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Integrated Cyber-Physical Resiliency for Power
Grids under IoT-Enabled Dynamic Botnet Attacks

Yuhan Zhao, Juntao Chen, and Quanyan Zhu

Abstract—The wide adoption of Internet of Things (IoT)-
enabled energy devices improves the quality of life, but simultane-
ously, it enlarges the attack surface of the power grid system. The
adversary can gain illegitimate control of a large number of these
devices and use them as a means to compromise the physical grid
operation, a mechanism known as the IoT botnet attack. This
paper aims to improve the resiliency of cyber-physical power
grids to such attacks. Specifically, we use an epidemic model
to understand the dynamic botnet formation, which facilitates
the assessment of the cyber layer vulnerability of the grid. The
attacker aims to exploit this vulnerability to enable a successful
physical compromise, while the system operator’s goal is to
ensure a normal operation of the grid by mitigating cyber risks.
We develop a cross-layer game-theoretic framework for strategic
decision-making to enhance cyber-physical grid resiliency. The
cyber-layer game guides the system operator on how to defend
against the botnet attacker as the first layer of defense, while the
dynamic game strategy at the physical layer further counteracts
the adversarial behavior in real time for improved physical
resilience. A number of case studies on the IEEE-39 bus system
are used to corroborate the devised approach.

Index Terms—Cyber-physical grid resilience, Botnet attacks,
Dynamic games, Cross-layer defense

I. INTRODUCTION

With the ubiquitous adoption of advanced information and
communication technologies (ICTs), electric power systems
have evolved as complex cyber-physical energy systems in
which the functions of cyber and physical power components
are tightly coupled during their operation. Among the vast
ICTs adopted in smart power systems, one primary class is
the Internet of Things (IoT) which plays an essential role in
filling the gap between controlling and monitoring electricity
services and physical processes. Another feature of the modern
grid, in particular in the distribution system, is that massive
IoT-controlled high-power energy devices are penetrated, such
as air conditioners, water heaters, and electric ovens, and these
devices can be controlled remotely by Internet connections.

The widespread adoption of IoT devices improves the
quality of life. However, it exposes the grid to vast cyber
threats, raising significant cybersecurity concerns [1], [2]. The
insecurity of these devices is partially due to the fact that
cybersecurity is not a top concern when they are designed
and manufactured. The presence of existing or zero-day vul-
nerabilities [3], [4] make IoT devices more susceptible to
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Fig. 1. The massive IoT-controlled high-power energy devices introduce
significant concerns on the cyber-physical power grid. Every load bus contains
a considerable number of IoT devices. The adversary can manipulate these
IoT devices in a coordinated fashion to launch a botnet attack that disrupts
the grid operation.

cyberattacks, such as DoS/DDoS attack [5] and botnet attack
[6]. In addition, their limited onboard computation capabilities
render them incapable of running sophisticated encryption and
authentication mechanisms, which makes them easy to hack.
In this work, we consider the attacker deceptively manipulating
massive IoT-controlled energy devices to compromise normal
grid operation. This attack is termed an IoT botnet attack or
load altering attack [7]–[10]. It has been demonstrated that
such IoT botnet attacks can lead to severe outcomes to the
power grid, such as load shedding and generator tripping
[10]. To launch the IoT botnet attack, the attacker needs to
compromise a collection of IoT-controlled energy devices and
alter their operation status (on/off) in a coordinated fashion,
as illustrated in Fig. 1.

One essential consideration lacking in previous works is
that they assumed that a certain proportion of the power
load in the grid is vulnerable to being manipulated by the
adversary and did not focus on how the attacker compromises
these IoT devices and turns them into bots. It is imperative
to understand the adversary’s strategic behavior to develop
effective countermeasures to protect the grid from IoT botnet
attacks. The attacker generally uses malware to infect the
IoT devices to form a botnet. The interconnection between
IoT devices (connected directly or connected through the IoT
platform) offers a convenient way for malware spreading. The
attacker can increase the amount of load it can control in the
grid to enable the attack. The grid system operator should take
appropriate countermeasures to mitigate malware infections
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to enhance cyber resilience to IoT botnet attacks, such as
patching the software, updating passwords, and reconfiguring
the intrusion detection system of the IoT energy devices.

In this work, we aim to develop a holistic approach to
enhance the cyber-physical resiliency of the power grid under
IoT botnet attack. Specifically, we first leverage a mean-field
degree-based epidemic model to capture the dynamic mal-
ware propagation in the large-scale IoT device network. This
modeling provides a macroscopic abstraction of compromising
massive IoT devices in the distribution system and facilitates
a quantitative assessment of the cyber vulnerability of the
power grid under the botnet attack. The outcome of the cyber
layer directly impacts the feasibility of a successful IoT botnet
attack. The attacker’s goal is to destabilize the power grid
(the transmission system) via strategic load manipulation at
the physical layer while using the minimum amount of effort
for malware propagation at the cyber layer. The grid operator
(defender) needs to holistically devise an effective cyber
defense strategy and resilient physical control to counteract
the attacker’s action in order to maintain safe grid operations.

Capturing the multi-layer strategic interactions between
the attacker and the defender requires a sophisticated game
model. To this end, we develop a cross-layer game-theoretic
framework in which the cyber layer game models the com-
petition of malware spreading and detection in the botnet
attack, and the physical dynamic game captures the interaction
between the two players in controlling the grid dynamics.
The solution concepts to both games are characterized by
the Nash equilibrium (NE). The cyber layer game outcome
directly impacts the players’ strategies at the physical layer
which calls for an integrated approach to enhance the grid’s
cyber-physical resiliency. The outcome strategy of the cyber
game guides the system operator’s defense against the botnet
attacker which improves the cyber resilience of the power grid.
In addition, the resilient control mechanism resulting from the
dynamic game at the physical layer further counteracts the IoT-
enabled botnet attack, which enhances the physical resilience
of the grid. Case studies on the IEEE-39 bus system show
that the proposed cross-layer defensive scheme is effective in
promoting the cyber-physical resiliency of the grid under IoT
botnet attacks.

The contributions of this paper are summarized as follows.

1) We develop a multi-layer game-theoretic approach to
enhance the cyber-physical resiliency of power grids
under IoT-enabled botnet attacks.

2) A tractable epidemic framework is proposed to quan-
titatively analyze the dynamic cyber risks of the grid
under the botnet attack, which further facilitates the
development of effective cyber-resiliency strategies.

3) A dynamic game is established between the attacker and
the grid operator at the physical layer, to which the NE
strategy yields a strategic real-time counteraction to the
dynamic botnet attack.

4) We develop computationally efficient algorithms to find
the NE solutions to both the cyber and physical layer
games which are critical in developing holistic cyber-
physical resilient schemes.

The current work significantly differs from the preliminary
version [11] in the following aspects. First, we provide a com-
plete analysis of cyber risks of the cyber-physical grid (Section
V-A), develop a cyber defense game framework, and further
thoroughly characterize its equilibrium solution (Section V-B).
Second, the resilient control of the physical layer based on
the dynamic game (Section VI) is completely new, while the
preliminary version did not consider the strategic physical
defense. Third, the case studies are greatly expanded based
on the developed new framework and analytical results to
showcase the cyber-physical cross-layer defense mechanism.
Last but not least, the introduction and related works sections
are significantly enriched.

A. Organization of the Paper

The rest of this paper is organized as follows. Section II
discusses the related work. Section III introduces the basics
of power grid dynamics and its counterpart under the IoT-
enabled botnet attacks. Section IV establishes an epidemic
model to capture the cyber risk evolution of the power grids.
Sections V and Section VI develop a holistic strategic cyber
defense and robust physical operational schemes to enhance
the power grid’s cyber-physical resiliency. Case studies are
used to demonstrate the proposed approaches in Section VII,
and Section VIII concludes the paper.

II. RELATED WORK

Cybersecurity is a practical concern to power systems as
most of the adopted ICTs, such as phase measurement units
(PMU), wide area measurement systems, and advanced meter-
ing infrastructure (AMI), are not built with strong security con-
siderations. Cyberattacks on electric power systems can lead
to undesired outcomes such as generator breakdown, power
line outage, and even cascading failures, as demonstrated in
the past [12]–[14]. For example, in the infamous Ukraine
power grid cyberattack on December 23, 2015, attackers
leveraged a Trojan horse (malware) to intrude into the control
system of the electric power grid and switched off breakers
remotely, which led to the disconnections of 30 substations
and approximately 225,000 consumers without electricity for
6 hours [15]. Our work aims to improve the cybersecurity of
modern power grids that exhibit a cyber-physical nature.

