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Abstract. We introduce physics-informed multimodal autoencoders (PIMA) -

a variational inference framework for discovering shared information in multi-
modal datasets. Individual modalities are embedded into a shared latent space
and fused through a product-of-experts formulation, enabling a Gaussian mix-
ture prior to identify shared features. Sampling from clusters allows cross-modal

generative modeling, with a mixture-of-experts decoder that imposes inductive
biases from prior scientific knowledge and thereby imparts structured disentan-
glement of the latent space. This approach enables cross-modal inference and

the discovery of features in high-dimensional heterogeneous datasets. Conse-
quently, this approach provides a means to discover fingerprints in multimodal
scientific datasets and to avoid traditional bottlenecks related to high-fidelity

measurement and characterization of scientific datasets.

1. Introduction. Many scientific and engineering datasets are multimodal, neces-
sitating the fusion of disparate sources and datatypes for informed analysis. For
example, cardiovascular disease research may consider multiple modalities, such as
medical records, genetics, and radiology images [1], and materials science research
may involve a myriad of process settings along with in-process and post-process
measurements [32, 48]. Moreover, automated high-throughput characterization
methods across various scientific domains are increasingly generating large, rich
multimodal datasets, fueled by advances in robotics and automation [37, 5]. Many of
these scientific datasets admit fingerprints : easily measurable signals which correlate
with a difficult to measure underlying physical process. The hunt for exploitable
fingerprints spans many scientific domains, including material science [19], quantum
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mechanics [7], and climate change [15, 16]. Rapid datasets designed to detect fin-
gerprints may potentially serve as a surrogate for, or in conjunction with, bespoke
experiments capturing high-fidelity modalities. Accordingly, we aim to discover
comprehensive fingerprints constructed from the weighted integration of multimodal
datasets. Due to their size and complexity, parsing these datasets for exploitable fin-
gerprints requires methods capable of representing high-dimensional, heterogeneous
scientific data in a human-interpretable way [3, 5, 15, 39].

In representation learning, one seeks to discover interpretable, lower-dimensional
representations of high-dimensional datasets. Finding these interpretable repre-
sentations can be challenging, especially in an unsupervised setting where human-
in-the-loop data labeling may render high-throughput processing intractable. For
unsupervised learning, several works apply variational autoencoders (VAE) to seek
latent disentangled representations of data which admit efficient separation into
meaningful classes [6, 8, 23, 33]. While desirable from an interpretability and ac-
curacy perspective, such representations are often challenging to reliably discover
in the absence of labels [34]. However, the complementary information available in
multimodal data has been shown to provide multiple pathways to disentanglement;
for example, a human may be unable to distinguish an image of a one and a seven,
but if the digit is read aloud there is no confusion. Multimodal datasets are often
the subject of representation learning, where the modalities commonly considered
in the literature are text/audio/video modalities [3]. Unfortunately, this treatment
on text/audio/video modalities is unsatisfactory for the rapidly growing body of
scientific and engineering datasets whose modalities include both physical and simu-
lated data across several disparate data sources, each with unique fidelity, sparsity,
and spatiotemporal resolution. In particular, these multimodal scientific datasets

often come with exploitable physics-based inductive biases, which can provide the
opportunity to move beyond purely data-driven techniques and constrain our models
to physically consistent and interpretable representations. Indeed, the fact that
scientific data is governed by physical models potentially allows an expert model to
extract more information than purely data-driven encodings - i.e. known physics
encodes the generative process, and therefore imposing even a low-fidelity physical
model as an inductive bias may provide substantial disentanglement.

Accordingly, we construct an unsupervised, physics-amenable algorithmic frame-
work that learns a joint lower-dimensional representation for multimodal scientific
datasets with the ability to uncover hidden, underlying factors important for in-
formed data analysis. Furthermore, our algorithmic framework enables cross-modal

inference. Concretely, cross-modal inference corresponds to training jointly across
modalities X1, ..., XM in a manner that supports generative sampling of individual
modalities, i.e. p(Xi|Xj) for i ̸= j. We achieve cross-modal inference across multi-
modal representations in a variational setting by combining the following algorithmic
contributions (Figure 1): 1. encoding data into unimodal embeddings q(Zm|Xm)
and applying a product-of-experts (PoE) model to fuse data into a multimodal
posterior q(Z|X1, . . . , XM ) = Πmq(Zm|Xm); 2. adopting a Gaussian mixture model
(GMM) prior to determine latent clusters C shared across modalities; and 3. decod-
ing with a physics-informed mixture-of-experts (MoE) model p(Xm|C,Z) to impose
inductive biases. For scientific settings, the expert model provides a critical new
means of fusing experimental audiovisual data with traditional scientific models;
rather than considering generalized linear models commonly used in MoE [22], we
may incorporate parameterized physical models, surrogates or simulators for the
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latent representations of data that admit an explicit parameterization of class distri-
butions. The current work is most similar to Variational Deep Embedding (VaDE)
[21] in its use of mean-field distributions to obtain a separable ELBO, and Bayesian
estimator for q(c|X). This work builds upon VaDE by incorporating multimodal
data inputs while maintaining computational tractability of the ELBO, as well as
employing clusters to decode into physics-informed MoE models.
Disentanglement. Another line of research is to extract latent disentangled repre-
sentations into different factors of variations in data using VAEs. Earlier works such
as β-VAE [17] and Annealed VAE [6] introduce additional weighting parameters
to the KL divergence term of the original VAE ELBO loss. In Factor VAE [23]
and Total Correlation Variational Autoencoder (β-TCVAE) [8] the ELBO is further
decomposed to derive and penalize the total correlation to promote disentanglement
in learned representations. For our purposes, however, these techniques lack an
explicit parameterization of the cluster distributions so that it is not possible to
conditionally define a physics-informed mixture of experts model.
Multimodal inference. Generative modeling from multimodal data can be broadly
categorized into either conditional generative models [49, 42] which directly learn
conditional cross-modal distributions p(Xi|Xj), or joint models [51, 53, 59], which
explicitly learn joint distributions that learn p(Z,X1, ..., XM ). We pursue the lat-
ter as [59] has been shown to provide a better description of the underlying data
distribution. We pursue a strategy similar to works such as joint multimodal VAE
[51] and joint VAE [53], where a joint inference network q(Z|X1, X2) is trained,
followed by training of two additional unimodal inference networks q(Z|X1) and
q(Z|X2) which handle missing data at test time. The unimodal inference networks
are trained to either match the joint inference network or to maximize an ELBO
derived to perform unimodal variational inference. More recently, Multimodal
Variational Autoencoder (MVAE) [59] and Mixture-of-Experts Multimodal Varia-
tional Autoencoder (MMVAE) [47] were proposed to model the joint posterior as a
product-of-experts (PoEs) and a mixture-of-experts (MoEs). Most recently, Mixture-
of-Products-of-Experts Variational Autoencoder (MoPoE-VAE) [50] proposed a new
ELBO formulation, which generalizes ELBO formulations derived from PoEs and
MoEs. Our encoder bears similarities to MMVAE, MoPoE-VAE, and PoE, while
preserving a computationally tractable closed form ELBO when combined with the
GMM prior.
Physics-informed ML and fingerprinting. Substantial works in recent years
have focused on introducing physics into either solving partial differential equations
(PDEs) or for building surrogates, typically introducing a PDE residual regularizer
in physics-informed neural networks [27, 44] or by embedding physics directly into
network architecture in structure-preserving ML [52]. Such tools can be combined to
provide parametric surrogates of simulations which can perform real-time inference
over a database of parameterized PDE solutions [35, 56, 36]. This paper provides
a framework to fuse either these physics-informed surrogates or simpler empirical
models together with experimental data. In contrast to traditional feature discovery
tools, which rely on purely data-driven techniques like PCA [15, 16], the current
framework provides a means to incorporate domain expertise into features, or
fingerprints, tailored toward a scientific task.
Major contributions:
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• Novel fusion of PoE with a Gaussian mixture to obtain parameterized cluster
fingerprints for downstream data analysis and high-throughput diagnostic
tasks.

