differences coming from other fragment pairs.
To deal with this, we will need the extension of mismatch recovery
mentioned earlier that handles hierarchical mismatch recovery
(which will be discussed in more detail later in this section.)

Grammar representation. The sketch at a level i encodes the
concatenation of the grammars of size at most k; that represent
the fragments in the level i decomposition. We aim to use this
sketch to recover those pairs of corresponding fragments whose
edit distance is roughly k; but were not recovered from the sketches
at earlier levels. Fragment pairs having edit distance less than k;
will not be recovered by level i but will be further partitioned so
that the differences between them will be recovered at deeper levels
of the decomposition tree. The grammar representations we use
have the important property that for two fragments of edit distance
d, the encodings of their grammar are at Hamming distance at
most O(d). This ensures that if two strings x and y are compatibly
split, then the hamming distance between the concatenation of the
grammar encodings of their fragments will be O(ED(x, y)). This
is important because the size of mismatch recovery sketches is at
least the Hamming distance between the strings.

Here fairly high probability means probability at least 1—1/poly log n for a sufficiently
large poly-logarithmic function.
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Watermarking using edit distance fingerprints. For the level i
encoding, we want that if two corresponding fragments are at
edit distance at least k;, then recovering the mismatches in their
grammar encodings is enough to fully recover both grammars and
therefore both fragments. To ensure this, we will watermark the
grammar encodings by a special fingerprint (computed from the
entire fragment), and replace each 1 in the grammar encoding by the
fingerprint, Assuming that the watermark of the two fragments are
different, then this will allow one to recover both grammars from
the set of mismatches. The watermark we use is a threshold edit
distance fingerprints. This is a randomized fingerprinting scheme
depending on parameter ¢, that maps each string to an integer so
that if two strings have edit distance more than ¢, their fingerprints
differ with high probability, and if two strings have edit distance
less than t/P, for some parameter P > 1 then their fingerprints
will be the same with fairly high probability (with no promise
if the edit distance lies in the interval [t/P, t].) The parameter P
is a measure of the quality of the fingerprinting algorithm; with
smaller P being higher quality. Such a fingerprinting scheme can be
obtained from an embedding of the edit distance metric into the ¢
metric. We use the embedding of Ostrovsky and Rabani [20] which

has distortion sog = 2Ve8nloglogn 4 this distortion translates
into the parameter P of the fingerprinting scheme.

Canonical edit operations. For the sketching procedure as out-
lined, the recovery algorithm will recover corresponding pairs of
unequal but compatible fragments and compute their edit distance.
While the recovered fragment pairs are likely to encompass most
edit differences between the two strings, it will typically miss some
pairs, and may also incorrectly recover a small fraction of the frag-
ment pairs. This means that the set of edit operations recovered will
only be approximate. To address this we will need to do multiple
independent sketches and when doing recovery, we combine the
outcomes recovered from each independent sketch (as described
below). As mentioned earlier if ED(x, y) = k, there could be many
different sets of k edit operations that transform x to y. To output
edit operations consistently among independent runs of the sketch-
ing algorithm we will always opt for a canonical choice of the edit
operations. The canonical choice prefers insertions into x over sub-
stitutions which in turn are preferred over deletions from x. This
preference is applied on edit operations from left to right in x so
the choice of edit operations corresponds to the left-most shortest
path in the usual edit distance graph of x and y. Importantly, the
canonical path is consistent under taking substrings of x and y. See
Section 3.2 for details on the choice of the path.

Bad splits. For two strings x and y, as we split the fragments
of each through successive levels we will inevitably split some
fragments near an edit operation; this is called a bad split. A bad
split might cause x to be divided at a location but not y. This causes
two problems: (1) sub-fragments of the badly split fragment may
not align, and (2) the bad split may cause fragments to the right of
the badly split fragment to be misaligned. Both problems need to
be dealt with.

Regularization of trees. To handle the second issue we regularize
the decomposition tree. The decomposition tree is of depth at most
O(logn) and it might have degree up to n. We make it regular
as follows: for any node with fewer than n children we append
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dummy children to the right of the real children; these are thought
of as representing empty strings. We do this at all levels so that
the tree has degree n in all the internal nodes and all the leaves are
at depth exactly d = O(logk + +/log nloglogn). Each node of the
tree is labeled by a fragment of x and its corresponding grammar.
This ensures that the underlying tree for the decomposition is the
same for every input string. Now, in constructing the level i + 1
decomposition from the level i, the fragments that correspond to
the children of node v in the two trees are paired with each other.
A bad split arising from the decomposition of the two fragments
corresponding to tree node v may cause misalignment among the
descendants of v but will not affect the alignment of nodes to v’s
right.

Sparse representation. The regularized tree is of super-polynomial
size < nl°%" but only has O(n) nontrivial nodes that represent
non-empty strings. As a result, the tree can be constructed in poly-
nomial time, and represented concisely by the set of ordered pair of
(node,fragment) for nonempty fragments. Furthermore the sketch-
ing algorithm works well with the sparse representation and its
running time is at most polynomial in the number of non-trivial
nodes.

Mismatch floods. The more significant issue caused by bad splits
is the first one, that a bad split at a node may result in bad splits at
many of its descendants. Indeed, if the partition of the fragments x;
and y, of x and y at node v are not compatibly split, then the frag-
ment pairs of its children will not be aligned and the edit distances
between fragments corresponding to children of v may be arbitrar-
ily large, This misalignment will propagate down the tree possibly
resulting in huge edit distance between fragments for many nodes
in the subtree rooted at v, and the grammar encodings of these
fragments may have a very large Hamming distance.

A node in the tree that is in the subtree of a badly split node is
referred to as flooded (with errors). At level i of the tree, we only
need to recover the grammars corresponding to the unflooded nodes
of the level (because the edit operations for eacy flooded node will be
recovered by the sketches corresponding to an unflooded ancestor
in the tree.) The usual mismatch recovery sketch does not allow for
such selective recovery of unflooded portions, because the flooded
portion may cause the total number of mismatches to far exceed the
capacity of the mismatch recovery scheme. Thus we design a new
variant of Hamming schemes, which we call hierarchical mismatch
recovery scheme, that recovers differences in the unflooded parts.

