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a b s t r a c t

Medial mesh is the most commonly used representation of medial axis transform (MAT) which is
a high-fidelity compact representation of 3D shape. Existing learning methods of extracting medial
mesh from point clouds either have strict requirements of supervising training data, or are incapable
of learning the complete form of medial mesh, leading to large reconstruction error. We introduce
Point2MM, an unsupervised method for learning a complete medial mesh from point clouds. Our key
idea is to use the envelop geometry of medial primitives – spheres, cones, and slabs – to capture the
intrinsic geometry of shape, and the connectivity of medial mesh to capture the topology of shape. We
firstly predict initial medial spheres by learning the geometric transformation of point clouds, then
construct an initial connectivity of the medial spheres by learning the probability of medial cones
and medial slabs with a novel unsupervised formulation. Finally we propose an iterative strategy for
fine-tuning medial primitives. Extensive evaluations and comparisons show our method has superior
accuracy and robustness in learning medial mesh from point clouds. In addition, the excessive training
time is also a concern for our research, and it is a limitation where we need to make improvements
in our future work.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

Compact skeletal representations of 3D shapes could cap-
ure the underlying geometric and topological structures of the
hape and have shown their advantages in shape recognition [1],
egmentation [2], and animation [3,4].
Among all skeletal representations, medial axis transform

MAT) is a high-fidelity compact volumetric representation. Given
3D shape, its MAT is defined as the set of maximally-inscribed
pheres in the interior with at least two closest points on the
oundary surface, as shown in Fig. 1(a). shape. Each 4D point
center and radius) on MAT, called medial sphere, denoted as
= (c, r) with c and r the center and the radius respectively,

can be associated with the local thickness, symmetry information,
and part-structure of the object so that the original shape can be
reconstructed from them [5]. A common representation of MAT is
medial mesh [6], which is a non-manifold mesh structure consist-
ing of medial vertices, medial edges and medial faces. The envelop-
ng volume of a medial edge is a cone that is a linear interpolation
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of two spheres (see Fig. 1(b)), while the enveloping volume of a
medial face is a slab (see Fig. 1(c)). The compactness of medial
esh makes it capable of precisely recognizing shape [1] and
apturing the geometric details of shapes such as high-frequency
ocal deformations in physics-based simulation [4].

It is known that computing MAT from surfaces of arbitrary
epresentations is still a challenging problem. Recent works [5,7]
how the possibility of learning the geometric transforms from
oint clouds with deep neural networks for computing the MAT
f 3D shapes. These works, however, mostly obtain ‘‘incomplete’’
edial mesh representations and use post-processing to fill up

he topological connectivity of medial cones and slabs. Specif-
cally, P2MAT-NET [5] only predicts medial spheres, whereas
oint2Skeleton [7] cannot learn medial slabs directly. As shown
n Fig. 2, the post-processing of generating the connectivity of
edial mesh in P2MAT-NET [5] could introduce reconstruction
rrors with large holes in the medial mesh, and the results of
oint2Skeleton [7] indicate that planar surfaces could not be
orrectly reconstructed since it computes the medial slabs with
ost-processing instead of directly learning them from the input
oint clouds. These problems of previous methods motivate us to
earn the complete medial mesh of 3D shapes from corresponding
oint clouds with neural networks for capturing the topology of
hapes as well as their geometric details. We propose Point2MM,
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Fig. 1. Illustrations of (a) medial axis in 2D, (b) medial cone, (c) medial slab.
We also show (d) an example 3D point cloud, (e) its medial mesh, and (f) the
enveloping volume of the medial mesh.

Fig. 2. An example of generated medial mesh with its enveloping vol-
ume (reconstructed mesh) given the input point clouds for three methods:
P2MAT-NET [5], Point2Skeleton [7] and Point2MM.

an unsupervised method for learning complete medial mesh,
i.e., directly learning medial spheres, medial cones, and medial
slabs from 3D point clouds. Point2MM consists of two main steps,
the first is to learn medial spheres from the input point cloud,
while the second is to learn the connectivity of the predicted
medial spheres. To be specific, the contributions of this paper are
as follows:

• To the best of our knowledge, Point2MM is the first unsu-
pervised method predicting medial mesh directly from point
clouds, i.e., learning a complete medial mesh consisting of
medial spheres, medial cones, and medial slabs.

• We propose a connectivity prediction network that inte-
grates a graph convolutional network and graph attention
network to precisely encode the local details of the shape.