• Multimodal embedding allows cross-modal inference while preserving closed
form expressions for expectations in ELBO.

• Mixture-of-experts decoding allows incorporation of interpretable inductive
biases by assuming an informative model form describing scientific processes.
This allows the potential for embedding physics-informed surrogates or
simulators alongside physics-agnostic encodings.

• Disentanglement of clusters into structured latent space exposing relation-
ships across modalities.

2. Framework construction. We consider a dataset with D datapoints consisting
of multiple modalities X1, . . . , XM where Xm ⊂ R

dm and one data point x(d) is a

tuple of the modalities, i.e. x(d) = (x
(d)
1 , . . . , x

(d)
M ) with x

(d)
m ∈ R

dm . The set of all
modalities is denoted by M = {X1, . . . , XM}.

We seek a multimodal stochastic embedding of the data, Z ∈ R
l, where the

latent dimension l << dm for m = 1, . . . ,M . Assuming a categorical variable C
clustering data into N clusters in latent space, we introduce parameterized prior p
and posterior q distributions that maximize the following ELBO loss:

L = Eq(Z,C|X1,...,XM )

[

log
p(X1, ..., XM , Z, C)

q(Z,C|X1, ..., XM )

]

. (1)

We further assume a probabilistic chain rule decomposition of the prior and mean-
field separability of the posterior:

p(X1, ..., XM , Z, C) =

(

M
∏

m=1

p(Xm|Z,C)

)

p(Z|C)p(C),

q(Z,C|X1, ..., XM ) = q(Z|X1, ..., XM )q(C|X1, ..., XM ).

(2)

Our framework consists of three components: 1. unimodal deep encodings with
a product-of-experts (PoE) that fuses all modality encodings into one point in
the latent space, 2. a mixture of Gaussians prior which clusters the data into N
Gaussians in the latent space, and 3. a mixture of decoders, including deep decoders
and also physics-informed decoders for modalities amenable to expert modeling.
We introduce each component sequentially, derive a closed form expression for the
ELBO, and introduce our optimization strategy for assignment of clusters and expert
models. Table 2 contains a summary of the model distributions and parameters.

2.1. Multimodal embedding. We achieve a multimodal embedding by implement-
ing a product-of-experts to fuse together unimodal embeddings. For the unimodal
embeddings, each modality Xm is mapped into a common latent space Rl as a multi-
variate Gaussian Zm with diagonal covariance. Indeed, these unimodal embeddings
are represented by the posterior probabilities q(Zm|Xm) = N (Zm;µm, σ

2
mI), where

µm, σ
2
m ∈ R

l are the output of a set of neural networks Fm, and σ2
mI denotes the

diagonal matrix with diagonal entries given by σ2
m. That is, for each modality m,

[µm, σ
2
m] = Fm(Xm; θm), (3)

where θm denotes trainable weights and biases of the neural network Fm. Thus, for
each m = 1, . . . ,M , the neural network Fm outputs the parameters for the unimodal
Gaussian distribution q(Zm|Xm).
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Distribution Priors Computation Trainable Parameters

p(Xm|Z,C = c) N (µ̂m,c, σ̂
2
m,cI) [µ̂m,c, σ̂

2
m,c] = Gm,c(Z; θ̂m,c) θ̂m,c, for m=1, . . . ,M,

c=1, . . . , N

p(Z|C = c) N (µ̃c, σ̃
2
cI)

µ̃c = Equation 15

σ̃2
c = Equation 15

p(C) Cat(π) π = softmax(v⃗) v⃗ = (v1, . . . , vN )

q(Zm|Xm) N (µm, σ2
mI) [µm, σ2

m] = Fm(Xm; θm) θm, for m=1, . . . ,M

q(Z|X1, . . . , XM ) N (µ, σ2I)
σ2 = Equation 5

µ = Equation 5

Table 1. Distributions, priors, variables, and trainable parameters.
Here the Fm and Gm,c are each deep neural networks with respective

weights and biases θm and θ̂m,c. When suitable, each decoder
network Gm,c can optionally be replaced with an expert model Em,c.

We use a product-of-experts to fuse together the unimodal embeddings to obtain
a multimodal distribution q(Z|X1, . . . , XM ) in the latent space R

l. Specifically, we
assume that the multimodal distribution is the normalized product of the unimodal
Gaussian distributions, i.e. q(Z|X1, ..., XM ) ∝ ΠM

m=1q(Z|Xm). As the product of
Gaussian distributions is proportional to a Gaussian distribution, we obtain a new
Gaussian distribution to represent the multimodal embedding:

q(Z|X1, ..., XM ) = N (µ, σ2I), (4)

σ−2 =

M
∑

m=1

σ−2
m ,

µ

σ2
=

M
∑

m=1

µm

σ2
m

. (5)

The multimodal distribution may be sampled during training using the reparam-
eterization trick: by sampling ϵ ∼ N (0, I) and calculating Z = µ+ ϵ⊙ σ, we may
back-propagate through the random node Z into the unimodal encoders, where ⊙
denotes the Hadamard product.

The motivation for using the product-of-experts to obtain the multimodal dis-
tribution follows from an assumption that the modalities are pairwise independent.
Indeed, under this assumption, one can show using Bayes’ rule that

q(Z|X1, ..., XM ) = q(Z)1−MΠM
m=1q(Z|Xm), (6)

so that the posterior q(Z|X1, ..., XM ) is a scaled product of individual modalities,
as in the product-of-experts formulation. The derivation of Equation 6 can be found
in Appendix B.

2.2. Gaussian mixture prior and expert decoding. We adopt a simple Gaussian
mixture prior of N clusters, where we let C denote the categorical random variable
for the clusters and use c to denote a particular instance of C. Letting π ∈ R

N

contain the probability of each cluster in the Gaussian mixture, our prior becomes

p(C) = Cat(π), (7)

p(Z|C = c) = N (µ̃c, σ̃
2
cI), for c = 1, . . . , N, (8)
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where µ̃c, σ̃
2
c ∈ R

l denote the mean and variances of cluster c, respectively. To ensure
a positive π that sums to unity, we parameterize π as the softmax of a trainable
vector v⃗.

