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(b) 20 iterations
Fig. 1. For a closed and orientable surface, the winding number is 0 on the exterior and 1 on the interior. Inspired by this fact, in this paper we consider a reverse
problem: given an un-oriented point cloud, is it possible to find the globally consistent normal orientations by regularizing the winding-number distribution?
We propose a smooth objective function to characterize the requirements of an acceptable winding-number field. Starting from a set of completely random
normals (a), we repeatedly optimize their directions (b,c) until the objective function cannot be reduced. With the computed normals, one can simply call the
screened Poisson reconstruction (SPR) solver to produce the final surface (d). Note that we use RGB mapping to visualize the normals and provide a sectional
view to visualize the change of the winding-number field, where “blue” and “red” indicate 0 and 1, respectively.

(a) Initial normal vectors

Estimating normals with globally consistent orientations for a raw point
cloud has many downstream geometry processing applications. Despite
tremendous efforts in the past decades, it remains challenging to deal with
an unoriented point cloud with various imperfections, particularly in the
presence of data sparsity coupled with nearby gaps or thin-walled structures.
In this paper, we propose a smooth objective function to characterize the re-
quirements of an acceptable winding-number field, which allows one to find
the globally consistent normal orientations starting from a set of completely
random normals. By taking the vertices of the Voronoi diagram of the point
cloud as examination points, we consider the following three requirements:
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(c) 40 iterations (d) Reconstruction

(1) the winding number is either 0 or 1, (2) the occurrences of 1 and the
occurrences of 0 are balanced around the point cloud, and (3) the normals
align with the outside Voronoi poles as much as possible. Extensive experi-
mental results show that our method outperforms the existing approaches,
especially in handling sparse and noisy point clouds, as well as shapes with
complex geometry/topology.

CCS Concepts: « Computing methodologies — Point-based models.

Additional Key Words and Phrases: raw point cloud, normal orientation,
winding number, Voronoi diagram, optimization

1 INTRODUCTION

An unoriented point cloud becomes more informative if it is equipped
with a set of normals with globally consistent orientations. Pre-
dicting reliable normals serves as a crucial step for many down-
stream tasks, e.g., surface reconstruction [Kazhdan 2005; Kazhdan
et al. 2006; Kazhdan and Hoppe 2013; Wang et al. 2021; Xu et al.



2+ Rui Xu, Zhiyang Dou, Ningna Wang, Shiging Xin, Shuangmin Chen, Mingyan Jiang, Xiaohu Guo, Wenping Wang, and Changhe Tu

& ot ‘J’ .
v ) ]
e, | 1
AR
Kénig [2009] PCPNet [2018]
! s g [9F8
2dEARA A4l
& & [ &
iPSR [2022] PGR [2022]

Fig. 2. Existing normal orientation approaches are not able to deal with
various imperfections such as noise, thin structures, nearby surfaces and
sharp features. Note that the red points indicate a false orientation, i.e., the
angle between the ground-truth normal and the predicted normal is larger
than 90 degrees.

2022], shape registration [Pomerleau et al. 2015], determining in-
side/outside information [Barill et al. 2018; Jacobson et al. 2013],
shape analysis [Dou et al. 2022; Grilli et al. 2017; Zapata-Impata et al.
2019]. Despite significant progress [Alliez et al. 2007; Boltcheva and
Lévy 2017; Dey and Goswami 2004; Dey et al. 2005; Guerrero et al.
2018; Hoppe et al. 1992; Hou et al. 2022; Kénig and Gumhold 2009;
Li et al. 2022; Mérigot et al. 2010; Metzer et al. 2021] being made on
this problem, it is still a stumbling task of discovering the globally
consistent normals for an unoriented point cloud while allowing
for various imperfections.

Most of the existing research works [Alliez et al. 2007; Cazals
and Pouget 2005; Hoppe et al. 1992; Levin 1998; Pauly et al. 2003]
first compute a normal tensor for each point, regardless of orienta-
tion, followed by spreading the orientation flags through propaga-
tion [Metzer et al. 2021]. They are not able to deal with various im-
perfections such as noise, thin structures, nearby surfaces, and sharp
features since the normals do not rigorously satisfy the property of
spatial coherence. In contrast, the recently proposed iPSR [Hou et al.
2022] and Parametric Gauss Reconstruction (PGR) [Lin et al. 2022]
focus more on the global consistency of normal orientations, and
achieve better results. However, they still suffer from data sparsity
coupled with nearby gaps, thin-walled structures, or highly com-
plex geometry/topology. Fig. 2 demonstrates the results of various
approaches, where the red points indicate a false orientation.

In recent years, the winding number, as a powerful tool for inside-
outside tests, has gained increasing attention in digital geometry
processing, ranging from meshing [Hu et al. 2018] to reconstruc-
tion [Barill et al. 2018; Wang et al. 2022b]. Despite the ability to
distinguish the interior part (the winding number is close to 1) from
the exterior part (the winding number is close to 0), it heavily de-
pends on the support of reliable normals. Our hypothesis is that
only when the normals are oriented with global consistency, the
winding-number field could be approximately binary-valued with
1 and 0. This inspires us to optimize the normals such that the
winding-number field becomes fully regularized. Based on this hy-
pothesis, we propose an all-in-one functionality to characterize the
requirements of a winding-number field from three aspects: (a) the
winding number should be close to either 1 or 0 at any query point,

(b) when the query points are scattered in the neighborhood of input
samples p;, the occurrences of 1 and the occurrences of 0 should
be approximately balanced, and (c) the sample p;’s normal vector
should align well with the direction towards the outside Voronoi
pole [Amenta and Bern 1998]. Note that the first two requirements
are used to regularize the distribution of the winding number while
the last requirement enforces the computed normals to be as ac-
curate as the Voronoi-based approaches [Alliez et al. 2007]. The
three terms can be integrated into a smooth objective function with
regard to the normals such that the best configuration of normals
can be found by solving an unconstrained optimization.

In the implementation, we use L-BFGS to solve the proposed
optimization problem. Starting from a completely random normal
setting, it generally requires about 30-50 iterations to arrive at the
termination. We use the same set of parameters to test our method
on various unoriented point clouds, including synthetic data and
real scans. Both quantitative statistics and visual comparison show
that our method has the advantage of normal accuracy and consis-
tency. It is not only robust to noise and data sparsity (see Fig. 12
and Fig. 14), but also can handle challenging shapes with complex
geometry/topology (see Fig. 19). Furthermore, our method can be
even applied to incomplete point clouds that encode an open surface
(see Fig. 17). In Fig. 3, we provide a gallery of results produced by
our approach.

2 RELATED WORK
2.1 Estimating Normal Orientations for Point Clouds

The problem of point cloud orientation has been extensively re-
searched in the past decades. In general, attention must be paid to
orientation and accuracy for achieving normal consistency. Existing
methods can be divided into two categories: optimization meth-
ods and learning techniques. The latter can be further divided into
regression-based approaches and surface fitting-based approaches.

Optimization-based Approaches. Hoppe et al. [1992] pioneered on
normal orientation. Their approach first uses Principal Component
Analysis (PCA) to initialize the normal tensors, and then makes their
orientations consistent by a minimum spanning tree (MST) based
propagation. Besides the MST-based propagation, more propagation
strategies include multi-seed [Xie et al. 2004], Hermite curve [Kénig
and Gumbhold 2009], and edge collapse [Jakob et al. 2019]. The dipole
propagation [Metzer et al. 2021] is also a competing algorithm for
propagating the orientation flags. In terms of accuracy improve-
ment, many techniques are proposed, e.g., exponentially decaying
function [Levin 2004], local least square fitting [Mitra and Nguyen
2003], truncated Taylor expansion [Cazals and Pouget 2005], moving
least squares [Levin 1998], multi-scale kernel [Aroudj et al. 2017],
ensemble framework [Yoon et al. 2007]. Wang et al. [2012] proposed
to minimize a combination of the Dirichlet energy and the coupled-
orthogonality deviation such that the normals are perpendicular to
the surface of the underlying shape. In terms of handling sparse data,
VIPSS [Huang et al. 2019], as a variational method, reconstructs an
implicit surface from an un-oriented point set.

There are also many research works on orienting normal vec-
tors for shapes with corners or geometry edges. For example, L0
norm [Sun et al. 2015] or L1 norm [Avron et al. 2010; Sun et al.
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Fig. 3. We equip the input unoriented point clouds with our computed normals (rendered with RGB mapping). By feeding the points and the normals together
into the screened Poisson reconstruction (SPR) solver, we get high-fidelity reconstruction results (in gray), which exhibit the high quality of the computed

normals.

2015] is based on the observation that a general surface is smooth
almost everywhere except at some small number of sharp features.
As each feature point is allowed to own a range of normal vectors,
Zhang et al. [2018] employed the pair consistency voting strategy to
compute multiple normals for feature points. Xu et al. [2022] used
optimal transport to regularize normal vectors for the points nearby
geometry edges. Besides, statistics and subspace segmentation [Li
et al. 2010; Liu et al. 2015; Zhang et al. 2013] are used to estimate
normals for point clouds with sharp features.

