MusicFace: Music-driven Expressive Singing Face Synthesis

Pengfei Liu! Wenjin Deng! Hengda Li' Jintai Wang! Yinglin Zheng! Yiwei Ding!

Xiaohu Guo?

Ming Zeng!

Xiamen University 2The University of Texas at Dallas

Abstract

It is still an interesting and challenging problem to
synthesize a vivid and realistic singing face driven by
music signal. In this paper, we present a method for
this task with natural motions of the lip, facial expres-
sion, head pose, and eye states. Due to the coupling
of the mixed information of human voice and back-
ground music in common signals of music audio, we
design a decouple-and-fuse strategy to tackle the chal-
lenge. We first decompose the input music audio into
human voice stream and background music stream. Due
to the implicit and complicated correlation between the
two-stream input signals and the dynamics of the facial
expressions, head motions and eye states, we model their
relationship with an attention scheme, where the effects
of the two streams are fused seamlessly. Furthermore,
to improve the expressiveness of the generated results,
we propose to decompose head movements generation
into speed generation and direction generation, and de-
compose eye states generation into the short-time eye
blinking generation and the long-time eye closing gen-
eration to model them separately. We also build a novel
SingingFace Dataset to support the training and evalu-
ation of this task, and to facilitate future works on this
topic. Extensive experiments and user study show that
our proposed method is capable of synthesizing vivid
singing face, which is better than state-of-the-art meth-
ods qualitatively and quantitatively.

Keywords: Music-driven face generation, singing face,
generative adversarial network.

1. Introduction

With the advancement of computer vision and com-
puter graphics, synthesizing vivid and realistic dynamic
face is becoming possible and has been attracting more
and more attention from CV/CG communities. Recent pro-
gresses [13,43,7,57,61, 23,45, 57] show the great poten-
tial of this topic in a variety of applications, such as human-
computer interaction [34, 58], video making [37, 59, 63,

], and news anchor composition[51, 47], etc.

Despite the recent progresses of dynamic face synthe-
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Figure 1. Problem description. Our goal is to synthesize a vivid
dynamic singing face coherent with the input music audio, which
is mixed with human voice and background music.

sis [13, 43, 7, 57, 61, 23, 45, 66, 24] and its potential ap-
plications [34, 58, 37, 59, 63, 40, 51, 47], it is still an open
problem regarding how to synthesize a vivid face as expres-
sive as possible.

Existing work in the literature focuses on generating
coherent dynamics of faces according to input speech au-
dio [4, 38, 13, 43, 36, 46, 52,7, 57, 61]. However, in many
emotional scenarios, it is required that the head synthesis
is driven by a composite audio which is coupled with not
only speech but also other signals, e.g., the music audio
contains both human voice and background music signals.
Therefore, in this paper, we investigate the problem of syn-
thesizing a vivid dynamic face which is not only in-sync but
also delivers coherent facial dynamics with the input music
audio, as is illustrated in Fig. 1. This is a non-trivial task,
which can not be handled directly by existing methods. This
is because common music audios are mixed by coupled hu-
man voice and background music signals, while most of the
existing methods are designed for synthesizing face accord-
ing to only the human speech signals, which will lead to
undesired results due to the entanglement of different audio
signals.

To tackle this challenge, we investigate the implicit cor-
relation between the input signals and the facial dynamics.
We treat the input music audio as a mixed signal which in-
cludes a human voice signal and a background music signal.
According to previous work [43, 36, 46, 52,7, 57, 61] and
our observation, we argue that the lip movement is majorly
related to the voice signal (also called the speech channel),



while the head pose, facial expression, eye states relate to
both the voice signal and background music signal. How-
ever, we would like to ask the questions: Are these subjec-
tive observations true? and How much do the human voice
and background music signals affect the face dynamics? To
answer these questions, we devise a decouple-and-fusion
framework for this task. Firstly, we separate the input mu-
sic audio into the human voice channel and the background
music channel. Then we dynamically fuse these two sep-
arated signals in a feature selection fashion by introducing
a Attention-based Modulator. The Attention-based Modu-
lator modulates and balances the two signals for the down-
stream generators of facial expressions, head motions, and
eye states.

In the singing scenarios, the motions of the head and eyes
are usually emotional and dramatic, which raises challenges
for generators to learn the more diverse and expressive mo-
tions as compared with the previous talking scenarios. We
propose two ingredients to improve the expressiveness of
the synthesis result. For the movement of the head, we pro-
pose to learn the rhythm of head motion that is decoupled
from the absolute moving velocity, thus factoring off the
ambiguity of the mapping between audio and head move-
ment. For the eye states, we propose to synthesize both
eye blinking and long-time eye closing states, which deliv-
ers much more expressiveness as compared with previous
methods.

Besides, to learn the complex and implicit relationship
between the music audio and face dynamics, we build a
SingingFace Dataset from our recordings. The dataset con-
tains over 600 singing videos with synchronous music au-
dio. To our best knowledge, this is the first dataset regarding
face dynamics and music audio. We believe it will promote
future research on this topic.

In summary, this paper is featured as follows:

* This is the first framework for synthesizing a singing
face video driven by the input music audio mixed with
human voice and background music signals. In the
framework, we introduce the Attention-based Modu-
lator to balance the effects of the two signals on the
head movements, expressions, and eye states.