The integration of massive and heterogeneous IoT-operated
high-power energy devices into the electric power grid gives
rise to a new cybersecurity concern called IoT botnet attack
[7], [16], [17]. The IoT botnet attack exploits a botnet (a
group of compromised IoT devices) to execute rapid dis-
tributional attacks. In the infamous Mirai botnet attack, the
attacker gained access to approximately 600,000 devices (e.g.,
routers, cameras) in a short period [6], posing significant
security threats to IoT networks. Recent studies corroborate
the feasibility of IoT botnet attacks in the power systems,
resulting in severe consequences like generator tripping and
potential blackouts [18]–[21]. Notably, these attacks can also
extend to IoT-enabled high-power electric vehicle charging
stations, which allows the attacker to manipulate substantial
loads and disrupt both transmission and distribution systems
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in the power grid [22]. While these previous works provide
crucial insights into power system security to IoT botnet
attacks, they are limited to analyzing the physical impacts of
the attack on the grid operation. Little attention was paid to the
cyber layer analysis, such as attack modeling and dynamic risk
assessment. This work aims to fill this gap by conducting a
holistic understanding of the cyber-physical risks of the power
grid under IoT botnet attacks and developing corresponding
countermeasures.

To this end, we leverage epidemic models to study botnet
attacks in the cyber layer. Initially developed for studying
disease spread in populations, epidemic models have become
prevalent for analyzing the propagation of phenomena within
large-scale networks [23], [24], providing an essential tool
for cyber risk assessment. They have been applied to areas
like malware dissemination in computer networks [25], [26],
the proliferation of fake news [27], [28], and strategies for
infection prevention and control [29], [30]. In power systems,
epidemic models have been used to understand the dynamics
of cascading failure and disturbances within the grid. For
example, Wu et al. in [31] have used epidemic models to
characterize the disturbance propagation in power systems
resulting from factors like noisy data acquisition and trans-
mission, and they have shown effectiveness in disturbance
predictive accuracy compared with traditional analysis. Ma
et al. in [32] have developed an epidemic-based framework
to describe the frequency oscillation in power grids and
have demonstrated the validity of their epidemic modeling
approach using actual measurements from power system fre-
quency monitoring networks. Furthermore, Zhang et al. in
[33] have studied the propagation of failures across cyber and
physical layers in power systems, and have developed a key
node protection mechanism based on the Susceptible-Infected-
Susceptible epidemic model, successfully tested on the IEEE
118-bus power system.

As cyberattacks frequently challenge power girds, much
research has been focused on enhancing the grid’s security and
resiliency. The classical approach to protect the electric power
system operation is through contingency plans (N−1 or N−k
contingency) [34], [35]. However, such a protection scheme
may not be sufficient to counteract sophisticated attacks. More
recent advances in protecting power system operations can
be broadly categorized into two domains: cyber and physical.
Within the cyber domain, countermeasures have been devised
to defend various attacks, including false data injection attacks
targeting the communication infrastructure of power systems
[36], [37], DoS attacks aimed at depleting power station
resources [38], [39], and man-in-the-middle attacks seeking to
maliciously manipulate grid data [40], [41]. On the physical
side, attacks target assets like generators and loads. Defensive
strategies have been studied to mitigate such threats, including
methods to counteract load redistribution attacks [42]–[44]
and approaches to thwart load altering attacks [8], [9], [45].
Different from the works that only focus on improving either
the cyber or physical layer performance under attacks, our
work develops a cross-layer approach to equip the power
grid with integrated cyber-physical resiliency under strategic
adversarial manipulations.

Game theory provides an effective framework for designing
the cross-layer protection mechanism. It has also been widely
used in both cybersecurity and power systems [46]–[48]. A
major branch of game-theoretic studies in power systems
predominantly addresses resource allocation for defense and
protection. For example, Wei et al. in [49] have formulated a
coordinated cyber-physical attack protection strategy to stabi-
lize the power grid based on stochastic games. The resulting
Nash equilibrium allocates the defense resources to counteract
the attacker without considering power flow or generator
dynamics. Gao and Shi in [50] have proposed a dynamic
game-theoretic approach to mitigate cyber-physical attacks in
power systems, where the defender and the attacker strate-
gically allocate the resources to protect and compromise the
cyber-physical elements in the power system using the Nash
equilibrium. Similarly, Hasan et al. in [51] have developed
a game-theoretic solution to strategically identify and protect
critical stations in the power systems. Hyder and Govindarasu
in [52] have studied the optimal investment strategies in
the cybersecurity infrastructure of a smart grid based on
game theory to deal with dynamically changing and uncertain
adversary behaviors. However, there is a gap in considering
fine-grained attack and physical models alongside implement-
ing a comprehensive cross-layer defensive mechanism against
malicious attacks on large-scale IoT devices. We aim to bridge
the gap in this work. Many works have also investigated
the cyberattacks on the load side that aim to destabilize the
power system. For example, dynamic load altering attacks and
load redistribution attacks. To address dynamic load altering
attacks, Amini et al. in [8] have proposed a protection scheme
and PI controller design based on pole-placement optimization
problems to stabilize the power grid. Eder et al. [53] have
developed a transactive control algorithm based on population
games theory to redistribute the power demand and stable
microgrids. Guo et al. in [54] have leveraged minimax Q-
learning to learn which generator bus to protect and prevent
cascading failure caused by overload in transmission lines.
For load redistribution attacks, Xiang and Wang in [44] have
leveraged game theory to seek the optimal defensive budget
allocation for securing the power dispatch. Liu and Wang in
[55] have focused on load redistribution attacks induced by
insider threats. They have formulated the attack problem as
a security resource allocation game and found the optimal
strategy (e.g., load shedding) to protect the grid. However,
the methodologies in these works are insufficient to capture
the cross-layer interdependency in the IoT botnet attack. Our
work aims to develop a new approach to provide a holistic
characterization of botnet attacks and improve the cyber-
physical resiliency of the power grid.

III. IOT-ENABLED BOTNET ATTACK TO POWER GRIDS

In this section, we first describe the system dynamics of the
power grid under normal operation and then introduce the grid
operation dynamics under IoT-enabled botnet attacks.

A. Power Grid Base Model
We consider a power grid consisting of a set of N = G ∪L

buses, where G = {g1, . . . , gNG
} are generator buses and L =
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{l1, . . . , lNL
} are load buses, and |N | = NG+NL. The power

flow equations at the generator and load buses are given by
[8]:

PG
i =

∑
j∈G

Bij(δi − δj) +
∑
j∈L

Bij(δi − θj), ∀i ∈ G, (1)

−PL
i =

∑
j∈G

Bij(θi − δj) +
∑
j∈L

Bij(θi − θj), ∀i ∈ L. (2)

Here, PG
i and PL

i are the power injection and consumption
at bus i. δi and θj denote the voltage phase angle at the
generator bus i and the load bus j, respectively. Hij represents
the admittance of the transmission line between buses i and
j.

The generator dynamics at the generator bus i, i ∈ G, can
be modeled by the linear swing equation:

δ̇i = ωi,

Miω̇i = PM
i −DG

i ωi − PG
i ,

(3)

where ωi is the rotor frequency deviation at the generator bus i;
Mi, DG

i and PM
i denote the rotor inertia, damping coefficient,

and the mechanical power input, respectively. Following [8],
[45], we assume that the mechanical power input is regulated
by a proportional-integral (PI) controller, which is given by

PM
i = −KP

i ωi −KI
i

∫ t

0

ωidt = −KP
i ωi −KI

i δi, (4)

where KP
i > 0 and KI

i > 0 are the controller coefficients,
respectively. When the load is identified, the power grid
operator can design KP

i and KI
i for all generator buses to

stabilize the power frequency deviation for safe operation. By
integrating the controller (4) and the power flow equation (1)
to the generate dynamics (3), we obtain for every generator
bus i ∈ G:

−Miω̇i = (KP
i +DG

i )ωi +KI
i δi

+
∑
j∈G

Bij(δi − δj) +
∑
j∈L

Bij(δi − θj).

On the load side, we consider two types of loads in the grid
[56]: the frequency-sensitive and frequency-insensitive loads.
The former one at load bus i can be represented by DL

i ϕi

where ϕi = −θ̇i and DL
i > 0 is the load damping coefficient.

With a little abuse of notation, we use PL
i to represent the

frequency-insensitive loads. Then, the power flow equation (2)
at the load bus i can be rewritten as

−DL
i ϕi − PL

i =
∑
j∈G

Bij(θi − δj) +
∑
j∈L

Bij(θi − θj).

Therefore, the overall power grid dynamics can be written as
I O O O
O I O O
O O −M O
O O O O



δ̇

θ̇
ω̇

ϕ̇

 =


0
0
0
I

PL+


O O I O
O O O −I

KI +BGG BGL KP +DG O
BLG BLL O DL



δ
θ
ω
ϕ

 .