• We present novel unsupervised formulations for geometric
learning of 3D point clouds, i.e., learning geometric trans-
formations of point clouds to medial spheres and predicting
connectivity of medial mesh.
512
2. Related work

2.1. Medial axis transform

The concept of the medial axis was first introduced by Blum [8]
as an effective tool to describe 2D shapes in image analysis, and
it was subsequently generalized to represent geometric objects
in higher dimensions and applied in a wide range of areas such
as shape discrimination, object retrieval, object segmentation,
shape deformation, and robotic path planning. In the last two
decades, various methods have been proposed to extract medial
axis transform, most of them worked on triangle meshes [9–12].
MATFP [12] propose a new framework based on a novel insight
that the surface-restricted power diagram (RPD) can be utilized to
compute the internal MAT of the triangle mesh. However, a small
disturbance on the surface boundary will result in a significant
change to the structure of the medial axis. MAT simplification
methods [6,13] try to prune those insignificant branches and
obtain a clean MAT for triangle meshes which adopted an error-
bounded MAT simplification scheme. However, [6,13] can only
calculate the manifold triangle mesh. MATFP [12] can handle the
non-manifold mesh, but it cannot calculate a mesh with open
boundary.

The discreteness and irregularity of a point cloud make it
difficult to extract its medial axis. Only several methods can be
used for computing MATs from point clouds [5,7,14]. The input
sampling points should be dense enough in the Power Crust
method [14], while the number of the output medial spheres in
P2MAT-NET [5] has to be the same as the number of the input
points. But point clouds are relatively easier to acquire compared
to 3D manifold meshes. Our paper focuses on the specific problem
in extracting the MAT from point clouds.

2.2. Computing skeletal mesh from point cloud

There are many methods for extracting skeletal meshes.
Tagliasacchi et al. [15] proposed a method ROSA (rotational sym-
metry axis), which is based on columnar point clouds, uses
rotation invariance to extract skeletons, and solves the problem of
accurately extracting skeletons with a large number of columnar
points missing. But ROSA relies on the normals of point clouds
to extract the skeleton and is sensitive to noises such as some
sparse and scattered points which were far away from the tar-
get subject point cloud. Huang et al. [16] proposed a skeleton
extraction method L1-medial based on iterative shrinkage, which
s insensitive to noises. However, L1-medial skeleton extraction
ocuses on the accuracy of a single skeleton branch, ignoring
he relationship between skeleton points. L1-MST (L1-minimum
panning tree) [17] solved the problem of skeleton line fracture
ased on L1-medial. L1-medial was used to extract the skeleton
ine of the initial fracture, and the minimum spanning tree was
sed to complete the structure. But after completion, the skeleton
till has the problem that the position of the repaired endpoint
s inaccurate, and the repaired skeleton does not conform to
he shape of the original point cloud. Qin et al. [18] proposed
skeleton extraction algorithm, MdCS (mass-drive topology-

ware curvelet), which is based on optimal transport theory to
olve Wasserstein distance. It can extract a correct skeleton from
he point cloud but is not suitable for sparse point clouds and
as high time complexity. Deep learning methods [19–21] were
roposed to extract curve skeletons, but they are mainly aimed
t extracting skeletons from 2D images and are not suitable for
keleton extraction of unordered 3D point clouds.
Most of the previous works focus on extracting skeletal mesh,

ut not MAT. Point2Skeleton [7] was the first unsupervised
ethod for generating medial meshes from 3D point clouds.
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Fig. 3. An overview of Point2MM. The upper part represents the MSP module which predicts medial spheres from the input point cloud, while the bottom part
represents the CP module for connectivity prediction from the medial spheres predicted by the MSP module.
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However, it only predicted medial cones connecting spheres and
medial slabs were generated from the medial cones. In this work,
we present Point2MM, the first neural network that can learn
a complete medial mesh, including medial spheres, cones, and
slabs, from input 3D point clouds.

2.3. Mesh reconstruction from point clouds

Reconstruction from point cloud to mesh is a popular field
f research in computer vision and computer graphics. Recently,
eep learning-based approaches leverage neural networks to
earn the mapping between point clouds and meshes. They of-
en employ architectures such as convolutional neural networks
CNNs) or graph neural networks (GNNs) to extract meaningful
eatures from the input point cloud and generate the correspond-
ng mesh. DMC [22] is an end-to-end trainable network that can
redict explicit surface representations with arbitrary topology.
he authors utilized a differentiable representation to separate
he mesh topology from geometry. However, the approach is
imited to low-resolution meshes of size 323. Deeppano [23]
econstructed the 3D objects by projecting them onto 2D images,
hen applied a deep learning model for feature learning on the
D images. MeshCNN [24] provides an effective framework for
rocessing 3D mesh data, with a downsampling process con-
ucted for tasks such as segmentation and classification. Due to
ts sequential pooling operation, MeshCNN exhibits slow compu-
ational speed and lower-resolution grids. Point2Mesh [25] learns
rom individual objects by optimizing the weights of a convo-
utional neural network (CNN) to deform an initial mesh and
ontract it to envelop the input point cloud, which restricts that
t can only reconstruct shapes homeomorphic to the template
esh. Pixel2Mesh++ [26] generates 3D meshes based on image
onvolution. Although it does not directly generate meshes from
oint clouds, this approach stands out in the field of 3D recon-
truction for its distinctive characteristics. DHSP [27] introduces
technique for reconstructing a textured mesh from a colored
oint cloud by utilizing self-prior in deep neural networks. Unlike
hese mesh reconstruction approaches, we aim to reconstruct the
orresponding mesh from the input point cloud by learning the
edial mesh of the object and approximating the shape with the
nvelope of the reconstructed medial mesh in this paper.