* We propose to synthesize the speed and direction of
head movements separately, instead of predicting head
pose directly. The simple-yet-effective modification
leads to more consistent head dynamics in line with
music thythm. Besides, we propose to decompose the
eye states into eye blinking and long-time eye closing,
which is much more realistic in singing scenarios.

* We build the first dataset which contains expressive
singing face videos with synchronous music audio, and
make it public to facilitate future research on this topic.

“https://vcg.xmu.edu.cn/datasets/singingface/index.html

2. Related Work
2.1. Audio-driven Talking Face Synthesis

Audio-driven face synthesis has been widely explored.
Previous work [3, 16, 48, 38, 13] focuses on establishing the
mapping between facial motion factors and audio features.
Brand [3] uses a Hidden Markov Model (HMM) to pre-
dict facial motions. Ezzat et al. [16] leverage an example-
based method mapping phonemes to mouth shape and tex-
ture parameters in the Principle Component Analysis (PCA)
space. Wang et al. [48] attempt to model a mapping be-
tween Mel-Frequency Cepstral Coefficients (MFCC) and
PCA model parameters via an HMM approach. Benefit-
ing from deep learning techniques, some works have been
proposed to generate more diverse faces in sync with in-
put audio. Shimba er al. [38] estimate active appearance
model (AAM) parameters with the Long Short-Term Mem-
ory (LSTM) network. Cudeiro et al. [13] employ convolu-
tions to encode speech and decode facial attributes to ani-
mate a 3D template.

Several methods [4, 36, 46, 9, 43, 14, 17, 65, 55, 18, 53]
merely synthesize facial region texture with lip-synced mo-
tions. Among the above approaches, a broad class of them
generate identity-preserving face with static head pose us-
ing GANSs [9, 14, 65]. Other methods synthesize lip-synced
texture of mouth, then rewrite the mouth area of source
frames according to the input audio [43, 46, 36, 4, 53] or
text [17, 55]. However, due to the dependence on the origi-
nal video, they can only generate limited head poses. To ad-
dress this problem, Chen et al. [7], Yi et al. [57] and Zhang
et al. [60] estimate head movements from input audio. Most
recently, Zhang et al. [62], Li et al. [30] and Guo et al. [18]
synthesize photo-realistic 3D head with natural head poses
and synchronized lip motions using popular neural render-
ing techniques. Wang et al. [49, 50] even generate photo-
realistic faces from one-shot reference image with natural
motions.

2.2. Music-driven Animation

Music-driven human pose animation has been studied
for decades. Early work [0, 28, 39] formulate the task as
a template matching problem. Lee et al. [28] and Shiratori
et al. [39] generate dance motion sequences with musical
similarity based on manually defined audio features, while
Cardle er al. [6] edit motions guided by musical features.
Due to the limitations of capacity, these template matching
approaches are not competent to generate diverse and natu-
ral dance motions.

With the great success of deep neural network, more re-
searchers address the music-to-dance as a generation prob-
lem with learning-based techniques. Recent methods em-
ploy auto encoder-decoder [27], LSTM [, 44, 54, 68, 25],
GAN [26, 42], and Transformer [21, 29, 31]. Even though
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Figure 2. Framework overview. Taking human voice and background music separated from music audio as input, the Generator module
generates facial driving parameters (expressions, head poses and eye states). Conditioned with fixed parameters (identity, texture, lighting)
extracted from a reference face image and the driving parameters, the Renderer module aims to synthesize a photo-realistic video. Specifi-
cally, eye state parameters are encoded into eye attention maps, and other parameters provide a 3D model guidance to render faces. Finally,
an expressive and rhythmic singing face video is rendered by combining rendered faces with eye attention maps.

some work [26, 56] apply action units to further explore the
correlations between pose and music, it is still challenging
to generate diverse, thythmic and expressive dance motion.

It is interesting to note that music-driven singing
face synthesis remains a rarely studied open problem.
Song2Face [22] is the only one designed for singing sce-
narios up to now to the best of our knowledge. How-
ever, it operates on plain human singing voice, only work-
ing well without the disturbance of background music.
The decouple-and-fuse framework presented in this paper
can generate realistic and rhythmical facial dynamics from
mixed music wave. Therefore, the paper will open novel
research directions in the domain of music-guided person
synthesis.

3. Methodology
3.1. Problem Definition

In previous researches [9, 66, 57, 62, 41, 67], given a
piece of speech audio A and a short reference video (or a
single face image) V, the ultimate goal is to generate a real-
istic talking face video S synchronized with the input audio
A, which can be represented as:

-Fezpafposea}—eye = G(E(A))v

1
S= R(]:expafposafeyeav)v ( )

where Fep, Fposes Feye denote the facial expression, head
pose, and eye state parameters synthesized by a generator
G, respectively. E refers to an audio feature extractor and
R denotes a rendering network synthesizing photo-realistic
images.