Hierarchical mismatch recovery. The hierarchical mismatch recov-
ery scheme is applied to a vector that is indexed by the leaves of a
tree. The specification of the problem includes an assignment of
a positive capacity k, to each node v in the tree, where all nodes
at level i have the same capacity k;. For any two strings x and y,
the capacity function induces a load function k, where the value
Kp is 1 on leaves where x and y differ and 0 on other leaves, and
the load on a node v is the minimum of the sum of the loads of its
children and its own capacity, A node v is underloaded if its load
is less than x;, /R for some parameter R, and a leaf is accessible if
every node on its path is underloaded. The scheme is required to
recover the mismatch information for all underloaded leaves. The
sketch is implemented as follows: Let d be the depth of the tree. For
each node at level d — 1 we apply a (standard) mismatch recovery
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scheme to the vector of its children that handles (slightly more
than) x;_; mismatches. Then working the way up the tree, for each
node we apply a mismatch recovery to the vector consisting of the
sketches computed at each of its children. This is passed upwards
and the final sketch at the root is the output. The specific mismatch
recovery scheme used is a a superposition scheme which is described
in Section 5.2. The hierarchical sketches for two strings x and y
will allow for recovery of mismatches occurring at all accessible
leaves. The intuition behind this is as follows. For two strings x and
y, label each node by the pair of intermediate sketches for x and y
at that node. This pair of sketches encodes information about the
mismatches of x and y at the leaves of its subtree. This information
at node v is a compression to 5(K,~) bits of the information from its
children. Inductively one can show that for an underloaded node
the compressed string it computes has enough bits to preserve the
information about accessible mismatches that is encoded in the
sketches of its children. For overloaded nodes, the compression
will destroy the information about its children, but this is not a
problem because the scheme is not required to recover mismatch
information for leaves below an overloaded node. An important
thing to note is that the impact of overloaded nodes among v’s
children (which may have a large number of mismatches among its
leaves) is controlled by the fact that the sketch size at those nodes
is restricted by its capacity.

In our application to sketching the grammars we assign the ca-
pacity to each level of the tree so that the capacity is proportional
to the grammar size k; we expect at that level in the decompo-
sition tree. Nodes that correspond to misaligned fragments (due
to a bad split at an ancestor) and have a huge edit distance will
correspond to overloaded nodes, and as discussed above, the hier-
archical scheme contains the damage caused by the error flood to
the subtree below the occurrence of the bad split. The idea behind
the choice of the parameters is that the probability of a bad split is
proportional to the number of edit operations in the fragment; it is
roughly O(# of edit op’s/k;). Hence, in expectation each edit opera-
tion is responsible for O(1) mismatches resulting from bad splits
that contribute to possible flooding of a node. We can adjust the
parameters so that the flooding of a node is in expectation only a
tiny fraction of its capacity. We can then apply Markov’s inequality
to argue that with a good probability nodes along a chosen path
are not overloaded, i.e., flooded.

Details for our hierarchical mismatch recovery scheme are given
in Section 5.1.

Parameters. For our edit distance sketch we will set the parame-
ters as follows: kg = 5(3(2.)Rk), ki = ko/2%, ko = O(sork), ki = ko /2!
and tg = O(sork), t; = to/2'. Our sketch will be obtained by apply-
ing the hierarchical mismatch recovery scheme to each level of the
decomposition tree with those parameters.

Infrequent bad splits. The decomposition procedure is designed
so that for a node v at level i with x and y fragments x, and y,,
if ED(xy, yy) < ki/C where C = polylog(k;) the decompositions
of x, and y, will be compatible with probability 1 — 1/polylog(k;).
While this is near 1, it is likely a non-trivial fraction of nodes will
fail to be compatibly split even though the edit distance between
the strings is small compared to k;. As a result, for any given edit
operation, there may be a small but non-trivial chance that the
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recovery algorithm fails to recover it. To ensure that we get all of
the edit operations, we will need to run the scheme O(logn) times
and include those edit operations produced by more than half the
runs to guarantee that every edit operation gets recovered with
good probability.

Location, location, location! The recovery procedure identifies
pairs of fragments that differ, and can therefore reconstruct the
canonical edits between those fragments. But as described so far,
there is nothing that allows the reconstruction to pinpoint where
these fragments appear in the full string. Without this information,
we can not combine information obtained from the independent
sketches just described. Our sketch will need an additional compo-
nent to properly position each recovered fragment.

Location tree. We will use technique of Belazzougui and Zhang [3]
(suggested to us by Tomasz Kociumaka). We turn the decomposition
tree into a binary tree by expanding each node with n children
into a binary tree of depth log(n) with n leaves. For each node in
the binary tree, we record the length of the substring represented
by its left child. We watermark this size by the usual Karp-Rabin
fingerprint of the node substring, and we sketch the sizes using
the hierarchical mismatch sketch as in the grammar tree, i.e., level
by level. Fragments that contain edit operations will differ in the
Karp-Rabin fingerprint so they will reveal the size of their left child.
For a given node that contains an edit operation all of its ancestors
on the path to the root will also be watermarked. Hence we will
be able to recover the information about the size of all the left
children along the path. That suffices to calculate the position of
each differing fragment. We will use the same setting of capacities
for the hierarchical mismatch scheme that we use for grammars.
That is clearly sufficient as grammars are larger objects than a
single integer.

Putting things together. The actual sketch consists of multiple
independent sketches. Each of these sketches is the output of the
hierarchical mismatch recovery scheme applied to each of the levels
of the grammar decomposition tree, and applied to each of the levels
of the binary location tree.

Recovery. We briefly explain the recovery of edit operations from
sketches for two strings. The reconstruction starts by running
the recovery procedure for all the hierarchical mismatch recovery
sketches. This recovers various pairs of grammars with informa-
tion about their location within the original input strings x and y.
From those grammars we pick only those which do not have any
ancestor grammar node recovered as well. (Descendant grammars
are superseded by the ancestor grammars.) For every pair of gram-
mars we reconstruct the fragments they represent and compute the
associated edit operations. (The edit operations could be actually
computed without decompressing the grammars [12].) For each
pair of recovered fragments, we use the location tree sketches to
recover the exact location of that fragment.

So for each pair of recovered fragments we calculate the canoni-
cal sequence of edit operations and given the exact location of the
fragment, we can determine the exact location assign within x and
y where each edit occurred. We repeat this for each independent
copy of the sketch. Our final output is the set of edit operations
that appear in the majority of the copies.

Due to space restrictions this extended abstract will only pro-
vide details for the main technical tool: the hierarchical mismatch
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recovery scheme. The full description of our edit distance sketch
and its proof of correctness are in the full version of the paper that
appears on arXiv.

3 PRELIMINARIES

3.1 Strings, Sequences, Trees, and String
Decomposition

For an alphabet ', T* denotes the set of (finite) strings of symbols
from T, T"™ is the strings of length exactly n and T'=" is the set of
strings of length at most n. We write ¢ for the empty string of length
0. The length of string x is denoted |x|. For anindex i € {1,..., |x|},
x; is the i-th symbol of x.

We will consider the input alphabet of our strings to be X =
{0,1,...} which is the set of natural numbers. For strings of length
at most n we assume they are over sub-alphabet =, = {0,1,. .., nd—
1} so typically we will assume our input comes from the set £3".
This assumption is justified as for computing edit or Hamming
distance of two strings of length at most n we can hash any larger
alphabet randomly to the range X,, without affecting the distance
of the two strings with high probability.

If T is linearly ordered then I'* is also linearly ordered under
lexicographic order, denoted by <j¢y, given by x <jey y if x is prefix
of y or if x; < y; where j is the least index i for which x; # y;. We
usually write x < y instead of x <jey y.

We write x o y for the concatenated string x followed by y and
for a list zy, . . ., zx of strings we write G)ff:lzi forzjo---o0z.

