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of learning the complete form of medial mesh, leading to large reconstruction error. We introduce
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Point2MM, an unsupervised method for learning a complete medial mesh from point clouds. Our key

Keywords: idea is to use the envelop geometry of medial primitives — spheres, cones, and slabs - to capture the
Medial mesh intrinsic geometry of shape, and the connectivity of medial mesh to capture the topology of shape. We
Unsupervised learning firstly predict initial medial spheres by learning the geometric transformation of point clouds, then
Medial axis transform construct an initial connectivity of the medial spheres by learning the probability of medial cones
Point cloud and medial slabs with a novel unsupervised formulation. Finally we propose an iterative strategy for

Shape analysis fine-tuning medial primitives. Extensive evaluations and comparisons show our method has superior

accuracy and robustness in learning medial mesh from point clouds. In addition, the excessive training
time is also a concern for our research, and it is a limitation where we need to make improvements
in our future work.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction of two spheres (see Fig. 1(b)), while the enveloping volume of a

medial face is a slab (see Fig. 1(c)). The compactness of medial

Compact skeletal representations of 3D shapes could cap- mesh makes it capable of precisely recognizing shape [1] and

ture the underlying geometric and topological structures of the capturing the geometric details of shapes such as high-frequency
shape and have shown their advantages in shape recognition [1], local deformations in physics-based simulation [4].

segmentation [2], and animation [3,4]. It is known that computing MAT from surfaces of arbitrary

Among all skeletal representations, medial axis transform representations is still a challenging problem. Recent works [5,7]
(MAT) is a high-fidelity compact volumetric representation. Given  show the possibility of learning the geometric transforms from
a 3D shape, its MAT is defined as the set of maximally-inscribed point clouds with deep neural networks for computing the MAT
spheres in the interior with at least two closest points on the  of 3p shapes. These works, however, mostly obtain “incomplete”
boundary surface, as shown in Fig. 1(a). shape. Each 4D point  medial mesh representations and use post-processing to fill up
(center and radius) on MAT, called medial sphere, denoted as  he topological connectivity of medial cones and slabs. Specif-
m = (c,r) with ¢ and r the center and the radius respectively, jc4}jy "p2MAT-NET [5] only predicts medial spheres, whereas
can be associated with the local thickness, symmetry information, = pqin)skeleton [7] cannot learn medial slabs directly. As shown
and part-structure of the object so that the original shape can be in Fig. 2, the post-processing of generating the connectivity of
reconstructed from them [5]. A common representation of MAT is medial r;lesh in P2MAT-NET [5] could introduce reconstruction
medial mesh [6], which is a non-manifold mesh structure consist- errors with large holes in the medial mesh, and the results of

ing of medial vertices, medial edges and medial faces. The envelop- Point2Skeleton [7] indicate that planar surfaces could not be

ing volume of a medial edge is a cone that is a linear interpolation correctly reconstructed since it computes the medial slabs with
post-processing instead of directly learning them from the input
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Fig. 1. Illustrations of (a) medial axis in 2D, (b) medial cone, (c) medial slab.
We also show (d) an example 3D point cloud, (e) its medial mesh, and (f) the
enveloping volume of the medial mesh.
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Fig. 2. An example of generated medial mesh with its enveloping vol-
ume (reconstructed mesh) given the input point clouds for three methods:
P2MAT-NET [5], Point2Skeleton [7] and Point2MM.

an unsupervised method for learning complete medial mesh,
i.e.,, directly learning medial spheres, medial cones, and medial
slabs from 3D point clouds. Point2MM consists of two main steps,
the first is to learn medial spheres from the input point cloud,
while the second is to learn the connectivity of the predicted
medial spheres. To be specific, the contributions of this paper are
as follows:

e To the best of our knowledge, Point2MM is the first unsu-
pervised method predicting medial mesh directly from point
clouds, i.e., learning a complete medial mesh consisting of
medial spheres, medial cones, and medial slabs.

e We propose a connectivity prediction network that inte-
grates a graph convolutional network and graph attention
network to precisely encode the local details of the shape.

e We present novel unsupervised formulations for geometric
learning of 3D point clouds, i.e., learning geometric trans-
formations of point clouds to medial spheres and predicting
connectivity of medial mesh.
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2. Related work
2.1. Medial axis transform

The concept of the medial axis was first introduced by Blum [8]
as an effective tool to describe 2D shapes in image analysis, and
it was subsequently generalized to represent geometric objects
in higher dimensions and applied in a wide range of areas such
as shape discrimination, object retrieval, object segmentation,
shape deformation, and robotic path planning. In the last two
decades, various methods have been proposed to extract medial
axis transform, most of them worked on triangle meshes [9-12].
MATFP [12] propose a new framework based on a novel insight
that the surface-restricted power diagram (RPD) can be utilized to
compute the internal MAT of the triangle mesh. However, a small
disturbance on the surface boundary will result in a significant
change to the structure of the medial axis. MAT simplification
methods [6,13] try to prune those insignificant branches and
obtain a clean MAT for triangle meshes which adopted an error-
bounded MAT simplification scheme. However, [6,13] can only
calculate the manifold triangle mesh. MATFP [12] can handle the
non-manifold mesh, but it cannot calculate a mesh with open
boundary.