Each modality is either decoded with a deep neural network or an expert model
and can be a function of the latent space and the clusters. For tractability of the
ELBO, the decodings are represented by Gaussian distributions, i.e.

p(Xm|Z,C = c) = N (µ̂m,c, σ̂
2
m,cI), for m = 1, . . . ,M and c = 1, . . . , N, (9)

where µ̂m,c, σ̂
2
m,c ∈ R

dm are respectively the mean and variances of the reconstruction
of modality Xm from a point in the latent space. To decode to a data-driven modality

Xm, we employ a neural network with parameters θ̂m,c such that

[µ̂m,c, σ̂
2
m,c] = Gm,c(Z; θ̂m,c). (10)

To decode to a modality Xm with an expert model, we assume expert models of the

form Em,c(t, Z; θ̂m,c), such that

[µ̂m,c, σ̂
2
m,c] = Em,c(t, Z; θ̂m,c), (11)

where t is an independent variable and θ̂m,c denotes expert parameters associated
with each cluster. The specific choice of E will be problem dependent. We specify
expert models for our MNIST examples in the experiment section.

To facilitate postprocessing and uncertainty quantification, we note that p(Xm|Z,C)

admits interpretation as a mixture-of-experts model [22] and thus we obtain closed
form expressions for the mean and variance:

E[Xm|Z] =
N
∑

c=1

πcµ̂m,c and Var[Xm|Z] =

(

N
∑

c=1

πc(σ̂
2
m,c + µ̂2

m,c)

)

− E[Xm|Z]2.

(12)

If Xm is decoded via an expert model that depends only upon the cluster, then
Xm ⊥ Z and Equation 12 computes means and variances of Xm independent of Z.

2.3. ELBO loss and optimization of GMM parameters. The parameters in
PIMA include the weights and biases of the neural networks, the Gaussian mixture
parameters (mixture probability and cluster means and variances), and any expert
model parameters. These parameters are trained through maximizing the ELBO.
We obtain a tractable ELBO through our extensive use of Gaussians for our model
distributions. A modification of the derivation in [21] to account for multimodality
yields the following analytic expression for the single sample ELBO:

L =−
M
∑

m=1

N
∑

c=1

dm
∑

j=1

γc

(

log σ̂2
m,c;j +

(Xm;j − µ̂m,c;j)
2

σ̂2
m,c;j

)

−
N
∑

c=1

l
∑

j=1

γc

(

log σ̃2
c;j +

σ2
;j

σ̃2
c;j

+
(µ;j − µ̃c;j)

2

σ̃2
c;j

)

+ 2

N
∑

c=1

γc log
πc
γc

+

l
∑

j=1

(

1 + log σ2
;j

)

,

(13)



PHYSICS-INFORMED MULTIMODAL AUTOENCODERS 425

where the subscript ; j denotes the jth coordinate of the vector, and γc is the posterior
distribution

γc = γc(Z) = p(C=c|Z) =
πcp(Z|C=c)

∑

c′ πc′p(Z|C=c
′)
. (14)

In particular, we estimate q(C=c|X1, ..., XM ) with p(C=c|Z) = γc, following [21].
The derivation of L may be found in Appendix B. We seek to maximize this loss
over the entire data set. That is, letting L(d) denote the loss function for one data
point, then we seek to minimize Loss = −

∑

d L
(d). We note that the first line in

L describes the reconstruction loss, while the remainder of the terms compute the
KL-divergence DKL(q(Z,C|X1, . . . , XM )||p(Z,C)).

2.4. Training. Throughout training, we use gradient descent and techniques bor-
rowed from expectation-maximization (EM) to optimize the model parameters.
Finding the optimal cluster centers and variances in the GMM parallels finding the
maximum likelihood parameters of the GMM fitting the posterior distribution on Z.
Consequently, we use an approach similar to expectation-maximization to optimize
the GMM parameters to the latent space data. Like expectation-maximization,
our hybrid approach has two steps. After embedding each point x(d) as a normal
distribution N (µ(d), σ2(d)I) in Z, we sample z(d) ∈ N (µ(d), σ2(d)I) and (1) for each
sampled data point z(d) we compute the expectation of belonging to each cluster,

γ
(d)
c = γc(z

(d)). Then, while π is fixed, we (2) maximize the log-likelihood of the
GMM on the sampled points z(d) by computing new cluster centers (µ̃c) and cluster
variances (σ̃2

c ):

µ̃c =

∑D
d=1 γ

(d)
c µ(d)

∑D
d=1 γ

(d)
c

and σ̃2
c;j =

∑D
d=1 γ

(d)
c (µ

(d)
;j − µ̃c;j)

2

∑D
d=1 γ

(d)
c

, for j = 1, . . . , l.

(15)
We update π via gradient descent in concert with the other model parameters, e.g.
those coming from the encoders and decoders, while keeping the cluster means and
variances fixed. We thus employ a streaming algorithm outlined in Algorithm 1
where we first perform an EM update for µ̃c and σ̃

2
c , followed by an Adam update [24]

that updates only the remaining variables. In our experiments, we found that a
single EM update was sufficient, although one could optionally perform many EM
update steps until a desired convergence is reached.

A weighted least squares problem for the optimal expert model parameters may

be similarly obtained by taking the variation of the ELBO with respect to θ̂m,c:

θ̂m,c = argmin
θ′

D
∑

d=1

dm
∑

j=1

γ(d)c

(

Xm;j − Em,c(t
(d), z(d); θ′);j

)2

. (16)

Efficient solution of this nonlinear least squares problem at each epoch will be
dependent upon the problem-specific expert model and data stream, and performing
batching may require a streaming technique such as recursive least squares or Kalman

filtering [10]. For simplicity, we update all θ̂m,c with Adam in this work but note
that solving Equation 16 at each epoch to ensure the expert model provides a best
fit to the current partitions is likely to provide substantial improvement.

2.5. Practical considerations and flexibility. The PIMA framework admits
flexibility to accommodate various applications and model choices. We outline the



426 ELISE WALKER, NATHANIEL TRASK, CARIANNE MARTINEZ, ET AL.

Algorithm 1 Training with streaming EM for cluster centers

Input: data X = {X1, ..., XM} in batches B
for i = 1 to Nepochs do

Calculate µ, σ s.t. q(Z|X1, . . . , XM ) = N (µ, σ2I) for all x(d) ∈ X
Sample z ∼ N (µ, σ2I) for all µ, σ
Calculate γc = p(c|z) for all z and c
Calculate µ̃c via Equation 15 for all c
Calculate σ̃2

c via Equation 15 for all c
for b ∈ B do
Compute Lossb = −

∑

x∈b
L(x)

Calculate Adam update on Lossb for π and all θm, θ̂m,c

end for
end for

options utilized in our experiments. A summary of the specific options used for each
experiment is in Table 5 of Appendix A.
Fixed decoding variances. To prevent over-fitting, we follow [21] and use fixed
variances for the decoders, i.e. σ̂m,c = 1 for all modalities m = 1, . . . ,M and clusters
c = 1, . . . , N .
Weighting the reconstruction term. Within a multimodal dataset, often the
dimensions d1, . . . , dM of the M modalities differ. As a result, the reconstruction
term of Equation 13 (first line of L) will favor higher-dimensional modalities. To
equally weigh each modality Xm, we follow [50] and scale its reconstruction term by
dmax/ dim dm, where dmax = max{d1, . . . , dM}. The single sample reconstruction
term then becomes:

−
M
∑

m=1

N
∑

c=1

dm
∑

j=1

γc
dmax

dm

(

log σ̂2
m,c;j +

(Xm;j − µ̂m,c;j)
2

σ̂2
m,c;j

)

.