Substrings and fragments. For a string x and an interval I C
{1,...,|x|}, a string z is a substring of x located at I if |z| = |I| and
foralli € I, z;_min(1)+1 = xi- We denote this substring by x;. When
using intervals to index substrings, it is convenient to represent
intervals in the form (i, j] = {i+1,...,j} and (i, i] denotes the
empty set for any i. (So a substring is always a consecutive sub-
sequence of a string.) We can also say that z is the substring of x
starting at position min(I). Furthermore, z is a substring of x if z is
a substring of x starting at some position. However, the statement
that z is a substring of x says nothing about where z appears in x,
and there may be multiple (possibly overlapping) occurrences of z
in x. For us it will be important where a substring appears. For a
string x and an interval I C {1,...,|x|}, the fragment located at I is
the pair xj together with I.

Sequences and Hamming Distance. We will consider finite se-
quences of elements from some domain. It will be convenient
to allow sequences to have index sets other than the usual inte-
gers {1,...,n}. If D is any set, a D-sequence is an indexed col-
lection a = (a; : i € D). A D-sequence over the set A is a D-
sequence with entries in A. AP denotes the set of D-sequences over
A. The Hamming Distance Ham(x, y) between two D-sequences
x and y is the number of indices i € D for which x; # y;. We let
Li(x,y) = {i € D;x; # yi}.

Trees. Our algorithm will organize the processed data in a tree
structure. To simplify our presentation we will give the tree very
regular structure. For finite sets Ly, ..., Ly, T(L1 X - - - X L) denotes
the rooted tree of depth d where for each j € {1,...,d} every
internal node v at depth j has |L;| children, and the edges from v
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to its children are labeled by distinct elements of L;. Each node v
at depth j is identified with the length j sequence of edge labels
on the path from the root to v; under this correspondence the set
of nodes at level j is L1 X - - - X L;. The root is therefore the empty
sequence ¢. For an internal node v at depth j — 1, its children are
nodes of the form v o a where a € L;. Also the path from ¢ to v at
depth j is equal to the sequence of nodes v<¢,v<1,...,0<;j Where
v<; is the prefix of v of length i.

Usually in this paper, the sets Ly, ..., Ly are all equal to the same
set L and in this case T(Lj X - - - X L) is denoted T(L9). Usually,
L is a linearly ordered set and it is useful to visualize the planar
drawing of T in which the left-to-right order of the children of an
internal node corresponds to the total ordering on the edge labels.

String decompositions, and tree decompositions. A string decom-
position of a string x is a sequence zi, .. ., z, of strings such that
x = O[_,zi. More generally if L is a linearly ordered set then an
L-sequence (z; : i € L) where each z; is a string is a decomposition
of x if x = ®;epz; where the concatenation is done in the order
determined by L. Given a string decomposition z, each substring
z; is naturally associated to a location interval Loc(z); = (s, t;]
where s; = . jer j<i |zl and t; = s; + |zi.

Consider a string decomposition of string x whose substrings
are indexed by the set L9 (in lexicographic order). Let us view L%
as the set of leaves of the tree T(L?) as defined above. We can label
the leaves by the corresponding substrings of the decomposition,
and then extend the labelling to the set L=9 of all tree nodes. We
identify the labeling of leaves with z, and extend it so for v € LSd,
2z, is the concatenation, in lexicographic order, of the strings of all
the leaves below it. Note also that z, is the concatenation of the
strings labeling the children of v. We refer to the labeling z as a
string decomposition tree for x induced by the string decomposition
z. Given a string decomposition tree, we extend the definition of
location interval as Loc(2)y = (so, to] Where sy = X, c1d <, |2ul
and t, = sy + |20|. Hence, xpoc(z), = Zo-

3.2 Edit Distance and its Representation in Grid
Graphs
For x € 3%, we consider three edit operations on x:
e ins(i,a) wherei € {1,...,|x| + 1} and a € ¥, which means
insert a immediately following the prefix of length i — 1. In
the resulting sequence the i-th entry is a.
o del(i) where i € {1,...,|x|}, deletes the i-th entry of x.
e sub(i, b): replace x; by b.
For strings x, y, the edit distance of x and y, ED(x,y), is the
minimum length of a sequence of operations that transforms x to
y. It is well-known and easy to show that ED(x,y) = ED(y, x).

Representing edit distance by paths in weighted grids. We define
Grid to be the directed graph whose vertex set V(Grid) is the set
NxN (points) and whose edge set E(Grid) consists of three types of
directed edges: horizontal edges of the form (i, j) — (i+1, j), vertical
edges of the form (i, j) — (i, j + 1) and diagonal edges of the form
(i, jy = (i+1,j+1) for any i, j > N. For non-empty intervals I, ] C
N not-containing zero, we define the Grid;  to be the subgraph of
Grid induced on the set (IU{min(I)—1})x(JU{min(J)—1}), and for
P C E(Grid), the restriction of P to I X J is Pyxj = PN E(Grid[y).
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We call I X J a box. A directed path from (min(I) — 1, min(J) — 1)
to (max(I), max(J)) is called a spanning path of Gridyy.

As is well known, the edit distance problem for a pair of strings
X,y can be represented as a shortest path problem on a grid with
weighted edges (see e.g. [18]). The grid of x,y, Grid(x, y), is the
subgraph Grid (g, |1x (o, y|] With edge set E(x,y) C E(Grid). For
an edge e = (i, j) — (i, j’) in Grid(x,y), let xe = x» if i’ =i+ 1
and x, = ¢ otherwise. Similarly, let yo = y;» if j/ = j+ 1 and
ye = ¢ otherwise. We assign a cost to edge e to be 0 if yo = x,
and it is 1 otherwise. In particular, every horizontal edge and every
vertical edge costs 1, and diagonal edges cost 0 or 1 depending
on whether the corresponding symbols of x and y differ. An edge
of non-zero cost is costly. If P is a set of edges, the costly part of
P, costly(P), is the set of costly edges. Define the cost of P to be
cost(P) = |costly(P)|.

We define an annotated edge to be a triple (e, a, b) where a,b €
3 U {e}. The (x, y)-annotation of e is the annotated edge (e, x¢, Ye),
which is denoted e*(x,y). An annotated edge (e, a, b) is said to
be (x,y)-consistent or simply consistent if a = x and f = y.. We
emphasize that each edge e has a unique consistent annotation
(with respect to given x and y).

For a set of edges P we write P*(x,y) for the set of annotated
edges {e*(x,y) : e € P}. For a path P, costly(P*(x,y)) is the set
of costly edges of P with their x, y-annotations. When the pair x, y
of strings is fixed by the context (which is almost always the case)
we write e* for e*(x, y) and for a set P of edges, we write P* for
P*(x,y). In particular, E* for the set {e* : e € E(x,y)}.

It is well known and easy to see that there is a correspondence
between spanning paths of Grid(x, y) and sequences of edit opera-
tions that transform x to y where a sequence of k edit operations
corresponds to a spanning path of cost k. Thus, we will refer to a
spanning path of Grid(x, y) as an alignment of x and y. We have:

PropoSITION 3.1. ED(x,y) is equal to the minimum cost of an
alignment of x and y.