However, directly predicting driving parameters from
audio is not up to music scenarios due to the complicated
mutual influences between human voice containing lyric

information and background music containing melody in-
formation. We propose a decouple-and-fuse strategy to
tackle the above problem, which firstly adopts an audio
source separation model O to decompose music into human
voice A" and background music A | then gets encoded
lyric feature £ and melody feature M respectively using an
attention-assisted two-stream encoder E. It encodes lyric
and melody separately, and modifies the relative contribu-
tion of the two encoded features on the generation process
through an attention mechanism. Finally a generator G is
employed to generate the driving parameters of a singing
face video S from the decoupled lyric feature and melody
feature. The full pipeline can be formulated as follows:

A A =0
LM=E

Fewps Fposer Feye = G
S=R

—~
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AV, AY),
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—
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As illustrated in Fig. 2, our overall framework contains
three components: 1) a driving parameter generator to
translate music audio to facial expression, head pose, and
eye states, 2) a reference module extracting fixed parame-
ters such as face identity given a human face, 3) and a ren-
derer to synthesize photo-realistic frames conditioned on
above parameters. We employ a conditional-GAN-based
method as our renderer, which is of the same architecture
as [62]. To enhance the expressiveness of singing faces, the
generator G is designed as the following encoder-decoder
architecture as is shown in Fig. 3. The Encoder (Sec. 3.2)
consists of a Two-stream Audio Encoder (TSAE) to encode
lyric and melody separately and an Attention-based Mod-
ulator (ATM) to balance the contribution of different au-
dio features. The Decoder (Sec. 3.3) contains three down-
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Figure 3. The Architecture of Our Generator. Our generator contains an Encoder and a Decoder. The Encoder consists of a Two-
stream Audio Encoder (TSAE) and an Attention-based Modulator (ATM). The Decoder contains three downstream generators, including
Expression Generation Network (EGN), Pose Generation Network (PGN), and Eye State Generation Network (ESGN).

stream generators, including Expression Generation Net-
work (EGN) for the generation of facial expression param-
eters, Pose Generation Network (PGN) for the generation
of head pose dynamics, and Eye State Generation Net-
work (ESGN) for the generation of eye state parameters.
In the next subsections, we will introduce the five essential
parts respectively and provide the corresponding learning
objective and training strategy.

3.2. Encoder

As mentioned above, lyric and melody entangled in the
original music wave show a complicated relationship in
guiding the generation process of human face dynamics,
making it difficult for the generation network to synthesize
vivid face dynamics directly from plain music features. To
tackle the problem, we employ a decouple-and-fuse strat-
egy. Specifically, using a state-of-the-art audio source sepa-
ration model Spleeter [19], we decompose the original mu-
sic into human voice and background music. Then we en-
code lyric from human voice and melody from background
music separately using a two-steam audio encoder. Fi-
nally, we adjust them with attention-based modulators to
distribute the relative contribution of lyric and melody for
each specific generation task.

3.2.1 Audio Feature Extraction

Taking the separated audio wave (human voice or back-
ground music) sampled at 16KHz of 7' seconds as input,
we extract mel-frequency cepstral coefficients (MFCC) and

their first derivatives with 25ms window size and 10ms win-
dow step, resulting in 26-D audio features of 100 frames per
second. Furthermore, in order to incorporate temporal in-
formation and match the frequency of video frames (30 fps),
the feature sequence are converted to overlapping windows
of size 39 (corresponding to 390ms ) at 30 fps. Therefore,
the output feature is a three-dimensional array with the size
(30 x T, 39, 26).

3.2.2 Two-stream Audio Encoder (TSAE)

Given the separated human voice feature A" and back-
ground music feature A", we adopt a Two-stream Audio En-
coder (TSAE) that consists of two networks AE" and AE?
to encode the MFCC features of human voice a; and back-
ground music a?, separately:

[ = AE"(a}),

i = AEV @), (3)
where AEY and AE’ are 1D temporal convolutional neu-
ral networks with residual blocks sharing the same network
structure , and f/, ftb indicate the encoded audio features.
The subscript ¢ indicates time step, and the superscripts v
and b indicate human voice and background music, respec-
tively. The encoded audio features of the full audio se-
quence f¥ and f® are obtained after stacking the audio fea-
tures of each time step.



3.2.3 Attention-based Modulator (ATM)

For a specific downstream generation task, the relative con-
tributions of features representing different specific seman-
tic information change over time and are even intercon-
nected with each other. For example, image the head pose
dynamics of a person singing a line of a song. He will pre-
pare to vocalize, then sing, and shut his mouth finally. In
the first and third stages, he rotates his head rhythmically
dominated by melody. But when he vocalizes, melody in
background music and lyric in human voice influence his
head movements together. So the dominant source changes
over time and even becomes ambiguous during vocaliza-
tion, making the generation task difficult.

Therefore, in order to generate vivid human face move-
ments, we introduce a channel attention mechanism similar
to the attention mechanism proposed in [20] to determine
the relative contribution between lyric and melody on the
generation result. The only difference is that, to consider the
long-time dependence between the audio features of differ-
ent time steps, we select a temporal U-net to generate atten-
tion weights instead of using a simple multi layer percep-
tron (MLP) network. Specifically, given the separately en-
coded audio features, we employ an Attention-based Modu-
lator(ATM) for each generation task to estimate an attention
weight of each feature map in embedding feature f¥ and f°
to adjust the relative importance between them:

att = o(U-net(f¥ @ f?)),
[, m] = ATM(f¥ & f?) “4)
=att © (f¥ @ fP),

where 1 and m denote the final output embedding of lyric
and melody features for the full audio sequence respec-
tively, & represents the concatenate operation on the fea-
ture channel dimension, and © indicates the element-wise
product. ATM indicates the Attention-based Modulator
implemented using an temporal u-net network U-net and o
represents the sigmoid activation function.