. Method

Our approach is comprised of two modules, namely the MSP
nd CP modules, as illustrated in Fig. 3. Given a 3D shape’s
oint cloud, the MSP module, which is the first module, pre-
icts the medial spheres while incorporating geometric transfor-
ations (Section 3.1). The CP module predicts the connectivity
513
between medial spheres (Section 3.2). Our training process in-
volves four stages, namely pre-training, medial-spheres-training,
connectivity training, and joint-training stages. During the pre-
training stage, the initial centers of medial spheres are predicted
using the MSP module. The medial-spheres-training stage op-
timizes the centers and radii of the medial spheres using the
MSP module. The connectivity-training stage predicts the initial
connectivity from the medial spheres, which are predicted in the
medial-spheres-training stage, using the CP module. Finally, the
joint-training stage optimizes both the medial spheres and the
connectivity of MAT with the MSP module and the CP module,
respectively.

Following the definition in Q-MAT [6], MAT of a shape is
represented as medial mesh M that consists of vertices M, edges
, and triangles F, namely medial spheres, medial cones, and
edial slabs respectively (see Fig. 1). Each sphere m ∈ M is
enoted as m = (c, r) with c and r being the center and the
adius respectively. A medial cone eij is defined as the linear
nterpolation of two medial spheres mi and mj, and a medial slab
ijk is the linear interpolation of three medial spheres mi, mj and
k.

.1. Medial spheres prediction (MSP)

Given a point cloud P = {(pi,ni)}Ui=1 with U points, in which
ach point (pi,ni) ∈ P is represented as the 3D coordinates pi and
ts normal ni, our goal is to predict N medial spheres {mj}

N
j=1 =

(cj, rj)}Nj=1, denoted as M ∈ RN×4 consisting of the centers C ∈

RN×3 and their radii R ∈ RN×1. Similar to Point2Skeleton [7],
PointNet++[28] is employed to encode the input point cloud P by
down-sampling it to Ū points, denotes as P̄ , and extract the con-
textual features F ∈ RŪ×D of the down-sampled points P̄ , where
Ū < U and interactive dimension of the feature. Then the feature
will be transformed to W = Ū × N with 4 MLP layers. We take
W as the weight matrix which represents the weight of down-
sampled points for the medial spheres. The medial spheres are
computed with the same method as Point2Skeleton [7], i.e. taking
them as the convex combination of the sampled input point
cloud P̄ with a geometric transformation. The centers C can be
computed as follows:

C = W⊤P̄, (1)

and the radii R can be computed by the following equation:

R = W⊤D, (2)

where D ∈ RŪ×1 summarizes the closest distances from down
¯
sampled points P to the medial centers C. The closest distance
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Fig. 4. Illustration of the definition of surface loss. (a) is the case when the
plane is far away from the sphere, and (b) is the case when the plane is close
to the sphere. Only when the sphere is tangent to the point, the two losses will
be zero.

from an input point p to all the medial spheres is defined as
ollows,

(p, {ci}) = min
c∈{ci}

∥p− c∥2. (3)

It is observed that the medial spheres might cluster together
t the beginning of training. To precisely predict medial spheres
rom the input point cloud, it is crucial to evenly distribute the
edial spheres in and around the shape. Furthermore, as the

adius of a medial sphere is computed from its center, obtaining
good distribution of the centers of medial spheres in the pre-

raining stage, without considering the radii of medial spheres, is
ssential.
In the medial-spheres-training stage, both the centers and

adii of medial spheres are optimized. To measure the reconstruc-
ion error from two different perspectives, sampling loss, and
urface loss are introduced.
Sampling loss: We utilize the same sampling loss Lsample as in

oint2Skeleton [7] to measure the reconstruction error between
he input points P and the points T uniformly sampled from the
redicted spheres. This loss function is equivalent to the Chamfer
istance.

sample =
∑
p∈P

min
t∈T

∥p− t∥2 +
∑
t∈T

min
p∈P

∥t− p∥2. (4)

or a medial sphere m = (c, r), a surface point t on it can be
ampled by t = c + rv, where v is a given unit direction vector.
points are sampled from one medial sphere by 8 given unit

ectors V = {(±η,±η,±η)|3η2
= 1}.

Surface loss. It is observed that the predicted medial spheres
f Point2Skeleton [7] could not precisely approximate the shape,
.e., the associated radii of predicted spheres could not reveal local
hickness. To overcome this limitation, we incorporate point nor-
als during training and introduce surface loss which is similar

o the energy function proposed by Wang et al. [12]. As shown
n Fig. 4 and Eq. (5), for an input point p with normal n and a
sphere m = (c, r), Lplane in blue measures the distance from the
sphere m to the tangent plane defined by p and n, while Lpoint in
red measures the distance from the sphere surface to the point
p. That is Lplane measures the perpendicular distance between the
surface point p′ on the predicted sphere pointing from the center
along the direction of normal and projection of p′ on the plane
defined by point p and its normal n, while Lpoint measures to the
distance between p and p′.{
Lplane = ((p− c)⊤n− r)2,
Lpoint = ∥c+ rn− p∥2. (5)

To measure the reconstruction error from the medial spheres
M and the surface of the object which is represented as the tan-
gent planes defined by the input points P , we introduce surface

loss Lsur . Lsur consists of two parts: Lplane and Lpoint .