(5)

Here, PL ∈ RNL denotes the aggregated load vector;
δ ∈ RNG , ω ∈ RNG are the aggregated phase angle and
rotor frequency deviation at the generator buses, respectively;
θ ∈ RNL , ϕ ∈ RNL denote the aggregated phase angle and
the frequency deviation at the load buses, respectively; M ∈
RNG×NG ,DG ∈ RNG×NG and DL ∈ RNL×NL are diagonal
matrices with diagonal entries given by the generator inertia,
generator damping coefficients, and load damping coefficients,
respectively; KP ∈ RNG×NG ,KI ∈ RNG×NG are diagonal
matrices with entries given by controller coefficients of the

generators, respectively. We denote by Bbus =

[
BGG BGL

BLG BLL

]
the admittance matrix, where BGG ∈ RNG×NG ,BLL ∈
RNL×NL ,BGL ∈ RNG×NL . The nominal frequency of the
grid is denoted by ωn. The safety limits of the frequency
deviation of generator bus i ∈ G satisfies |ωn − ωi| ≤ ωmax,
where ωmax is the maximum permissible frequency deviation.

B. Power Grid Model under Botnet Attacks

Under IoT-based botnet attacks, the attacker manipulates the
system load by synchronously switching on or off a large
number of high-power devices. We follow the modeling in
previous works [8], [45] by assuming that the frequency-
insensitive loads at the load buses consist of two components
PL = PLS + PLV , where PLS and PLV denote the secure
portion of the load and the vulnerable portion of the load,
respectively. We denote V ⊆ L as the set of vulnerable
load buses, where |V| = NV . Then, using botnet attacks,
the attacker can manipulate some amount of the vulnerable
load Pa ≤ PLV in the power grid maliciously to disrupt and
destabilize the normal operation.

When a malicious attack happens, the existing PI controllers
may not be sufficient to stabilize the grid. Besides, the attacker
can launch strategic attacks by altering Pa dynamically, mak-
ing it more challenging for predefined controllers to achieve
the desired outcome. The grid operator requires additional
mechanical power inputs, denoted as Pd ∈ RNG , to regulate
the grid and mitigate the attack consequence. Therefore, the
nominal power grid model (5) under botnet attacks can be
modified to

I O O O
O I O O
O O −M O
O O O O



δ̇

θ̇
ω̇

ϕ̇

 =


0
0
0
I

 (PLS +Pa) +


0
0
−I
0

Pd

+


O O I O
O O O −I

KI +BGG BGL KP +DG O
BLG BLL O DL



δ
θ
ω
ϕ

 .

(6)

The last row of (6) gives

ϕ = −(DL)−1


BLG

BLL

O

T δ
θ
ω

+PLS +Pa

 . (7)
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We substitute ϕ in (6) with (7) and let x =
[
δ θ ω

]
. Then

we obtain the following dynamical system:

ẋ = Ax+BdP
d +BaP

a + c, (8)

where the state matrix A ∈ R2NG+NL is given by I O O
O (DL)−1 O
O O −M−1

·
 O O I

BLG BLL O
KI +BGG BGL KP +DG

 ;

the operator’s and the attacker’s input matrices and the con-
stant term are given by

Bd =

 O
O

M−1

 , Ba =

 O
(DL)−1

O

 , c =

 O
(DL)−1PLS

O

 .

Eq. (8) specifies the evolution of power system dynamics under
defense and attack actions. The corresponding discrete system
with sampling time Ts can be written as

xt+1 = Ãxt + B̃dP
d
t + B̃aP

a
t + c̃, (9)

where the subscript t represents the time step t.

IV. EPIDEMIC MODELING OF BOTNET ATTACKS

In this section, we model and quantify the systemic risk of
power grids with a massive integration of IoT-operated energy
devices using a susceptible-infected-susceptible (SIS) model.
It has been empirically shown that such an epidemic model
can capture the dynamics of botnet propagation with a high
accuracy [57].

Due to the large-scale feature of IoT-controlled energy
devices in the network, finite modeling would be prohibitive.
We resort to complex network models, which can capture
the characteristics of massive interconnections in the IoT
device network. Specifically, let k be the degree of an IoT
device (can be regarded as a node) in the grid, where k ∈
K := {0, 1, 2, ...,K}, and p(k) ∈ [0, 1] be the probability
distribution of node’s degree in the network. Further, we
leverage the SIS epidemic model to characterize the stealthy
botnet attack process and estimate the fraction of compromised
IoT devices. Let Ik(t) ∈ [0, 1] be the density of the IoT devices
of degree k compromised by the attacker at time t. Then,
the dynamics of the botnet attack process in the IoT device
network can be described by [24]:

dIk(t)

dt
= −γIk(t) + ζk[1− Ik(t)]Θ(t), (10)

where γ and ζ are the recovery and spreading rates, respec-
tively;

Θ(t) =

∑
k∈K kp(k)Ik(t)

⟨k⟩
(11)

represents the probability of a given link connected to an
infected IoT device; ⟨k⟩ =

∑
k kp(k) is the average con-

nectivity of IoT devices in the grid. The attacker’s behavior
in the model is reflected by the spreading rate ζ. A large ζ
indicates that the attacker spends more effort compromising
IoT-controlled energy devices. The natural recovery rate γ
captures the malware elimination ability of IoT devices, e.g.,
via automatic software and firmware updates. In this work, we

use a scale-free network to model the IoT device network in
the power grid. Each IoT device is treated as a node and obeys
a power-law degree distribution p(k) ∼ k−3, k ∈ K.

This epidemic model facilitates quantifying the level of
vulnerable load and the systemic risks of the grid due to the
integration of massive IoT-controlled energy devices. Specifi-
cally, the systemic risk of the grid can be quantified by

R(t) = I(t) ·Nd ·Wd, (12)

where Nd and Wd denote the estimated total number of
IoT-controlled energy devices and their average power usage
(watts), respectively. The quantity

I(t) =
∑
k∈K

p(k)Ik(t) (13)

represents the aggregated percentage of compromised IoT-
controlled energy devices via the botnet attack and can be
used to quantify the cyber risk. It can be observed that
the systemic risk R(t) is not static but evolves dynamically
governed by the malware spreading process (10). To quantify
the risk propagation in terms of the attacker’s behavior ζ and
the underlying cyber dynamics, it is necessary to analyze the
differential equation (10), which is pursued in the next section.

V. RISK ANALYSIS AND CYBER-RESILIENT DESIGN

The developed epidemic model provides a systematic ap-
proach for risk quantification of the power system to IoT
botnet attack. After recruiting a certain level of bots, the
attacker needs to determine how to deploy the attack in
terms of the location and the scale to disrupt the power grid
operation. The defender, on the other hand, should devise
effective means to counteract the attack. To this end, a holistic
cyber-physical analysis is imperative. This section will first
analyze the cyber layer risks and then develop a game-theoretic
approach to enhance the cyber resilience of the power grids.

A. Cyber Risk Analysis

The malware spreading dynamics (10) describes the changes
in the scale of IoT energy devices that can be maliciously
manipulated. This process can be seen as botnet recruitment,
in which the attacker aims to turn benign devices into bots.
Since the attacker can manipulate the vulnerable loads after
completing the botnet recruitment (the IoT infection), the
systemic risk R̄ and the cyber risk Ī at steady states are of
more interest. Therefore, we investigate the steady state of the
dynamics (10) at which Ik(t), k ∈ K, reaches an equilibrium.
This can be found by imposing stationarity:

dIk(t)

dt
= −γIk(t) + ζk[1− Ik(t)]Θ(t) = 0,

which gives

Īk =
ζkΘ̄(ζ, γ)

γ + ζkΘ̄(ζ, γ)
, (14)

where Θ̄(ζ, γ) indicates that Θ(t) only depends on ζ and γ at
the steady state. Based on (14), we obtain, at the steady state,

Θ̄(ζ, γ) =

∑
k∈K kp(k)Īk

⟨k⟩
. (15)
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Substituting (14) into (15), we have a self-consistency equation
on Θ(ζ, γ) and hence we can obtain the cyber risk Ī . We
have the following proposition to characterize epidemic-free
conditions.

Proposition 1. For any γ > 0 and ζ > 0, the equilibrium
cyber risk Ī is unique in (0, 1] if γ

ζ < ⟨k2⟩
⟨k⟩ and is 0 if γ

ζ ≥
⟨k2⟩
⟨k⟩ ,

where ⟨k2⟩ =
∑

k k
2p(k).

Proof. We can tell from (15) that Θ̄(γ, ζ) ∈ [0, 1]. The self-
consistency equation on Θ̄(ζ, γ) yields

Θ̄ =
1

⟨k⟩
∑
k

(
kp(k)

ζkΘ̄

γ + ζkΘ̄

)
.

Note that Θ̄ = 0 is always a feasible solution. Now assume
Θ̄ ̸= 0, we have∑

k

kp(k)
ζk

γ + ζkΘ̄
− ⟨k⟩ = 0.

Let f(Θ) =
∑

k kp(k)
ζk

γ+ζkΘ − ⟨k⟩, which is continuous in

Θ. Note that f ′(Θ) = −
∑

k kp(k)
(ζk)2

(γ+ζkΘ)2 < 0 for all Θ ∈
(0, 1] and f(1) < 0. Therefore, f(Θ) only has one zero if
f(0) > 0, which gives ζ

γ

∑
k k

2p(k) − ⟨k⟩ > 0, i.e., γ
ζ <

⟨k2⟩
⟨k⟩ .