As shown in Fig. 3, we employ one ATM to learn the
optimal attention weight for each downstream task. Specif-
ically, we apply a total of three ATMs on " and vP, to get
1°*P and m®*P for expression generation task, 1P°%¢ and
mP°%¢ for head pose generation task, and 1°¥® and m*®Y®
for eye state generation task, respectively.

3.2.4 Subject Style Embedding

Our TSAE, EGN, PGN, and ESGN are conditioned on the
subject code to learn subject-specific styles, adopting a sim-
ilar strategy in [13], which encodes each subject in the
dataset using a one-hot subject encoding. At training stage,
the subject encoding is concatenated to each input MFCC
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Figure 4. The Euler angle (R,) dynamics of a person singing
the same song twice. It shows although the head may rotate in
opposite direction, the speed still keeps similar. This observation
is also valid for other head pose parameters.

feature a; and af, and also concatenated to the final output
l; and m; of the ATM.

3.3. Decoder
3.3.1 Expression Generation Network

We employ a simple MLP consisting of two fully connected
layers and one ReLU activation layer to regress facial ex-
pression (including lip motion) parameters from the en-
coded lyric and melody features. The process can be for-
mulated as:

ft - Lpea:p(lfxp 5% m:mp)’ (5)

where ft denotes the predicted facial expression parameter
at time step ¢ and ¢.,, means the MLP for expression gen-
eration.

3.3.2 Pose Generation Network

Traditional audio-driven pose generation methods directly
regress head pose parameter sequences from audio fea-
tures [7, 57, 62], which does not agree with the fact that
given a fixed audio sequence, different people even the same
person singing the same song multiple times can produce
mostly different head pose sequences as shown in Fig. 4.

We find that although the dynamics of head pose vary
when the same person sings the same song multiple times,
as shown in Fig. 4, the speed of head pose keeps similar in
line with the rhythm of the music. Motivated by this, we
propose to generate the moving speed and moving direction
of the head separately, and combine them to generate head
pose p € RS including Euler angles and a 3D translation
vector at each time step.

Moving Speed Generation: At the first stage, we use an
MLP network @,peeq to predict the speed of head pose pa-
rameters according to the encoded audio features at current
time ¢:

8t = ABS(pspeea(ly”* & m{*)), (6)

where [P°°¢ and mP?%¢ are the lyric and melody embedding
features for pose generation, 8; € RS is the output head



speed at time step t. As §; can not be negative, we apply
absolute function ABS to the output of pspced.

Moving Direction Generation: We use an LSTM net-
work followed by a fully connected layer ¢g;,.. to generate
the direction of head movements from the encoded audio
features concatenated with the previous head pose and mov-
ing velocity at the last time step:

Vg1 = ﬁtfl - ﬁt727
0t, ¢y = LSTM(I* @ my®* @ pr—1 ® 01, ¢-1), (7)

dy = tanh(Pgirec(0t)),

where p;_1, pr—2 € RS indicate the generated head pose
parameters represented by Euler angles and 3D translation
parameters, 9; 1 € RS is the predicted head pose veloc-
ity, c;—1 and c; are the cell states, o, means the output of
LSTM network, (ft € RY is the predicted moving direction,
respectively at the corresponding time step.

Head Pose Generation: Finally, the pose p; at time step
t can be directly calculated by: p; = pr_1 + § X (it.

3.3.3 Eye State Generation Network

Traditional methods usually generate only random eye
blinks from audio features [62] or noise inputs [41], ig-
noring some long-time eye closing phenomena in singing
scenarios, e.g., people may close their eyes for a long time
while singing the climax of the song. We decompose the
generation process of eye states into random eye blinking
generation and long-time eye closing state generation. Hu-
man blinks occur randomly and can be sampled from exper-
imental predefined random distributions, but for long-time
eye closing state generation, it should be learned from data.

Random Eye Blinking Generation: The normal blinks
of human show regularity regarding the average human eye
blinking rate and the average inter-blink duration [62]. Ac-
cordingly, we uniformly sample the blink interval B; ~
U(a;, b;) and blink duration By ~ U(ag, bg) with the em-
pirical parameters a; = 1.2s,b; = 2.0s,a4 = 0.10s,b4 =
0.45s.

Then we generate the eye state of blink dynamics
eblink ¢ 10,1} according to B; and By.

Long-time Eye Closing State Generation:

We employ an MLP network ©¥¢ to generate the eye

state €.°™ at time step ¢:
e = g @ m). ®)
We combine the él'™* and e}’ to get the composite

dynamics of eye states é;:
] PN
. e, ife >0,
[ .
sblink
€y ’

otherwise .

€))

Finally, we apply a temporal gaussian filter on é, to get
more smooth eye state dynamics.