514
Intuitively, we hope each sphere can be tangent to two planes
defined by its two nearest input points, which is consistent with
the definition of MAT, see the Lplane term in Eq. (6). However,
the loss could be nearly zero if the sphere is tangent to both the
planes defined by its two closest points, even when the points
are not that close to the surface of the sphere. Therefore, we
introduce the other Lpoint term which measures the distances
between the point p and the surface point p′. Only when the
plane and the input point are both close enough to the sphere,
the reconstruction error will be small. Our surface loss Lsur can
be written as:
Lsur = Lplane + Lpoint

=

N∑
i=1

2∑
t=1

((pt
i − ci)⊤nt

i − ri)2

+

U∑
j=1

∥cmin
j + rmin

j nj − pj∥
2,

(6)

where pt
i ∈ P , t ∈ {1, 2} are the two closest points of sphere

center ci ∈ C with normal nt
i , and cmin

j ∈ C is the closest center
of point pj ∈ P with the corresponding radius rmin

j . Note that
the distances between points and the centers are measured in
Euclidean space and the normal of point is only used in training.

In the medial-spheres-training stage, we use both the sam-
pling loss and the sphere loss with β1 = 1 and β2 = 0.3:

Lskel = β1Lsample + β2Lsur . (7)

3.2. Connectivity prediction (CP)

The proposed CP module serves to predict the connectivity
among medial spheres, i.e., to predict the cones and slabs. Given
a set of predicted medial spheres, we connect each sphere with
its K nearest medial spheres to initialize the connectivity of a
medial mesh. Then a connectivity correction network is pro-
posed to optimize the connectivity by using Graph Auto Encoder
(GAE) [29] network. The encoder of the network is composed of
several GCN-GAT layers and residual blocks, aiming to obtain the
latent representations. Each GCN-GAT layer consists of a graph
convolutional network (GCN) [30] and a graph attention network
(GAT) [31], while the decoder decodes the latent code into the
probability of cones and slabs.

3.2.1. Connectivity initialization
We use a graph G = (N, E) to represent the medial mesh M,

where N is the set of medial spheres and E is the set of edges
(cones) in the medial mesh. In our network, we use an adjacency
matrix A ∈ (0, 1)N×N to represent the edges E in G, where N is
the number of medial spheres and aij = A[i][j] indicates whether
the edge between medial sphere mi and mj exists or not.

To initialize the adjacency matrix A, we use K Nearest Neigh-
bors (KNN), which means that each medial sphere is initially
connected to its K closest medial spheres. In our experiments, we
set K = 16 to retain a sufficient number of edges and faces at the
beginning of the connectivity prediction stage, and then propose
a connectivity correction network to optimize the connectivity of
the medial mesh.

3.2.2. Connectivity correction
The initial connectivity of the medial mesh, obtained by con-

necting each medial sphere with its K nearest neighbors, is both
redundant and incorrect. To remove redundant edges and predict
the missing links, we use a Graph Auto Encoder (GAE) net-
work that analyzes the predicted connectivity of medial spheres

obtained from the MSP module.
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Fig. 5. The pipeline of CP module. The network takes the initial connectivity as input and the optimized connectivity of the medial mesh as output. It contains two
parts: an encoder and a decoder. The encoder is composed of 12 GCN-GAT layers(see Fig. 5). A regular GCN-GAT layer (marked as ‘A’ in the figure) first applies a
D convolution operation to the input features and adds the output features of the GAT layer to get the final features of the current layer. While a layer in which
he dimensions of input features and output features are the same (marked as ‘‘B’’ in the figure) takes the output features of its prior GCN-GAT layer with a skip
onnection and adds the output features of the GAT layer to get the final features of this layer. The decoder applies an inner product operation on the features of
he final GCN-GAT layer to get the adjacency matrix.
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Fig. 6. Illustration of computing attention coefficients.

In addition to the adjacency matrix A, we also input the feature
f each medial sphere, which is a 4D vector m = (c, r) concate-
ated with the corresponding contextual feature computed from
he MSP module. The encoder is a deep GCN-GAT network con-
isting of 12 layers, which allows us to capture richer structures at
arious levels of abstraction. We also incorporated residual blocks
o alleviate the problem of vanishing gradients due to the depth
f the network.
To improve the performance of the GAE network in predicting

he connectivity of the medial mesh, we introduced GCN-GAT
ayers instead of using only GCN layers as in traditional GAE net-
orks. The GCN layers apply the same weight to all neighboring
odes. By concatenating a GAT [31] layer with each GCN layer,
e can apply different weights (attention coefficients) to different
eighboring nodes. This attention mechanism enables the net-
ork to better capture the contribution of each neighboring node
o the current node in predicting connectivity.