Prop. 1 indicates that we can effectively reduce the cyber
risk if the defender can protect the network from the malware
up to a threshold. The threshold is related to the IoT network
topology. If devices in the IoT network have more connections
(larger k), the protection threshold becomes larger and the
defender requires more effort to defend against the same level
of the botnet attack.

The closed-form solution to Ī and Θ̄ for general degree
distributions can be challenging to obtain. To characterize
the cyber risk analytically, we use k as a continuous random
variable to approximate Īk and Θ̄ in (14)-(15), which is valid
for large-scale networks as in our scenario. The corresponding
continuous power-law degree distribution becomes

p(k) = 2d2mink
−3, k ≥ dmin, (16)

where dmin is the minimum number of connections of each
node in the IoT device network. For example, dmin = 2
indicates that each IoT device is at least connected to two
other devices. The average connectivity is

⟨k⟩ =
∑
k

kp(k) ≃
∫ ∞

dmin

kp(k)dk = 2dmin, (17)

Also, based on the continuous approximation of the degree k,
we obtain

Θ̄(ζ, γ) =

∫ ∞

dmin

dmink
−2 ζkΘ̄(ζ, γ)

γ + ζkΘ̄(ζ, γ)
dk

= dminζΘ̄(ζ, γ)

∫ ∞

dmin

1

k(γ + ζkΘ̄(ζ, γ))
dk,

(18)

which further gives

Θ̄(ζ, γ) =
γ

ζdmin
· e−γ/(dminζ)

(1− e−γ/(dminζ))
. (19)

The cyber risk Ī at the steady state becomes

Ī =

∫ ∞

dmin

p(k)Īkdk

= 2d2minζΘ̄(ζ, γ)

∫ ∞

dmin

k−2 1

γ + ζkΘ̄(ζ, γ)
dk.

(20)

Substituting (19) into (20) and evaluating the integral leads
to the following result: At the steady state, the percentage of
infected IoT-enabled energy devices satisfies

Ī ∼ e−γ/(dminζ). (21)

Based on (21), one can see that as the attack effort ζ
increases, the size of the botnet (i.e., compromised energy
devices) enlarges, which yields a higher level of systemic risk
R̄ = Ī ·Nd ·Wd of the power grid.

B. Cyber Defense Game

The attacker aims to devise a cost-effective malware spread-
ing strategy (corresponding to large spreading ζ) to disrupt the
grid operation. While the system operator needs to enhance
the cyber resilience of the grid to prevent the attack from
happening. One way to achieve this is to improve the cyber
detection capability of malware spreading. This countermea-
sure reduces the possibility of malicious control of IoT devices
by the attacker. Some specific mechanisms include requiring
the users to have manual software patches, regular password
changes, etc., which corresponds to a higher recovery rate
γ. Note that γ and ζ reflect the consequence of the system
operator (defender) and the attacker’s effort to protect and
attack the IoT device network. We capture the defender and
attacker’s cyber effort by ud and ua, which affect the epidemic
by γ(ud) and ζ(ua).

The competition between the defender and the attacker
constitutes a noncooperative game in which the attacker aims
to compromise as many IoT-controlled energy devices as
possible by botnet attack while the defender’s objective is to
reduce systemic risk through cyber defense. We define the
cyber defense game as follows:

min
ud∈Ud

Ld(ud, ua) := Cd(ud) + Ī(ud, ua),

max
ua∈Ua

La(ud, ua) := −Ca(ua) + Ī(ud, ua).
(22)

Here, Ud ⊆ R+ and Ua ⊆ R+ are the admissible control sets;
Cd : Ud → R+ and Ca : Ua → R+ denote the defense and
attack cost. The cyber risk Ī in (21) becomes a function of ud

and ua because of γ(ud) and ζ(ua).
We make some general assumptions on (22) to facilitate

the subsequent analysis. First, we assume that 0 ∈ Ud and
0 ∈ Ua, meaning that zero defense/attack effort is admissible.
Second, we assume that the cost functions Cd and Ca are
monotonically increasing and convex with Cd(0) = 0 and
Ca(0) = 0. Third, we assume that γ and ζ are monotonically
increasing with γ(0) > 0 and ζ(0) > 0. We also assume that
the two functions are concave, indicating decreasing marginal
effects in cyber protection and attack. This is because there are
no perfect defenses and attacks in practice, even if one puts
in a large protection and attack effort. We set Ī(ud, ua) =
e−γ(ud)/dminζ(ua) to obtain analytical results.
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1) Characterization of Cyber Risk Ī: We first analyze the
property of the cyber risk Ī to approach the equilibrium solu-
tion of the cyber defense game (22). An immediate corollary
of Prop. 1 is the following.

Corollary 1.1. For IoT networks with finite degree support
set K, the risk Ī = 0 if (ud, ua) ∈ Φ(ud, ua) := {(ud ∈
Ud, ua ∈ Ua) : ud ≥ γ−1( ⟨k

2⟩
⟨k⟩ ζ(ua))}. For linear cases where

γ(ud) = kdud + γ0 and ζ(ua) = kaua + ζ0, Φ(ud, ua) =

{(ud, ua) : ud ≥ ⟨k2⟩ka

⟨k⟩kd
ua + 1

kd
( ⟨k

2⟩ζ0
⟨k⟩ − γ0)}, which is a

convex region in Ud × Ua.

The linear choices of γ and ζ provide a well-defined convex
region to characterize epidemic-free conditions. However, this
is not true for general cases. Besides, we must look into the
case where Ī is positive. We can check that ∂Ī

∂ud
< 0 for all

ud ≥ 0 and ∂Ī
∂ua

> 0 for all ua ≥ 0, meaning that increasing
defense or attack effort can lead to a monotonically decreasing
or increasing in the infectious rate. Further computation shows
∂2Ī
∂u2

d
> 0, which indicates that the defense effort has a de-

creasing marginal effect in reducing the cyber risk. Therefore,
the defender’s objective is convex in ud for any ua, and thus
provides a unique optimal response to ua. However, we have

∂2Ī

∂u2
a

= e
− γ

dminζ (
γζ ′

dminζ2
)2 + e

− γ
dminζ

γ

dminζ3
(ζ ′′ζ − 2(ζ ′)2)

= e
− γ

dminζ
γ

dminζ2

[
(

γ

dmin
− 2ζ)

(ζ ′)2

(ζ)2
+ ζ ′′

]
,

(23)

which indicates a complex behavior of Ī in the attacker’s
attack effort ua given ud. We have the following proposition
to characterize Ī .

Proposition 2. The cyber risk Ī(ud, ua) is concave in ua for
ua ≥ ζ−1

(
γ(ud)
2dmin

)
given an ud ∈ Ud. In addition, Ī becomes

concave in ua ∈ Ua for any ud if ζ(0) ≥ γ(ud)
2dmin

, ∀ud ∈ Ud.

Proof. Let γ(ud)
dmin

− 2ζ(ua) ≤ 0, we obtain ua ≥ ζ−1
(

γ(ud)
2dmin

)
because ζ ′ > 0. Since ζ ′′ ≤ 0 from assumptions, we have
∂2Ī
∂u2

a
≤ 0 for ua ≥ ζ−1

(
γ(ud)
2dmin

)
. To strengthen the concavity

condition for all ua ∈ Ua, we need ζ−1
(

γ(ud)
2dmin

)
≤ 0 for all

ud ∈ Ud, i.e., ζ(0) ≥ γ(ud)
2dmin

.

Prop. 2 provides a strengthened concavity condition in Ī ,
which can be useful for deriving the NE of the cyber defense
game (22). However, the condition is impractical because it
indicates that the initial malware spreading rate ζ(0) with
ua = 0 needs to be greater than the recovery rate, even if
the defender has taken a defense effort ud > 0. Besides,
due to general forms of γ and ζ, the cyber risk Ī can
exhibit different properties, such as convex-concave in ua,
depending on specific choices of γ and ζ. We use the following
proposition to identify one general case of Ī , which is valid
for a wide class of γ and ζ, including linear function, power
functions xα(0 < α < 1), and log functions log(x+ 1).

Proposition 3. Let ζ(0) ≥ γ(ud)
2dmin

only for some ud ∈ Ud. We
further assume that ζ ′′ is differentiable. If ∂2Ī

∂u2
a

∣∣
ud,ua=0

> 0

for any ud ∈ Ud, then ∂2Ī
∂u2

a
has a zero in [0, ζ−1( γ

2dmin
)).

Furthermore, if ζ ′′′+ 2ζ′

ζ3 [(
γ(ud)
dmin
−2ζ)ζζ ′′−(γ(ud)

dmin
−ζ)(ζ ′)2] <

0, the zero is unique, and Ī(ud, ua) is convex-concave in ua ∈
Ua given any ud ∈ Ud.

Proof. From Prop. 2, Ī(ud, ua) is readily concave in ua ∈
Ua for the ud such that ζ(0) ≥ γ(ud)

2dmin
. For the rest ud ∈

Ud, let f(ua) = f1(ua) + f2(ua) where f1(ua) = ( γ
dmin
−

2ζ(ua))
(ζ′(ua))

2

(ζ(ua))2
and f2(ua) = ζ ′′(ua). f is continuous in ua.