In recent years, much attention has been paid to the global con-
sistency of normal orientations, such as Stochastic Poisson Surface
Reconstruction (SPSR) [Sellan and Jacobson 2022], iterative Pois-
son Surface Reconstruction (iPSR) [Hou et al. 2022] and Parametric
Gauss Reconstruction (PGR) [Lin et al. 2022]. For example, iPSR
repeatedly refines the surface by feeding the normals computed
in the preceding iteration into the Poisson surface reconstruction
solver. PGR treats surface normals and surface element areas as
unknown parameters, facilitating the Gauss formula to interpret the
indicator as a member of some parametric function space. Global
methods achieve better results than local methods. However, they
still suffer from data sparsity coupled with nearby gaps, thin-walled
structures or highly complex geometry/topology. For example, iPSR
may disconnect thin structures while PGR may generate bulges for
tubular shapes. Furthermore, PGR’s application on large models is
constrained by the super-linear growth of GPU memory.

Regression-based Approaches. Regression-based methods model
normal estimation as a regression or classification task where the
surface normals are directly regressed from the feature extracted
from the local patches. Specifically, PCPNet [Guerrero et al. 2018]
encodes the multiple-scale features of local patches in a structured
manner, which enables one to estimate local shape properties such
as normals and curvature. Nesti-Net [Ben-Shabat et al. 2019] esti-
mates the multi-scale property of a point on a local coarse Gaussian
grid, which defines a suitable representation for the CNN archi-
tecture and enables accurate normal estimation. Zhou et al. [2020]

proposed a multi-scale selection strategy to select the most suitable
scale for each point through a joint analysis of multiscale features.
Hashimoto and Saito [2019] used a point network and a voxel net-
work to estimate normal vectors without sacrificing the inference
speed. Although the regression-based methods typically outperform
traditional data-independent methods, the regression-based meth-
ods rely on a large amount of training data for network training and
are limited by the generalization capability because the brute-force
training course may cause the network to overfit the normal vectors
from the training data.

Surface fitting-based approaches. Different from those regression-
based methods, surface fitting-based approaches estimate a fitting
surface by taking advantage of its neighboring points. In particular,
Lenssen et al. [2020] presented a light-weight graph neural network
that parameterizes a local quaternion transformer and a deep kernel
function to iteratively re-weight graph edges in a large-scale point
neighborhood graph. DeepFit [Ben-Shabat and Gould 2020] achieves
scale-free normal estimation by per-point weight estimation for
weighted least squares. Zhu et al. [2021] predicted an additional
offset to improve the quality of normal estimation. Recently, the
dipole propagation [Metzer et al. 2021] establishes a consistent
normal orientation in a local phase and a global phase. However,
tests show that dipole cannot deal with the point sparsity or tubular
structures.

Although deep learning approaches show great potential in nor-
mal estimation, it is still notoriously hard for both point-based
regression approaches and surface fitting-based approaches to ro-
bustly deal with different noise levels, outliers, thin-plate structures,
and varying levels of detail.

2.2 Voronoi-based Normal Orientation

Voronoi diagrams, as a powerful tool to encode spatial proxim-
ity, are extensively used to estimate normal vectors [Alliez et al.
2007; Amenta and Bern 1998; Boltcheva and Lévy 2017; Dey and
Goswami 2004; Dey et al. 2005; Grimm and Smart 2011; Kolluri
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et al. 2004; Mérigot et al. 2010; OuYang and Feng 2005; Wang et al.
2012]. Amenta and Bern [1998] proved that when the point density
satisfies the standard of local feature size, one can roughly recover
the real normals and even construct a discrete interpolation-type
surface that is conformal to the base surface. The central idea is to
identify inside poles and outside poles from the Voronoi diagram
of the input point cloud, and use the poles to help orient the point
cloud and assign their normals. Observing the Voronoi diagram can
locally represent the most likely direction of the normal to the sur-
face, Alliez et al. [Alliez et al. 2007] proposed to compute an implicit
function by solving a generalized eigenvalue problem. It can be seen
from the existing approaches that inside poles and outside poles are
robust to noise, which helps find the dominant Delaunay balls in a
noise-resistant manner [Dey and Goswami 2004]. Generally speak-
ing, Voronoi diagrams can produce faithful results for dense point
clouds but are weak in dealing with thin-plate structures or sharp
features. In this paper, we thoroughly investigate the winding num-
ber by analyzing all the Voronoi vertices of the input point cloud.
Our approach utilizes the winding-number requirements to ensure
global normal consistency while relying on the Voronoi diagram to
accurately predict the normals.

2.3 Winding Number

The winding number was first introduced by [Meister 1769]. For a
smooth manifold surface, it can be computed using a contour inte-
gral in complex analysis. As a powerful tool for inside-outside tests,
it has been widely used in many higher-level geometry processing
operations including tetrahedral meshing [Hu et al. 2020], recon-
struction [Barill et al. 2018; Wang et al. 2022b], normal orientation
for point clouds [Metzer et al. 2021], shape analysis [Wang et al.
2022a], shape modeling [Sellan et al. 2021], animation [Nuvoli et al.
2022]. For example, Jacobson et al. [2013] introduced a winding-
number-based function to guide an inside-outside segmentation of
a polygonal surface.

Barill et al. [2018] derived a differential form of the winding
number function and gave a tree-based fast algorithm to reduce the
asymptotic complexity of generalized winding number computation,
and also demonstrated a variety of new applications.

It’s known that if the input point cloud is equipped with a mean-
ingful normal setting, the winding number can robustly distinguish
the inside from the outside in a global manner and is valued at 1 (in-
side) and 0 (outside). This observation motivates us to regularize
the winding-number field by repeatedly tuning the normals so that
they become consistent.

3 PRELIMINARIES
3.1 Generalized Winding Number

The theory of winding number can be generalized to polygonal
meshes [Jacobson et al. 2013], triangle soup and point clouds [Barill
et al. 2018]. Suppose {p; f\i ; are samples from a continuous surface
with normals {ni}fi ;- The generalized winding number w at the
query point q can be expressed as an area-weighted sum of the

(b) Ground Truth Normals

Fig. 4. (a) If the normals are random, the winding number tends to be 0
everywhere. (b) If the normals can encode a closed and orientable shape,
the winding number is valued at 1 (interior) and 0 (exterior).

(a) Random Normals
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Fig. 5. Assuming the point cloud is equipped with a ground-truth normal
setting, we examine the winding number at the Voronoi vertices of the
point cloud. Top row: For a noise-free point cloud, the winding number is
close to either 0 or 1 for Voronoi vertices. Bottom row: When noises are
added to point positions, the histogram of the winding number has a slight
change, but still demonstrates two peaks close to 0 and 1. Note that the
intersection points between the Voronoi edges and the 1.3x bounding box
are also included for the winding number query.

(b) Voronoi vertices

overall contribution of the point set [Barill et al. 2018]:

w(q) = i aim, 1)
~ an|l(pi - 9P

where a; is the dominating area of the point p;. Obviously, the
normals are central to the computation of winding numbers. When
the normals are random, see Fig. 4 (a), the winding number tends to
be 0 everywhere. If the normals can encode a closed and orientable
shape, instead, see Fig. 4 (b), the winding number is about 1 for the
interior points and 0 for the exterior points.

Remark: How to estimate g; is a problem when the base surface is
not available. A commonly used technique [Barill et al. 2018] is to
project p;’s k-nearest neighbors onto the tangent plane of p;. Thus
a; is approximated by the area of the p;’s cell of the 2D Voronoi
diagram. However, this strategy depends on the choice of k. Since
the estimation of a; is essential to the computation of the winding
number, we adopt a parameter-free strategy in Sec. 4.4.

3.2 Voronoi Vertices for Examining Winding Number
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Fig. 6. The optimization progress using our method. The input model is a thin board with randomly initialized normals (in orange) of the point cloud. We cut
the board in the middle with a plane to show the sectional view of the winding-number field (visualized in a color-coded style).

The Voronoi diagram (VD) of
a set of points {pi}f\i1 parti-
tions the entire space into N
cells based on spatial proxim-
ity. In 3D, it includes Voronoi
vertices, Voronoi edges, Voro-
noi faces, and Voronoi cells
as the atomic elements. Let
Q" be the cell of p;; See the 2D example in the inset figure. The
two farthest vertices of Qf‘" , located on both sides of the surface,
are defined as poles [Amenta et al. 2001], which are helpful for
orienting normals. Note that the inside poles and the outside poles
are hard to be distinguished before the normals are determined.
Therefore, in this paper, we use all the Voronoi vertices, a superset
of the Voronoi poles, for examining the winding number given by a
point cloud.

As shown in the top row of Fig. 5(c), the winding number is close
to either 0 or 1 at the Voronoi vertices for a noise-free point cloud. If
we add noises to point positions at a level of 0.5%, the histogram just
changes slightly (see the top row of Fig. 5(c)). Note that in Fig. 5 (b),
the Voronoi vertices are colored in red (resp. cyan) if the winding
number is close to 1 (resp. 0). Besides, we use a 1.3x bounding box
to enclose the point cloud and add the intersection points between
the Voronoi edges and the box as examination points. One may
consider a different strategy for generating the examination points,
e.g., adding Gaussian noise to the input point cloud. Based on our
tests, most of the Voronoi vertices are remote from the surface
and noise-insensitive, which accounts for why we take the Voronoi
vertices as examination points. We conduct the ablation study in
Supplementary Material.