The discreteness and irregularity of a point cloud make it
difficult to extract its medial axis. Only several methods can be
used for computing MATs from point clouds [5,7,14]. The input
sampling points should be dense enough in the Power Crust
method [14], while the number of the output medial spheres in
P2MAT-NET [5] has to be the same as the number of the input
points. But point clouds are relatively easier to acquire compared
to 3D manifold meshes. Our paper focuses on the specific problem
in extracting the MAT from point clouds.

2.2. Computing skeletal mesh from point cloud

There are many methods for extracting skeletal meshes.
Tagliasacchi et al. [15] proposed a method ROSA (rotational sym-
metry axis), which is based on columnar point clouds, uses
rotation invariance to extract skeletons, and solves the problem of
accurately extracting skeletons with a large number of columnar
points missing. But ROSA relies on the normals of point clouds
to extract the skeleton and is sensitive to noises such as some
sparse and scattered points which were far away from the tar-
get subject point cloud. Huang et al. [16] proposed a skeleton
extraction method L{-medial based on iterative shrinkage, which
is insensitive to noises. However, L;-medial skeleton extraction
focuses on the accuracy of a single skeleton branch, ignoring
the relationship between skeleton points. L{-MST (L;-minimum
spanning tree) [17] solved the problem of skeleton line fracture
based on L;-medial. L;-medial was used to extract the skeleton
line of the initial fracture, and the minimum spanning tree was
used to complete the structure. But after completion, the skeleton
still has the problem that the position of the repaired endpoint
is inaccurate, and the repaired skeleton does not conform to
the shape of the original point cloud. Qin et al. [18] proposed
a skeleton extraction algorithm, MdCS (mass-drive topology-
aware curvelet), which is based on optimal transport theory to
solve Wasserstein distance. It can extract a correct skeleton from
the point cloud but is not suitable for sparse point clouds and
has high time complexity. Deep learning methods [19-21] were
proposed to extract curve skeletons, but they are mainly aimed
at extracting skeletons from 2D images and are not suitable for
skeleton extraction of unordered 3D point clouds.

Most of the previous works focus on extracting skeletal mesh,
but not MAT. Point2Skeleton [7] was the first unsupervised
method for generating medial meshes from 3D point clouds.
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Fig. 3. An overview of Point2MM. The upper part represents the MSP module which predicts medial spheres from the input point cloud, while the bottom part
represents the CP module for connectivity prediction from the medial spheres predicted by the MSP module.

However, it only predicted medial cones connecting spheres and
medial slabs were generated from the medial cones. In this work,
we present Point2MM, the first neural network that can learn
a complete medial mesh, including medial spheres, cones, and
slabs, from input 3D point clouds.

2.3. Mesh reconstruction from point clouds

Reconstruction from point cloud to mesh is a popular field
of research in computer vision and computer graphics. Recently,
deep learning-based approaches leverage neural networks to
learn the mapping between point clouds and meshes. They of-
ten employ architectures such as convolutional neural networks
(CNNs) or graph neural networks (GNNs) to extract meaningful
features from the input point cloud and generate the correspond-
ing mesh. DMC [22] is an end-to-end trainable network that can
predict explicit surface representations with arbitrary topology.
The authors utilized a differentiable representation to separate
the mesh topology from geometry. However, the approach is
limited to low-resolution meshes of size 323. Deeppano [23]
reconstructed the 3D objects by projecting them onto 2D images,
then applied a deep learning model for feature learning on the
2D images. MeshCNN [24] provides an effective framework for
processing 3D mesh data, with a downsampling process con-
ducted for tasks such as segmentation and classification. Due to
its sequential pooling operation, MeshCNN exhibits slow compu-
tational speed and lower-resolution grids. Point2Mesh [25] learns
from individual objects by optimizing the weights of a convo-
lutional neural network (CNN) to deform an initial mesh and
contract it to envelop the input point cloud, which restricts that
it can only reconstruct shapes homeomorphic to the template
mesh. Pixel2Mesh++ [26] generates 3D meshes based on image
convolution. Although it does not directly generate meshes from
point clouds, this approach stands out in the field of 3D recon-
struction for its distinctive characteristics. DHSP [27] introduces
a technique for reconstructing a textured mesh from a colored
point cloud by utilizing self-prior in deep neural networks. Unlike
these mesh reconstruction approaches, we aim to reconstruct the
corresponding mesh from the input point cloud by learning the
medial mesh of the object and approximating the shape with the
envelope of the reconstructed medial mesh in this paper.