Note that, if variances σ̂2
m,c;j are fixed, this reconstruction term is equivalent to

assuming the prior p(Xm|Z,C = c) = N (µ̂m,c,
dm

dmax
I).

While we weight the reconstruction term to balance the importance of modalities
of different dimensions, a user could optionally weight modalities according their
interests. The flexibility in this weighting allows the user to influence the importance
of the various modalities in the latent space representation. This is particularly
useful to either encourage or discourage certain modalities from dominating the
structure of the latent space.
One decoder per modality. Under the presented framework, each modality has
N decoders. However, one may also consider only one decoder per modality, in
which case the reconstruction term of the loss simplifies to:

−
M
∑

m=1

dm
∑

j=1

(

log σ̂2
m;j +

(Xm;j − µ̂m;j)
2

σ̂2
m;j

)

.

This choice removes the decoders’ dependencies on C. While potentially decreasing
the model’s expressivity, this choice has the advantage of simplifying the model by
reducing the number of parameters while also being consistent with the γ estimation
justifications in Appendix B.
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Dropout. Sampling from the unimodal encoders q(Zm|Xm) provides embeddings
far from the multimodal embedding q(Z|X1, . . . , XM ), which is not conducive to
cross-modal inference. To move unimodal embeddings closer to the multimodal
embeddings, during training we optionally implement a form of modality dropout
where we stochastically choose a subset of unimodal embeddings to compute the
multimodal embedding. This is equivalent to multiplying each term in Equation (5)
by a binomial random variable wm ∼ B(1, pm), where pm is the probability that
modality m is included:

σ−2 =

M
∑

m=1

wmσ
−2
m ,

µ

σ2
=

M
∑

m=1

wm

µm

σ2
m

.

This effectively forces each individual encoder to better predict the whole, which
prevents over-fitting and allows inference across modalities. In the present work
we set pm = 0.5, but other values of pm could be used to encourage or discourage
modality m from dominating the structure in the latent space. Furthermore, while
we do not explore incomplete datasets in this work, we additionally note that this
dropout capacity enables PIMA to train on incomplete datasets by setting wm = 0
whenever modality m is missing for a specific datapoint. PIMA can also predict the
missing data through its cross-modal capabilities.
Expert model flexibility. In practice, expert models E may take a variety of forms
and its judicious selection imparts significant prior knowledge. In the experiment
section, we consider simple generalized linear models and models from neural ODEs
for the MNIST experiments, and we make suggestions for potential expert models
for the vibrational density of states experiment. In general, these expert models
could range from empirical engineering correlations obtained from e.g. dimensionless
analysis or singular perturbation theory, to analytic parametric solutions to PDE
based models, or to parametric physics-informed ML surrogates/reduced order
models (see e.g. [35, 56, 36, 52]). While expert models can come from complex,
high-fidelity simulations, such a choice can slow down the training time significantly.
The aim with the expert models is not to produce exact reproductions with the
decoder, but rather to constrain the decoder functional space to simpler, physically
relevant and interpretable maps that can help separate the data of that modality
into meaningful regimes. A high-fidelity expert model may not be necessary for this
task of disentangling the latent space through relevant physics.

3. Cross-modal inference. We identify two methods for cross-modal inference.
While this work only investigates dropout inference, we include methods for Bayesian
inference for completeness and use in future works.

3.1. Bayesian inference. Here we only consider modalities where the decoders
do not depend upon Z, i.e. p(Xm|Z,C) = p(Xm|C). Given a modality Xm′ we
can predict the mean and variance of Xm by identifying the probability of each
cluster based on the modality Xm′ . In particular, we predict Xm from Xm′ via the
following:

E[Xm] =
∑

c

κcµ̂m,c and Var[Xm] =

(

∑

c

κc(σ̂
2
m,c + µ̂2

m,c)

)

− E[Xm]2,

(17)
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where via Bayes’ Rule,

κc = p(C=c|Xm′) =
πcp(Xm′ |C = c)

∑

c′ πc′p(Xm′ |C=c′)
. (18)

In this framework, multiple modalities can be used to predict a given modality
through redefining κc. That is, let I ⊂ {1, . . . ,M} \ {m}. Then we can let

κc = p(C=c|XI1
, . . . , XI|I|

) =

πc
∏

k∈I

p(Xk|C=c)

∑

c′

πc′
∏

k∈I

p(Xk|C=c
′)

3.2. Dropout inference. By utilizing the dropout methods from Section 2.5,
unimodal encoders may provide embeddings similar to the multimodal embedding
q(Z|X1, . . . , XM ). Sampling from q(Zm|Xm) allows generative modeling by decoding
with p(Xm′ |Z,C) for m′ ≠ m and an estimate of p(C|Z) via Equation (14). This
type of inference was explored in Experiment 4.1. In cases where dropout does not
move unimodal embeddings close enough to the multimodal embeddings, one can
train a new set of unimodal encoders, with architectures identical to the original
unimodal encoders, to the multimodal latent space. In this sense, the unsupervised
multimodal training provides labels which allows supervised training of the new
unimodal encoders.

4. PIMA Experiments. We present results from PIMA applied to MNIST and a
molecular simulation dataset. We perform two different experiments on the MNIST
dataset, where each experiment augments the image modality with its own synthetic
modality. All hyperparameters, hardware and training details for each experiment
are provided in Appendix A.

Figure 2. Experimental setup for test examples. For unsupervised
multimodal MNIST, we use training images (A1) and we replace
the labels on digits c ∈ {0, . . . , 9} by a sample of the function (A2)
X2 = ct + ϵ, for t ∈ [0, 1] and Gaussian noise ϵ. For neural ODE
MNIST, we use the training images (A1) and replace the label on
digits by solutions to an ODE system (A3). For VDoS, we use the
1D VDoS data (B1) and the corresponding 0D average stress (B2).



PHYSICS-INFORMED MULTIMODAL AUTOENCODERS 429

Method CNN SotA∗ VAE+GMM† DEC† VaDE† GMVAE†† GMVAE††

Notes Supervised 10 clusters 16 clusters
Acc. (max) 99.91% 72.94% 84.30% 94.46% 88.54% 96.92%

Acc. (mean±stdev) n/a n/a n/a n/a 82.31% (3.75%) 87.82% (5.33%)

Method PIMA PIMA PIMA PIMA PIMA

Notes
multimodal
dropout

multimodal
no dropout

X1 only
-

X2 only
-

multi., no expert
dropout

Acc. (max) 99.79% 99.59% 14.84% 53.37% 58.36%
Acc. (mean±stdev) 90.31% (14.81%) 87.95% (11.70%) - - -

X1 Acc. (max) 39.15% 11.26% - - 50.34%
X2 Acc. (max) 99.92% 32.39% - - 56.22%

Table 2. Unsupervised classification accuracy for MNIST. Results
gathered from [2], [21] and [11] denoted by ∗,† and ††, respectively.
If statistics were not provided we assume maximum accuracy was
reported. While the data augmentation offered by X2 is not incor-
porated in comparisons to unimodal unsupervised benchmarks, a
comparison to the supervised setting is valid. For all experiments
we do not overparameterize and keep clusters equal to the number
of digits. The PIMA results are reported on the standard 10,000
test samples. Averages and standard deviation results are reported
over 9 runs with different random seeds.