3.4. Learning Objective

We supervise our generator with the following loss func-
tions:

LREQ = Lelp + Lpose + Leye + Latta (10)

where Le;p, Lpose and Ly, are the losses for facial ex-
pression, head pose, and eye states, respectively. L, is the
loss term for pushing ATM to select useful feature channels.
Each loss term is formulated as:

Lezp = w1 Lyrsp(f,£) + waLy gy (£, F),
Lpose = wsLarap(P, D)
+ w4LL1 (ABS(V)7 ABS(\?)),

long alon
Leye = w5LL1 (e g’ e g)

Y

long 2lon
+weLparp(e "8, &°18),

Loy = ||att®P||; + ||attPose||; + ||att®>®||,,

where w1, we, w3, wy, ws, we are balancing weights. f, p,
v, e!°"8 are vectors containing the time serial ground truth
parameters of facial expression, head pose, head moving ve-
locity and long-time closing eye state parameters (note that
we only learn long-time closing eye dynamics from data),
ranging from t = 1,2, ..., 7. f, p, v, él°m8 are the corre-
sponding predicted vectors. att®*P, attPos®, att®Ye are
the predicted attention matrices for tasks of facial expres-
sion generation, head pose generation, and eye state gener-
ation, respectively. ABS(x) denotes taking absolute values
for each elements. We only supervise the absolute speed
of generated head pose dynamics here, guiding the network
to generate more rhythmical head pose dynamics aligned
with music. Ly sp(x,%) = #|/x — %[|3 is an L? norm
loss term, Lz1(x,%) = =[x — %[|} is an L' norm loss.
Lypp(x,%) = 757 3,5 (e — 2401) = (8 — 30-1)|3
is the velocity loss term, and Lz p[32] is the maximum
mean discrepancy loss to match all orders of statistics be-
tween the prediction and ground-truth. Here we use x to
represent the ground-truth, while using X for the predicted
values. In our experiments, we empirically set w; = b5,
wo = 50, wy = 10, ws = 5, and set other weights to 1.0.

Furthermore, in order to improve the diversity of gener-
ation results, we use an adversarial loss to fool the discrim-
inator D, which is defined as :

Lag, = arg mén max Ep etone a[logD(p, elong, a)

(12)
+ Ea p, [log(1 — D(G(a, po), a))).
The total loss function in training phase is:
L= )\ILReg + XL Ado- (13)



4. Experiments
4.1. Implementation Details

Our method is implemented with PyTorch, and all the ex-
periments are conducted on two NVIDIA RTX 3090 GPUs.
For network training, we randomly sample the frame se-
quence with a sliding window of 128 frames. We adopt
Adam optimizer during training, with a learning rate of
0.0001 for 50 epochs. Linear learning rate decay is adopted
for the last 60% epochs. The hyperparameters in Eq. (13)
are A\; = 1 and Ay = 0.1, respectively.

To get vivid and photo-realistic visualization results, we
train a rendering-to-video network by following FACIAL
[62].

4.2. Dataset Organization

As mentioned above, popular conventional datasets only
contain talking face videos that lack expressiveness. To
overcome this, we build a new dataset called SingingFace.
SingingFace includes more than 600 singing videos with
6 human subjects. Our supplementary video shows the
learned style of different subjects when training across all
the 6 human subjects.

Video Collection: We organize our dataset by record-
ing singing videos ourselves. Specifically, we collect the
singing audio set first, then the face region of the per-
son singing the song with music played simultaneously is
recorded. Finally, we automatically align each video to the
corresponding music audio using SyncNet [12] to ensure
audio-visual synchronization.

Audio Separation: We use a state-of-the-art audio
source separation model Spleeter [19] to extract the hu-
man voice as lyric information and the background music
as melody information, respectively.

3D Face Reconstruction: To automatically extract face
expression parameters and head poses from a singing video,
we adopt Deep3DFace [15] to extract face parameters
[, B,8,7,p], where o € R¥, 3 € R, § € R3 are the
corresponding coefficient vectors for geometry, expression
and texture. v € R?7 is the spherical harmonics (SH) illu-
mination coefficients. The 3D face pose p = [R; t] is repre-
sented by rotation R € SO(3) and translation ¢ € R3. The
PCA basis of geometry, texture, and expression are adopted
from the Basel Face Model [35] and FaceWareHouse [5].

Eye State Extraction:

We employ a state-of-the-art facial analysis system
OpenFace [2] to extract action unit AU45r as the eye blink
parameters. Note that we observed that the distribution
of the extracted AU45r values for different people varies
much, so we apply min-max normalization on AU45r for
each video individually. Then we apply a time length
threshold 7 = 0.5s to detect the short-time blinking and
long-time eye closing states separately.

Table 1. Ablation Study.

Method Lip Sync Pose Realism  Eye Realism
AVCT LMD] CCA?T Roughl CCAT
Single-Stream 1.17  1.31 022 024 0.06
Two-Stream .73 1.17 025 0.18 0.07
With-ATM 1.87 1.10 029  0.07 0.11
Ours 1.90 1.08 0.33  0.06 0.12

Data Statistics:

We collect over 600 Chinese and English singing videos
totaling 40 hours with 30 FPS. Each video contains one per-
son singing a whole song and the average length of videos
is about 4 minutes. Each video has a stable camera location
and appropriate lighting conditions. We randomly split out
90% of the videos for training and 10% for testing.

4.3. Ablation Study

To verify the effectiveness of the key ingredients in our
proposed method, i.e., 1) the audio separation step and
two-stream audio encoder (TSAE), 2) the attention modula-
tor (ATM), and 3) the head pose generation network (PGN),
we study the following variants of our method:

 Single-Stream: no audio source separation; a sin-
gle stream audio encoder is employed to encode the
MEFCC feature of the mixed audio wave; no ATM; and
replace our PGN with an MLP network.