Fig. 6 shows the process of obtaining the attention coefficient
f neighbor nodes. To compute the attention coefficient αil which
epresents the contribution of sphere ml to sphere mi, the feature
hi of sphere mi, which is the output of the prior GCN layer, is
firstly augmented to a higher dimension with a linear mapping
W of shared parameters. The high-dimensional features Whi and

hl are concatenated and mapped to a real number gil with the
apping operation b. In our experiments, a single MLP layer is
pplied for the mapping, i.e.,

il = LeakyRelu(bT
[Whi ∥ Whl ]), (8)

here · ∥ · means the concatenation of the high-dimensional
eatures.

At the beginning of training, the neighbors of each sphere are
omputed with the KNN algorithm, as described in Section 3.2.1.
ater in training, the updated neighbors are used. Suppose Ni are
he neighbors of medial sphere mi, the coefficients gil, l ∈ Ni are
hen normalized with a softmax function. The normalized coef-

icients {αil}, l ∈ Ni are the attention coefficients of neighboring

515
edial spheres to sphere mi. That is,

il =
exp(gil)∑
l∈Ni

exp(gil)
. (9)

After the attention coefficients are computed, the local infor-
mation of each sphere should be integrated with its neighbors.
We introduce a multi-head attention mechanism [31], which up-
dates parameters for each head individually and finally averages
the results of the G heads to obtain the output of the layer. G
is set to be 3 in all our experiments. For each head of medial
sphere mi, the initial features {hl}, l ∈ Ni of neighboring medial
spheres are expanded by different linear mapping Wg

hl
. And the

high-dimensional features of neighboring spheres are integrated
with the corresponding attention coefficient {αil}, then activated
with a sigmoid function. Thus the final feature h′

i of sphere mi
could be obtained as follows:

h′

i =

∑G
g=1 σ (

∑
l∈Ni

α
g
ilW

g
hl
hl)

G
. (10)

The decoder performs a simple inner product to produce a
ew adjacency matrix Â followed by a sigmoid function to out-
ut the probabilities. The probability p(i, j) of medial cone eij is
alculated as the average of âij and âji. If it is greater than 0.5, we
ssume the medial cone exists. Similarly, for medial slab fijk, the
robability p(i, j, k) is calculated as the average of âij, âji, âjk, âkj,
ˆ ik and âki. It exists when p(i, j, k) is greater than 0.5.

.2.3. Connectivity reconstruction loss
To measure the distance between the input point cloud and

he mesh reconstructed using the enveloping volume of medial
pheres, medial cones, and medial slabs, reconstruction error
recon which measures on both cones and slabs is proposed, i.e.,

recon = α1Lcone + α2Lslab. (11)

n all experiments, we set the hyperparameters α1 = 0.3 and
2 = 0.4 respectively. To evaluate the accuracy of the predicted
edial mesh, we introduce medial distance dPq (see Section 3.2.4)

o measure the distance from an input point q to the medial
rimitive P . We only consider the inner points QP that are inside
he scaled volume of the primitive computed by expanding the
wo (or three) medial spheres of the medial primitive by 1.1 times
nd taken as the AABB bounding box of the expanded medial
rimitive. Then we define the average medial distance DP of all
he inner points as follows,

P =

∑
q∈QP

dPq
∥QP∥

, (12)

where ∥ · ∥ represents the number of point set.
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Fig. 7. Illustration of footprint sphere on a cone (a)(b) and a slab (c)(d). The
angle between the corresponding outward normal and the sample point normal
θ can be either (a)(c) θ ≤ 90◦ , or (b)(d) θ > 90◦ .

For a medial primitive, when the average medial distance DP is
larger than a given threshold λ (0.02 in all experiments), it should
have a small weight in reconstructing the medial primitive. On
the contrary, when the medial distance is not larger than the
threshold, the point should have a larger weight. Therefore, the
reconstruction errors of medial cones Lcone and medial slabs Lslab
re defined as follows:

cone =

{∑N
i=1

∑N
j=1 p(i, j)Deij , for i ̸= j and Deij >λ,∑N

i=1
∑N

j=1(1− p(i, j))Deij , for i ̸= j and Deij ≤ λ,

Lslab =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑N

i=1
∑N

j=1
∑N

k=1 p(i, j, k)Dfijk ,

for i ̸= j ̸= k and Dfijk >λ,∑N
i=1

∑N
j=1

∑N
k=1(1− p(i, j, k))Dfijk ,

for i ̸= j ̸= k and Dfijk ≤ λ.