4 METHOD

The winding number, in its nature, can reflect global inside-outside
information, which motivates us to compute the normals by regular-
izing the winding-number field. In the implementation, we examine
the winding number at the Voronoi vertices of the point cloud. We

hope that the computed normals can not only lead to a reason-
able winding-number field but also accurately align with Voronoi
poles. The requirements can be summarized into the following three
aspects.

w(q) is valued at 0 or 1. Although one can construct a surface such
that the winding number is valued at any integer, we only consider
the common case where the winding number is either 0 or 1. We
shall include a term fj; (n) to characterize the basic requirement of
a valid winding-number field.

The winding-number values are balanced for p;’s Voronoi vertices.
Sample p; dominates a cell in the Voronoi diagram. In general cases,
it is unlikely that all the Voronoi vertices of p;’s cell are located inside
or outside. Therefore, we hope the number of 1’s and the number
of 0’s are balanced when we consider the winding number of p;’s
Voronoi vertices. This observation leads to a balance term fg(n).

Normals align with Voronoi poles. Like the power crust tech-
niques [Amenta et al. 2001], Voronoi poles are very helpful in predict-
ing the normals. Let q;( be the k-th Voronoi vertex of p;’s Voronoi
cell. We hope the vector q;'c — pi has similar orientation with n;
if w(q;'c) ~ 0 but reverse orientation with n; if w(q;'c) ~ 1. The
alignment requirement leads to a term fy (n).

By summarizing them together, we get a functional w.r.t. the

normals,
for(n) + Agfp(n) + A4 fa(n)

fm) = N @)
where Ag and A4 are two parameters to tune the influence of fg and
fa, respectively. We establish the details of the separate terms in
the following subsections, while delaying the ablation study of A
and A4 in supplementary material. Fig. 6 gives an example of how
the normals change with the decreasing of the value of f.

4.1 The 0-1Term fy

Double well function. In the continuous setting, the winding num-
ber is valued at 0 or 1 if the input surface is closed and topologically
equivalent to a single-layer orientable surface. Therefore, we need to
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Fig. 7. (a) A standard double well function. (b) A new version with a shear
correction for suppressing the randomness of normals.

define an energy function to pull the winding number to the binary
states as far as possible. For this purpose, we introduce the double
well function inspired by one of the most important functions in
the field of quantum mechanics [Jelic and Marsiglio 2012]. A simple
form of the double well function can be written as:

fow(x) =4(x - 0.5)* =2 (x - 0.5)%, 3)
with two valleys at x = 0 and x = 1, respectively, as Fig. 7(a) shows.

A new double well function with a shear correction. If we equip a
point cloud with a set of random normals, the resulting winding
number tends to be 0 for an arbitrary query point; See Fig. 4(a). In
order to encourage the occurrence of 1’s for the winding number of
examination points, we need to tune the double well function with
a shear correction, as Fig. 7(b) shows. In this way, the 0-1 term fo;
can be defined by the overall contribution of the winding number
wj =wj(n)atqj,j=12---,M.

M
wj )
= i)——, 4
for(n) ; (fow (wj) - 2 @)
where the parameter D is used to tune the degree of shear correction.
We make the ablation study about D in the supplementary material
and empirically set D = 4 for all the experiments.

4.2 The Balance Term fg

Let Q7°" be the Voronoi cell dominated by the

point p; of the point cloud. If the point density 4

meets the local feature size standard [Amenta R A
and Bern 1998], one half of Q°" is located

inside the surface, and the other half is lo- pi

cated outside. Therefore, it is reasonable to

suppress the occurrence of the situation that

all vertices of Q7" are inside the shape or out- ..

side the shape. In other words, the winding- = Q"
number scores at the vertices of Q;"” should be balanced, which
can be achieved by maximizing the variance of the winding-number
scores. Let W' be the average score for Q7°". The variance can be

measured by ZkMi (Wlic — w')2, where M; is the total number of ver-
tices of Q°", and wli = w(q;c) is the winding-number score for

the k-th vertex q,ic. The balance term can be defined by the overall
winding-number variance.

N lMi _ )
fs(m) =—Z(ﬁ Z(w,g—w). (%)
'k
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Fig. 8. Plot on the decreasing of the functional value and the gradient norm.
The experiment is made on the torus model with 4K points.
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Fig. 9. Histograms of winding number distribution for the Voronoi vertices
of the torus point clouds, before and after optimization. It can be seen that
the distribution of the winding number is regularized by optimization.

0

4.3 The Alignment Term f4

As pointed out in [Amenta and Bern 1998], Voronoi poles are useful
for orienting the normals. Let p; be a point in the given point cloud,
pi’s Voronoi cell Q;’w has M; vertices, i.e., qfc,k =1,2,---,M;.If
q;'C is the inside (resp. outside) pole of p;, pi — q;.C (resp. q;'C -pi)
approximately aligns with the normal vector of n;. In this paper, we
turn the observation into an alignment requirement by enforcing
the two sequences

;- (qh —p). k=12, M

and

wi k=12 .M
to have exactly the reverse ordering. According to the rearrange-
ment inequality [Hardy et al. 1952], we hope ZQ/I" w,’;ni . (q;'c - pi)
to get minimized. Therefore, we can define the alignment term as

follows.
N

M;
famy = [ > whni- (a - po). ©
'k

1

4.4 Implementation Details

Area weight of p;. Let p; be a point in the
given point cloud. The estimation of the wind-
ing number at an arbitrary point has to input
the weighting area of p;; See Eq. (1). A typ-
ical way for defining the weighting area a; @
is based on KNN [Barill et al. 2018]. How-
ever, it has to include a parameter k to resist
the irregular distribution of points (typically
k = 20). In this paper, we use a parameter-free
strategy for estimating a;. As the inset figure shows, g4, € Qyer

i
4 Dnax

i
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Table 1. Statistics on the truth percentages under different sampling conditions and noise levels.

Sampling ‘ White Noise Sampling without noise ‘ White Noise Sampling With 0.25% noise ‘ White Noise Sampling With 0.5% noise

Models ‘ Hoppe Konig  PCPNet Dipole PGR iPSR Ours ‘ Hoppe Konig ~ PCPNet Dipole PGR iPSR Ours ‘ Hoppe Konig  PCPNet Dipole PGR iPSR Ours
82-block 99730 99.980 89300 97.080 99275  99.175  99.980 | 84980  99.900  89.750  98.030  98.800 98150  99.930 | 98950  99.730  89.030 98230 97350  98.000  99.880
bunny 99700  97.080  93.000 94350 100.000  99.625 99750 | 98.550 96730 92050 94930  99.875 99700  99.980 | 97.600  96.980  92.630 96180 99.125  99.375  99.580
chair 69580 86730 86030 80580 100.000  99.975 100.000 | 88030 85880 86480 73.550  99.975 100.000 100.000 | 72830 6505 86430 77450 99275  99.400  99.400
cup-22 61.180  60.780  68.450 55980  99.950  99.400  99.950 | 93.400  59.380 68350 56230  99.925  99.400  99.950 | 55930  60.100 67700 57.900 99.350 98725  99.850
cup-35 99.800  59.880  83.400 54400 100.000 100.000 100.000 | 99.530  60.780  83.00 52430 99900  99.950  100.000 | 99.000  60.830  82.100 53030 98725  99.950  100.000
fandisk 98.880  99.850  96.880 86750 99725  99.275 100.000 | 99.480  99.900 96800 86700  99.650  99.050  99.950 | 97530  99.580  96.850 95800 98.850  97.325  99.750
holes 100.000 100.000 94330  90.100 100.000 100.000 100.000 | 100.000 100.000 94600  90.900 100.000 100.000 100.000 | 99.850 100.000 93.750  91.000 99.075  99.975  100.000
horse 95700 89.700 95930 90780  99.425  99.500  99.800 | 92.680  90.700 95550  93.080  99.250 99325  99.750 | 93.630  89.880 95530 89.630 96.850 98.425  97.500
kitten 99.680  99.980 94100 98230  99.950  99.950  99.980 | 99.750 100.000 94050 98380  99.825  99.950 100.000 | 99.630  99.980 94550 97.930 98.150  99.825  99.980
knot 99.850  99.980 80780 56230  99.925 100.000 100.000 | 99.980  99.980 81380  69.980 98725 100.000 100.000 | 99780 93730  80.600 70.530 95300 100.000  99.950
lion 96380 92300  94.830  89.980 94975 97750  99.700 | 94580  93.130  94.880 93400 93500 96325  99.550 | 88450 93330 94250  88.880 89.325 93325  94.830
mobius 100.000 55150  89.800 53.950 100.000 87.250  100.000 | 68.600 55130  86.980 54200 99.175  80.525  99.380 | 55980  55.130 82030 53.650 94.900 68225  85.780
mug 98450  66.980  77.350 68250 99.925  99.875 100.000 | 98480  67.480  77.330  67.000  99.925  99.900 100.000 | 68230  68.000 76930 66150 99.050  99.700  100.000
octa-flower | 50.900  88.030  99.280 95300 98.600 95350  99.330 | 53800 58180  99.000 95180 97.725 95525  98.800 | 89330 86930  98.200 95500 96.225 93775  98.550
sheet 51200 51130  83.980 52450 100.000 99.075 100.000 | 99.480  51.300  83.400 52700  99.950  98.950  100.000 | 51100  51.050  81.130 59.550 99.875  97.225  99.980
torus 100.000 100.000 96880  99.950 100.000 100.000 100.000 | 100.000 100.000 96750  99.980 100.000 100.000 100.000 | 100.000 100.000 96.780  99.800 99.975 100.000 100.000
trimstar 97200 100.000 91.050 96700  98.600  99.650  100.000 | 99.050  100.000 90.930 94350 98150 99325 100.000 | 98.850 100.000 91080 94830 96225 98500  100.000
vase 95680  90.900 83330 75980 99.100  99.825 100.000 | 94650 90130 83130 82480  99.000 99475 100.000 | 86430  88.830 82700 90.700 97.875  98.550  99.650

is the farthest Voronoi vertex to p;. We build a plane orthogonal
t0 q}qx — Pi @and use it to cut QY7 into two halves, resulting in a
convex cut polygon. We use the area of the cut polygon to define q;.