3. Method

Our approach is comprised of two modules, namely the MSP
and CP modules, as illustrated in Fig. 3. Given a 3D shape’s
point cloud, the MSP module, which is the first module, pre-
dicts the medial spheres while incorporating geometric transfor-
mations (Section 3.1). The CP module predicts the connectivity
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between medial spheres (Section 3.2). Our training process in-
volves four stages, namely pre-training, medial-spheres-training,
connectivity training, and joint-training stages. During the pre-
training stage, the initial centers of medial spheres are predicted
using the MSP module. The medial-spheres-training stage op-
timizes the centers and radii of the medial spheres using the
MSP module. The connectivity-training stage predicts the initial
connectivity from the medial spheres, which are predicted in the
medial-spheres-training stage, using the CP module. Finally, the
joint-training stage optimizes both the medial spheres and the
connectivity of MAT with the MSP module and the CP module,
respectively.

Following the definition in Q-MAT [6], MAT of a shape is
represented as medial mesh M that consists of vertices M, edges
E, and triangles F, namely medial spheres, medial cones, and
medial slabs respectively (see Fig. 1). Each sphere m € M is
denoted as m = (c,r) with ¢ and r being the center and the
radius respectively. A medial cone e; is defined as the linear
interpolation of two medial spheres m; and m;, and a medial slab
fij is the linear interpolation of three medial spheres m;, m; and
my.

3.1. Medial spheres prediction (MSP)

Given a point cloud P = {(p;, n;)}!_, with U points, in which
each point (p;, n;) € P is represented as the 3D coordinates p; and
its normal n;, our goal is to predict N medial spheres {mj}]’-\’:] =
{(c;, rj)}]’f’zl, denoted as M e RVN*4 consisting of the centers C e
RN*3 and their radii R € RV*!, Similar to Point2Skeleton [7],
PointNet++[28] is employed to encode the input point cloud P by
down-sampling it to U points, denotes as P, and extract the con-
textual features 7 € RV*? of the down-sampled points P, where
U < U and interactive dimension of the feature. Then the feature
will be transformed to W = U x N with 4 MLP layers. We take
W as the weight matrix which represents the weight of down-
sampled points for the medial spheres. The medial spheres are
computed with the same method as Point2Skeleton [7], i.e. taking
them as the convex combination of the sampled input point
cloud P with a geometric transformation. The centers C can be
computed as follows:

c=w'p, (1)
and the radii R can be computed by the following equation:
R=WT'D, (2)

where D € RU*! summarizes the closest distances from down
sampled points P to the medial centers C. The closest distance
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Fig. 4. lllustration of the definition of surface loss. (a) is the case when the
plane is far away from the sphere, and (b) is the case when the plane is close
to the sphere. Only when the sphere is tangent to the point, the two losses will
be zero.

from an input point p to all the medial spheres is defined as
follows,

d(p, {€;}) = min |p — cll> (3)
ce{cj}

It is observed that the medial spheres might cluster together
at the beginning of training. To precisely predict medial spheres
from the input point cloud, it is crucial to evenly distribute the
medial spheres in and around the shape. Furthermore, as the
radius of a medial sphere is computed from its center, obtaining
a good distribution of the centers of medial spheres in the pre-
training stage, without considering the radii of medial spheres, is
essential.

In the medial-spheres-training stage, both the centers and
radii of medial spheres are optimized. To measure the reconstruc-
tion error from two different perspectives, sampling loss, and
surface loss are introduced.

Sampling loss: We utilize the same sampling 10SS Lsgmple as in
Point2Skeleton [7] to measure the reconstruction error between
the input points P and the points 7 uniformly sampled from the
predicted spheres. This loss function is equivalent to the Chamfer
distance.

L :Zmin —t +Zmin t— .
sample teT ”p ”2 peP ” P||2
peP teT

(4)

For a medial sphere m (¢, r), a surface point t on it can be
sampled by t = ¢ + rv, where v is a given unit direction vector.
8 points are sampled from one medial sphere by 8 given unit
vectors V = {(£n, 7, £9)37% = 1}.