(13)

.2.4. Medial distance
To measure the distance from an input point to a medial

rimitive, denoted medial distance, we introduce the footprint
phere of a point on the medial primitive [32]. As shown in Fig. 7,
or a medial cone eij, the footprint sphere mp = (cp, rp) of sample
oint p can be defined by the two spheres mp = αmi+(1−α)mj,
here α ∈ [0, 1]. Then α can be calculated by minimizing the

ollowing equation:

p(mp) = ∥cp − p∥2 − r2p . (14)

imilarly, the footprint sphere on a medial slab can be computed
rom the three medial spheres of the slab [32].

The next step is to measure the distance from input point p to
edial primitive, namely medial distance, which is the Euclidean
istance between p and its projection p′′ on the medial primitive.
e denote the angle between the sample point normal np and

he outgoing direction from the footprint center cp to the sample
oint p as θ . The side pointing from the footprint center cp to the
oint p is denoted as the near side while the other side is the rear
ide. For a medial cone as shown in Fig. 7(a) and (b), we consider
wo cases:

• θ ≤ 90◦: dijp = | ∥cp − p∥ − rp|. The projection p′′ is the
projecting point on the projection sphere along the outgoing
direction on the near side (see Fig. 7(a));
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• θ > 90◦: dijp = ∥cp − p∥ + rp. The projection p′′ is the
projecting point on the projection sphere opposite to the
outgoing direction on the rear side (see Fig. 7(b)).

Similarly, we can compute the medial distance dijkp from sam-
le point p to medial slab fijk by considering two cases, see
ig. 7(c) and (d).

. Experimental results

ataset. We collect 1086 models from 5 categories of Model-
et40 [33] and use the Poisson disk sampling method [34] to
enerate the input point cloud with 2000 random samples for
ach shape. We use 912 models for training and 174 models for
esting. All models are normalized to the [−0.5, 0.5]3 range.

mplementation. Our training consists of four stages: pre-training
tage, medial-spheres-training stage, connectivity-training stage,
nd joint-training stage. Each stage is trained for 40, 40, 20, and
0 epochs respectively on a Nvidia Titian XP GPU with the Adam
ptimizer, taking about 2, 2, 26, and 13 h respectively. As for the
est, each model will take 32 s per shape. For the first two stages,
nly the MSP module is trained, and the hyperparameters of the
P module are fixed. The hyperparameters of the MSP module are
ixed to keep the medial spheres unchanged in the connectivity-
raining stage. In the joint-training stage, the hyperparameters of
he MSP module and CP module are trained for reconstructing the
hole medial mesh, including the medial spheres, medial cones,
nd medial slabs, to capture the fine details of shapes.

.1. Results and comparisons

valuation metrics. We use two-sided Hausdorff distance (HD)
nd Chamfer distance (CD) to evaluate our method and the com-
arison methods. Note that the distances are normalized with
espect to the diagonal length of the corresponding surface, and
epresented in percentage.

• To measure the reconstruction accuracy, we firstly use the
method proposed by Wang et al. [12] to reconstruct the
triangle mesh from the predicted medial mesh, then we
use Hausdorff distance to measure the reconstruction error
between the reconstructed triangle mesh and the corre-
sponding ground truth mesh.

• To measure the quality of MAT, we compute the Chamfer
distance between the predicted MAT to the ground truth
MAT which is computed with Q-MAT+ [13]. To compute
the Chamfer distance, spheres are densely sampled from
the medial primitives from both the predicted MAT and the
ground truth MAT.

omparisons. We compare our method with a deep learning-
ased method Point2Skeleton [7] and a traditional geometric
ethod DPC [10]. P2MAT-NET can extract medial mesh from
parse point clouds with the supervision of ground truth MATs.
owever, the number of predicted medial spheres should be the
ame as the number of input points. P2MAT-NET and Point2MM
ill predict medial mesh with a different number of spheres
hen feeding with a point cloud with the same number of points.
o this end, it will not be able to conduct a fair comparison
etween P2MAT-NET and Point2MM. For Point2Skeleton, we re-
rain the network with our dataset for a fair comparison. DPC
enerates unstructured points for both surface-like and curve-
ike skeletons from an arbitrary 3D shape represented as a point
loud. For computing the CD loss of DPC [10], we directly use
he densely-sampled points provided by the authors. And for
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Fig. 8. Qualitative comparison with Point2Skeleton [7] and DPC [10]. The upper row shows the reconstructed MATs while the bottom row shows the reconstructed
surface for each method. And the ‘‘GT mesh’’ represent the ground truth meshes.
Point2Skeleton and our method, we densely sample the spheres
from the predicted or computed MATs. Fig. 8 shows the qual-
tative comparison with Point2Skeleton [7] and DPC [10], and
-MAT+ [13]. The results show that our method could reconstruct
he shape more accurately.