Optimization details. The overall objective function takes the
normals n;,i = 1,2,---, N, as variables. As n; is required to be a
unit vector, we parameterize a normal vector as

n; = (sin(u;) cos(v;), sin(u;) sin(v;), cos(u;)) .

™)

In this way, we turn the problem of minimizing f(n) into an uncon-
strained optimization problem.
The function f = f(n) can be viewed as a composite function of

f=fwiwa,- - W)

and

wj = Wj(nl,nz, s ,nN).
At the same time, n; is a composite function of u; and v;. Therefore,
the gradients of the overall function can be quickly computed by the
chain rule. We omit the form of the detailed gradients for brevity.
Fig. 8 plots how the objective function and the gradient norm are
decreased during the optimization. It can be seen from Fig. 9 that
the normals become globally consistent upon the regularization of
the winding number.
Remark. In order to show that the minimization of f can arrive
at the termination, we need to prove the fact that the objective
function has a lower bound. Observing that fy; is quartic about
wj (with a positive leading coefficient) but the other two terms
have a lower degree, it is easy to know that f approaches +co if
one of the winding numbers is sufficiently large, which naturally
constrains every w; in a limited range, e.g., [Wi, W2]. Therefore, the
boundedness of f follows immediately from the boundedness of w;.
See more rigorous proof in the supplemental material.

5 EXPERIMENTAL RESULTS
5.1

Platform. Our experiments are conducted on a computer with an
AMD Ryzen 9 5950X CPU and 32 GB memory. We run the GPU-
based approaches [Guerrero et al. 2018; Li et al. 2022; Lin et al. 2022;

Metzer et al. 2021; Zhu et al. 2021] on an NVIDIA GeForce RTX 3090
card.

Experimental Setting

Point clouds and Normalization. We make the tests on a total of
18 models of various shapes (see Table 1). All the point clouds are
normalized to a range of [—0.5, 0.5]3. We use two types of sampling
strategies, i.e., white noise sampling and blue noise sampling [Ja-
cobson et al. 2021]. Besides the noise-free point clouds, We scale all
models to [—0.5,0.5]3 so that the longest edge of the bounding box
is always 1.0. For noise generation, we use the standard Gaussian
distribution with y = 0.0 and 6% = 1.0 to produce noise displace-
ment. Each point is given a random displacement that is added to
the original position. The noise level is controlled by a scale factor
of 0.25% and 0.5%, respectively.

Parameters. In all the experiments, we adopt the same parameter
setting: A4 = 10.0, Ap = 50.0, and D = 4.0. We use the L-BFGS
algorithm implemented in C++ for solving the optimization. The
termination condition is set by requiring the difference between the
objective function values at two consecutive steps not to exceed a
threshold of 1.0.

Approaches. We include five state-of-the-art (SOTA) methods [Guer-
rero et al. 2018; Hoppe et al. 1992; Konig and Gumbhold 2009; Lin
et al. 2022; Metzer et al. 2021] for comparison. PGR [Lin et al. 2022]
receives an un-oriented point cloud as the input and outputs a polyg-
onal surface, but we focus more on the quality of its computed nor-
mals. Note that [Hoppe et al. 1992] and [Konig and Gumhold 2009]
need to pre-compute a Riemannian graph to encode the proximity
between points. In our experiments, we take two closely spaced
points as neighbors if the distance between them is less than 0.05.
Besides, PCPNet [Guerrero et al. 2018] has multiple pre-trained
models, we use multi_scale_oriented_normal in all experiments. For
PGR [Lin et al. 2022] and Dipole [Metzer et al. 2021], we follow the
default setting.

5.2 Comparisons

Indicators. We evaluate the performance from two aspects. On
the one hand, we keep track of the percentage of correctly oriented
normals. For an input point p;, the predicted orientation is true
if the angle between the computed normal and the ground-truth
normal is less than 90 degrees. On the other hand, we make statistics
about the reconstruction quality by feeding the point clouds and the
normals together into the SPR solver [Kazhdan et al. 2006]. Specially,
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Konig

Dipole Ours

Fig. 10. Comparison on the ratio of true normals between our approach and the existing five methods: Hoppe [Hoppe et al. 1992], Konig [Kénig and Gumhold
2009], PCPNet [Guerrero et al. 2018], Dipole [Metzer et al. 2021] and PGR [Lin et al. 2022]. The true predictions and false predictions are colored in blue and

red, respectively. Note that the level of Gaussian noise is 0.5%.
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Fig. 11. Visual comparison of the reconstructed surfaces at different sampling conditions and different levels of noise. We show results of four different
sampling conditions: BS (blue noise sampling), WS (white noise sampling), WS_0.25 (white noise sampling with 0.25% noise) and WS_0.5 (white noise sampling

with 0.5% noise).

we use the Chamfer Distance (CD) to measure the error between
the ground-truth surface and the reconstructed surface (with the
support of predicted normals).

Quality of predicted normals. In Table 1, we show the statistics of
the truth percentages of normals over the 18 models, under different
sampling conditions and noise levels. The statistics show that our
approach has a higher truth percentage than the SOTA methods.
For example, for the blue noise sampling point clouds, our approach
can achieve a percentage of 100% for 88.9% of the tested models,
much higher than the SOTA methods. Furthermore, we give a visual

comparison in Fig. 10 where the points are colored differently de-
pending on whether the normal orientation is correctly predicted. It
can be clearly seen that our approach has an advantage in predicting
the normals for points in the tubular regions and thin regions with
sharp features and corners; See the highlighted regions.

Besides, we also make statistics about the Root Mean Square Error
(RMSE) of angles between the estimated normal and the ground-
truth normal, which also shows that our algorithm has advantage
in prediction accuracy. The detailed statistics are included in the
supplementary material.
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Table 2. Reconstruction quality comparison using Poisson surface reconstruction solver [Kazhdan et al. 2006] with predicted normals. The Chamfer Distance
between the reconstructed surface and the ground-truth surface is presented scaled by a factor of 100 for a better presentation.

Sampling ‘ White Noise Sampling without noise ‘ White Noise Sampling With 0.25% noise ‘ ‘White Noise Sampling With 0.5% noise

Models ‘ Hoppe Konig PCPNet Dipole PGR iPSR  Ours ‘ Hoppe Konig PCPNet Dipole PGR iPSR  Ours ‘ Hoppe Konig PCPNet Dipole PGR iPSR  Ours
82-block 0.149 0.149 0.489 0.195  0.158 0.165 0.130 | 0.593 0.155 0.521 0.184  0.202 0.195 0.134 | 0.175 0.172 0.578 0.203 0462 0.244 0.184
bunny 0.143 0.230 0.326 0.358  0.092 0.103 0.112 | 0.130 0.285 0.355 0354  0.173  0.156 0.126 | 0.198 0.285 0.379 0.280  0.322 0.203 0.157
chair 1.758 0.739 0.425 0.583  0.118 0.074 0.076 | 0.599 0.761 0.461 0912  0.166 0.116 0.080 | 1.545 2311 0.516 0.795  0.397 0.165 0.172
cup-22 1.673 1.631 1.523 1787 0121 0.131 0.112 | 0.338 1.680 1.539 1778  0.203 0.191 0.139 | 1.898 1.715 1.568 1.764 0347 0.267 0.193
cup-35 0.133 1.221 0.903 1.613 0.095 0.115 0.098 | 0.119 1.215 0.884 1771 0.171 0.170 0.094 | 0.147 1.278 0.979 1.721  0.297 0214 0.134
fandisk 0.128 0.123 0.195 0.637  0.081 0.090 0.073 | 0.127 0.126 0.211 0.643  0.149 0.120 0.103 | 0.191 0.171 0.254 0.219 0307 0.181 0.169
holes 0.036 0.036 0.252 0.286  0.072 0.075 0.073 | 0.039 0.039 0.267 0.200  0.191 0.144 0.070 | 0.051 0.051 0.328 0.254 0576 0.193  0.149
horse 0.291 0.482 0.165 0.307  0.085 0.082 0.075 | 0.281 0.465 0.192 0.224  0.167 0.088 0.090 | 0.305 0.522 0.238 0.358 0.454 0.244 0.178
kitten 0.064 0.061 0.268 0.076 0.061  0.099 0.088 0.066 0.065 0.265 0.079 0.177  0.109 0.084 0.073 0.072 0.299 0.092 0.319 0.161 0.144
knot 0.040 0.040 0.817 1.634 0.166 0.105 0.064 | 0.045 0.046 0.822 0.998 0.338  0.140  0.068 0.063 0.311 0.875 0.931 0.652 0.191 0.123
lion 0.229 0.351 0.211 0397  0.112 0.117 0.087 | 0.268 0.349 0.224 0.248 0.268 0.198 0.112 | 0.388 0.383 0.274 0365 0.619 0251 0.228
mobius 0.117  1.551 0.563 1507 0.126  0.156  0.237 2.161 1.549 0.649 1529 0.238 0.287 0.417 2.819 1.743 0.755 1.607 0.410 0.435 0.634
mug 0.135 1.228 1.208 1506  0.135 0.906 0.125 | 0.146 1.238 1.214 1514 0214 0.929 0.118 | 1.276 1.244 1.253 1.624 0322 1.240 0.146
octa-flower | 2.424 0.601 0.130 0.245 0.093 0.139 0.164 | 2.445 1.505 0.146 0232 0.193 0.165 0.177 0.521 0.703 0.181 0.238  0.372 0293  0.247
sheet 1.607 1.613 3.327 1563 0.098 0.650 0.091 | 0.123 1.607 2.909 1511 0.167 0.717 0.116 | 1.630 1.635 3.046 1.545 0380 0.881 0.219
torus 0.019 0.019 0.215 0.019  0.054 0.163 0.043 | 0.026 0.026 0.232 0.021  0.135 0.190 0.064 | 0.044  0.044 0.250 0.033 0.264 0.240 0.125
trimstar 0.214 0.137 0.417 0.175  0.158 0.147 0.112 | 0.154  0.142 0.422 0.208  0.340 0.153 0.110 | 0.158 0.153 0.454 0.238  0.670 0.225 0.170
vase 0.217 0.440 0.613 0.950  0.094 0.119 0.092 | 0.243 0.446 0.654 0.611  0.198 0.149 0.107 | 0.588 0.581 0.727 0326  0.503 0.194 0.189