Surface loss. It is observed that the predicted medial spheres
of Point2Skeleton [7] could not precisely approximate the shape,
i.e., the associated radii of predicted spheres could not reveal local
thickness. To overcome this limitation, we incorporate point nor-
mals during training and introduce surface loss which is similar
to the energy function proposed by Wang et al. [12]. As shown
in Fig. 4 and Eq. (5), for an input point p with normal n and a
sphere m = (c, r), Lyjqne in blue measures the distance from the
sphere m to the tangent plane defined by p and n, while Ly, in
red measures the distance from the sphere surface to the point
p. That is L4, measures the perpendicular distance between the
surface point p’ on the predicted sphere pointing from the center
along the direction of normal and projection of p’ on the plane
defined by point p and its normal n, while Ly, measures to the
distance between p and p'.

{Lplane = ((p - C)Tn - T)Z’

5
Lyoin = llc +rn — p|. ®)

To measure the reconstruction error from the medial spheres
M and the surface of the object which is represented as the tan-
gent planes defined by the input points 7, we introduce surface
10SS Lgur. Lsur consists of two parts: Lplane and Lpgine.
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Intuitively, we hope each sphere can be tangent to two planes
defined by its two nearest input points, which is consistent with
the definition of MAT, see the Lpq term in Eq. (6). However,
the loss could be nearly zero if the sphere is tangent to both the
planes defined by its two closest points, even when the points
are not that close to the surface of the sphere. Therefore, we
introduce the other Ly term which measures the distances
between the point p and the surface point p’. Only when the
plane and the input point are both close enough to the sphere,
the reconstruction error will be small. Our surface loss L, can
be written as:

Lsur = »cplane + Epoint
)T t

(6)

i=1

u
+ Z "™ + 1"y — pjl|?,
=1

t=1

where p{ € P, t € {1,2} are the two closest points of sphere
center ¢; € C with normal nf, and c}""“ € C is the closest center
of point p; € P with the corresponding radius rj"‘i”. Note that
the distances between points and the centers are measured in
Euclidean space and the normal of point is only used in training.

In the medial-spheres-training stage, we use both the sam-
pling loss and the sphere loss with 1 and B, 0.3:

Lskel = 51£5ample + ,BZLsur~ (7)

3.2. Connectivity prediction (CP)

The proposed CP module serves to predict the connectivity
among medial spheres, i.e., to predict the cones and slabs. Given
a set of predicted medial spheres, we connect each sphere with
its K nearest medial spheres to initialize the connectivity of a
medial mesh. Then a connectivity correction network is pro-
posed to optimize the connectivity by using Graph Auto Encoder
(GAE) [29] network. The encoder of the network is composed of
several GCN-GAT layers and residual blocks, aiming to obtain the
latent representations. Each GCN-GAT layer consists of a graph
convolutional network (GCN) [30] and a graph attention network
(GAT) [31], while the decoder decodes the latent code into the
probability of cones and slabs.

3.2.1. Connectivity initialization

We use a graph G = (N, E) to represent the medial mesh M,
where N is the set of medial spheres and E is the set of edges
(cones) in the medial mesh. In our network, we use an adjacency
matrix A € (0, 1)™N to represent the edges E in G, where N is
the number of medial spheres and a; = A[i][j] indicates whether
the edge between medial sphere m; and m; exists or not.

To initialize the adjacency matrix A, we use K Nearest Neigh-
bors (KNN), which means that each medial sphere is initially
connected to its K closest medial spheres. In our experiments, we
set K = 16 to retain a sufficient number of edges and faces at the
beginning of the connectivity prediction stage, and then propose
a connectivity correction network to optimize the connectivity of
the medial mesh.

3.2.2. Connectivity correction

The initial connectivity of the medial mesh, obtained by con-
necting each medial sphere with its K nearest neighbors, is both
redundant and incorrect. To remove redundant edges and predict
the missing links, we use a Graph Auto Encoder (GAE) net-
work that analyzes the predicted connectivity of medial spheres
obtained from the MSP module.
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Fig. 5. The pipeline of CP module. The network takes the initial connectivity as input and the optimized connectivity of the medial mesh as output. It contains two
parts: an encoder and a decoder. The encoder is composed of 12 GCN-GAT layers(see Fig. 5). A regular GCN-GAT layer (marked as ‘A’ in the figure) first applies a
1D convolution operation to the input features and adds the output features of the GAT layer to get the final features of the current layer. While a layer in which
the dimensions of input features and output features are the same (marked as “B” in the figure) takes the output features of its prior GCN-GAT layer with a skip
connection and adds the output features of the GAT layer to get the final features of this layer. The decoder applies an inner product operation on the features of

the final GCN-GAT layer to get the adjacency matrix.