A pair x, y of strings together with a box I X J with I € (0, |x|]
and J < (0, |y|] specifies the edit distance sub-problem ED(xr, yy).
Gridyy j (x, y) denotes the (edge-weighted) sub-graph of Grid(x, y)
induced on (I U {min(I) — 1}) X (J U {min(J) — 1}).

There may be many optimal alignments. We will need a canon-
ical alignment for each x and y that is unique. For any graph
Gridyx(x,y), define the canonical alignment of Gridryj(x,y) as
follows: Associate each path in Grid to the sequence from {vertical,
diagonal, horizontal} which records the edge types along the path.
The canonical alignment of Gridyyj(x,y) is the optimal spanning
path of Gridyy;(x, y) that is lexicographically maximum with re-
spect to the order vertical > diagonal > horizontal. The canonical
alignment canon(x,y) of x and y is the canonical alignment of
Grid(x, y).

The proof of the following is left to the reader.

PROPOSITION 3.2. For stringsx,y and box Ix J C (0, |x|] % (0, |y|],
the (edge-weighted) graph Gridyy j(x,y) is isomorphic (in the graph
theoretic sense) to Grid(xy,yy) and so ED(xy,yj) is equal to the
length of the shortest spanning path of Gridryj(x,y). Also, the canon-
ical alignment of x; and yj is isomorphic to the canonical alignment
of Gridyyj(x,y) (when viewed as paths of their respective graphs).
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Let P be an alignment of x and y. A box I X J is compatible
with P provided that P passes through (min(I) — 1, min(J) — 1)
and (max(I), max(J)), and for such a box, the restriction Pry; of
P toI X ] is the portion of P joining (min(I) — 1, min(J) — 1) and
(max(I), max(J)). This restriction is an alignment for Gridyx j (x, y).
The following proposition is straightforward.

ProrosITION 3.3. If P is an optimal alignment of x and y and
I X J is compatible with P then Prx is an optimal alignment for the
sub-problem Gridy j(x,y).

For strings x and y, we say a box I X J is (x, y)-compatible if I X J
is compatible with the canonical alignment canon(x, y). We have:

PROPOSITION 3.4. Let x,y be strings and let I X J be a box that
is (x,y)-compatible. The restriction canon(x, y)xy is equal to the
canonical alignment of Gridy j (x, y).

4 THREE AUXILIARY PROCEDURES

Our sketching scheme for edit distance uses several auxiliary sketch-
ing schemes. Three of these are from previous work and one is new
to this paper. In this section, we describe the key properties of the
previous three schemes.

4.1 Fingerprinting

The fingerprinting problem for a ¥ is to define a family of sketching
functions that distinguishes between distinct elements of 3*. More
formally, given a parameter n we want a family FINGERPRINT, (+; 1) :
%S" — Z* such that for any strings x,y € 23" with x # y

Pr, [FINGERPRINT, (x; 1) = FINGERPRINT, (y; n)] < 1/n%.

The following classic result of Karp-Rabin [15] provides an ef-
ficient fingerprinting scheme. We refer to it as the Karp-Rabin
fingerprint.

THEOREM 4.1. There is an efficiently computable randomized func-
tion FINGERPRINT,, (:;n) : 55" — {1,...,n°} such that for anyx,y €
TS withx # vy, Pry, [ FINGERPRINT), (x; n) = FINGERPRINT),, (y;n)] <
1/n*. The number of bits needed to describe p is O(log n). The time
to compute FINGERPRINT), (x; n) is O(|x] - logo<1) n).

4.2 Threshold Edit Distance Fingerprinting

In the threshold edit distance fingerprinting we are given a parameter
n and a threshold parameter k. We want a family of sketching func-
tions TED—FINGERPRINTP(-; k,n) : =* — Z7* such that for all x,y €
2,51" such that ED(x,y) > k, Pr[TED-FINGERPRINTp (x;k,n) =
TED-FINGERPRINTp(y;k, n)] < 1/n4, i.e. the sketch is very likely

to distinguish strings x, y that are far. We also want that for some
k

inaccuracy gap s > 1, for strings x,y such that ED(x,y) < =,
Pr[TED-FINGERPRINT(X) # TED-FINGERPRINT(y)] is small. Precisely
we want that for all x, y:

ED(x,y)
Tk T
Note that the requirement becomes easier as s gets larger. The
problem of constructing a threshold edit distance fingerprinting
scheme with inaccuracy gap s > 1 is closely related to the problem
of finding an approximate embedding function f that maps strings

Pr[TED-FINGERPRINT) (X) # TED-FINGERPRINT, (y)] <
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to vectors in R¥ (for some d) so that ED(x, y) is approximated by
If(x) - f(yh = Z?:l |f(x) — f(y)| within a factor s. This latter
problem was investigated by Ostrovsky and Rabani [20] and their
results yield the following consequence:

THEOREM 4.2. There is an algorithm OR-FINGERPRINT(x; k, n) for
the threshold edit distance fingerprinting problem that for arbitrary
k,n € N has inaccuracy gap sog = 20 (Vieg(n)loglog(n)) gnd for any
string x € 5™ gives a fingerprint of value at most O(n*). The finger-
printing algorithm uses a randomness parameter of length O(log® n)
and runs in time polynomial in n and k.

We refer to OR-FINGERPRINT(x; k, n) as Ostrovsky-Rabani fin-
gerprint.

We make a few remarks on this theorem.? [20] does not provide
explicit bound on the amount of randomness needed. In particular,
Lemma 9 samples random subsets and uses tail-bound inequalities
to bound the probability of bad events. One can use O(log n)-wise
independent samples to reduce the necessary randomness [11].

4.3 The Procedure BASIC-DECOMP

The sketch for edit distance from [4] gave sketches of size O(k?). A
key procedure in their algorithm is an essential part of our sketch-
and-recover scheme. We restate the properties of algorithm Basic-
DECOMP in a form suitable for us. The algorithm takes as input a
string x, parameter n and an integer sparsity parameter k, where
|x| < n. We denote this by Basic-DECOMP(x; 1, k).
BASIC-DECOMP(x; n, k) is either UNDEFINED or outputs:

o A string decomposition of x, z = (z; : i € W), where W
is the set {0, 1}11°8"1 with the lexicographic order. (Some
strings may be empty.)

o A collection grams = (grams; : i € W) of k-sparse bit-
vectors (a bit-vector is t sparse if it has at most ¢ 1’s) of
length N = n® such that Basic-DECODE(grams;) = z; if
zi # € (so grams; is a k-sparse encoding of z;) and if z; = ¢
then grams; is the all 0 vector 0. Furthermore, grams; has
the following minimality property: for any bit-vector b that is
bit-wise less than grams;, BASIC-DECODE(b) is UNDEFINED.
(For technical ease we require Basic-pECODE(0N) to also be
UNDEFINED although 0N represents the empty string,) Each
grams; is represented as a list of positions that are set to 1.