PCPNet

Fig. 12. Comparing the reconstruction quality on point clouds with 0.5% Gaussian noise.

Hoppe Konig

(b) Our result
Fig. 13. We construct a point cloud of the genus-3 torus with varying point
densities (colored in varying darkness). Both the predicted normals and the
reconstructed surface show that our approach is robust to the point density.

(a) Input points (c) Reconstruction

Quality of reconstructed surfaces . We further take the SPR solver
as a blackbox to observe the reconstruction quality. For a fair com-
parison, we capture the normals of PGR [Lin et al. 2022] and feed
the oriented point set into the SPR solver. In fact, the original recon-
struction strategy of PGR uses iso-surfacing to extract reconstructed
surfaces and tends to produce over-smooth results. By comparison,

Lo

/]
y

o,

</

Dipole ‘ Ours GT

SPR is better than iso-surfacing in preserving geometric details for
normals of the same quality. A basic fact is that better normals lead
to better-reconstructed surfaces. We record the statistics about the
reconstruction quality in Table 2. Note that the Chamfer Distance
between the reconstructed surface and the ground-truth surface is
scaled by 100 times for a better presentation. The statistics show that
for most of the 18 models, our predicted normals produce the best
reconstruction quality. For example, when the point sets are added
by 0.5% Gaussian noise, our method has the best scores on 55% of
the models. Based on the scores, the three top-ranked approaches
are ours, Konig [K6nig and Gumhold 2009] and Hoppe [Hoppe et al.
1992], respectively.

Furthermore, we use Fig. 11 to visually compare reconstruction
results on the Vase model at various sampling conditions and noise
levels. It can be seen that from the reconstructed surfaces our ap-
proach can infer the normals, with the highest fidelity. Especially,
even if the noise level amounts to 0.5%, our method can still produce
a faithful result; See the handles of the Vase model.
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Fig. 14. Tests are made on sparse point clouds: 500 points, 750 points and 1K points. Our results are close to the ground truth for each of the three inputs.
The comparison shows that our algorithm has a big advantage on sparse raw data. We also mark clearly the Chamfer Distance (CD) scores between the
reconstructed surface and the ground-truth surface for a quantitative comparison. Note each CD score is scaled by a factor of 100.

5o

e
S

Hoppe Konig Dipole Ours
Fig. 15. The Chair model contains thin-walled tubes and plates, as well as nearby gaps (see the highlighted region). Our approach can yield the highest truth
percentage among the five approaches. Note that the false predictions are colored in red.

5.3 Noise, Varying Point Density and Data Sparsity for those Voronoi vertices distant to the surface. Second, the whole

Noise. In Fig. 12, we add 0.5% Gaussian noise to the point clouds optimization framework is built on the regularization of the winding
of the Cup model, the Chair model, and the Lion model, to test number, and thus can capture the normal consistency from a global
the noise-resistant ability. It can be clearly seen from the visual perspective.

comparison that our algorithm has a better noise-resistant ability.
Specially, our algorithm can provide faithful normals on the back and
the legs of the Chair model, even in presence of serious noise. Two
reasons account for the noise-resistant property. First, we examine
the winding number at the Voronoi vertices whose positions are
robust to small variations of the original point cloud, especially

Varying point density. In Fig. 13, we construct a point cloud with
varying point density (colored in varying darkness). We intend to
use this example to test if our algorithm can deal with irregular point
distributions. Recall that Eq. (1) includes an area weight a;, which
has a serious influence on the estimation accuracy of the winding
number. We give an intuitive technique for estimating a; based on
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(d) Random normals (e) Our result (f) Reconstruction
Fig. 16. (a-c) Our approach can estimate normals accurately even if the
angles are as small as 15 degrees. (d-f) For the Airplane model with sharp
angles, we show the initial normals, the optimized normals, and the faithfully
reconstructed result.

the Voronoi diagram; See Section 4.4. The technique is parameter-
free and computationally efficient. It can be seen from Fig. 13 that
both the predicted normals and the reconstructed surface have a
high quality, which shows that the estimation of g; is independent
of the point density.

Data sparsity. In Fig. 14, we have three sparse point clouds, and
the numbers of points are respectively 500, 750, and 1K. We intend
to use this example to test the performance on sparse inputs, since
when there are nearby gaps and thin-walled tubes/plates, data spar-
sity will inevitably double the difficulty of predicting normals. It
can be clearly seen from the visual comparison that our results are
close to the ground-truth for each of the three inputs.

5.4 Nearby Gaps, Thin Plates/Tubes, and Sharp Angles

Nearby gaps and thin plates/tubes. For our approach, the strength
in dealing with thin tubes has been validated on the Vase model
shown in Fig. 11. In Fig. 15, we give four versions of the Chair
point cloud to evaluate how well it handles nearby gaps and thin
plates/tubes. As can be observed, our approach noticeably outper-
forms the SOTA methods in addressing these flaws (see the high-
lighted region), which is due to the global property inherited from
the winding number.

Sharp angles. The existence of sharp angles is one of the chal-
lenges for orienting a raw point cloud. In the top row of Fig. 16, we
show three toy models with different dihedral angles. It can be seen
that our approach can estimate normals accurately even if the angles
are as small as 15 degrees. We also use the Airplane model to test
the ability to deal with sharp angles. Both the optimized normals
and the faithfully reconstructed result show that our algorithm can
produce a desirable result for point clouds with sharp angles. The
contrast in the bottom row of Fig. 14 also validates the effectiveness
of our approach in coping with sharp angles. It’s worth pointing
out that the propagation-based methods [Metzer et al. 2021] rely
on the assumption of spatial coherence, which does not hold when
sharp angles exist, and thus fail to fully capture the global context
of the shape in presence of sharp angles.

(a) PGR

(b) iPSR
Fig. 17. Comparing PGR, iPSR, and ours on estimating normals for an open-
surface point cloud. iPSR does not support open surfaces. PGR fails to report
reliable normals for the boundary points. However, our estimated normals
comply with the real shape at both the interior points and the boundary
points.

(c) Ours

Input

PGR N ormal

PGR Recon Our Normal

Our Recon

Fig. 18. Normal estimation for wireframe-type point clouds. All the models
are from VIPSS [Huang et al. 2019]. PGR may produce bulges around thin
tubular structures.

5.5 Open Surfaces, Wireframes, Complex Topology and
Real Scans

Open-surface Point Cloud. In Fig. 17, we sample a point set from
an open surface. We compare PGR, iPSR, and ours on estimating
normals on the open-surface point cloud. iPSR does not support
open surfaces. PGR fails to report reliable normals for the boundary
points since it assumes the closed surface. In contrast, our estimated
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Fig. 19. Tests on point clouds with highly complex topology/geometry. The model in the top row has 80K points while the model in the bottom row has 100K
points. Note that PGR runs out of GPU memory on an NVIDIA GeForce RTX 3090 graphics card. Chamfer Distance (CD) between the reconstructed surface
and the ground-truth surface is marked for a quantitative comparison. Note each CD value is scaled by a factor of 100.

Normal Encoding Reconstruction

Input

Fig. 20. The three raw point clouds are real scans downloaded from [Huang
et al. 2022] dataset. Each of them is downsampled to 10K points. From the
color-coded visualization of normals, as well as the reconstructed surfaces,
we can see that our method can deal with real scans.

normals comply with the real shape at both the interior points and
the boundary points.