Iin \
iz \

softmax
s /
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Fig. 6. Illustration of computing attention coefficients.

In addition to the adjacency matrix A, we also input the feature
of each medial sphere, which is a 4D vector m = (c, r) concate-
nated with the corresponding contextual feature computed from
the MSP module. The encoder is a deep GCN-GAT network con-
sisting of 12 layers, which allows us to capture richer structures at
various levels of abstraction. We also incorporated residual blocks
to alleviate the problem of vanishing gradients due to the depth
of the network.

To improve the performance of the GAE network in predicting
the connectivity of the medial mesh, we introduced GCN-GAT
layers instead of using only GCN layers as in traditional GAE net-
works. The GCN layers apply the same weight to all neighboring
nodes. By concatenating a GAT [31] layer with each GCN layer,
we can apply different weights (attention coefficients) to different
neighboring nodes. This attention mechanism enables the net-
work to better capture the contribution of each neighboring node
to the current node in predicting connectivity.

Fig. 6 shows the process of obtaining the attention coefficient
of neighbor nodes. To compute the attention coefficient «;; which
represents the contribution of sphere m; to sphere m;, the feature
h; of sphere m;, which is the output of the prior GCN layer, is
firstly augmented to a higher dimension with a linear mapping
W of shared parameters. The high-dimensional features Wy, and
Wy, are concatenated and mapped to a real number g; with the
mapping operation b. In our experiments, a single MLP layer is
applied for the mapping, i.e.,

gt = LeakyRelu(b' [Wy, || Wh,]), (8)

where - || - means the concatenation of the high-dimensional
features.

At the beginning of training, the neighbors of each sphere are
computed with the KNN algorithm, as described in Section 3.2.1.
Later in training, the updated neighbors are used. Suppose N; are
the neighbors of medial sphere m;, the coefficients gj, [ € N; are
then normalized with a softmax function. The normalized coef-

ficients {ay}, | € N; are the attention coefficients of neighboring
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medial spheres to sphere m;. That is,

exp(gi)
> en, €xP(&i)

After the attention coefficients are computed, the local infor-
mation of each sphere should be integrated with its neighbors.
We introduce a multi-head attention mechanism [31], which up-
dates parameters for each head individually and finally averages
the results of the G heads to obtain the output of the layer. G
is set to be 3 in all our experiments. For each head of medial
sphere my, the initial features {h;}, | € N; of neighboring medial
spheres are expanded by different linear mapping Wﬁl. And the
high-dimensional features of neighboring spheres are integrated
with the corresponding attention coefficient {c;}, then activated
with a sigmoid function. Thus the final feature h; of sphere m;
could be obtained as follows:
h = Zg:] U(ZleNi aﬁwfl(h’)

i G :

The decoder performs a simple inner product to produce a
new adjacency matrix A followed by a sigmoid function to out-
put the probabilities. The probability p(i, j) of medial cone e; is
calculated as the average of a; and @j. If it is greater than 0.5, we
assume the medial cone exists. Similarly, for medial slab fj, the
probability p(i, j, k) is calculated as the average of G, @i, Gjk, Gy;,
ay, and ay;. It exists when p(i, j, k) is greater than 0.5.

Qi =

(9)

(10)

3.2.3. Connectivity reconstruction loss

To measure the distance between the input point cloud and
the mesh reconstructed using the enveloping volume of medial
spheres, medial cones, and medial slabs, reconstruction error
Lrecon Which measures on both cones and slabs is proposed, i.e.,

(11)

In all experiments, we set the hyperparameters «; = 0.3 and
ay = 0.4 respectively. To evaluate the accuracy of the predicted
medial mesh, we introduce medial distance dg (see Section 3.2.4)
to measure the distance from an input point q to the medial
primitive P. We only consider the inner points Qp that are inside
the scaled volume of the primitive computed by expanding the
two (or three) medial spheres of the medial primitive by 1.1 times
and taken as the AABB bounding box of the expanded medial
primitive. Then we define the average medial distance Dp of all
the inner points as follows,

P
ZqEQp dq
QeI

where || - || represents the number of point set.

Lyecon = ®1Lcone + 2 Lsiap-

Dp = (12)
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Fig. 7. Illustration of footprint sphere on a cone (a)(b) and a slab (c)(d). The
angle between the corresponding outward normal and the sample point normal
6 can be either (a)(c) # < 90°, or (b)(d) 6 > 90°.