Besides, We compared our method with two approaches com-
only used for computing the Medial Axis Transform (MAT) from
oint clouds. The first method is Power Crust [14], a sampling-
ased technique that takes point clouds as input and generates
he MAT of the shape. The second method is to firstly reconstruct
he surface from the point cloud, and compute the MAT of the
econstructed mesh. We use the Screened Poisson surface recon-
truction (referred to as ‘‘SPR’’) [35] to reconstruct the mesh. To
pproximate the shape, we employed Q-MAT+[13] and MATFP
ethod [12] to obtain a simplified MAT with 256 spheres.
However, the MATFP method [12] encountered difficulties in

andling MAT calculations for the reconstructed models, as it
truggled with numerous open boundaries. As shown in Fig. 9, the
uality of the MAT calculated by Q-MAT+ depended on the result
f the reconstructed mesh. Unfortunately, achieving a flawless
517
manifold mesh with only 2000 points proved to be a challeng-
ing task. Additionally, Power Crust often computed a significant
number of incorrect spheres, resulting in inaccurate connectivity.

We quantitatively compare our method with these two meth-
ods on Hausdorff distance for mesh reconstruction and Cham-
fer distance for MAT reconstruction on the same dataset. For
Point2Skeleton, we conducted the post-processing while DPC
generates only spheres without connectivity. The results in Ta-
ble 1 and Fig. 8 show that our method could not only more
accurately encode the information from the original input for
reconstructing the shape with smaller Hausdorff error, but also
produce more reasonable and accurate medial meshes except
in the desk category. As shown in Fig. 8, although our method
could compute more reasonable spheres than the other methods
with the normal used for training. However, there are still some
erroneous cones or slabs generated from the CP module, such as
those between the legs and the desk surface, which results in
large reconstruction errors and makes the reconstructed volume
thicker than the ground truth.
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Fig. 9. Comparison with Power Crust on MAT computation with 2000 points as
input and Q-MAT+ on MAT computation with SPR mesh.

Table 1
Comparison results with Point2Skeleton [7] and DPC [10] on reconstruction
accuracy. For each method, the two rows report the CD loss and the HD loss
respectively. The best results are in bold.
Methods Chair Airplane Desk Bed Guitar

Point2Skeleton 1.12 1.30 0.78 1.28 0.86
1.13 1.32 0.83 1.34 0.94

DPC 1.90 1.66 1.55 1.90 1.58
1.57 1.64 1.29 1.88 1.34

Ours 1.01 1.27 0.79 1.13 0.89
1.11 1.22 0.99 1.33 0.89

4.2. Ablation study

We conduct a series of ablation studies to verify the various
ettings in our framework, and also some experiments to further
xplore the properties of the proposed method.

edial sphere prediction. We use surface points with normals
n the training. To validate the effectiveness of normal for MAT
earning, we alternatively use the points without normal in train-
ng and analyze the quality of the predicted medial spheres.
ccordingly, the surface loss in Eq. (6) is modified as follows:

sur = Lplane + Lpoint

=

N∑
i=1

2∑
t=1

(∥pt
i − ci∥ − ri)2

+

U∑
j=1

(∥pj − cmin
j ∥ − rmin

j )2.

(15)

Besides, the medial distance between input point p and medial
rimitive (medial cone eij) for example, with its footprint sphere
cp, rp), is modified as follows:
ij
= ∥|c − p∥ − r | (16)
p p p
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Table 2
Quantitative comparison results on whether using normal for training or not.
For each method, the two rows report the CD loss and the HD loss respectively.
The best results are in bold.
Methods Chair Airplane Desk Bed Guitar

w/o normal 1.12 1.30 0.78 1.28 0.90
1.14 1.36 0.89 1.39 0.97

Ours 1.01 1.27 0.79 1.13 0.89
1.11 1.22 0.99 1.33 0.89

Fig. 10. Qualitative comparison results on whether using the normal for training
or not. Results in the two rows are the predicted medial spheres and medial
meshes without and with the normal vector used in training, respectively.

Fig. 11. Predicted medial spheres of (a) without and (b) with the pre-training
in the medial spheres prediction stage(s).

The qualitative and quantitative results are shown in Fig. 10
nd Table 2, respectively. The results in Fig. 10 show that with the

normals used in training, the predicted spheres approximate the
surface of the shape better and could lead to better connectivity.
Besides, the Hausdorff distances on reconstructed meshes and
the Chamfer distances on reconstructed MATs further validate
the effectiveness of using the normals for training. Note that the
normal vector is only used in training.

To validate the effectiveness of the pre-training stage, we con-
duct an ablation experiment that directly trains the MSP module
by optimizing both the centers and the radii of medial spheres,
with the pre-training stage. Results shown in Fig. 11 indicate that
with the pre-training stage, the medial spheres could be evenly
distributed in shape.

Connectivity prediction. In our method, KNN is used for gen-
erating the initial connectivity of medial mesh. We conduct an
ablation study on the selection of the number K of neighboring
spheres for connectivity initialization. Fig. 12 shows the average
CD loss on all testing samples by selecting 8, 10, 12, 14, 16, 18,
and 20 neighbors respectively, indicating that it has the smallest
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Fig. 12. Quantitative comparison results on CD loss with different numbers (8,
0, 12, 14, 16, 18, and 20) of neighbors used for initializing the connectivity.

Fig. 13. Qualitative comparison results on using different numbers (12, 16, 20)
of neighbors for initializing the connectivity.