4.1. Unsupervised multimodal MNIST. For our first MNIST experiment, we
use a 90/10 train/validation split of the training data and report on the standard
10,000 held out test examples [28]. To test with multiple modalities, we augment
the traditional MNIST images X1 and labels c ∈ {0, ..., 9} with a manufactured
synthetic 1D modality X2 = ct+ ϵ, where t ∈ [0, 1] and ϵ ∼ N (0, 0.01). We adopt
the affine expert model E(t; θc) = θct, and perform unsupervised clustering of the
multimodal dataset (X1, X2) as well as cross-modal inference. For this artificial
problem, the labels are thinly veiled as the slope of X2, and so we expect that if we
successfully perform multimodal inference we should obtain accuracy comparable to
a supervised MNIST benchmark.

We define unsupervised clustering accuracy (acc) as in [60], [21]:

acc = max
ϕ∈Φ

∑N
i=1 1{li = ϕ(ci)}

N
, (19)

where N is the number of examples, Φ is the set of all possible mappings from a
cluster to a label assignment, li is the true label and ci is the cluster assignment by
the model.

We aim to develop a multimodal model on (X1, X2) with maximal accuracy
such that we can also perform cross-modal inference. As such, we perform a
hyperparameter search over learning rate to maximize accuracy for a multimodal
dropout model. We then fixed the hyperparameters and compared against unimodal
models, a multimodal model without dropout, and a multimodal model but with a
1D convolutional neural network in place of the expert model. The latent spaces
and confusion matrices for all four models with the expert 1D decoder are given in
Figure 3. Confusion matrices for the multimodal models reveal an approximately
banded structure, whereby misclassified modalities primarily occur between adjacent
digits, suggesting that X2 dominates the latent space structure. The dropout
multimodal model performed the best, exceeding the accuracies of the non-dropout
multimodal model, demonstrating the effectiveness of modality dropout for training.
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Furthermore, the dropout multimodal model obtained model performance compa-
rable to the current state-of-the-art in supervised classification and outperformed the
state-of-the-art in unsupervised learning. We discovered that the unimodal models
did not train well and consequentially gave the worst model accuracies. As GMM
and VAE frameworks are known to perform well with (un)supervised learning on
MNIST images (see Table 2), this indicates that further efforts, e.g. pre-training
as in [21] or additional hyperparameter tuning, would be necessary given our fixed
architectures. The multimodal model without the 1D expert model performed
marginally better than the unimodal models, but with an accuracy of only 58.36%
whereas the multimodal, dropout model with 1D expert model achieved a maximum
accuracy of 99.79%. In Table 2 we provide a comparison to classification accuracy
against state of the art supervised and unsupervised models trained on images only.
We also performed cross-modal inference on our multimodal models and saw that
the dropout model outperformed the model without dropout. Finally, we repeated
the multimodal experiments for eight other random seeds and reported the overall
statistics in Table 2.

4.2. Neural ODE expert model. Next we test PIMA on a different augmentation
of the MNIST dataset. In this experiment, the manufactured dataset consists of
measurements of simulated dynamical systems. The parameters of these simulations
are functions of the class labels c of the MNIST datasets. We then use a different
expert model, namely a neural ordinary differential equations (NODEs) model [9],
to model the dynamical system data. The aim of this expert model is to learn the
parameters from the simulated dynamical systems, much like the aim of the expert
model in Subsection 4.1 was to learn the slopes of the lines of X2. Specifically, we
pair the images of the MNIST dataset (X1) with simulations of a parametrized cubic
oscillator (X2), which is governed by a system of ODEs,

dx
dt = α(c)x3 + β(c)y3,
dy
dt = γ(c)x3 + δ(c)y3,

(20)

where α(c), β(c), γ(c), and δ(c) denote the ODE parameters that are dependent on
the class labels c of the MNIST dataset. That is, there is one set of parameters
associated with each target label. The goal of this experiment is to check the
capability of accurately identifying the ODE parameters via training of PIMA and
demonstrate the efficacy of using an expert model decoder over a black-box decoder.
Preliminaries on NODEs. NODEs are a class of deep neural network models
that learn the depth-continuous dynamics of hidden states hhh(s) of a feed-forward
network as a form of ODEs:

dhhh

ds
= fff(hhh; Θ), (21)

where s denotes the depth in a continuous representation, hhh(s) is a depth-continuous
representation of a state, fff is a parameterized (trainable) velocity function, and Θ is
a set of neural network weights and biases. For the parameterization of NODEs (i.e.,
the right-hand side of Eq. (21)), there can be many alternatives including a multi-
layer perceptron (i.e., a ‘black-box’ approach) or a dictionary-based parameterization.
In this work, we choose the dictionary-based parameterization for our expert model,
where we assume that the exact governing equations are known a priori, but not the
coefficients, which should be recovered from the training.
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Then the ODE parameters can be identified by solving the optimization problem

argmin
α,β,γ,δ

∥r(ũ)∥. (25)

In PIMA, we use POUNets [31] and automatic differentiation to estimate solutions
x̃c(t) and ỹc(t) from the dataset. Then our NODE expert model for X2 is

E(t;αc, βc, γc, δc) =

{

αcx̃c(t)
3 + βcỹc(t)

3

γcx̃c(t)
3 + δcỹc(t)

3 , (26)

where each cluster c has trainable parameters αc, βc, γc, δc. These parameters
are trained through the ELBO (Equation (13)), which consequently minimizes
Equation (25) through the ELBO reconstruction term.
Experimental results. For the experiment, we consider the same setting used
in the previous MNIST experiments (Section 4.1). The dataset consists of two
modalities: MNIST images (X1) and measurements on time-derivatives of solutions
of the ODEs in Equation (20) (X2), which are obtained numerically from synthetic
2D trajectories. To manufacture the synthetic 2D trajectories, we solve the IVPs
of Equation (20) with the ODE parameters, α(c) = −0.1, γ(c) = −2, δ(c) = −0.1
and β(c) = c/3 + 0.5, and with the initial condition x0 = [1, 1]. The simulation
time is set as 2.56 seconds and the measurement step size is 0.005, resulting in 10
different 2D state trajectories collected at 512 time steps. Then for each collected
trajectory, we numerically approximate u ≈ ũ via a regression technique called
POUNets [31], which builds a meshfree partition of space and in each partition,
there is an associated polynomial space with learnable coefficients. We use these
POUNets to compute the time derivative of ũ (i.e., dũ

dt ) via automatic differentiation.
Then for each datapoint in X2 an additive noise sampled from a normal distribution
ϵ ∼ N (0, 0.1) is injected to the numerical time-derivatives of ũ.