THEOREM 4.3. The algorithm BAsic-DEcomP has the following
properties for all n, k:

(1) For any input x, the probability that BASIC-DECOMP(x; n, k) is
UNDEFINED is at most # The running time of BASIC-DECOMP(X;
n, k) as well as the total number of ones in grams;’s is bounded
by O(|x| - 1og® ™M) n).

(2) For any pair of inputs x,y for which the Basic-DECOMP(x; k)
and BAsIC-DECOMP(y; k) is not UNDEFINED, suppose z = (z; :
i € W) and grams = (grams; : i € W) is the output on x

2We had difficulties reading the paper [20]. Indeed, there is a minor correctable issue
in the way Lemmas 8 and 9 are presented in the paper. The lemmas claim output from
£1 which allows for vectors with arbitrary real numbers. Indeed, because of the scaling
in their proofs they do output vectors with real numbers. However, both lemmas need
to be applied iteratively and they assume input to be a 0-1-vector. This disparity can
be corrected using standard means but it requires additional effort.
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andz' = (z} : i € W) and grams’ = (grams] : i € W) is the

output on y.

(a) With probability at least 1 — sgp;¢ * ED(lf’y) where sgplip =
O(log* n), foralli € W, the box Loc(z); x Loc(2'); is (x, y)-
compatible whenever z; is non-empty, and z; is non-empty
iff 2} is non-empty.

(b) Foralli € W, Ham(grams;, grams;) < sg_.y -ED(z;, z})

where sey = O(log? n).

The point of Item 2a is that if for each i € W, the box Loc(z); X
Loc(z); is (x, y)-compatible then ED(x,y) = ;e ED(z;, 2)).

Note, for Item 1, [4] claims success probability of decomposi-
tion to be only O(1/n) so we apply their construction with their
parameter n to be set to our n*. For Item 2a, they do not specify
the success probability explicitly the way we do but our formula
is immediate from their analysis of probability of what they call
undesirable split. The upper bound on the difference between two
grammars in terms of edit distance of x and y is also implicit in the
same analysis.

Given a grammar G by its sparse representation as a list of ¢ posi-
tions of 1’s, BASIC-DECODE(G) runs in time O(t+|x|) if G represents
a string x and in time O(t) otherwise. A grammar representing x
contains at most sg_, - |x| ones.

5 SKETCH-AND-RECOVER SCHEMES

A sketch-and-recover scheme consists of two algorithms: a sketching
algorithm that takes a string x over some alphabet and produces
a shorter string sk(x) (a sketch) perhaps over a different alphabet,
and a recovery algorithm that takes two sketches sk(x) and sx(y)
and recovers a sequence of edit operations that turn x into y and
vice-versa.

The schemes are randomized and typically take some list ¢ of
auxiliary parameters (such as the maximum input length handled
by the sketch). Thus the sketch sk, (x; £) is a randomized function.
The recovery algorithm requires that sk, (x; £) and sk, (y; £) were
created using the same randomizing parameter p, which we think
of as coming from public randomness accessible to all, and the
same ¢, and it needs to know p. We allow the sketch function on
a given input to fail (output UNDEFINED) with a small probability
(with respect to p), and similarly for the recovery algorithm. We
usually suppress p and ¢ and write simply sk(x).

Efficiency of sketch-and-recover schemes is measured by:

e The sketch length bit-length(sx, (x; k, n)), which is the num-
ber of bits in the binary encoding of sk, (x; k, n).

o The parameter length bit-length(p) is the number of bits (the
binary encoding of) the parameter p.

o The running time of the sketch and recovery functions.

Our primary focus here is on achieving small sketch length. We
also want the running time of the sketch and recovery algorithms
to be at most polynomial in the length of the strings being sketched,
but in this paper we are not trying to optimize the polynomial.

Our goal in this paper is a sketch-and-recover scheme that allows
for recovery of edit distance ED(x, y) given the sketches of x and y.
For this problem the list ¢ of sketching parameters is n,k were n is
an upper bound on the length of strings and k is an upper bound on
ED(x, y) for which the recovery algorithm must find the distance.
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For Hamming distance sketches, there are known sketches that
recover not only Ham(x, y) but also the mismatch information for
x,y, MIS(x, y), which is the set {(i,x;,y;) : i € I:(x,y)}. Note that
given MIS(x, y) and either string one can recover the other string.

The analog of mismatch information for Hamming distance is
the set of costly annotated edges of the canonical alignment (see
Section 3.2), which is enough to determine the canonical alignment

5.1 Hierarchical Mismatch Recovery

We will need sketch-and-recover schemes for Hamming distance
over the set of D-sequences over some alphabet I' that recover the
mismatch information MIS(u, w) defined in Section 5. We refer to
this as mismatch recovery. We will need a more general formula-
tion of mismatch recovery in which we only require recovery of
mismatch information for certain indices. Those indices will be
determined for each pair of strings u and w separately.

This more general formulation is called targeted mismatch recov-
ery. Before giving a formal definition, we motivate it with an exam-
ple. Consider sequences of length n = m? for some integer m, where
we think of a sequence u as consisting of m fragments u?, ..., u™
each of length m, where fragment i is the substring u(,,(;—1),mi]-
For strings u, w we say that fragment i is overloaded if there is
more than one mismatch in the fragment, and underloaded if there
is at most one mismatch in the fragment. Let F(u, w) be the set
of mismatch indices belonging to underloaded fragments. The set
F(u, w) defines a targeted mismatch recovery problem where our
goal is to provide sketching and recovery algorithms so that for
any pair u,w € I'P, given the sketches of u and w, the recovery
algorithm finds all mismatch indices belonging to F(u, w). This
particular example can be solved using a sketch of size O(m) as
it will become clear later. One needs to recover at most m mis-
matches in underloaded fragments while not being distracted by
the overloaded fragments.

In general, a targeted mismatch recovery problem is specified
by a target function F which for each pair u,w € I'D, satisfies
F(u,w) C I+(u, w). The targeted mismatch recovery problem for a
target function F is denoted TMR(F). The output of the RECOVER
function applied to two sketches is required to be a set of triples
(i,a,b) where i € D and a,b € T. Such a triple is called a mismatch
triple. The success conditions for TMR(F) for the pair u, w are:

Soundness. RECOVER(SK(u), Sk(w)) € MIS(u, w), i.e. every mis-
match claim is correct.

Completeness. F(u,w) C RECOVER(SK(u),sk(w)) so the algo-
rithm recovers all mismatch triples from F(u, w).

Notice, we do not require that RECOVER(SK(u), SK(w)) € F(u, w).
Indeed, the recovery algorithm by itself might not know F(u, w).
So the Completeness depends on the target F but Soundness does
not. A scheme for targeted mismatch recovery with target function
F has failure probability at most § provided that for any u, w € T2,
with probability at least 1 — J, both Completeness and Soundness
hold. Here, the probability is taken over the randomness of the
sketching and recovery algorithms. (Our recovery algorithms will
actually be deterministic, so all the randomness is coming from the
sketch.)