For a medial primitive, when the average medial distance Dp is
larger than a given threshold A (0.02 in all experiments), it should
have a small weight in reconstructing the medial primitive. On
the contrary, when the medial distance is not larger than the
threshold, the point should have a larger weight. Therefore, the
reconstruction errors of medial cones L. and medial slabs Lgqp
are defined as follows:

o X X PG ey, for i # j and De, 1,
cone — P . .
S N (1= p(i.j))De;. fori#jand De; < A,
N <N N .
Dt Zj:] > =1 b0, ], k)Dfijk,
. for i # j # k and Dy, >2,
lab = .
T 2 S (1 = (i, k)Dy
fori # j # k and Dy, < A.

(13)

3.2.4. Medial distance

To measure the distance from an input point to a medial
primitive, denoted medial distance, we introduce the footprint
sphere of a point on the medial primitive [32]. As shown in Fig. 7,
for a medial cone ej;, the footprint sphere m, = (c;, 1) of sample
point p can be defined by the two spheres m, = em;+(1—a)m;,
where o € [0, 1]. Then « can be calculated by minimizing the
following equation:

(14)

Similarly, the footprint sphere on a medial slab can be computed
from the three medial spheres of the slab [32].

The next step is to measure the distance from input point p to
medial primitive, namely medial distance, which is the Euclidean
distance between p and its projection p” on the medial primitive.
We denote the angle between the sample point normal n, and
the outgoing direction from the footprint center ¢, to the sample
point p as 6. The side pointing from the footprint center ¢, to the
point p is denoted as the near side while the other side is the rear
side. For a medial cone as shown in Fig. 7(a) and (b), we consider
two cases:

E,(m,) = |c, — p||2 - Tﬁ-

e 0 < 90° dg = |llc, — pll — 1pl. The projection p” is the
projecting point on the projection sphere along the outgoing
direction on the near side (see Fig. 7(a));
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e 0 > 90° dg = |lc; — pll + 1. The projection p” is the
projecting point on the projection sphere opposite to the
outgoing direction on the rear side (see Fig. 7(b)).

Similarly, we can compute the medial distance dgk from sam-
ple point p to medial slab fj by considering two cases, see
Fig. 7(c) and (d).

4. Experimental results

Dataset. We collect 1086 models from 5 categories of Model-
Net40 [33] and use the Poisson disk sampling method [34] to
generate the input point cloud with 2000 random samples for
each shape. We use 912 models for training and 174 models for
testing. All models are normalized to the [—0.5, 0.5]> range.

Implementation. Our training consists of four stages: pre-training
stage, medial-spheres-training stage, connectivity-training stage,
and joint-training stage. Each stage is trained for 40, 40, 20, and
10 epochs respectively on a Nvidia Titian XP GPU with the Adam
optimizer, taking about 2, 2, 26, and 13 h respectively. As for the
test, each model will take 32 s per shape. For the first two stages,
only the MSP module is trained, and the hyperparameters of the
CP module are fixed. The hyperparameters of the MSP module are
fixed to keep the medial spheres unchanged in the connectivity-
training stage. In the joint-training stage, the hyperparameters of
the MSP module and CP module are trained for reconstructing the
whole medial mesh, including the medial spheres, medial cones,
and medial slabs, to capture the fine details of shapes.

4.1. Results and comparisons

Evaluation metrics. We use two-sided Hausdorff distance (HD)
and Chamfer distance (CD) to evaluate our method and the com-
parison methods. Note that the distances are normalized with
respect to the diagonal length of the corresponding surface, and
represented in percentage.

e To measure the reconstruction accuracy, we firstly use the
method proposed by Wang et al. [12] to reconstruct the
triangle mesh from the predicted medial mesh, then we
use Hausdorff distance to measure the reconstruction error
between the reconstructed triangle mesh and the corre-
sponding ground truth mesh.

e To measure the quality of MAT, we compute the Chamfer
distance between the predicted MAT to the ground truth
MAT which is computed with Q-MAT+ [13]. To compute
the Chamfer distance, spheres are densely sampled from
the medial primitives from both the predicted MAT and the
ground truth MAT.

Comparisons. We compare our method with a deep learning-
based method Point2Skeleton [7] and a traditional geometric
method DPC [10]. P2MAT-NET can extract medial mesh from
sparse point clouds with the supervision of ground truth MATs.
However, the number of predicted medial spheres should be the
same as the number of input points. P2MAT-NET and Point2MM
will predict medial mesh with a different number of spheres
when feeding with a point cloud with the same number of points.
To this end, it will not be able to conduct a fair comparison
between P2MAT-NET and Point2MM. For Point2Skeleton, we re-
train the network with our dataset for a fair comparison. DPC
generates unstructured points for both surface-like and curve-
like skeletons from an arbitrary 3D shape represented as a point
cloud. For computing the CD loss of DPC [10], we directly use
the densely-sampled points provided by the authors. And for
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Fig. 8. Qualitative comparison with Point2Skeleton [7] and DPC [10]. The upper row shows the reconstructed MATs while the bottom row shows the reconstructed
surface for each method. And the “GT mesh” represent the ground truth meshes.