Since f(0) > 0 and f(ζ−1( γ
2dmin

)) < 0, using the intermediate
value theorem, f(ua) has at least one zero in [0, ζ−1( γ

2dmin
)).

Furthermore, we can check if

f ′(ua) = ζ ′′′+
2ζ ′

ζ3
[(
γ(ud)

dmin
−2ζ)ζζ ′′−(γ(ud)

dmin
−ζ)(ζ ′)2] < 0,

f is monotonically decreasing on [0, ζ−1( γ
2dmin

)) and the zero
is unique, which indicates that ∂2Ī

∂u2
a

only has one zero since

e
− γ

dminζ γ
dminζ2 > 0. We write the zero as ũa,0(ud) to denote

its dependency on ud. For ud ≤ γ−1(2dminζ(0)), i.e., ζ(0) ≥
γ(ud)
2dmin

, we set ũa,0(ud) = ∅ and Ī is concave in ua ∈ Ua; for
ud > γ−1(2dminζ(0)), i.e., ζ(0) < γ(ud)

2dmin
, we have ũa,0(ud) >

0 and Ī is convex in ua ∈ [0, ũa,0(ud)] and concave in ua >
ũa,0(ud).

The following corollary presents the analytical result when
γ and ζ are linear in ud and ua, a special case of Prop. 3.

Corollary 3.1. Let γ(ud) = kdud+γ0 and ζ(ua) = kaua+ζ0.
We have a unique ũa,0(ud) =

1
2dminka

(kdud + γ0 − 2dminζ0),
which is always positive if ζ(0) < γ(0)

2dmin
. Given any ud ∈ Ud,

Ī(ud, ua) is convex in ua ∈ [0, ũa,0(ud)] and concave in ua >
ũa,0(ud).

Remark. When Ī(ud, ua) is convex in ua given ud, it indicates
that the attacker has an increasing marginal effect in expanding
the malware infection. The more attack effort, the faster
the malware infection happens in the IoT device network.
However, the rapid expansion is only valid within a threshold
ua < ũa,0. If the attacker keeps putting in more attack
effort, the infection rate decreases. Rapid malware infection
is undesired in practice, which is equivalent to reducing the
region 0 ≤ ua < ũa,0. One way to achieve this is to improve
the defender’s defense effort ud, which can decrease ũa,0. This
fact can be directly observed in Corollary 3.1.

2) Characterization of Nash Equilibrium: We first define
the NE of the cyber defense game as follows.

Definition 1 (Nash Equilibrium of Cyber Defense Game). A
strategy pair (uNE

d , uNE
a ) constitutes a NE of the cyber defense

game (22) if

Ld(u
NE
d , uNE

a ) ≤ Ld(ud, u
NE
d ), ∀ud ∈ Ud,

La(u
NE
d , uNE

a ) ≥ La(u
NE
d , ua), ∀ua ∈ Ua.

We analyze the existence condition of the NE by adopting
the convex-concave property of Ī discussed in Prop. 2. Note
that the defender’s objective function Ld(ud, ua) is strictly
convex in ud for any ua ∈ Ua Therefore, the optimal response
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is unique, denoted by BRd(ua) = argminud
Ld(ud, ua),

which can be computed by ∇ud
Ld(ud, ua) = 0. However,

the convex-concave property breaks the uniqueness of the
optimal response BRa(ua) = argminua

La(ud, ua), which
can affect the search for NE. We note that the convex-concave
property indicates that ∂Ī

∂ua
is unimodal given any ud ∈ Ud.

i.e., ∂Ī
∂ua

first increases in ua ∈ [0, ũa,0) and then decreases
in ua ≥ ũa,0. Then, we have the following proposition to
characterize the existence of NE.

Proposition 4. Suppose γ and ζ are chosen to satisfy the
conditions in Prop. 2. Then, the attacker’s optimal response
BRa(ua) admits a unique value for every ud ∈ Ud, if
c′a(ua) ≤ ∂Ī

∂ua

∣∣
ud,ua

for all ua ∈ [0, ũa,0). Therefore, the cyber
defense game admits an NE solution.

Proof. We can check that ∂Ī
∂ua

= e−
γ
dζ γζ′

dζ2 and ∂Ī
∂ua
→ 0 as

ua → ∞ given any ud ∈ Ud. On the other hand, we have
limua→∞ C ′

a(ua) = ∞ from assumptions C ′
a > 0 and C ′′

a >
0. Therefore, there is only one intersection of C ′

a(ua) and
∂Ī
∂ua

in the entire Ua. It indicates that La(ud, ua) only has one
maximizer in Ua for any given ud ∈ Ud. Thus, BRa(ud) is
unique. Note that from the assumptions on Cd and Ca, we
obtain that Ld(ud, ua) → ∞ as ud → ∞ for any given ua,
La(ud, ua) → ∞ as ua → ∞ as any given ud. Therefore,
using the Brouwer’s fixed point theorem, the equations[

ud

ua

]
=

[
BRd(ua)
BRa(ud)

]
admits a fixed point (u∗

d, u
∗
a), i.e., Ld(u

∗
d, u

∗
a) ≤ Ld(ud, u

∗
a)

∀ud ∈ U⌈ and La(u
∗
d, u

∗
a) ≥ La(u

∗
d, ua) ∀ua ∈ U⊣ ∀ua ∈ Ua.

Thus, (u∗
a, u

∗
a) forms the NE of the cyber defense game.

The condition in Prop. 4 is mild. It can be easily satisfied
by selecting proper Ca, especially when ud is large and the
corresponding ũa,0(ud) is very small. We have the following
corollary to discuss the linear-quadratic choices of γ, ζ, and
Ca.

Corollary 4.1. For linear choices of γ and ζ and quadratic
choice of Ca = 1

2cau
2
a. The condition in Prop. 4 to guarantee

the unique BRa becomes e
− γ(ud)

dminζ0 · γ(ud)ka

dminζ0
≥ ca for every

given ud. Since ud = γ−1(dminζ0) maximizes the left-hand
side term, the condition is further simplified to e−1ka ≥ ca.

Following Prop. 4, we develop the following iterative algo-
rithm to find an NE of the cyber defense game.

The NE of the cyber defense game provides a cyber-resilient
strategy for the defender to counteract the botnet attack in IoT
device networks. Under the equilibrium strategy, the malware
infection reaches a steady state Ī(uNE

d , uNE
a ), which leads to a

systemic risk R̄ = Ī(uNE
d , uNE

a ) ·Nd ·Wd. The systemic risk R̄
is the maximum amount of vulnerable loads that the attacker
can control in the power grid, which provides the upper bound
for the attacker to implement malicious load manipulation
at the physical layer. The system operator then needs to
develop resilient grid regulation strategies by considering the
consequences of the cyber layer interactions, which will be
pursued in the next section.

Algorithm 1: Iterative method to find NE

1 Input: Degree distribution p, γ, ζ, ϵ ;
2 ⟨k⟩ ←

∑
k kp(k), ⟨k2⟩ ←

∑
k k

2p(k) ;
3 i← 0 ;
4 Initialize ud,(0), ua,(0) such that γ(ud,(0))

ζ(ua,(0))
< ⟨k2⟩

⟨k⟩ ;
5 while i < imax do
6 Solve BRd(ua,(i)) = argminud

Ld(ud, ua,(i))
using gradient descent ;

7 Solve BRa(ud,(i)) = argminua
La(ud,(i), ua)

using gradient descent ;
8 if ∥BRd(ua,(i))− ud,(i)∥ < ϵ and

∥BRa(ud,(i))− ua,(i)∥ < ϵ then
9 uNE

d ← BRd(ua,(i)) ;
10 uNE

a ← BRa(ud,(i)) ;
11 break;
12 ud,(i+1) ← BRd(ua,(i));
13 ua,(i+1) ← BRd(ua,(i)) ;
14 i← i+ 1 ;

15 Output: NE of the cyber defense game (uNE
d , uNE

a ).

VI. DYNAMIC GAME FOR PHYSICAL RESILIENCE

The systemic risk R̄ at the steady state denotes an ag-
gregated level of IoT-controlled energy devices that can be
compromised. To quantify the individual risk of each bus, we
first need to know how these IoT-controlled energy devices
are distributed over the power network.

Recall that L = {l1, . . . , lNL
} denotes the set of load

buses in the grid. Let ρ ∈ [0, 1]NL be the distribution of
IoT-controlled energy devices, where

∑NL

i=1 ρi = 1. Then, ρi
indicates the proportion of the IoT-operated devices presented
at bus i, and the corresponding risk of bus i can be expressed
by R̄ · ρi := PLV

i . For example, when these vulnerable
IoT-controlled energy devices are uniformly distributed in the
network, each bus faces the same level of risks R̄/NL. This
quantification indicates the maximum load the adversary at
each bus can control.