For the performance metric, we again measure the unsupervised cluster accuracy
(acc). The latent dimension is set as l = 3 with a learning rate of 10−3. We perform
10 independent runs with varying random initializations. Figure 4 reports the results
of the best run, which yields 100% test accuracy and statistics computed from the 10
runs; (1) the left panel visualizes the learned clusters illustrating that PIMA learned
disentangled latent representations, which leads to the 100% classification accuracy,
(2) the right panel reports the confusion matrix showing 100% True positive rate and
0% False negative rate, and (3) finally, the bottom table reports mean, min, and max
accuracy that are obtained from the 10 runs. To show the efficacy of the expert model
in this experiment, we additionally ran PIMA on this dataset with convolutional 1D
neural networks in place of the NODEs expert model. Specifically, we performed
10 runs on a large 1D convolutional neural network containing 32,954 parameters,
as well as a small 1D convolutional neural network of 4,230 parameters. Statistics
over 10 runs are reported in Figure 4, where both neural network architectures,
on average, performed worse than the NODEs expert model, demonstrating the
advantage of implementing an expert model when possible.

label (c) 0 1 2 3 4
β(c) 0.5 .833 1.166 1.5 1.833

identified β 0.4997 0.8339 1.1661 1.4999 1.8339
label (c) 5 6 7 8 9
β(c) 2.166 2.5 2.833 3.166 3.5

identified β 2.1669 2.5010 2.8330 3.1673 3.4989

Table 3. Ground-truth ODE parameters β(c) and identified ODE parameters.







436 ELISE WALKER, NATHANIEL TRASK, CARIANNE MARTINEZ, ET AL.

(see Figure 7), we see that cluster 0 corresponds to those atomic structures that
underwent disorder with no compression deformation, while cluster 2 corresponds
to atomic structures that have been deformed. Similarly, cluster 1 corresponds to
atomic structure that have been highly deformed (and therefore with high stress
values) and for which the form of the VDoS profile deviates significantly from the
baseline VDoS profile of non-deformed atomic structures. The ability of the PIMA
model to simultaneously parse the VDoS profiles and stress values with no a priori

knowledge or label on the state of the atomic structure generation demonstrates its
capacity to detect hidden features within the multimodal VDoS and stress data that
would be challenging to uncover with classical machine learning techniques.

In terms of implications, this PIMA model shows that it is possible to fingerprint
complex states of the atomic systems based on an observed VDoS. This ability goes
beyond current state of the art, which is based on peak analysis and reduces the
VDoS to a handful of scalars with limited predictions on the state of the atomic
system [58]. Here the PIMA model is able to cluster various classes of states of the
atomic systems, even when the VDoS profile changes drastically – an ability not
doable with classical peak width analysis. Moving forward, this ability suggests
that PIMA models could directly use an observed VDoS (either in the form of a
Raman spectra or neutron scattering spectra) and infer a set of materials descriptors
that are otherwise impossible to extract from those spectra with current peak
analysis techniques. This is important because it opens the door for a fast, deeper
characterization of complex materials based solely on this type of 1D spectral data.
This capacity to find deeper characterizations from 1D spectral data has a range
of applications, including materials science for complex solid state problems [13],
biophysics for the study of protein functions and their dynamics [12], and chemistry
for the study of complex phase transitions seen in chemical reactions [14].

Our model here did not use an expert model decoder to demonstrate the value
of exploiting multimodal data, even without expert models. One could, however,
surmise developing an expert model for the VDoS data. While the data was generated
using molecular dynamics software, the size and complexity of such simulations
precludes them from backpropagation and thus would not be suitable as an expert
model. Alternatively, one could construct an expert model of VDoS using PCA to
determine the important peak structures within the data. This option would require
careful analyses in the material science domain, which falls outside the scope of this
introductory paper. While we did not construct such a model here, we postulate that
such a VDoS expert model could further structure the latent space meaningfully, as
seen in the MNIST experiments.

5. Discussion, conclusions, and future work. The present approach provides
an abstract variational inference algorithm for unsupervised feature discovery in
multimodal datasets, while incorporating physical model biases. We demonstrated
that our framework is capable of representing multiple modalities for fingerprint de-
tection (see Experiment 4.3), performing cross-modal inference (see Experiment 4.1),
and exploiting expert models to enhance model performance and training (see Ex-
periments 4.1 and 4.2). We also described some flexible aspects of our framework.
For example, our framework has the flexibility to weight modality importance in the
loss function, as discussed in Section 2.5, which means latent space embeddings can
be influenced by the user’s preference of modalities. The flexibility of the expert
decoding, including replacement by a neural network, also allows this framework



PHYSICS-INFORMED MULTIMODAL AUTOENCODERS 437

to be widely applicable. While in this work we have focused our expert models on
a simple MNIST example to probe dynamics for an easily replicable and under-
standable dataset, we will employ more sophisticated physics-informed surrogates as
expert models in future work. A brief discussion of potential expert models is given
in Section 2.5.

While our experiments only contained two relatively small modalities, the model
can, in theory, handle any number of modalities, and each modality can have any
dimension. In fact, the framework can even handle missing data through the dropout
methods explained in Section 2.5. This makes our model flexible so it can handle a
slew of various multimodal scientific datasets. In practice, however, we do anticipate
a few limitations to our framework. First, as disparate modalities have different
complexities, it is possible for one modality to dominate other modalities in the
latent space structure. If the dominating modality is the most informative modality,
as is the case with our MNIST examples, then this behavior is perhaps desired.
If undesired dominating modalities appear, then one can balance the modality
contributions by weighting the reconstruction terms, as described in Section 2.5 and
exhibited in the VDoS experiment (Experiment 4.3). The quality and properties of
the modalities can also affect the model’s capacity for cross-modal inference. Indeed
for cross-modal applications, there must be some correlation across the modalities
and each modality must contain enough information for PIMA’s encoders to learn a
mapping to the relevant region of latent space in order for the decoders to accurately
reconstruct data across modalities.

We also anticipate limitations to result from the amount of time and computing
resources available. The training times do scale with the size of the data, the number
of epochs, and the number of parameters in the encoders and decoders. To give
reference, the multimodal MNIST models in Experiment 4.1 had on the order of
20,000 parameters and trained with 40,000 epochs over the course of four days on
a single GPU, without any attempts at parallelization (see Appendix A for more
details on training for each experiment). Depending on size of datasets and GPU
availability, we expect PIMA to readily handle a few multi-dimensional modalities
accompanied by a number of 1D modalities and 0D modalities. The expert model
of choice could also affect the capacity of PIMA; expert models likely contain fewer
parameters than black-box neural networks, but may increase the computational
time. For our purposes, we anticipate that bottlenecks in our future applications will
come from the amount of data that we can fit onto a single GPU, but such issues
can be mitigated through downsampling of data. Another limitation lies within
the training. VAEs are notoriously difficult to train, and we do see some evidence
of this in our unimodal MNIST experiments (Experiment 4.1). We note that our
GMM prior is well-suited for classification problems where the number of classes
in the data provides a natural choice for the number of clusters hyperparameter,
but regression problems may require more extensive hyperparameter tuning to train
PIMA effectively. We used Weights and Biases [4] to perform our hyperparameter
tuning, where we usually terminated the sweeps after 50 agents or less.

In conclusion, this framework is widely applicable to a range of scientific disciplines
where feature detection is crucial for tasks, ranging from predicting and attributing
climate change to designing biochemical pathways at a molecular level. In addition
to feature detection, this framework may be used for a variety of general purpose
downstream tasks based on multimodal processing of scientific data. This framework
provides an exciting platform for discovering data-driven scientific fingerprints which
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may be combined with advances in automated experimentation to accelerate scientific
discovery. Accordingly, the future of the present PIMA approach will involve
extensions into other fields of study, broadening the impact of this multimodal
approach.