On one hand, the winding number is still indicative for open
surfaces [Chi and Song 2021; Jacobson et al. 2013]. On the other
hand, the three terms in our objective function do not assume the
closedness of the surface. Recall that we include the intersections
between the 1.3x bounding box and the Voronoi diagram as exami-
nation points. If the input point set encodes a closed surface, it is
proper to deem the intersections as outside points and enforce the
winding number at the intersections to be 0. But for open surfaces,

the constraint cannot be specified. Therefore, in our implementation,
we do not specify the requirements in all our experiments.

Wireframes. Wireframes serve as a kind of compact skeletal rep-
resentation of a real-world object. Due to the extreme data sparsity,
the SOTA methods fail to correctly predict the normals. Unlike
patch-based normal fitting [Metzer et al. 2021], our approach aims
at evaluating the global normal consistency by computing the over-
all contribution of each point. The experimental results in Fig. 18
show that both our method and PGR are capable of handling the
wireframe-type inputs, but PGR may produce bulges around thin
tubular structures (see the highlighted window).

Highly complex structures. Fig. 19 shows two nest-like models
with complex topology/geometry. The point cloud in the top row has
80K points while the point cloud in the bottom row has 100K points.
It can be seen that all five SOTA methods fail on the two highly
complex models. iPSR [Hou et al. 2022] depends on the initialization
of normals. For a shape with complicated topology/geometry, iPSR
cannot reverse the false normals to the correct configuration, and
thus easily cause disconnection or adhesion, especially around thin
structures. PGR is not GPU-memory friendly (superlinear growth
w.r.t. the number of points) and runs out of memory when the input
point cloud reaches 80K points (note that we test PGR on an NVIDIA
GeForce RTX 3090 graphics card with 24GB of GPU memory). In
contrast, our method can deal with complicated geometry/topology
and faithfully recover the normal vectors.

Real scans. Fig. 20 shows three raw point clouds, each of which is
down-sampled to 10K points. From the color-coded visualization of
normals, as well as the reconstructed surfaces, it can be seen that our
method can effectively orient the normals for real-life objects, which
validates the usefulness of our algorithm in practical scenarios.

5.6 Discussion on Global Methods
In the following, we make a discussion on the global methods in-
cluding iPSR [Hou et al. 2022], PGR [Lin et al. 2022] and ours.

Ours v.s. iPSR. iPSR, as a global method, is excellent in estimating
oriented normals. Benefiting from Poisson surface reconstruction, it
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Fig. 21. Two parameter settings of PGR [Lin et al. 2022]. PGR_1: wmin=0.04,
alpha=2.0. PGR_2: wmin=0.0015, alpha=1.05.

has many nice features. In its nature, iPSR gets more and more prior
during the iterations of the reconstruction surface. If the given raw
data does not have serious imperfections or challenging structures,
iPSR can produce desirable normals, as well as a high-quality recon-
struction surface. On the flip side, iPSR inherits some disadvantages
of Poisson surface reconstruction. For example, iPSR cannot deal
with the point clouds of an open surface, as shown in Fig. 17. Ad-
ditionally, when the point clouds are as complex as Fig. 19, iPSR
cannot reverse the false normals to the correct configuration and
easily cause disconnection or adhesion, especially around thin struc-
tures. To summarize, the biggest weakness of iPSR lies in that if
the initial surface is much different from the target surface, the
structural/topological issues are hard to be fixed.

Ours v.s. PGR. First, in the original paper of PGR, the authors
recommend several groups of parameters, depending on the number
of points in the raw data. In contrast, our parameters remain the
same for all the experiments, independent of the size of the raw
data. Second, the statistics (available in the supplementary material)
show that our method has better accuracy in predicting normals
due to the alignment term that enforces the normals to point toward
outside Voronoi poles, whereas, the inaccurate normals produced
by PGR weaken the ability of fidelity preserving. Fig. 21 shows that
the inaccurate normals of PGR cause a failure in recovering the
center hole of the star shape, and any recommended parameters.
Finally, PGR incurs a quadratic complexity of computational time
and memory footprint, which limits its practical usage , especially
on large models. For example, PGR fails to deal with the complex
shapes shown in Fig. 19.

5.7 Run-time Performance

We provide the run-time performance statistics in Table 3. The tests
are made on the torus model with different resolutions ranging from
0.5K points to 10K points. The total running time mainly consists
of the construction of the Voronoi diagram and the optimization. It
can be seen that optimization is the most time-consuming stage due
to (1) the number of variables is twice as large as the number of the
points, and (2) the objective function has to be evaluated by a double
loop, i.e., over each p; and each qj, leading to a non-linear climbing
in the computational overhead. But we must point out that even for
the Torus model with 10K points, generally, 50 iterations, computed
in 10 minutes, suffice to arrive at the termination. The overhead is
acceptable for many non-real-time geometry processing tasks.

Table 3. Running time (in seconds) of different methods w.r.t. the number
of points #V. We test with the Torus model.

#V 0.5K 1K 3K 5K 7K 10K
Hoppe | 0.324 0.477  0.625 0.967 1.112 1.569
Koénig 0.306 0.353  0.625 0.815 1.017 1.185
PCPNet | 4.226 5.446  6.388 8.753 11.015 12.581
Dipole 3.277 3.565  5.489 8.411 11.602 14.517
PGR 0.228 0.260  0.489 0.612 0.823 1.020
iPSR 2.801 3.535 4.321 4.543 4.476 5.173
Ours 5.240 15499 72434 174.541 282.294 559.854
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Fig. 22. We sample 3K points from the Lamp model ShapeNet [Chang
et al. 2015]. Compared with iPSR [Hou et al. 2022], our method produces
better reconstruction quality. However, the highlighted part shows that our
predicted normals are not very accurate, leading to a conspicuous artifact
in the reconstructed surface.

6 LIMITATIONS AND FUTURE WORK

The first limitation lies in the run-time performance. As we have
to repeatedly evaluate the winding number for each data point and
each query point, the timing cost spent in a single computation
of the objective function amounts to O(NM), where N and M are
respectively the number of data points and the number of query
points. To alleviate this, one could downsample the input point
set. After the normals of the subset are estimated, the un-oriented
points can get normals by a simple propagation. Another direction
of boosting the run-time performance is to develop a GPU version
to further improve the parallelism.

The second limitation is that there is room for further improve-
ment in the accuracy of predicted normals. In Fig. 22, we sample
3K points on the Lamp model from ShapeNet [Chang et al. 2015].
Our predicted normals are much different from the ground-truth
normals, in spite of being better than iPSR [Hou et al. 2022]. The in-
accurate normals lead to a conspicuous artifact in the reconstructed
surface. In the future, we shall further improve the prediction accu-
racy based on prior knowledge about the geometry/topology.

Finally, our method may fail when there are many points scattered
inside the volume, or a high-density point cloud is coupled with high-
level noise. Both situations may violate the 0—1 balance requirement,
potentially resulting in a failure case. To address these challenges, it
is necessary to develop some pre-processing techniques to filter out
those points that do not contribute to the underlying surface at all.
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7 CONCLUSION

This paper presents a globally consistent normal orientation method
by regularizing the winding-number field. We formulate the normal
orientation problem into an optimization-driven framework that
considers three requirements in the objective function, two of which
specify requirements on the winding-number field and the other
term constraining the alignment with Voronoi poles. We conduct
extensive experiments on point clouds with various imperfections
and challenges, such as noise, data sparsity, nearby gaps, thin-walled
plates, and highly complex geometry/topology. Experimental results
exhibit the advantage of the proposed approach.
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APPENDIX
A  fHAS ALOWER BOUND

In order to show that the minimization of f(n) (see Eq. (2) in the
paper) can arrive at the termination, we need to prove why the
objective function has a lower bound.

Recall that f(n) has three terms fj1, fa and fp. By assuming that
the maximum of ||q;'< —pill is L, the diagonal length of the enclosing
box, we have

N

fam)l <

1

No(poMo

l

23]

Therefore, it is easy to show that fj is quartic about w; while f4 and
fB can be bounded by a lower-degree polynomial function about w;.
Suppose that w; goes to +0c0 or —co. fy; must approach +co in either
case. Considering that fy; has a higher rate of change than f4 and
fB, we can conclude that when w; goes to +co0 or —oo, the overall
value of f(n) must approach +co. As our goal is to minimize f(n),
w; must be naturally constrained to a limited range of [W1, W2]. The

boundedness of f(n) can be immediately verified based on the fact
that f(n) is a continuous function in the closed interval [W;, Wz].

1 M ;
A Dk (@~ po)
1
k
®)

B MORE COMPARISON

Angle RMSE. In the main paper, we give the statistics about the
ratio of true normals. Here we further give the statistics about the
Root Mean Square Error (RMSE) of the angles between the estimated
normals and the ground truth normals.

Normal Evaluation Using Angle RMSE. In Sec. 5.4, we give a visual
comparison to exhibit the noise-resistant ability of our approach
compared with the SOTA methods [Guerrero et al. 2018; Hoppe
et al. 1992; K6nig and Gumbhold 2009; Lin et al. 2022; Metzer et al.

2021]. We report the angle RMSE statistics under four different
sampling conditions in Table 4. It can be clearly seen that our method
surpasses the other methods in terms of normal orientations. Even
if the noise level amounts to 0.5%, our method can still get the best
score for 55% of the models, and a competitive score for another
40%. For example, the best score (10.336) is given by Hoppe on the
Knot model, and ours is the second best (17.086), which is much
better than the remaining scores 44.105, 71.110 and 93.984.