Point2Skeleton and our method, we densely sample the spheres
from the predicted or computed MATs. Fig. 8 shows the qual-
itative comparison with Point2Skeleton [7] and DPC [10], and
Q-MAT+ [13]. The results show that our method could reconstruct
the shape more accurately.

Besides, We compared our method with two approaches com-
monly used for computing the Medial Axis Transform (MAT) from
point clouds. The first method is Power Crust [14], a sampling-
based technique that takes point clouds as input and generates
the MAT of the shape. The second method is to firstly reconstruct
the surface from the point cloud, and compute the MAT of the
reconstructed mesh. We use the Screened Poisson surface recon-
struction (referred to as “SPR”) [35] to reconstruct the mesh. To
approximate the shape, we employed Q-MAT+[13] and MATFP
method [12] to obtain a simplified MAT with 256 spheres.

However, the MATFP method [12] encountered difficulties in
handling MAT calculations for the reconstructed models, as it
struggled with numerous open boundaries. As shown in Fig. 9, the
quality of the MAT calculated by Q-MAT+ depended on the result
of the reconstructed mesh. Unfortunately, achieving a flawless
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manifold mesh with only 2000 points proved to be a challeng-
ing task. Additionally, Power Crust often computed a significant
number of incorrect spheres, resulting in inaccurate connectivity.

We quantitatively compare our method with these two meth-
ods on Hausdorff distance for mesh reconstruction and Cham-
fer distance for MAT reconstruction on the same dataset. For
Point2Skeleton, we conducted the post-processing while DPC
generates only spheres without connectivity. The results in Ta-
ble 1 and Fig. 8 show that our method could not only more
accurately encode the information from the original input for
reconstructing the shape with smaller Hausdorff error, but also
produce more reasonable and accurate medial meshes except
in the desk category. As shown in Fig. 8, although our method
could compute more reasonable spheres than the other methods
with the normal used for training. However, there are still some
erroneous cones or slabs generated from the CP module, such as
those between the legs and the desk surface, which results in
large reconstruction errors and makes the reconstructed volume
thicker than the ground truth.
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Input

Medial sphere

Medial mesh

Powe Crust

SPR+Q-MAT+

Ours

Fig. 9. Comparison with Power Crust on MAT computation with 2000 points as
input and Q-MAT+ on MAT computation with SPR mesh.

Table 1

Comparison results with Point2Skeleton [7] and DPC [10] on reconstruction
accuracy. For each method, the two rows report the CD loss and the HD loss
respectively. The best results are in bold.

Methods Chair Airplane Desk Bed Guitar
. 1.12 1.30 0.78 1.28 0.86
Point2Skeleton 113 132 0.83 134 094
DPC 1.90 1.66 1.55 1.90 158
157 1.64 1.29 1.88 134
Ours 1.01 1.27 0.79 1.13 0.89
1.11 1.22 0.99 1.33 0.89

4.2. Ablation study

We conduct a series of ablation studies to verify the various
settings in our framework, and also some experiments to further
explore the properties of the proposed method.

Medial sphere prediction. We use surface points with normals
in the training. To validate the effectiveness of normal for MAT
learning, we alternatively use the points without normal in train-
ing and analyze the quality of the predicted medial spheres.
Accordingly, the surface loss in Eq. (6) is modified as follows:

Lsyr = Eplane + Epoin[

N 2
2
=Y > U —cll—n)
i=1 t=1
u
(lp; — &™) — ™"
=1

+ 2.

j

Besides, the medial distance between input point p and medial
primitive (medial cone e;) for example, with its footprint sphere
(cp, 1p), is modified as follows:

dJ = Ilic, — pll — 1yl (16)
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Table 2

Quantitative comparison results on whether using normal for training or not.
For each method, the two rows report the CD loss and the HD loss respectively.
The best results are in bold.

Methods Chair Airplane Desk Bed Guitar
wjo normal 1.12 1.30 0.78 1.28 0.90
1.14 1.36 0.89 1.39 0.97
ours 1.01 1.27 0.79 1.13 0.89
111 1.22 0.99 133 0.89
w/o normal
Ours

Fig. 10. Qualitative comparison results on whether using the normal for training
or not. Results in the two rows are the predicted medial spheres and medial
meshes without and with the normal vector used in training, respectively.