Appendix A. Architecture, hyperparameters, and implementation.

A.1. Model Architectures. For Experiment 4.1 (MNIST): We employ rel-
atively small convolutional architectures to serve as encoders for both modalities.
The image modality encoder consists of 2 2D convolutional layers with 32 and 64
channels respectively, each with 3x3 kernels. We apply the exponential linear unit
(ELU) activation function as well as batch normalization after each convolutional
layer, then pass the output to a fully connected layer of size encoding dim× 2 to
enable an embedding into a representation of the mean and standard deviation of the
input in the latent space. For the 1D modality encoder, in place of 2D convolutional
layers, we use 1D convolutions with 8 and 16 channels in the respective layers, but
with an otherwise identical architecture. The image decoder begins with a fully
connected layer of appropriate size to be reshaped into 32 channels of 2D arrays,
with each dimension having a length 1

4 of the length of the number of pixels per side
of the original image. The reshaped output of the initial dense layer is passed into a
series of 3 deconvolutional layers with 64, 32, and 1 channel respectively, each with
a kernel size of 3. The first 2 deconvolutional layers use a stride of 3 and a Rectified
Linear Unit (ReLU) activation function, and the final deconvolutional layer uses a
stride of 1. Zero padding is used to retain the input shape while traversing these
layers.

For Experiment 4.2 (MNIST-NODEs): We employ the convolutional encoder
architectures for both modalities that have the same specifications used in the MNIST
experiments: (1) the image encoder with two 2D convolutional layers with 32 and
64 channels and 3×3 kernels, followed by ELU activation and batch normalization
and (2) the 1D modality encoder with two 1D convolutional layers with 8 and 16
channels with 3-dimensional 1D kernel, followed by ELU and batch normalization.
The image decoder also has the same specification as the previous experiments: a
fully-connected layer, which converts a latent dimension to a 2D array, with each
dimension having a length of 1

4 of the width and the heights of the original input
image and with 32 channels. Then three 2d transposed convolutional layers with
channels 64, 32, and 1 are sequentially applied. For all the transposed convolutional
layers, the kernel size is 3×3. The nonlinear activation for the two internal transposed
convolutional layers is ReLU and the last layer has no nonlinear activation.

The solutions of ODEs are approximated by two separate POUNets for each

of ten classes (20 in total): ũ1(t; c) =
∑npart

i=1 ϕ
(1)
i (t; c, π)

∑dim(V )
j=1 α

(1)
i,j (c)ψ

(1)
j (t; c)

and ũ2(t; c) =
∑npart

i=1 ϕ
(2)
i (t; c, π)

∑dim(V )
j=1 α

(2)
i,j (c)ψ

(2)
j (t; c), where a partition of unity

can be defined as Φ(t) = {ϕi(t)}
npart

i=1 satisfying
∑

i ϕi(t) = 1 and ϕi ≤ 0 for
all t. Also, ψj(s) ∈ R denotes a polynomial basis and V = span({ψj}). In
the experiments, we use 32 partitions (npart = 32, 7 Taylor basis polynomials
(dim(V ) = 7), and for the partition functions, we use a radial basis function (RBF)

network, ϕi(t) = exp
(

− |t−m(i)|
b(i)

)

/
∑

k exp
(

− |t−m(k)|
b(k)

)

, where {(m(i), b(i)}
npart

i=1 is a

set of learnable parameters.
For Experiment 4.3 (VDoS): The VDoS 1D encoder is identical to the 1D

modality encoder used for Experiment 4.1. The encoder for the 0D stress data
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learning rate encoding dim number of clusters number of epochs

Experiment 4.1 3.125× 10−7 2 10 40, 000

Experiment 4.2 1× 10−3 3 10 10, 000

Experiment 4.3 9× 10−5 2 4 40, 000

Table 4. Hyperparameters for each experiment.

consists of two fully connected layers, each of size 100 and followed by the rectified
linear unit (ReLU) activation function. The output is passed to a fully connected
layer of size encoding dim× 2, representing the mean and standard deviation of the
input embedded in the latent space. The decoders for both the 1D and 0D modalities
consist of one full connected layer of size 64 followed by the ELU activation function
and a final fully connected layer with an output size equal to the input dimension of
each modality.

A.2. Hyperparameters. We used the Weights and Biases tool [4] to perform a hy-
perparameter search over learning rates and encoding dimensions for all datasets. We
also used Weights and Biases to search over the number of clusters for Experiment 4.3
(VDoS).

Table 4 provides details of the final hyperparameters for each experiment.

A.3. Dataset implementation. For Experiment 4.1 (MNIST), we used a 90/10
train/validation split of the training data and the standard 10,000 held out test sam-
ples. Each line in the manufactured synthetic 1D modality contains 20 coordinates
across [0, 1] and each coordinate is normalized to a unit Gaussian across the entire
dataset before encoding. For the expert decoder, we have one trainable parameter
per cluster representing the digit label, which is used to generate a line over the
same 20 coordinates for each cluster. Each coordinate is likewise normalized to a
unit Gaussian.

For Experiment 4.2 (MNIST-NODE), we use the same training/validation/test
split with the previous experiments: 90/10 split of the training set for training and
validation and 10,000 held out test samples. For manufacturing the trajectories, we
solve the cubic oscillator ODEs given in Eq. (20) with the step size 0.005 for 512 time
steps. The initial condition is given as [u1, u2] = [1.0, 1.0] and the Torchdiffeq

library [9] is used to solve the initial value problems.
For the VDoS dataset, we used an 81/9/10 train/validation/test data split. Each

1D VDoS data is an array length of 10794. All stress values and VDoS arrays were
min-max normalized so values are between 0 and 1.

Each experiment used a different set of the model options outlined in Section 2.5.
The choices for each experiment are summarized in Table 5. Our models are
implemented in Python using PyTorch [40], and we leverage the Scikit-learn library
[41] for data preparation and accuracy metrics, Scipy [54] for data preparation
and the linear sum assignment implementation of the Hungarian method [26] for
efficient computation of the unsupervised cluster accuracy. We visualize our results
using the Matplotlib [18] and Seaborn [57] libraries. Training was performed on
NVIDIA DGX-2 machines with each run executed on 1 graphics processing unit
(GPU). A100 GPUs were used in this work. Training duration was a function of
the number of epochs and the size of the datasets. In particular, Experiments 4.2
(MNIST-NODEs) and 4.3 (VDoS) ran for a matter of hours, whereas Experiment 4.1
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DOFs Rescaling Single Decoder per Modality Dropout Expert Model
Experiment 4.1 ✓ ✓ ✓ ✓

Experiment 4.2 ✓ ✓

Experiment 4.3 ✓ ✓

Table 5. Model decisions for each experiment.

(MNIST) ran for a couple days. We made no attempt to optimize parallel training
to improve run time or training efficiency in this work.

Appendix B. Mathematical Derivations.