¢ Two-Stream: equipped with audio source separation
and TSAE; no ATM; and replace our PGN with an
MLP network.

* With-ATM: equipped with audio source separation,
TSAE and ATM, and replace our PGN with an MLP
network.

¢ Ours: equipped with audio source separation, TSAE,
ATM, and our proposed PGN.

We compare the above variants using the splitted test
set of SingingFace. We evaluate the Audio-Visual Confi-
dence (AVC) scores proposed in [12], and Landmark Dis-
tance (LMD) introduced in [8] for lip synchronization com-
parison. However, to the best of our knowledge, there are
no clear metrics for evaluating the realism of generated head
pose and eye closing dynamics for now, which is a subjec-
tive task and is an open question to the public. Following
Zhang et al. [64], we employ Canonical Correlation Analy-
sis (CCA) on the generated head pose parameters sequences
and eye state sequences with the ground truth and compute
the Canonical Correlation as the evaluation metric for per-
ceptual realism. Note that to emphasize the evaluation for
the rhythm of the head pose dynamics that should be in line
with music, we apply Canonical Correlation Analysis on
the moving speed of generated head pose sequences instead
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Figure 5. Qualitative Result of Ablation Study. It shows a) the
generated frames and b) pitch (red), yaw (blue), and roll (green)
of head pose dynamics. In a), the mouth generated by Single-
stream still keeps open during silence (red box) while others keep
closed (green box). In b), our generated head pose dynamics
are smoother than others. And the turn of dominant varying an-
gle (shown as green curve) occurs nearly at the same time with
ground truth, meaning that our generated head dynamics have
more similar thythm to the ground truth recorded by a performer.

of head pose parameters themselves. We also compute the
second derivative based roughness (Rough) of the generated
Euler angles defined in Eq. (14) for head motion smooth
evaluation:

1 T Ny
Rough(R) = thl R'(t)?, (14)
where R’ (t) denotes the second derivatives of head rota-
tion angles at time step t. The quantitative results of ablation
study are summarized in Tab. 1.

Effectiveness of Two Stream Design: As mentioned
above, lyric and melody information are entangled together
in plain music waves, making it difficult to learn facial dy-
namics in line with the music. It’s verified that, by separat-
ing human voice and background music from plain music
waves and encoding the features separately, our two-stream
design greatly reduces the complexity of the lip synchro-
nization task, thus leading to a better synchronization result.
As shown in Fig. 5, if we just learn singing facial dynam-
ics from plain music (Single-stream), the generated mouth
movements are severely disrupted by the background mu-

Region I

Region I

b)Pose a)Expression  GM Human
wav  wav

melodylyric melody lyric melody lyric

c)Eye

Region I Region V

[Region III

Figure 6. Attention Weight Visualization. The brighter white
represents higher weights. The horizontal direction is along the
time, and the vertical direction is along the feature dimension.

sic (e.g., the mouth still keeps open during silence). On
the contrary, the other variants that apply our two-stream
design perform correctly. On the other hand, after apply-
ing source separation and our TSAE(Two-stream), all of the
evaluation metrics have been improved a lot compared with
Single-stream shown in Tab.1. This improvement can be
more clearly seen in our supplementary video.

Effectiveness of Attention-based Modulator: Our
Attention-based Modulator automatically assigns optimal
attention weights on different features at each time step for
each downstream generation task. It allows our model to
extract as much useful information as possible from the en-
tangled audio features for each specific downstream task
and eliminate the interference sources. This is verified from
the experimental results that our ATM variant outperforms
Two-stream on all of the evaluation metrics summarized in
Tab. 1.

Effectiveness of Pose Generation Network: Compared
with simple MLP networks, the head pose dynamics gen-
erated by our PGN show superior perceptual results. The
improvement comes from that our PGN decompose head
pose sequence generation task into moving speed genera-
tion and moving direction generation. Firstly, the network
is able to concentrate on the generation of moving speed
which is more related to the rthythm of music, resulting in
more rhythmical head pose dynamics that are in line with
the music. This is verified in Tab. 1, that our method out-
performs others a lot on the CCA metric of head pose.
Then, the LSTM module for moving direction generation is
able to consider not only the current audio features but also
the generated head moving history, resulting in the more
smooth and spontaneous head moving curves. As shown in
Fig. 5, the visualization of pose rotation curves generated
by our method (Ours) are smooth and resemble closely the
ground truth. Specifically, the turn of the dominant vary-
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a) Video frames
Figure 7. Visual Comparison with State-of-the-art Methods. a) and c) are the generated video frames. b) and d) are the corresponding
tracemaps of facial landmarks across multiple frames. From the tracemaps, we can see our method generates the most diverse head pose
dynamics.

ing angle (shown as green curve) of our generated head oc-
curs nearly at the same time with ground truth. It’s recom-
mended to check our supplementary video to compare the
difference more clearly.