Hierarchical mismatch recovery (HMR) is a special case of tar-
geted mismatch recovery where the target function depends on a
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capacitated tree (T(Ld), x) which consists of a rooted tree T(L%)
and an integer-valued capacity function k on levels of the tree. For
an integer j we write k; for the capacity of nodes at level j so we
think of k¥ = (o, ...,kq). Werequire 1 = kg < kg_1 < -+ < Ko.

We use (T(Ld), k) to formulate a targeted mismatch recovery
problem for Ld-sequences over T'. The target set for u and w de-
pends on (T(Ld), k) and an overload parameter R, and is denoted
FT(Ld)’K,R(u, w). We define it next. The load function k(u, w) as-
sociated to x and a pair u, w is defined on the vertices of the tree
T(L9) as follows:

e Foraleafo € LY, Ky = 1if uy # wy, and is 0 otherwise.
e For an internal node v at level j < d,

Ky = min(xj, Ko').
o’ echild(v)

Clearly ¥, < «j for every vertex v at level j. We say that an
internal node v at level j is R-overloaded, for parameter R > 1, if
Ko = I%K ; and is R-underloaded otherwise. (Later we will fix the
parameter R to be 4d, and refer to nodes simply as overloaded or
underloaded.)

Intuitively, the leaves below a R-overloaded node are “crowded”
with mismatches so we do not require them to be recovered. Notice
that a R-underloaded o satisfies Ky = X cchild(o) Kov'- A leaf is
said to be R-accessible if its path to the root consists entirely of
R-underloaded nodes.

We define FT(Ld)’K,R(u, w) to be the set R-accessible leaves ¢
where up # wp. We denote by HMR(T(L?), , R) the targeted mis-
match recovery problem with target function Fr(pay g In Sec-
tion 5.4 we will prove:

TuroreM 5.1. Let T(LY) be a level-uniform tree as defined in
Section 3.1 and let k = (o, . .., kq) be a capacity function 1 = kg <
< ko < |L9|. Let |L¢| and all Kk;j be powers of two. Let
I =F, wherep 2> 4|L|2. There is a sketch-and-recover scheme for

Kgoi < -+

hierarchical mismatch recovery for Ld—sequences overI' defined by
procedures HMR-SKETCH and HMR-RECOVER that given § > 0 satisfies:
(1) The scheme solves HMR(T(Ld), K, R) for any R > 4d with
failure probability at most 6.
(2) The sketch bit-size is O(kg - log |T'| - (log |L9| +log(1/9))) bits.
(3) The sketching algorithm runs in time o(|L4) - logo(l) IT| -
log(1/9)).

(4) Therecovery algorithm runs in time O(Ko-logo(l) IT|-log(1/9)).

(5) If the L4-sequence u is given via the sparse representation
{(,uj) : j € supp(u)} where supp(u) = {j € 4 tuj # 0}
then the time to construct the sketch is O((xo + |supp(u)|) -
1og®M |T| - log(1/6)).

(6) The number of mismatch pairs output by the algorithm is at
most the capacity kg of the root.

The function HMR-SKETCH depends on T(L%), x, R, and & and
so these are input parameters to HMR-SKETCH. In what follows
we write HMR-SKETCH (u; T(LY), , R, §) for the sketch of u for the
capacitated tree (T(L9),x) and overload parameter R, and error
parameter §, and HMR-RECOVER(u, w) for the recovery function
which takes as input the sketches u and w’ output by HMR-SKETCH
on two strings.
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In our application we will also use a hierarchical mismatch recov-
ery scheme for the special case of the tree T ({0, 1}9) where d = 0.
In that case we will need to sketch only a single value from I so
we assume that its sketch consists of the value itself. The recovery
procedure from two such sketches is straightforward.

We remark that the theorem easily generalizes to the case where
the edges labeling edges at level i come from a set L; with the sets
L1, Ly, ..., Ly being different.

5.2 Superposition Sketch-and-Recover Schemes

This subsection and the next give a general approach to targeted mis-
match recovery. We apply this approach in Section 5.4 to construct
the sketch-and-recover scheme HMR-SKETCH and HMR-RECOVER for
hierarchical mismatch recovery and prove Theorem 5.1.

We make the following assumptions:

e D=/0,...,|D| -1}
e T is the field Fj, for some prime larger than [D|so D C T.

If these assumptions do not hold we can often reduce our situa-
tion to one where it does hold. We do not need D to be integers; it
is enough that there is an easily computable 1-1 mapping m from
D to the nonnegative integers. Letting m = maxjep m(j) + 1, we
can think of D as a subset of {0, ..., m — 1}, and enlarge the domain
to {0,...,m — 1} defining any D-sequence to be 0 on those indices
outside of D. Similarly we can replace the range I by F), for some
p whose size is at least max{|T|, |D|}, where we interpret I' as a
subset of ), via some easily computable 1-1 map.

Let u, w be D-sequences over I'. Here we use a basic technique
from [21] (see also [8, 9] for related constructions), that allows for
the recovery of MIS(u, w) at a specific index i. For a parameter
a €T, the trace of u € TP (with respect to ), denoted tr (u) is the
D-sequence over I'* where for each i € D, try (u); has entries:

tro(Wivalue = Ui
tro(Wiproduct = - Ui

tra(u)i,square = uiZ’
tro(Wipash = @'ui.

All the calculations are done over Fj,. We refer to a vector in r4
with indices from {value, product, square, hash} as a trace vector
and we refer to a as the trace parameter

For u, w € I'P, the trace difference of u, w is Ag (u, w) = trg (u) —
tro (w). Here, for each i, Ay (u, w); = trg(u); — trg(w); is a trace
vector obtained by coordinate-wise subtraction.

Define the function restore which maps trace vectors ¢ to I'> as
follows:

product
restore(t)index = e
Lvalue
2
tsquare + I,
restore(t)yya = ST value
2tyalue
2
tsquare — I,
restore(t)y.yal = AU value
2tyalue

It is easy to check:
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PROPOSITION 5.2. The mismatch information for (u,w) at i is
completely determined by Ay (u, w); as follows: i is a mismatch index
of u, w if and only if Ay (u, w); # 0 and for such an i,

restore(Ag (1, W) index = b
restore(Aq (u, W))i,x-val Ui,
restore(Aq (4, W)); y-val Wi,

and therefore restore(Aq (u, w)); = (i, uj, wi) = MIS(u, w);.

We remark that the division by 2 in the definition of restore is
the reason why we need that I does not have characteristic 2. Also,
note that trg (¢); hash is not used in restore, but is used later to
check soundness. In standard binary representation of integers, all
arithmetic operations over IFP that are necessary to compute trace
or its restoration at a single coordinate can be computed in time
0(log®W p).

We are now ready to define the class of superposition sketches
for functions from D to T.

Definition 5.3 (Superposition sketch). Let Sbe aset,h: D — S
and a € T'. The superposition sketch induced by (a, h) is the function
tr, p, that maps u € rP to tro p(u) € (TS where for j € S:

trop(w)j = Y trg(w).
ieh™1(j)

In words, the function & is used to partition D into |S| classes
h=1(}), and try p(u) at j € S is the sum of the trace vectors of u
corresponding to indices of D in the class A~ (). The size (in bits)
of the output is O(|S| log |T']).