B.1. Motivating the product-of-experts. In Equation 6, we claim that

q(Z|X1, ..., XM ) = q(Z)1−MΠM
m=1q(Z|Xm),

under the assumption that the modalities are independent of each other. We show
Equation 6 by the following:

q(Z|X1, . . . , XM ) =
q(X1, . . . , XM |Z)q(Z)

q(X1, . . . , XM )

=
q(X1|X2, . . . , XM , Z)q(X2|X3, . . . , XM , Z) · · · q(XM |Z)q(Z)

q(X1, . . . , XM )

= q(X1|Z)q(X2|Z) · · · q(XM |Z)
q(Z)

q(X1) · · · q(XM )

=
q(Z|X1)q(X1)

q(Z)

q(Z|X2)q(X2)

q(Z)
· · ·

q(Z|XM )q(XM )

q(Z)

q(Z)

q(X1) · · · q(XM )

= q(Z)1−MΠM
m=1q(Z|Xm)

B.2. Derivation of ELBO. To derive a closed form expression for the single
sample ELBO

ELBO = Eq(Z,C|X1,...,XM )

[

log
p(X1, ..., XM , Z, C)

q(Z,C|X1, ..., XM )

]

(27)

we apply the separability assumptions in Equation 2. These separability assumptions
provide an additive decomposition of the loss function,

ELBO = Eq(Z,C|X1,...,XM ) [log p(X1, ..., XM , Z, C)]

− Eq(Z,C|X1,...,XM ) [log q(Z,C|X1, ..., XM )]
(28)

=

M
∑

m=1

Eq(Z,C|X1,...,XM ) [log p(Xm|Z,C)] + Eq(Z,C|X1,...,XM ) [log p(Z|C)]

+Eq(Z,C|X1,...,XM ) [log p(C)]− Eq(Z,C|X1,...,XM ) [log q(Z|X1, ..., XM )]

−Eq(Z,C|X1,...,XM ) [log q(C|X1, ..., XM )] .

For convenience we denote Eq(Z,C|X1,...,XM ) = Eq. The separability assumptions
therefore decompose the remainder of the ELBO terms into constituent expectations
of the form

Eq [log f(Z,C)] =
∑

C

∫

Rl

f(Z,C) log g(Z,C) dZ (29)

which may be integrated exactly for the Gaussian/categorical f and g appear-
ing in the ELBO. The only term which may not be immediately computed is
Eq [log q(C|X1, ..., XM )]. The lack of a reparameterization trick for the categorical
distribution precludes backpropagation into the encoder, forcing us to consider an
encoder which only provides predictions for Z. While there are options to use
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e.g. a regularized Gumbel-softmax approximation to the categorical distribution
[20], we would lose the tractability of the closed form expression for the ELBO. In-
stead we follow [21] and approximate q(C|X1, ..., XM ) = p(C|Z) using the following
justification.

If given Z we assume that X1, . . . , XM are independent of C, i.e. we assume that
p(X1, . . . , XM |Z,C) = p(X1, . . . , XM |Z), then we can rewrite the ELBO:

ELBO = Eq(Z,C|X1,...,XM )

[

log
p(X1, ..., XM , Z, C)

q(Z,C|X1, ..., XM )

]

= Eq(Z,C|X1,...,XM )

[

log
p(X1, ..., XM |Z)p(Z)

q(Z|X1, ..., XM )
+ log

p(C|Z)

q(C|X1, ..., XM )

]

=

∫

Rl

q(Z|X1, . . . , XM ) log
p(X1, ..., XM |Z)p(Z)

q(Z|X1, ..., XM )

− q(Z|X1, . . . , XM )DKL(q(C|X1, ..., XM )||p(C|Z))dZ,

(30)

where we seek extremal points with respect to C. The first term is independent of
C, and the second term takes zero value when q(C|X1, ..., XM ) = p(C|Z), providing
the desired maximum. We caution however that this holds only at local minima
of the loss landscape and requires the additional assumption that X1, . . . , XM are
independent of C given Z, but empirically has been shown to perform well as an
estimator.

For completeness, we gather from [21] the various integral formulas required to
compute the expectations in closed form with modifications for our multimodal
setting.

Lemma B.1. Given Gaussian distributions f(Z) = N (Z;µ1, σ1I) and g(Z) =
N (Z;µ2, σ2I)

∫

Rl

f(Z) log g(Z) dZ = −
1

2

∑

j

log 2πσ2
2;j +

σ2
1;j

σ2
2;j

+
(µ1;j − µ2;j)

2

σ2
2;j

. (31)

Lemma B.2.

Eq(Z,C|X1,...,XM ) [log p(Z|C)] =

N
∑

c=1

q(C=c|X1, ..., XM )

∫

Rl
q(Z|X1, ..., XM ) log p(Z|C=c)dZ, (32)

where the integrand may be computed from Lemma B.1.

Lemma B.3.

Eq(Z,C|X1,...,XM ) [log p(C)] =

∫

Rl

q(Z|X1, ..., XM )dZ

N
∑

c=1

q(C = c|X1, ..., XM ) log πc

=
N
∑

c=1

q(C=c|X1, ..., XM ) log πc.

(33)

Lemma B.4.

Eq [log q(Z|X1, ..., XM )] =

N
∑

c=1

q(C=c|X1, ..., XM )

∫

Rl
q(Z|X1, ..., XM ) log q(Z|X1, ..., XM )dZ,

=

∫

Rl
q(Z|X1, ..., XM ) log q(Z|X1, ..., XM )dZ, (34)

where the integrand may be computed from Lemma B.1.
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Lemma B.5.

Eq [log q(C|X1, ..., XM )] =

∫

Rl
q(Z|X1, ..., XM )dZ

N
∑

c=1

q(C=c|X1, ..., XM ) log q(C=c|X1, ..., XM ),

=

N
∑

c=1

q(C=c|X1, ..., XM ) log q(C=c|X1, ..., XM ). (35)

where the integrand may be computed from Lemma B.1.

The only term not addressed by the above lemmas is the reconstruction term, that
is Eq(Z,C|X1,...,XM ) [log p(X1, . . . , XM |Z,C)] (denoted below as Eq [log p(X|Z,C)]).
Using our separability assumptions and Monte Carlo methods, we reduce this term
via the following:

Eq [log p(X|Z,C)]

=

M
∑

m=1

Eq(Z,C|X1,...,XM ) [log p(Xm|Z,C)]

=

M
∑

m=1

Eq(Z|X1,...,XM )

[

N
∑

c=1

q(C=c|X1, . . . , XM ) log p(Xm|Z,C=c)

]

=

M
∑

m=1

Eq(Z|X1,...,XM )





N
∑

c=1

γc





−dm

2
log 2π −

1

2

dm
∑

j=1

(

log σ̂
2
m,c;j +

(Xm;j − µ̂m,c;j)
2

σ̂2
m,c;j

)









≈

M
∑

m=1

D
∑

d=1

N
∑

c=1

γ
(d)
c





−dm

2
log(2π) −

1

2

dm
∑

j=1



log σ̂
2(d)
m,c;j +

(x
(d)
m;j − µ̂

(d)
m,c;j)

2

σ̂
2(d)
m,c;j









For all terms, q(C=c|X1, ..., XM ) is calculated via the posterior estimator γc given
in Equation (14). Furthermore, constant terms do not affect the minimization of the
loss and are consequently dropped in L. Similarly the entire loss (Loss) is scaled by
2.
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