Analysis of Attention Weight: To further investigate
the role of the Attention Modulator (ATM), we visualize
the predicted attention weights for synthesis tasks of facial
expression, head movement, and eye state. As shown in the
case illustrated in Fig. 6, it can be observed that:

e When there is background music only and no human
voice, the ATM pays more emphasis on the stream of
background music (melody feature), as shown in the
earlier part of the music (See Region I).

e When there is both background music and human
voice, in the tasks of face expression and head pose,
the ATM modulates the weights between two streams
to pursue more expressive results (See Region II).
From the numerical viewpoint, the weights of the hu-
man voice are higher than that of background music.
In this case, the human voice dominates the generation
of face expression and head pose.

e When there is both background music and human
voice, both the human voice and background mu-
sic affect the long-time eye closing state, simultane-
ously (See Region III) or separately (See Regions IV
and V).

b) Tracemaps

¢) Video frames d) Tracemaps

4.4. Comparisons with State-of-the-art Methods

4.4.1 Compared State-of-the-art Methods

Most previous state-of-the-art methods are designed for
talking scenarios and trained on talking datasets such as
Voxceleb2 [10] and LRS2 [11]. For a fair comparison, we
select and retrain the methods whose training code are open
to the public on our SingingFace dataset. The selected com-
pared state-of-the-art methods are as follows:

* ATVG [9] is one 2D-based cascade GAN approach to
generate a talking face video that is robust to different
facial characteristics, by taking an audio sequence and
a target image as input.

* Yietal. [57] utilize 3D face model information to syn-
thesize photo-realistic talking face videos with person-
alized pose dynamics.

» LiveSpeechPortraits (LSP) [33] presents a live system
utilizing 2D landmarks to generate personalized pho-
torealistic talking-head animation in real time.

* FACIAL [62] integrates implicit attribute learning to
synthesize 3D face animation with realistic motions of
lips, head poses, and eye blinks.

We also report the qualitative comparison results with
Song2Face [22], which is the only one method designed
for singing scenarios up to now to the best of our knowl-
edge. Song2Face maps each human voice segment to facial



expression and head rotation parameters, and uses an adap-
tive filter network to incorporate information from neigh-
boring frames for temporal stability. It should be note that
Song2Face only models with single driving source (plain
human singing voice) as input, while ours supports multi-
ple driving sources, e.g. human voices and background mu-
sic, and focuses on how to collaborate with different driving
sources to generate more realistic head movements. In ad-
dition, eye states are dealt with as a part of facial expression
for Song2Face, while ours decompose the generation of eye
states as an individual generation task. Since the implemen-
tation of Song2Face is unavailable, quantitative evaluation
with Song2Face is absence in this paper. It’s recommended
to see our supplementary video for better comparison.

4.4.2 Qualitative Comparison

Fig. 7 and Fig. 8 shows the visual comparison with other
state-of-the-art methods. We show the summary of qualita-
tive comparison results in this section.

]

M

Song2Face [

Ours

Figure 8. Visual Comparison with Song2Face. Our method can
generate photo-realistic frames, diverse head pose and natural eye
closing dynamics, which is infeasible for Song2Face [22].

Realism on Pose Dynamics: As shown in supplemen-
tary material, ATVG [9] only generates talking face videos
with a fully static head pose, which is against the human
common sense. Yi et al. [57] generate photo-realistic videos
but the talking faces usually show subtle movements due
to the supervision pipeline. In addition, the generated head
pose dynamics behave discontinuously because of the back-
ground matching trick used in [57], which matches short-
term generated head poses to one same target frame when
the target frames are scarce in the target video. LiveSpeech-
Portraits [33] generates smooth but relatively small head
movements. The generated head pose also shows a weak
correlation with the rhythm of the music. FACIAL [62] and
Song2Face [22] can generate more natural head pose dy-
namics than other compared state-of-art methods, but they
still show only a few variations in head movement pat-
terns over a long period of time. Our method can generate
the most realistic head pose crediting to our pose genera-
tion method. To be specifically, for example, the head ro-
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tates quickly and dramatically during dense syllables, while
slowly during pronouncing long syllables. Readers are rec-
ommended to watch the supplementary video to see the
vivid visual results more clearly.

Realism on Eye States: The generation methods for eye
states between the compared methods are various. ATVG
and Yi ef al. do not involve generating eye state parame-
ters, therefore they do not produce any eye closing dynam-
ics. For Song2Face and FACIAL, they learn random blink
dynamics from data. However, Song2Face only performs
well on plain human singing voice (no background music),
and FACIAL only generates open eyes during inference,
failing to generate spontaneous eye closing dynamics due
to the complex entanglement between short random blinks
and long-time eye closing states in SingingFace dataset.
LiveSpeechPortraits directly sample random blink dynam-
ics from target video and our method synthesizes random
blinks from pre-defined random distributions, both of which
show realistic random blink results. Moreover, as shown
in Fig. 9, our method can also generate long-time eye clos-
ing dynamics (>0.5s) during voice based on the rhythm and
emotion in the music, which further enhances the sense of
realism.

4.4.3 Quantitative Evaluation

We use the same test set of music with the ablation study
to compare our method with state-of-the-art counterparts.
To clear out the effectiveness of the audio source separation
model used in our method, we report the compared results
on both mixed signals and separated signals (human voice
and background music). Our method gets superior results
on the most of metrics in the both cases. The results are
summarized in Tab. 2.

Lip-sync metric: Similar to the ablation study, we eval-
uate the Landmark Distance Metric [8] and Audio-Visual
Confidence score [12] to compare the lip synchronization of
our method with the state-of-the-art methods. Tab. 2 shows
that in both mixed and separated scenarios, our method
beats all counterparts. It also shows that it is beneficial to
separate the human voice from the plain music wave for
mouth movement generation. Note that separated singing
voice is given as input to the pre-trained lip-sync evaluation
model during evaluation to ensure the pre-trained model
performs correctly.