Table 3
Quantitative comparisons with Delaunay triangulation and KNN for connectivity
generation (the first 2 rows) and ablation study for the CP module (last 3 rows).
For each method, the two rows report the CD loss and the HD loss respectively.
The best results are in bold.
Methods Chair Airplane Desk Bed Guitar

Delaunay
Triangulation

1.08 1.29 0.92 1.10 0.97
1.13 1.49 1.14 1.14 1.22

KNN 1.11 1.34 0.79 1.33 0.99
1.33 1.65 1.37 1.58 1.35

w/o GAT 1.10 1.23 0.98 1.31 0.92
1.12 1.33 0.88 1.42 0.94

w/o Lslab
1.02 1.22 0.83 1.35 0.97
1.11 1.34 0.93 1.33 0.89

Ours 1.01 1.27 0.79 1.13 0.89
1.11 1.22 0.99 1.33 0.89

CD loss when using 16 neighbors. Results in Fig. 13 are consis-
ent with Fig. 12 while using more neighbors will lead to the
edundancy of medial primitives.

There are some other frequently used methods to generate
esh from a set of discrete points, for example, Delaunay trian-
ulation (deleting the triangle faces with overlong edges using a
hreshold). We compare our method with Delaunay triangulation
nd KNN and report the errors in Table 3 (the first 2 rows).
he results of the Delaunay triangulation show that selecting
n appropriate threshold is vital to the reconstruction results.
ur strategy for optimizing the initial connectivity computed
ith KNN, including introducing the GAT layers to capture the

ocal graph of medial mesh and learning the complete connec-
ivity, i.e., learning the slabs and the cones together by propos-
ng the reconstruction error Lrecon works better than Delaunay
riangulation, especially for capturing the topology of shape.

To validate the effectiveness of the CP module, we present
he errors without using the GAT layers (only the GCN layers)
nd without using the slab error term Lslab in Eq. (13), that is,

using only the cone term L for optimizing the connectivity in
cone
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Fig. 14. Qualitative ablation study on different configurations of the CP module
for connectivity prediction. Medial spheres and medial mesh are shown for each
model.

Fig. 15. Result of w/o jointly-training stage. (a) represents the predicted medial
sphere and the predicted medial mesh before joint-training, while (b) shows the
result after joint-training.

Table 3 (the last 3 rows) and Fig. 14. When comparing the results
in Fig. 14, the strategies of using GAT layers to encode the local
graph of the connectivity and taking the complete connectivity
as output to better capture the local geometric details help to fill
the holes and remove redundant medial cones and medial slabs.
In addition, the results in Fig. 15 prove that the joint-training can
optimize the radii and centers of the medial spheres and improve
the reconstruction results.

4.3. Shape classification with point clouds

The computed MAT can be used as an intermediate descrip-
tor for downstream applications, such as 3D shape classification
based on point clouds. In this section, we use our network to
predict the MAT for each model in the training and testing sets
of ModelNet40 (20 categories, 4879 models). We use MAT-NET to
perform the shape classification task based on the our predicted
MAT. We compare our method with PointNet++ [28]. We use
the code provided by the authors on GitHub. For the PointNet++,
we use the same point set as ours (2000 points). The grouping
strategy of PointNet++ is the Multi-Scale Grouping (MSG) method
(see Table 4).

5. Conclusion and future work

We propose Point2MM, a first unsupervised method for learn-
ing complete medial mesh from the point cloud. We first predict
medial spheres by learning the geometric transformation of point
clouds in the proposed MSP module, construct the connectivity
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Table 4
The object classification accuracy on the same objects in the ModelNet40
dataset is reported as follows: ‘‘In’’ denotes the input data structure, and ‘‘Acc’’
represents the accuracy of point cloud classification.
Methods In. Acc

PointNet++ xyz 95.6
PointNet++ xyz+normal 96.3
Ours w/MAT-Net (sphere) xyzr 97.1
Ours w/MAT-Net (sphere and connectivity) xyzr+connectivity 97.9

Fig. 16. Illustration of failure cases. Inside the green box: the connection of
medial mesh is redundant. Inside the orange box: complex structure misleads
the network to predict inappropriate spheres which results in an incorrect
medial mesh.

of medial spheres by learning the probability of medial cones
and medial slabs with the proposed CP module, and iteratively
fine-tune the medial primitives with a joint-training of the MSP
module and the CP module. Experiments show that our method
effectively captures the underlying structures, as well as the fine
details of shapes. We believe the predicted medial mesh can be
used as an intermediate descriptor for downstream applications.

However, there is still space for improving the reconstruction
accuracy. As shown in Fig. 16, there is still redundancy in the
onnectivity, e.g., the tail and wing of the plane. Besides, an
ncorrectly predicted sphere will lead to inaccurate connectivity.
n the future, how to extracting medial mesh from a dynamic
bject or scene for 3D learning tasks, would be a promising
irection. In addition, the excessive training time is also a concern
or our research, and it is a limitation where we need to make
mprovements in our future work.
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