There are some methods such as PCA [Rusu and Cousins 2011],
AdaFit [Zhu et al. 2021] and NeAF [Li et al. 2022] that focus on
normal estimation. We also include them for comparison; See the
statistics in Table 5. The statistics show that our algorithm has a big
advantage of prediction accuracy over the SOTA methods, on all
the 18 models and under all the 4 noise sampling conditions.

Voronoi vertices

Random r = 0.1 Random r = 0.2
Fig. 23. In order to test different sampling strategies, we generate Gaussian
noise near the point cloud (radius r = 0.1 or 0.2) to produce examination
points. First column: r = 0.1 (top: examination points; bottom: normals).
Second column: r = 0.2 (top: examination points; bottom: normals). Last
column: Voronoi vertices as examination points. It can be seen that Voronoi
vertices are more suitable for serving as the examination points. Note that
we iterate 200 steps for r = 0.1, 0.2 and 40 steps for the situation of Voronoi
vertices as examination points.

C STRATEGIES FOR GENERATING EXAMINATION
POINTS

We conduct the ablation study about different strategies for gener-
ating examination points. Specially, we compare our Voronoi-based
sampling strategy with the off-surface random sampling strategy.
As shown in Fig. 23, we randomly sample points around the surface
of the shape with two sampling radii » = 0.1 and r = 0.2. Note that
we iterate 200 steps for r = 0.1,0.2 and 40 steps for the situation of
Voronoi vertices as examination points. It can be seen that Voronoi
vertices are more suitable for serving as the examination points.
The superiority of Voronoi-based sampling is due to the fact that
the majority of Voronoi vertices are located either deepest inside
the surface, or furthest outside the surface (approximating the inner
and outer medial axis [Amenta et al. 2001]). Thus their distribution
of winding numbers is more likely to be pushed towards 0 and 1,
compared with the random sampling strategy.
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Table 4. Comparison of the angle RMSE with the SOTA methods at different sampling conditions.
Sampling | Blue Noise Sampling | White Noise Sampling | White Noise Sampling With 0.25% noise | White Noise Sampling With 0.5% noise
Models | Hoppe Konig PCPNet Dipole PGR  Ours | Hoppe Konig PCPNet Dipole PGR  Ours | Hoppe Konig PCPNet Dipole PGR  Ours | Hoppe Konig PCPNet Dipole PGR  Ours
82-block 117.870  20.191 52218  24.837  30.611 18.631 | 22972  21.895 57.822 36191 30.903 19.890 | 67.967 22.214 58451 32666 55719 22.205 | 27425  23.005  60.602 32170 77330 27.192
bunny 25.051 33.147 45.505 35795 19.388 23.581 17.652 30.446 48.111 41.014 21.082 18.473 24.560 33.488 49.925 38.942 51351 17.334 28.607 32.378 50.139 34774  73.198 24.735
chair 98.024  96.834 60.557 105177  18.597 9.324 92.216  60.172 62.560 74.170 20.653  12.178 57.527 60.761 62.651 86.063  65.082 16.434 84.449 96.390 63.778 77.731  86.572 32.448
cup-22 18.583  107.427 88.692 109.907 17573  9.227 | 103.229 103.407 89561 107.211 24954 13.710 | 44.816 104835 90.176 106.561 48.635 14.220 | 109.334 103585 90.580 104.788 69.075 20.870
cup-35 10453 89.978 67.295 120922 19.711 9.610 15.208  108.913  66.949  112.636 21.614 11.080 17.309  107.568  67.185  114.834 49.497 12.680 21.296  106.810  69.896  113.894 71405 19.041
fandisk 111.246  19.243 32.898 31.515 24.190  15.095 25.464 21.070 37.061 63.276 24.943  18.852 23.148 21.158 37.920 63.270  53.196  20.392 31.770 27.474 40.835 39.086  76.762 22.594
holes 5.428 5.428 39.000 42304 21.160 20.879 6.225 6.225 42.841 55.063 21.032 9.730 6.667 6.667 44.039 52.910 59.078 12.778 10.283 7.836 47.739 52.236  83.886 24310
horse 33.319 47.994 31.786 46.661 24.270  23.428 36.567 51.363 37.052 49.740 22,636 17.222 45.777 50.092 39.566 44.637  66.504 21.637 42.982 51.202 41.717 53.306  88.838  39.494
kitten 16164  9.882 36495 28360 18149 12834 | 13.994 11001 43810 25569 19388 12335 | 13.970 11249 44775 24671 59984 14473 | 14873 11980 45921  27.288 80554  23.598
knot 4.634 6.012 71.819 87.369  31.773 5.291 8.174 6.838 70.257  116.168  29.990 6.121 7.929 7.773 69.993 95.297 57.246  10.086 | 10.336 44.105 71.110 93.984 77.715  17.086
lion 39.775 48.542 40.831 55.493 47.223  32.986 42.277 52.103 44.106 55.818 44.638  23.621 46.637 49.633 45.442 48.789  75.879 30.074 59.319 50.398  49.112 59.108  91.063 52.139
mobius 26.234  122.025 53.639  120.832 21.448 29.550 27.995 121133 55871  118.247 26.797 28.346 | 102.424 120.963  61.251  117.930 60.265 49.081 | 119.506 120.518 71.101  117.068 73.098  88.530
mug 12.380 99.870 78.598 94.666 20.618 9.458 22.274 99.145 77.615 92.522 26.271 11.399 22.743 97.616 77.761 93.732  47.326 12.412 95.910 96.303 77.940 95.133 65.508 17.144
octaflower | 115579  63.804 21.108 31533  27.405  30.227 | 115992 60.782 27.439 41275 28.288  42.195 | 112586 105.038 30.186 41486 59050 88.270 | 56.832 62286 35594  40.633 80510  39.684
sheet 121.675 121.682  69.920 117.485 29.288 26.978 | 119.93¢ 119.905  68.632 110.042 19913  16.290 23.038  119.754  69.260  109.920 61.542 20.229 119.582  119.680  73.599  102.809 87.584 32.310
torus 3.239 3.239 30.858 19.187 13.481 12.493 3.723 3.723 35.484 5.376 14.901 7.455 4.167 4.167 36.483 4.775  48.894 11.288 5.510 5.510 38.420 9.096 72.588  19.166
trim-star 24.069 18.808 48.281 43.216 29.519  17.774 34.325 20.377 51.527 35.829 31.829 17.275 25.209 20.848 52.233 43.734  61.031 19.974 26.540  21.339 53.525 42.390  81.154 27.245
vase 39.500 48.036 66.198 59.083 21.234  13.957 38.677 52.584 66.170 80.204 23.450  14.656 41.840 53.557 66.856 69.580  62.990 18.694 61.422 57.240 68.643 52.113 86.423  29.463
Table 5. Comparison of normal orientation with three normal estimation methods.
Sampling ‘ Blue Noise Sampling ‘ White Noise Sampling ‘ 0.25% noise White Noise Sampling ‘ 0.5% noise White Noise Sampling
Models | PCA  AdaFit NeAF  Ours | PCA AdaFit NeAF  Ours | PCA AdaFit NeAF  Ours | PCA AdaFit NeAF  Ours
82-block 75.950 50.150 51.800 100.000 | 75.675 50.675 51.225 99.980 75.625 51.225 52.250 99.930 | 75.825 52.050 53.650 99.880
bunny 89.750  51.375 50.375 100.000 | 89.800 51.375 50.125 99.750 | 89.725 50.475 50.300 99.980 | 89.775 50.850 50.800  99.580
chair 62.775 53.125 50.625 100.000 | 64.250 52.750 50.100 100.000 | 63.575 52.825 54.000 100.000 | 64.825 52.125 51.050  99.400
cup-22 58.425 52.225 52.000 100.000 | 58.175 50.075 51.550 99.950 58.550 50.150 51.325 99.950 58.450 50.550 50.175  99.850
cup-35 66.775 50.775 51.550 100.000 | 67.725 50.525 50.350 100.000 | 68.025 50.200 52.250 100.000 | 67.600 51.450 53.650 100.000
fandisk 90.200  54.950 50.700 100.000 | 90.000 55.075 50.975 100.000 | 90.050 54.675 50.675 99.950 | 89.975 54.775 51.650 99.750
holes 79.275 50.575 51.325 100.000 | 79.350 51.200 51.175 100.000 | 79.650 51.575 50.675 100.000 | 79.075 50.900 51.650 100.000
horse 81.875 50.200 50.600 99.500 80.275 51.050 50.500 99.800 | 80.800 50.350 51.800 99.750 | 80.625 51.350 51.025 97.500
kitten 90.977 55.011 51.937 100.000 | 91.075 57.325 51.750 99.980 90.975 57.625 53.875 100.000 | 90.950 57.100 51.250 99.980
knot 72.975 50.100 51.050 100.000 | 72.750 50.825 50.250 100.000 | 72.875 50.925 52.100 100.000 | 72.275 50.775 51.850 99.980
lion 85.275 53.025 52.125 99.380 84.900 54.575 50.275 99.700 | 85.200 54.750 52.625 99.550 | 85.475 55.775 51.850 93.830
mobius 55.225 53.700 53.050 100.000 | 55.425 54.575 54.625 100.000 | 55.500 53.800 52.500 97.380 54.875 53.825 52.650 85.780
mug 64.775 50.575 53.525 100.000 | 67.250 50.650 50.875 100.000 | 67.225 50.825 52.125 100.000 | 66.825 51.000 52.950 100.000
octa-flower | 98.800 50.275 51.750 100.000 | 94.750 51.550 53.050 99.330 94.650 51.525 50.900 98.800 | 94.775 51.700 51.800 98.550
sheet 83.600 54.425 56.400 100.000 | 71.575 51.925 51.625 100.000 | 71.750 51.550 51.775 99.950 | 71.325 51.775 52.000 98.980
torus 89.225 50.125 53.800 100.000 | 89.950 50.500 52.100 100.000 | 89.950 50.350 51.000 100.000 | 90.125 50.225 50.400 100.000
trimstar 80.975 50.300 52.625 100.000 | 81.150 50.325 53.475 100.000 | 81.125 51.250 50.750 100.000 | 81.250 51.375 51.175 100.000
vase 84.575 53.400 50.375 100.000 | 86.350 51.825 50.250 100.000 | 86.725 52.050 51.475 100.000 | 86.275 52.500 50.450  99.650
In this section, we show that our method can also handle multiple
& disconnected components and outliers. In the top row of Fig. 24, our
Voronoi-based sampling method can still distinguish the interior
- Voronoi vertices (whose winding number is close to 1) and the exte-
-
‘ rior Voronoi vertices (whose winding number is close to 0). At the
w/ same time, in the bottom row of Fig. 24, we show an outlier example
where the cap is completely away from the main body. It can be
clearly seen that our approach can deal with outliers as well. On
one hand, the Voronoi diagram can capture the proximity between
- data points, thus encouraging the outlier points to be oriented in-