Pose Realism: In the evaluation of the realism of
pose dynamics between different methods, we measure
Canonical Correlation between predicted pose parameter
sequences and ground-truth following with [64]. Similarly,
to emphasize the evaluation of the rhythm of the synthe-
sized head pose sequences, we apply Canonical Correlation
Analysis to the speed of the head movement. Tab. 2 shows
that our method generates more realistic and rhythmic pose



Table 2. Comparisons with State-of-the-art Methods

Mixed Wave Separated Wave . .
Method AVCT LMD} CCA(pose)] CCA(eye)] ~AVC] LMD CCA(pose)l CCA(eyeyf ~ Olnks/s blink dur(s) CPBDY
ATVGI[Y] 0.27 1.46 — — 0.34 1.40 — — — — 0.11
Yietal.[57] 1.23 1.48 0.18 — 1.45 1.44 0.19 — — — 0.29
LiveSpeechPortraits[33]  0.31 1.43 0.32 — 0.35 1.42 0.32 — — — 0.20
FACIAL[62] 1.49 1.29 0.25 0.08 1.61 1.23 0.26 0.08 — — 0.31
Ground Truth 3.00 — — — 3.00 — — — 0.35 0.23 0.37
Ours 1.69 117 0.26 0.18 1.90 1.08 0.33 0.12 0.38 0.26 0.34
Table 3. Results of User Study. o
Method Lip Head Eye Conformity 2000 real videos
ATVGI[9] 124 124 1.20 1.19 2
Yietal. [57] 213 154 1.51 1.70 & 1500
LiveSpeechPortraits[33] 1.86  2.13  2.23 2.26 8 000
o
FACIAL[62] 351 353 271 3.56 5
Ours 429 438 4.11 445 500
o]
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Closed Eye Durations
dynamics. Figure 9. Distribution of Eye Closing Duration. Our method is

Eye Realism: We measure Canonical Correlation be-
tween predicted eye state parameter sequences and ground-
truth following with [64] to evaluate the realism of long-
time eye closing dynamics. For random blinking evalua-
tion, we count the average blinking frequency (blinks/s) and
intra-blink duration (s) of generated singing face videos,
and compare them with ground truth. As shown in Tab. 2,
these two statistics of our method are similar to the ground
truth, falling within a reasonable range.

Sharpness metric: Cumulative probability blur detec-
tion (CPBD) is evaluated to measure the generated frame
sharpness of different methods. Our implementation of ren-
derer module generates the most sharpness facial texture ac-
cording to Tab. 2. However, as shown in our supplementary
video, the generated texture of mouth region when opening
mouth wide and the generated texture of eyelid when clos-
ing eyes look a little blur. The blur texture should come
from the data scarcity of open mouth and closed eyes. It
should be easy to improve the texture, simply by training
the renderer with more data, or replacing the renderer with
a few-shot face generator.

Tab. 2 shows the effectiveness of the audio source sepa-
ration step for the singing face generation task, that almost
all the evaluation metrics improve after decoupling human
voice and background music. It also shows the superiority
of our method, which generates the most realistic singing
face videos and behaves better on all the evaluation metrics.

4.5. User Study

We invite 15 volunteers to evaluate our method and pre-
vious works. The volunteers are a group of college students
with gender balance, no previous face synthesis study expe-
rience, but are informed of the study’s purpose, the standard
for evaluation, and the number of compared video groups
before making evaluations. The volunteers are asked to
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able to generate realistic closed eye duration of similar distribution
with the real videos.

make evaluations of videos group by group. In each group,
5 synthesized videos of compared methods are shown in
order. There are 5 video groups in total. During evaluat-
ing each group, the volunteers were asked to watch all the
videos of the group, then to score the videos at once based
on the following criteria: 1) audio-visual synchronization,
2) natural head motion, 3) realistic eye state, 4) confor-
mity with music. The evaluation scores include 1(very bad),
2(bad), 3(normal), 4(good), S(very good). Finally we cal-
culate the average scores for each method. As summarized
in Tab. 3, our method has the superior visual realism than
previous methods.

5. Discussion

Limitation and Future Work: The proposed method
achieves more expressive results against previous meth-
ods. However, as shown in the supplementary video, under
chaotic environments, our method fails like previous meth-
ods, which is because the adopted audio separator can not
distinguish different human voices. On the other hand, this
paper focuses on the synthesis of the head region, leaving
the dynamics of the upper torso unsolved. We should note
that it is more challenging to generate a realistic and ex-
pressive virtual human with dynamics of the upper torso
and even the full body. This will be the direction of our
future efforts. Moreover, our method just learns the implicit
context from input audio, and it’s indeed a interesting im-
provement direction to incorporate semantics from lyrics of
songs.

Ethics Statement: The work itself does not uniquely
raise any new ethical challenges. However, we must ac-



knowledge that the topic of image/video synthesis has been
receiving many ethical concerns. These kinds of algorithms
are vulnerable to malicious use, such as potentially misused
to produce misleading information or violate the portrait
right. Therefore, we appeal the research community and
potential users to explore the techniques responsibly.
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