Note that we can compute the superposition sketch of any D-
sequence over I' easily: Initialize tr, j,(u) to all zero and then for
each i € D add the trace vector trq (u); to tr, j (u)j where j = h(i).

Foruw € TP and h : D — T, a mismatch index i € D is
recoverable for u, w, b if h=1(h(i)) N Iz (4, w) = {i}. We now define
a procedure RECOVER,, j, that recovers all recoverable indices.

RECOVER,  (try p(u), try (W), a, h)

Input: Traces tr, ; (u), tr, j,(w) for two strings u, w € rp,
trace parameters@ € I, h : D — S.

Output: The set M, ,(u, w) of mismatch triples.

-

Let Ay p(u, w) = trg p(u) — try p(w).
Let J be the set of j € S such that Ay j, (4, W) value # 0.
Rebuilding step: For each j € J let

zj = restore(Ay p(u, w);).
Filtering step: Let I = {j € J, zjindex <

ID| A Aa,h(ua W)j,hash = gFjindex (Zj,x—val - Zj,y-val)}-
Return My p(u, w) = {z; : j € I}.

[N}

@

'S

[

In the rebuilding step, the algorithm produces a list of mismatch
triples by applying restore to every trace vector it can among the
Ay n(u, w)j. In the filtering step, it eliminates some of these mis-
match triples, and then it outputs the rest. The following lemma
shows that (1) The rebuilding step produces all mismatch triples
corresponding to recoverable indices (and possibly some others)
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and (2) The filtering step with high probability eliminates all mis-
match triples corresponding to indices that are not recoverable, so
Soundness holds with high probability.

LEmMA 5.4. Letu,w € TP andh: D — S be fixed. Let I and ]
are as in the RECOVER, j,(u, w). For each j € S:

(1) IfIh=(j) N Le(u, w)| = 0 then j & J.

(2) IFIh~1(j) N Le(u,w)| = 1 then zj € Myp(u,w) and z;
(i, ui, w;) where i is the unique mismatch index such that
h(i) = j.

(3) The probability that My p(u, w) outputs a triple that is not
in MIS(u, w) (i.e. that Soundness fails) is at most M

T
over a uniformly random choice of « € T.

The following result gives upper bounds on the running time of
the sketch and recover algorithms, and on the space needed for the
sketch

PrOPOSITION 5.5. LetT' = Fp and let D = {0,..., |D| — 1} with
|ID| < p. Let S be aset,h : D — S and a € T. The superposition
sketch tr, j, maps a D-sequence u over T' to a sketch of bit-length
O(|S|log|T'|). The running time for the sketch algorithm is O(|D|-T)
and the running time of the recover algorithm is O(|S| - T), where T is
an upper bound on the time to perform a single arithmetic operation
overI' and evaluate h at a single point.

Furthermore if a D-sequence u over T is given via a sparse rep-
resentation, via {(j,uj) : j € supp(u)} where supp(u) = {j €
D : uj # O} then the running time of the sketch algorithm is
O((IS| + [supp(u)]) - T).

5.3 Randomized Superposition Sketches

In order to apply the superposition sketch we need to select a good
h. However, one can hardly hope that if S is comparable in size
to MIS(u, w) then one can find a single h : D — S for which all
mismatch indices I« (u, w) will be recoverable. Hence, we will try su-
perposition sketches for multiple randomly chosen h’s. Fix a (small)
family H € {h : D — S} and a probability distribution yz on H (not
necessarily uniform). For < 1, we say that i is f-recoverable for
u, w, p provided that for h ~ p, the probability that i is recoverable
for u, w, h is at least f. (Recall that if i is recoverable for u, w, h then
for any choice of «, the output of recovery procedure from the
sketches tr, (1) and tr, j,(w) includes the triple (i, u;, w;).)

We select hash functions hj, ..., hy independently according
to yu, for some redundancy parameter £. We also select trace pa-
rameters 1, . .., ap uniformly at random from I'. The sketch of u
consists of the sequences hy, ..., hy and i, ..., ap together with
trg, b, (W, ..., trg, p,(u). For the recovery algorithm, given the
sketches for u and w we compute each of the sets My, p, (1, w)
for i € [¢] and define My, 4, h,,...n, (4 W) to be the set of triples
that appear in strictly more than half of the sets.

We refer to a scheme of the above type as a randomized super-
position scheme. Such a scheme is determined by the distribution
(H, p) over hash functions and the redundancy ¢.

The size of the sketch in bits (not including the description of
the hash functions used) is O(¢ - |S| - log |T'|). The description of the
hash functions depends on the method used to represent members
of H. For standard explicit choices of H (such as explicit families of
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O(1)-wise independent functions), members of h are represented
in O(log |H|) space.

PROPOSITION 5.6. Let D and S be sets and let ' be a field of size
at least 4(|D| — 1)| - |S|. For each pair of strings u,w € ro, suppose
F(u, w) is a subset of D. Let (H, i) be a distribution over hash func-
tions from D to S. Suppose that for every u, w, every index belonging
to F(u, w) is 3/4-recoverable for u, w, . Then for any § > 0, the super-
position sketch using (H, pt) with redundancy ¢ > 8(In|D|+1n % +2)
satisfies the Completeness and Soundness conditions for F with failure
probability at most §.

5.4 Proof of Theorem 5.1

In this section we show how to apply the randomized superposition
schemes of Section 5.3 to construct a sketch-and-recover scheme
for the hierarchical mismatch recovery and prove Theorem 5.1. The
reader should review the set-up for hierarchical mismatch recovery
in Section 5.1.

Recall that the scheme gets a capacitated tree (T(LY), k) where
k = (Ko,...,kg) and for each j, kj > «kj41. In preparation for
describing the sketch-and-recover scheme, we associate to each
node v at level j of T(L9), a set of buckets which are ordered pairs
(v, i) where 1 < i < kj. We refer to (v, i) as a v-bucket, and a bucket
of the root is a root-bucket. Each leaf ¢ has only one bucket, (¢, 1).

The hash functions of our superposition scheme are leaf —root
functions, which are functions that map 4 (the set of leaves) to
the set of root-buckets. We will use Proposition 5.6 to prove that
the scheme works by:

(1) Describing a distribution y over leaf —root functions.
(2) Showing that for any pair of strings u, w, every leaf that
belongs to FT(Ld),;c,R(”> w) is 3/4-recoverable for u, w, p.

To describe the distribution i on leaf —root functions, we con-
sider a specific representation of a leaf —»root functions, and for
this we need the notions of a trajectory and routing functions.

For aleaf £ € L9, the path from ¢ to the root ¢ in T(Ld) are the
nodes identified by ¢< 4, f<4_1,. .., fo. We define a trajectory for ¢
to be a sequence of buckets one for each node on the path from
ftoe, ([Sd> id), ([Sdfl’ l'd,l), ..., (fo, ip) where ij € {1,..., Kj}. A
trajectory is uniquely determined by the leaf ¢ and the sequence of
indices (ig,ig_1,- - -,io). Note that iy must equal 1.