After identifying how much load can be altered, the attacker
determines its attack strategy Pa to destabilize the grid, which
could result in generator shutdown and even cascading failures.
P a
i (t) the amount of load changed by the attacker at bus i

at time t, i ∈ L. The attack strategy needs to consider the
feasibility constraint, i.e., P a

i (t) ≤ R̄ ·ρi, during the execution
of the attack.

We use discrete system (9) to achieve grid control. The sys-
tem operator regulates the input power {Pd

t }t∈Z+ to counteract
malicious load manipulation by anticipating the strategic at-
tack behavior. Therefore, the operator can decide the regulation
strategy to stabilize the system using the following min-max
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controller:

min
{Pd}

max
{Pa}

J
(
{Pd}, {Pa}

)
:= ∥xT ∥2Qf

+

T−1∑
t=0

(
∥xt∥2Q + ∥Pd

t ∥2Rd
− ∥Pa

t ∥2Ra

)
s.t. xt+1 = Ãxt + B̃dP

d
t + B̃aP

a
t + c̃,

P a
t,i ≤ R̄ · ρ, ∀i ∈ L, ∀t.

(24)

Here, the state xt and the controls Pd
t ,P

a
t align with the

discrete dynamical system (9). Q ⪰ 0, Qf ⪰ 0, Rd ≻
0, Ra ≻ 0 are state and control cost matrices with proper
dimensions. For simplicity, we denote {Pd} := {Pd

t }T−1
t=0 and

{Pa} := {Pa
t }T−1

t=0 . The defender aims to stabilize the system
using additional regulation power {Pd}, while the attacker
wants to destabilize the system by manipulating the vulnerable
load {Pa}. The interactions between the defender and attacker
at the physical layer naturally constitute a dynamic game. Note
that the attacker can both increase and decrease the vulnerable
loads within the range of the feasibility constraints since the
IoT devices may be in use when compromised.

Remark. The diagonal weighting matrices, Rd and Ra, quan-
tify the resource costs associated with grid regulation and
conducting an attack. The value of each diagonal element
reflects the level of effort to generate power or manipulate
the load at the corresponding bus.

The attacker’s feasibility constraints raise challenges in
solving the problem (24). We use log barrier functions to
penalize the constraint violation and add them to the objective
function. Then, the modified objective becomes

J̃
(
{Pd}, {Pa}

)
= J +

T−1∑
t=0

NL∑
i=1

1

µ
log(R̄ · ρi − P a

t,i).

The defender can instead use a modified controller resulting
from the following problem to regulate the grid under the IoT
botnet attack:

min
{Pd}

max
{Pa}

J̃
(
{Pd}, {Pa}

)
s.t. xt+1 = Ãxt + B̃dP

M
t + B̃aP

a
t + c̃.

(25)

The min-max control formulation in (25) defines a dynamic
Nash game [58] at the physical layer, which we call the
physical dynamic game. We use open-loop NE as the solution
concept to solve (25).

Definition 2 (Open-loop Nash Equilibrium of Physical Dy-
namic Game). A strategy trajectory pair ({Pd∗}, {Pa∗})
constitutes an open-loop NE of the dynamic game (25) if

J̃({Pd∗}, {Pa}) ≤ J̃({Pd∗}, {Pa∗}) ≤ J̃({Pd}, {Pa∗})

for all {Pd} and {Pa} with Pa
t ≤ R̄ · ρ, t = 0, . . . , T − 1.

The following proposition specifies the existence condition
of the equilibrium solution to the physical dynamic game.

Proposition 5. The min-max problem (25) admits a unique
open loop NE if Rd + B̃T

d S
d
t+1B̃d ≻ 0 for t = 0, . . . , T − 1,

where Sd is updated by

Sd
t = Q+ ÃTSd

t+1Ã

− ÃTSd
t+1B̃d(Rd + B̃T

d S
d
t+1B̃d)

−1B̃T
d S

d
t+1Ã

with Sd
T = Qf , and Ra−B̃T

aS
a
t+1B̃a ≻ 0 for t = 0, . . . , T−1,

where Sa is updated by

Sa
t = Q+ ÃTSa

t+1Ã

+ ÃTSa
t+1B̃a(Ra − B̃T

aS
a
t+1B̃a)

−1B̃T
aS

a
t+1Ã

with Sa
T = Qf .

Proof. We first show the sufficient conditions for the objective
function J̃ to be convex in {Pd} and concave in {Pa}. Note
that the objective function J̃ is quadratic in {Pd}. We want
to show for any {PA}, J̃ is strictly convex in {Pd}, which
is equivalent to the following optimal control problem. The
Hessian of J̃ is not related to the constant term c̃ and {Pa}.
So it is equivalent to setting them to 0. We obtain

min
{Pd}

∥xT ∥2Qf
+

T−1∑
t=0

(
∥xt∥2Q + ∥Pd

t ∥2Rd

)
s.t. xt+1 = Ãxt + B̃dP

d
t .

The optimal control problem has a unique solution if and only
if the Riccati equation holds, which is

Sd
t = Q+ ÃTSd

t+1Ã

− ÃTSd
t+1B̃d(Rd + B̃T

d S
d
t+1B̃d)

−1B̃T
d S

d
t+1Ã

with Sd
T = Qf , and Rd + B̃T

d S
d
t+1B̃d ≻ 0, t = 0, . . . , T −

1. The latter guarantees the convexity of the value function.
Otherwise, it becomes unbounded.

Likewise, we show that J̃ is concave in {Pa} for any
{Pd}. We note that besides the quadratic terms, the log barrier
terms only contain {Pa} and are readily concave in {Pa}.
Therefore, it is sufficient to ignore the log functions and
only consider quadratic terms in {Pa}. Following the same
arguments as {Pd}, we aim to show that the following optimal
control problem has a unique solution:

max
{Pa}

∥xT ∥2Qf
+

T−1∑
t=0

(
∥xt∥2Q − ∥Pa

t ∥2Ra

)
s.t. xt+1 = Ãxt + B̃aP

a
t ,

which provides the Riccati equations

Sa
t = Q+ ÃTSa

t+1Ã

+ ÃTSa
t+1B̃a(Ra − B̃T

aS
a
t+1B̃a)

−1B̃T
aS

a
t+1Ã

with Sa
T = Qf , and Ra − B̃T

aS
a
t+1B̃a ≻ 0, t = 0, . . . , T − 1.

Besides, J̃ → ∞ as |{Pd}| → ∞ for any {Pa} and
J̃ → −∞ as |{Pa}| → ∞ for any {Pd}. Using the
minimax theorem, the game (25) admits a unique open-loop
NE ({Pd∗}, {Pa∗}).

From Prop. 5, the state cost matrix Q does not have to be
positive definite or negative definite. As long as the conditions
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are satisfied, the Nash game (25) admits an open-loop NE.
Next, we find the necessary conditions to compute the open-
loop NE of (25).

Proposition 6. Suppose the convex-concave condition in
Prop. 5 is satisfied. Further assume Ra ≻ 0 and Rd ≻ 0 are
diagonal matrices with element ra,i and rd,i. Then, {Pd∗} and
{Pa∗} is an open-loop NE of (25) if and only if there exists
a trajectory {xt}Tt=1 and {λt}Tt=1 such that

xt+1 = Ãxt + B̃dP
d∗
t + B̃aP

a∗
t + c̃, x0given,

λt = ÃTλt+1 + 2Qxt, λT = 2QfxT ,

Pd∗
t = −1

2
R−1

d B̃T
d λt+1,

P a∗
t,i =

2riR̄ρi + [BT
aλt+1]i

4ri
− 1

4ri

[
(2riR̄ρi + [BT

aλt+1]i)
2

+ 8ri([B
T
aλt+1]iR̄ρi − 1/µ)

]1/2
, i = 1, . . . , NL.

Proof. The necessary condition for ({Pd∗}, {Pa∗}) being an
open-loop NE is that there exist trajectories {xt}Tt=0 and
{λt}Tt=1 such that

xt+1 = Ãxt + B̃dP
d∗
t + B̃aP

a∗
t + c̃, x0 given,

Ht(xt,P
d∗
t ,Pa

t , λt+1) ≤ Ht(xt,P
d∗
t ,Pa∗

t , λt+1)

≤ Ht(xt,P
d
t ,P

a∗
t , λt+1), ∀Pd

t , ∀Pa
t ,

λt = ∇xHt(xt,P
d∗
t ,Pa∗

t , λt+1), λT = 2QfxT ,

(26)

where the Hamiltonian Ht, t = 0, . . . , T − 1, is given by

Ht(xt,P
d
t ,P

a
t , λt+1) = λT

t+1

(
Ãxt + B̃dP

d
t + B̃aP

a
t + c̃

)
+∥xt∥2Q + ∥Pd

t ∥2Rd
− ∥Pa

t ∥2Ra
+

NL∑
i=1

1

µ
log(R̄ · ρi − P a

t,i).