(a) Input points (b) Voronoi vertices

(c) Reconstruction

Fig. 24. Our method can handle multiple disconnected components and
outliers. In the middle column, the interior Voronoi vertices (whose winding
number is close to 1) are colored in red while the exterior Voronoi vertices
(whose winding number is close to 0) are colored in blue.

dependently of the main body. Additionally, the winding number
field helps infer normal consistency from a global perspective, thus
unlikely to suffer from small imperfections.

E WIND-NUMBER FIELD UNDER DIFFERENT

CONDITIONS

We show more winding-number fields in Fig. 25. Despite the varying
topologies, all the winding-number fields are approximately binary-
valued at 1 and 0. Moreover, we visualize how the winding-number
field distribution changes with respect to the sampling density in
Fig. 26. It can be seen that the winding-number field remains binary-
valued with approximate values of 1 and 0 as the number of points
increases from 1K to 10K.
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" (a) Holes (b) Thin sheet (c) 1.0% Noise
Fig. 25. The winding-number field distributions on three totally different
shapes.

(@) 1K points  (b)5Kpoints  (c) 10K points
Fig. 26. The winding-number field distributions under different sampling
densities.

F ABLATION STUDY

Aa and Ag. We first investigate the influence of the coefficients
A4 and Ap in Eq. (2). We test different combinations of 14 and Ag
in Fig. 27. The quantitative statistics are summarized in Table 6. We
have two observations:

(1) If Ag is too small, the winding numbers at the vertices of a
Voronoi cell may not be balanced, all staying at 0 or 1. But if
Ap is too large, our algorithm may report a reverse orientation
for a small point patch.

(2) If A4 is too small, the predicted normal orientations are not
accurate (see Table 6). Instead, if 14 is too large, it may prevent
the orientations from evolving to a favorite state.

As 14 = 10,Ap = 50 gets the best scores in Table 6, we select
Aa = 10, Ag = 50 as the favorite combination, which is used in all
the experiments in this paper.

Optimization Terms. We conduct the ablation study about the
constituent terms in Eq. (2). From the top row of Fig. 28, we have
the following observations:

(1) The term fp; enforces the winding number to be valued at 0
or 1. Without fj;, the global normal consistency cannot be
guaranteed. Two points on the opposite sides of the thin wall
may be different from the ground-truth orientations.

(2) The term fy is to enforce the normals to align with Voronoi
poles. Without f4, the orientations remain nearly unchanged
but the accuracy is decreased; See the statistics in Table 7.

(3) The term fp is to eliminate the occurrence that all the vertices
of a Voronoi cell are inside or outside. Without fg, the normals
tend to stay at the initial random state; the winding number
is 0 almost everywhere.

Furthermore, the double well function is
very helpful for regularizing the winding
number. If we replace the double well func-
tion with a single well function y = (x — 1)?
(see the left bottom result of Fig. 28), it will
confuse 0 and 2 in inferring the winding-
number values, as the effects of 0 and 2 are
exactly the same; See the inset figure. Besides,
the shear correction term % is also helpful
for preventing the normal setting from stay-
ing in the initial random state and pushing
the winding number of some examination points to approach 1.

Aa =100,Ag =5 A4 = 100,Ag = 5014 = 100, Ag = 500
Fig. 27. Ablation study about the weighting coefficients A and 14. We
select A4 = 10, Ag = 50 as the favorite combinations, which are used in
all the experiments in this paper. If Ap is too small (see the left column),
the winding numbers at the vertices of a Voronoi cell may all stay at 0 or 1.
The predicted orientation is true if the angle between the computed normal
and the ground-truth normal is less than 90 degrees. We colored the true
predictions and false predictions in blue and red, respectively.

Besides, we conduct an ablation study about different strategies
for generating examination points. By comparing our Voronoi-based
sampling strategy with the off-surface random sampling strategy, we
validate the superiority of Voronoi-based sampling. The majority of
Voronoi vertices are located either deepest inside the surface or fur-
thest outside the surface (the same reason that power crust [Amenta
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for = XM (wj - 1)? w/o wj/D
Fig. 28. Ablation study about the constituent terms in Eq. (2). Note that
the bottom left figure shows the result when we replace the double well
function with a single well function y = (x — 1)2.

Table 6. Quantitative results of normal orientation with different weighting
schemes. Indicators are described in Sec. 5.2.

Parameters ‘ RMSE | Ratiogyih T CDrecon |
Aa=1Ag=5 95.797 63.600 1.899
Aa =1, =50 21.117 99.875 0.141
Aa =1,Ap =500 26.039 99.050 0.177
Aa =10,Ag =5 95.501 63.925 0.187
Aa = 10,Ap =50 19.901 99.975 0.139
A4 =10,Ap =500 29.979 98.225 0.198
Aa =100,Ag =5 73.566 80.600 0.749
Aa=100,A5 =50 | 23.484 99.450 0.142
Aa =100,Ag =500 | 24.897 99.275 0.172

et al. 2001] used them as candidates for the medial axis). Thus their
distribution of winding numbers is more likely to be pushed towards
0 and 1, compared with the random sampling strategy.

Table 7. Quantitative results of normal orientation using different terms in
Eq. (2). Indicators are described in Sec. 5.2.

Terms | RMSE | Ratioyym T CDrecon |
w/o fo1 106.162 54.700 1.753
w/o fa 13.810 100.000 0.069
w/o fp 98.908 57.600 2.160
for = ij(wj -1)% | 110.814 59.150 1.920
w/o Wj/D 17.556 99.850 0.094
All 10.632 100.000 0.067

G THE INFLUENCE OF INITIALIZATION STRATEGIES

As shown in Figure 29, our method exhibits high robustness across
different initialization strategies, as demonstrated through three
strategies: (1) reversed normal initialization, (2) random initializa-
tion, and (3) initialization using PCPNet [Guerrero et al. 2018]. Our
method achieves more accurate normal orientation results for any
of the initialization strategies. An interesting observation is that our
method requires much less computational cost if initialized by PCP-
Net [Guerrero et al. 2018]. Note that the stop criteria for the three
strategies are the same, i.e., when the difference of the objective
value between two successive iterations are small enough.

(a) All reversed (b) Random (c) PCPNet
Fig. 29. Normal orientation results using different initialization strategies:
(a) all reversed normal initialization, (b) random initialization, and (c) initial-
ization by PCPNet [Guerrero et al. 2018]. Their timings are 415s, 92s, and
61s, respectively.

H GRADIENT FUNCTION

Herein, we provide the gradient of our objective function. Note we
parameterize each normal vector n; with (u;, v;).

n; = (sin(y;) cos(v;), sin(u;) sin(v;), cos(u;)) 9)

We start by deriving the gradient of winding-number field w(q)
w.r.t. u; and v;. Let L = (p; — q), then we have:

ow(q)  aiL-n;
i an L)
ow(q)  aiL-n;
oui  4x||L|?

(=Lysin(u;)sin(v;) + Lysin(u;)cos(v;)) (10)

(Lxcos(uj)cos(v;) + Lycos(u;)sin(v;) — Lgsin(u;))

Similarly, the gradient of each objective term w.r.t. u; and v; is
given as follows

, M4W103 2 wjze 10w

o) = ) w)‘$ v D W
(e = Z FEw R P W
fiw) = i%znw S (Z”; —%Mij%’]‘) 13)
S0 = - i%znw _W]H(Zi —%Mi];i’j‘) (11
mm—ifl]_("’ (q" Ll 1)

aui
Mi _(Lycos(uj)cos(v;) + Lycos(u;)sin(v;) — Lzsin(ui))wlic
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N M —(nj - (q) - p))) ow;

faloi) = Z Z T 20; (16)
J k

. % (Lysin(u;)sin(v;) — Lysin(ui)cos(vi))w,iC
3 M;
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