We want a way to specify a trajectory for every leaf. We do this
using a collection » = (rj : j < d) of routing functions, one for
each internal level of the tree. The routing function r; is a function
fromLx{1,...,kj41} to{1,...,x;}. For o at level j it maps buckets
corresponding to children of v to buckets of v as follows: fora € L
and i € {1,...,Kj+1}, the bucket (v o g, i) is mapped to (v,rj(a, )).
Thus the collection of routing functions determines a trajectory
for every leaf ¢ with sequence of indices ij(f) = 1 and for j < d,
ij(€) = rj(¢j+1,ij+1(£)). This induces the leaf —root mapping that
maps each £ € L9 to the bucket (¢, ig(£)).

We are now ready to specify the distribution u. For each level
0<j<dletH; ={h:Lx{1,...,kr1} = {1,...,xj}} bea
pairwise independent family of routing functions for level j. Inde-
pendently select ro, ..., rg_; from Hjy, ..., Hy_;. The distribution y
on leaf —root functions is the distribution induced by the selection
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of g, ...,rg_1. The total number of bits to represent a leaf »root
function in the family is O(d(log |L| + log xp)).

LemMA 5.7. Let (T(L9), k) bea capacitated tree. Let ji be the distri-
bution on leaf—root functions induced by choosing routing functions
ro,...,rq—1 independently from pairwise independent distribution.
For any two stringsu, w in FLd, everyfl € FT(Ld),KAd(”’ w), L.e., every
4d-accessible mismatch leaf, is 3/4-recoverable for u, w, p.

PrOOF. Let £ € L? be a 4d-accessible leaf with respect to u, w
where upy # wy. We must show that £ is 3/4-recoverable. Recall that
¢ is 4d-accessible if each node along the path from ¢ to root is 4d-
underloaded, i.e., for each j < d, kr,; < xj/4d. Let (rj : 0 < j < d)
be the sequence of random routing functions selected as above and
let f be the induced leaf —root function.

Let (ig, ..., o) denote the sequence of indices (igz(?),...,io(£))
for the trajectory of ¢. This is a random variable depending on the
choice of ry, . .., r4_1. By definition, ¢ is not recoverable if and only
if there is a mismatch leaf £/ # ¢ such that f(¢) = f(£'). If ¢/ # L is
a leaf such that f(¢’) = f(¢) then the trajectories of ¢ and ¢ have
non-empty intersection. We say that £ and ¢’ merge at level j if they
are in different buckets at level j + 1, but in the same bucket at level
Jj- (Note that once the trajectories merge, they remain the same all
the way to the root.)

For j € {0,...,d — 1}, let MERGE; be the event that there is a
mismatch leaf £/ # ¢ that merges with ¢ at level j. We now fix j and
prove that Pr[MERGE] < 1/4d. This will finish the proof, since
summing over all the levels, we will get that the probability that ¢
is not recoverable is at most 1/4.

We condition on the rj1,...,74_1, which determines the tra-
jectory of all leaves up to level j + 1. In particular this determines
Ljtls o id>

Consider the set of child buckets of ¢<;. These have the form
(¢<joa, i) where (a,i) € Lx{1,...,xj41}. This includes the bucket
(f<j © £j+1,1j+1) on the trajectory of £.

Say that a bucket (v, i) is occupied if it lies on the trajectory of
some mismatch leaf. Let OCC be the set of pairs (a, i) # (£j+1,1j+1)
such that (¢<; o a, i) is occupied. The event MERGE; is equivalent
to the event that there is an (a,i) € OCC such that rj(a,i) =
rj(€j+1, ij+1). For each (a,i) € OCC, Pr[rj(a, i) = rj(€j+1, ij+1)] =
Tl
and so the conditional probability of MERGE; given rg_y, ..
is at most |OCC|/|x;].

We need to upper bound |OCC|. Let occ(v) denote the number of
occupied o-buckets. In the above analysis |OCC| = }, ¢y oce(f<j o
a) — 1. We claim:

since r; is a pairwise independent map with range size |«

T+l

ProPOSITION 5.8. For any choice of routing functionsrg_y, ..., ro:

(1) For any internal node v at level j' < d, occ(v) < min(k;j,
2o echild(v) 0€€(0")).

(2) For any nodev at level j' < d, occ(v) < k(v).

Proor. For the first part, let v be an internal node. Then occ(v)
is trivially at most xjs. Also, a v-bucket is occupied if and only if
some occupied child maps to it, so 0cc(v) < ¥y echild(v) 0€€(2”).

For the second part, if v is a leaf then occ(v) = 1ifov is a mismatch
leaf and 0 otherwise, so occ(v) = k(v). If v is an internal node,
the first part implies occ(v) < min(xj/, ¥y cchild(v) ©€c(2”)) and
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applying induction and the definition of ¥(v) we have min(x;,
ZU’Echild(v) ®(v)) = %(0). o

Thus |OCC| < Y 4ef ®(f<joa)—1. We know that K(f< ;) < k;/4d
and in particular, ¥(¢f<j) < k;. Hence, K(f<j) = Ygep kK(f<j ©
a) > |OCC]. It follows that for any choice of the routing functions
Fd—1---.Tj+1. |OCC| < x;j/4d. Therefore Pr[MERGE;] < 7, as
required to complete the proof of the theorem. O

We are ready to conclude Theorem 5.1. Let us define the sketch-
ing function HMR-SKETCH (u; T(LY), k, 8) for targeted mismatch
recovery HMR(T(L?), k, 4d) to be the superposition sketching
function on the tree T(L4) with the capacity function x, where
the distribution on leaf —root functions is as given in the above
lemma, and with the redundancy set to [8(In L9 + log(1/8) +2)].
Let us define HMR-RECOVER to be the associated recovery function.
To conclude the correctness of the scheme (the first item of Theo-
rem 5.1) we apply Proposition 5.6 together with Lemma 5.7 with
parameters set as follows: D = L¢, S = {1,...,x0}, redundancy
¢ = [8(In|L9| + log(1/8) + 2)], and (H, u) as defined above for
(T(L%), k). (Notice, |T| > 4|L¢| implies that |T| > 4(|D| - 1)| - |S|
as required by Lemma 5.7.) The sketch consists of O(¢ - |S]) el-
ements from T so it takes O(xp - log|T| - (log L9 + log(1/9)))
bits. Evaluating a hash function from H at a single point takes time
o(d logo(l) |T|) so by Proposition 5.5, the sketching algorithm runs
in time O(£-|LP|-d1og® ™ |T|) = O(|LP|-10g®™®) |T|-log(1/8)).1f
u is given via its sparse representation then the time to construct the
sketch is O((xo + [supp(u)]) - logo(l) [T| - log(1/5)). The recovery
algorithm runs in time O(kg ~log0(1) IT'| -log(1/68)) as required. Fi-
nally, each mismatch pair that is output by the recovery algorithms
must appear in more than half of the ¢ redundant sketches. As each
sketch outputs at most |S| elements, the number of mismatch pairs
output by the algorithm is at most k.
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