We note that the Ht is convex in Pd
t and concave in Pd

t . Then
we can use the first order condition to simplify the second
inequality in (26) and obtain

Pd∗
t = −1

2
R−1

d BT
d λt+1.

Using the assumption that Ra is diagonal, we check the first
inequality elementwise that

2ri(P
a
t,i)

2−(2riR̄ρi+[B̃T
aλt+1]i)P

a
t,i+R̄ρi[B̃

T
aλt+1]i−

1

µ
= 0,

where [B̃T
aλt+1]i represents the i-th element of B̃T

aλt+1. Since
P a
t,i ≤ R̄ · ρi, we only take the negative root and arrive at the

result in the proposition. Since the convex-concave condition
is also satisfied, the necessary conditions are also sufficient,
which means that the solution {Pd∗} and {Pa∗} is unique if
the conditions (26) are met.

Therefore, we can solve a feasibility problem with necessary
conditions (26) to find the unique open-loop NE of the game
(25). To facilitate computation, we can first solve the following
unconstrained dynamic Nash game

min
{Pd}

max
{Pa}

J
(
{Pd}, {Pa}

)
s.t. xt+1 = Ãxt + B̃dP

M
t + B̃aP

a
t + c̃,

whose necessary conditions are linear equations. Then, we use
the solution as the initial guess to iteratively refine the solution
of (26) by increasing the barrier parameter µ. The refined
solution gradually approaches the open-loop NE of (24). We
summarize the procedure in Alg. 2 below.

Algorithm 2: Iterative refinement of the open-loop NE.

1 Input: Initial state x0 ;
2 α← 5, µ← 2 ;
3 {Pd}(0), {Pa}(0) ← solve an unconstrained min-max

controller with x0 as an initial guess;
4 n← 0 ;
5 while n < nmax do
6 {Pd}(n+1), {Pa}(n+1) ← solving (25) with initial

conditions {Pd}(n) and {Pa}(n) and x0 ;
7 µ← αµ ;
8 n← n+ 1 ;

9 Output: Approximate NE ({Pd}(n), {Pa}(n)).

Remark. In the Nash games (24) and (25), we assume that
the attacker has full knowledge of the grid operator, including
the model and defensive strategy. In practice, the attacker
can utilize either publicly available grid data to estimate the
operator’s parameters or adversarial approaches like social
engineering to obtain critical information. Recent advances in
learning-based techniques (e.g., [59]–[61]) also offer possibil-
ities for parameter estimation.

Since the defender uses the open-loop NE to strategically
regulate the grid to counteract the malicious load manipulation,
we develop a receding horizon planning algorithm for the
defender to generate successive power regulation strategies as
time evolves, which is summarized in Alg. 3.

Algorithm 3: Receding horizon planning for succes-
sive resilient control.

1 while botnet attack detection do
// botnet attack detection loop,

periodic detect or set manually
2 Run cyber defense and get systematic risk R̄ ;
3 Identify current state x0 ;
4 Control time step t← 0 ;
5 while No new detection do
6 ({Pd∗}, {Pa∗})← Run Alg. 2 with xt ;
7 Defender chooses Pd∗

0 ;
8 Attacker decides Pa ≤ R̄ · ρ for load

manipulation, may not play NE strategy Pa∗
0 ;

9 xt+1 ← Ãxt + B̃dP
d∗
0 + B̃aP

a + c̃ from (9) ;
10 t← t+ 1 ;

Remark. In practice, the grid operator can employ Supervisory
Control and Data Acquisition (SCADA) systems to monitor
critical parameters such as power flow, load variations, and
frequency levels across different buses. By examining factors
like sudden load shifts or comparing them with historical data,
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the grid operator can detect potential load altering attacks.
With this awareness, the operator can then formulate a targeted
defense strategy to stabilize the grid.

VII. CASE STUDIES

We use the IEEE-39 bus system (10 generator buses
and 29 load buses) to showcase the results. The system
parameters, including the transmission lines and the iner-
tia and damping coefficients of generators, are the same
as those provided in MATPOWER simulator1. The nomi-
nal system frequency is ωn = 60 Hz and the maximum
deviation is ωmax = 2 Hz, i.e., the generator’s relay trips
at 62 Hz (over-frequency) and 58 Hz (under-frequency).
The grid dynamics are simulated according to (9). The set
of vulnerable buses is V = {6, 10, 12, 15, 16, 19, 23, 29},
where massive IoT-controlled high-power devices are present.
We assume the uniform distribution of IoT devices. The
damping coefficient of each load is 10. The coefficients
of the PI controller associated with generator buses are:
KP = diag([20, 15, 15, 10, 10, 10, 30, 10, 25, 10]), and KI =
diag([45, 35, 45, 60, 35, 58, 30, 30, 50, 50]), where diag de-
notes the diagonal operator. The per unit (p.u.) value of power
is 100 MW. The parameters associated with the cyber layer
are below: dmin = 1, Nd = 107, Wd = 5, 000W.2 Thus, the
maximum load of all the IoT high-power devices connected to
the vulnerable buses is 500 p.u. The average vulnerable load
in each bus in V is 62.5 p.u. We adopt the secure load data
from [8] and set secure load as PLS = 171.7 p.u.
Remark. The vulnerable load PLV is the total load of IoT
devices, which represents the upper limit of load manipulation
available to an attacker. The attacker can only alter a portion of
500 p.u. unless he compromises every IoT device in the power
grid. However, infecting all devices is infeasible because the
defender also has cyber defense strategies to protect the IoT
devices.

The attacker’s manipulation of IoT energy devices is dy-
namic. In the following case studies, we assume that the
attacker can conduct a coordinated attack, i.e., the attacker
can maliciously manipulate loads in all vulnerable load buses
V simultaneously.

A. Cyber Risk and Cyber Defense Game Assessment

We first assess the cyber risk I(t) of the power grid under
an IoT botnet attack. Specifically, we consider γ = 0.2 and
ζ = [0.2, 0.25, 0.3, 0.4, 0.5] and simulate I(t) in Fig. 2. Here,
γ and ζ represent the equivalent cyber protection and attack
capabilities. As depicted in Fig. 2(a), the cyber risk I(t) grows
as ζ increases. It shows that the attacker can manipulate more
energy devices and thus has additional flexibility in devising
the IoT botnet attack with a larger ζ. Fig. 2(b) depicts the
cyber risk Ī at the steady state, which increases with ζ for a
fixed γ. We also plot the approximation function e−γ/dminζ of

1https://matpower.org/docs/ref/matpower5.0/case39.html
2We set the average power Wd = 5000 to resemble IoT-enabled energy

devices like cloth dryers and air conditioners. The total device number Nd

is based on the estimation of energy-related smart home appliances in NYC
[62], [63].

(a) I(t) evolution for different ζ. (b) Ī and its approximation.

Fig. 2. (a) illustrates the percentage of the compromised IoT-controlled energy
devices in the grid under the IoT botnet attacks with different attack intensities
ζ. (b) shows the resulting cyber risk Ī at the steady state as a function of ζ
for fixed γ. The approximate function in (21) yields satisfactory results for Ī .

(a) Ī changes with ua. (b) La changes with ua.

Fig. 3. (a) plots Ī(ud, ua) as a function of ua for fixed ud. Ī behaves
convex-concave for large ud and becomes concave as ud reduces. (b) shows
that the attacker’s utility La(ud, ua) admits a unique maximizer u∗

a for fixed
ud. u∗

a increases with ud, indicating that more attack effort is required when
the defender escalates the cyber defense.

Ī in (21). The comparison with the accurate Ī shows that the
approximation performance is satisfactory.

In the cyber defense game, we set γ(ud) =
√
ud + 0.1

and ζ(ua) = 2.5 log(ua + 1) + 0.1 to represent the cyber
defense/attack intensity by using the defense/attack effort ud

and ua. Note the choice of γ and ζ are both concave in ud and
ua, which satisfy the conditions in Prop. 3. The cost functions
are set as Cd(ud) = 0.2u2

d and Ca(ua) = 0.2u2
a. We show

two functions related to the attacker in Fig. 3 for detailed
discussion. From Fig. 3(a) we observe that Ī(ud, ua) exhibits
a convex-concave property in ua when ud is large (e.g., ud = 1
and 2), which corroborates the results in Prop. 3. As ud

reduces, Ī(ud, ua) becomes concave in ua because the convex-
concave conditions are easier to meet. Following Prop. 4,
Fig. 3(b) shows a unique maximizer u∗

a of attacker’s utility
La(ud, ua) for a fixed ud, which is the attacker’s optimal
cyberattack strategy. Besides, u∗

a increases as ud goes up,
showing that the attacker has to put more attack effort into
compromising more IoT devices if the defender escalates the
cyber defense.

To find the NE of the cyber defense game, the defender
and attacker respond to each other’s action optimally and
repeatedly, as shown in Fig. 4. The defender and attacker’s
optimal response functions are depicted in Fig. 4(a). The
intersection of two functions shows that the game admits a NE
(uNE

d , uNE
a ) = (0.58, 0.76), which specifies the defense and

attack strategies at the cyber layer. Fig. 4(b) shows that Alg. 1
successfully converges to the NE in Fig. 4(a). The max differ-

https://matpower.org/docs/ref/matpower5.0/case39.html
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(a) (b)

Fig. 4. (a) depicts the defender and the attacker’s optimal response functions.
The intersection is the NE. (b) shows that Alg. 1 can quickly converge to a
NE. The max difference is measured by max{|ud,i+1−ud,(i)|, |ua,(i+1)−
ua,(i)|}.

(a) zero attack. (b) Load switching attack.

Fig. 5. Generator frequency evolution using a pre-designed PI controller.
(a) shows that the PI controller can stabilize the system when there is no
attack. (b) implements a load-switching attack and generator frequencies are
out of the permissible range, showing a single PI controller is insufficient
to stabilize the system under the botnet attack, and it calls for additional
resilience enhancement schemes.

ence is measured by the difference of defender/attacker’s cyber
action in two adjacent iterations in Alg. 1, i.e., max{|ud,(i+1)−
ud,(i)|, |ua,(i+1)−ua,(i)|}, where i represents the i-th iteration.
The corresponding cyber risk admits Ī = 0.56, which gives a
vulnerable load PLV

i = R̄ ·ρi = 21 p.u. for i ∈ V . It provides
an upper bound for the attacker’s action during implementing
the malicious load manipulation at the physical layer.

B. Physical Impact of IoT Botnet Attack
Additional power regulation is critical for the defender to

combat botnet attacks. As depicted in Fig. 5(a), the defender
can use a pre-designed PI controller to stabilize the generator
frequency in the permissible range when there are no at-
tacks. The zoom-in plot shows that all generators’ frequencies
converge to ωn after some oscillations. However, the PI
controller is insufficient to stabilize normal operation when the
attacker maliciously manipulates the load. We consider a load-
switching attack, where the attacker turns on 0.9 ·PLV

i = 152
p.u. for all i ∈ V in 0-50s, then turns off the loads in 50-
100s, and again turns on 0.9 ·PLV

i in 100-150s. The defender
only uses a PI controller to regulate the system. As shown in
Fig. 5(b), some generators’ frequencies exceed the maximum
permissible frequency deviation range, disrupting the system
operation. This shows the necessity of using additional power
regulation approaches to improve the grid’s physical resilience.

To this end, the defender at the physical layer uses the
min-max controller (25) and receding horizon planning to

(a) Strategic attack. (b) Constant load attack.

Fig. 6. (a) implements the strategic attack, where the attacker manipulates the
load strategically to destabilize the system. (b) shows a constant load attack.
The attacker turns on the loads at t = 0s and shuts them down at t = 20s. The
defender can stabilize the system in both attack scenarios with the designed
resilient control.

enable strategic defense against botnet attacks, as developed
in Section VI. We set Q = diag([I10, I29, 5 · I10]) and put
more penalty weights to stabilize the frequency deviation. We
set Qf = 5Qf . We set Ra,i = 0.05 for i = 1, . . . , NV

to capture the attacker’s low cost of manipulating the load
after compromising IoT devices. We set by Rd,i = 0.2 for
i = 1, . . . , NG.

We simulate two attack scenarios. In the first scenario, the
attacker uses the strategic attack generated from the min-
max controller, which can be viewed as the worst-case attack.
In the second one, the attacker manipulates a constant load
Pa = [10.4, 10.6, 9.9, 8.6, 9.5, 19.4, 9.5, 5.9] p.u., which is
the maximum amount allowed in the first attack scenario. In
both scenarios, the attack lasts during 0-20s and terminates
(Pa = 0) after 20s. Fig. 6(a) shows the strategic attack in
the first scenario. Although the attacker has caused a large
frequency deviation for all generators at the beginning, the
defender manages to stabilize the system quickly and all
generators’ frequencies gradually converge to the nominal ωn.
Besides, the system stabilizes more quickly compared with
Fig. 5(a), showing the advantage of the proposed strategic
resilient control. The results of the second attack scenario are
depicted in Fig. 6(b). Since the attack action is not strategic,
we observe a smaller overshoot in the frequency deviation at
around 5s. A frequency ripple happens around 20s because
the attacker suddenly shuts down all the manipulated load.
However, the defender’s action can quickly adapt to the load
change and stabilize the system. It shows that the min-max
controller enables the defender to combat both strategic and
non-strategic attacks, significantly improving grid resilience.

C. Dynamic Defense for Agile Cyber-Physical Resilience

We implement a dynamic botnet attack to demonstrate
holistic and agile cyber-physical grid resilience under the
proposed approach. The dynamic botnet attack is specified as
follows.

• Attack stage 1: The attacker uses the same setting as in
Sec. VII-A to initiate the botnet attack and perform the
strategic attack to the grid for 10s.

• Attack stage 2: The attacker’s cyberattack intensity is
dropped to ζ(ua) = 1.5 log(ua) + 0.1; the attacker
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(a) Cyber risk evolution. (b) Physical system evolution.

Fig. 7. Cyber risk and generator frequency evolution under dynamic attacks.
In each attack stage, the total amount of vulnerable load changes because
of the variation in cyber defense strategy, which affects the dynamic power
regulation schemes at the physical layer. The defender manages to stabilize
the grid under all attacks.

(a) Defender’s strategy Pd (b) Attacker’s strategy Pa

Fig. 8. (a) Selected defender’s resilient control on power regulation and (b)
the attacker’s load manipulation under the investigated dynamic botnet attacks.

performs load switching attack in the grid for 10s, i.e.,
turning on 0.9 ·PLV in the first 5s and turning them off
in the second 5s.

• Attack stage 3: The defender’s cyber defense cost is
increased to Cd(ud) = 0.3u2

d; the attacker performs the
strategic attack to the grid for 10s.

The cyber risk I(t) in Fig. 7(a) quickly reaches the steady
state in three attacks because the cyber time-scale is much
faster than the physical counterpart. I(t) drops at attack stage
2 because the attacker has a weaker attack intensity. It rises
in attack stage 3 because of the increase in the defender’s
cyber defense cost. The steady state cyber risks Ī in all stages
are [0.56, 0.36, 0.46]. Hence, the systemic risk R̄ in all stages
are [166.4, 107.8, 139.8] p.u., providing different constraints
in physical system regulation. Fig. 7(b) shows the generator
frequency deviation in each attack stage. We also plot the
defender’s regulation power Pd and the attacker’s manipulated
load Pa for selected generator and load buses in Fig. 8 for
better visualization.

Fig. 7(b) indicates that the defender can effectively stabilize
the system for all attacks. The frequency fluctuates only when
an attack starts, and the defender can quickly mitigate the
attack, showing the agile resilience of the grid. It is worth
noting that once the grid is stabilized, strategic attacks can
have little effect in disrupting the grid, which can be observed
in the last half of attack stage 1 (5-10s) and the attack stage
3 (30-40s) in Fig. 8(b). In attack stage 1, after the system
is stabilized (around 5s), the attacker begins to reduce the
manipulation of vulnerable loads despite having larger access

to those loads. There is a ripple in the grid frequency because
of the sudden load change. The operator also changes the
regulation strategy to protect the grid, and the frequency
quickly converges to ωn, as shown in attack stage 2. We note
that the frequency changes slightly in attack stage 2 compared
to attack stage 1. This is because the operator has already
used strategic regulation strategies from attack stage 1, which
further mitigates the attack consequence. In attack stage 3,
the attacker only maliciously controls a small portion of loads
up to 5.33 p.u. despite the total vulnerable loads being 139.8
p.u. This is because the defender can easily regulate the grid
and maintain its stability. The attacker needs to cause more
disruption that exceeds the defender’s regulation capacity to
affect the grid’s normal operation, which is not cost-effective
for strategic attackers. In this situation, as shown in attack
stage 2, only irrational attacks can disrupt the system. But
the defender can quickly stabilize such disturbance using
the proposed min-max controller. In summary, our developed
control scheme enhances the agile cyber-physical resiliency of
the power grids under strategic, non-strategic, and consecutive
attacks.

VIII. CONCLUSION

With the universal adoption of IoT-controlled high-power
energy devices in households, the cybersecurity of modern
power grids is a critical concern. We have investigated the
IoT botnet attack in which the adversary controls loads of
the grid by manipulating IoT energy devices dynamically. The
developed epidemic model has provided a tractable solution to
quantify the systemic cyber risks of power grids. The cross-
layer game-theoretic cyber defense mechanism and physical
resilient control have been shown effective in maintaining
the grid’s normal operation under the considered strategic
botnet attack and hence have improved the grid’s integrative
resiliency at both the cyber and physical layers. For future
work, we would conduct detailed device-level simulations to
improve attack process resolutions and explore more practical
large-scale modeling approaches to characterize and combat
botnet attacks in power grids. We would also investigate the
scenario when the system operator has unknown information
on the IoT botnet attacker’s model and objective and develop
learning-based cyber-physical resilience countermeasures.
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