(a)

Input

Fig. 11. Predicted medial spheres of (a) without and (b) with the pre-training
in the medial spheres prediction stage(s).

The qualitative and quantitative results are shown in Fig. 10
and Table 2, respectively. The results in Fig. 10 show that with the
normals used in training, the predicted spheres approximate the
surface of the shape better and could lead to better connectivity.
Besides, the Hausdorff distances on reconstructed meshes and
the Chamfer distances on reconstructed MATs further validate
the effectiveness of using the normals for training. Note that the
normal vector is only used in training.

To validate the effectiveness of the pre-training stage, we con-
duct an ablation experiment that directly trains the MSP module
by optimizing both the centers and the radii of medial spheres,
with the pre-training stage. Results shown in Fig. 11 indicate that
with the pre-training stage, the medial spheres could be evenly
distributed in shape.

Connectivity prediction. In our method, KNN is used for gen-
erating the initial connectivity of medial mesh. We conduct an
ablation study on the selection of the number K of neighboring
spheres for connectivity initialization. Fig. 12 shows the average
CD loss on all testing samples by selecting 8, 10, 12, 14, 16, 18,
and 20 neighbors respectively, indicating that it has the smallest
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i o ) o Fig. 14. Qualitative ablation study on different configurations of the CP module
Fig. 12. Quantitative comparison results on CD loss with different numbers (8, for connectivity prediction. Medial spheres and medial mesh are shown for each
10, 12, 14, 16, 18, and 20) of neighbors used for initializing the connectivity. model.

(a)

input

Fig. 13. Qualitative comparison results on using different numbers (12, 16, 20)
of neighbors for initializing the connectivity.

Table 3 (b)
Quantitative comparisons with Delaunay triangulation and KNN for connectivity

generation (the first 2 rows) and ablation study for the CP module (last 3 rows).

For each method, the two rows report the CD loss and the HD loss respectively.

The best results are in bold.

Fig. 15. Result of w/o jointly-training stage. (a) represents the predicted medial

Methods Chair Airplane Desk Bed Guitar sphere and the predicted medial mesh before joint-training, while (b) shows the
Delaunay 1.08 1.29 0.92 1.10 0.97 result after joint-training.
Triangulation 1.13 1.49 1.14 1.14 1.22
1.11 1.34 0.79 1.33 0.99
KNN 1.33 1.65 1.37 1.58 135

Table 3 (the last 3 rows) and Fig. 14. When comparing the results
wfo GAT 1.10 123 0.8 131 0.92 in Fig. 14, the strategies of using GAT layers to encode the local

1.12 1.33 088 142 094 graph of the connectivity and taking the complete connectivity
W/o Lya }(ﬁ :5421 8'23 1;2 g'gg as output to better capture the local geometric details help to fill

the holes and remove redundant medial cones and medial slabs.

Ours 1.01 127 0.79 113 0.89 In addition, the results in Fig. 15 prove that the joint-training can
1.11 1.22 0.99 1.33 0.89 . . . .
optimize the radii and centers of the medial spheres and improve
the reconstruction results.
CD loss when using 16 neighbors. Results in Fig. 13 are consis- 4.3. Shape classification with point clouds
tent with Fig. 12 while using more neighbors will lead to the
redundancy of medial primitives. The computed MAT can be used as an intermediate descrip-
There are some other frequently used methods to generate tor for downstream applications, such as 3D shape classification
mesh from a set of discrete points, for example, Delaunay trian- based on point clouds. In this section, we use our network to

gulation (deleting the triangle faces with overlong edges using a predict the MAT for each model in the training and testing sets
threshold). We compare our method with Delaunay triangulation of ModelNet40 (20 categories, 4879 models). We use MAT-NET to

and KNN and report the errors in Table 3 (the first 2 rows). perform the shape classification task based on the our predicted
The results of the Delaunay triangulation show that selecting MAT. We compare our method with PointNet++ [28]. We use
an appropriate threshold is vital to the reconstruction results. the code provided by the authors on GitHub. For the PointNet++,

Our strategy for optimizing the initial connectivity computed we use the same point set as ours (2000 points). The grouping
with KNN, including introducing the GAT layers to capture the strategy of PointNet++ is the Multi-Scale Grouping (MSG) method
local graph of medial mesh and learning the complete connec- (see Table 4).

tivity, i.e., learning the slabs and the cones together by propos-

ing the reconstruction error Ly, Works better than Delaunay 5. Conclusion and future work

triangulation, especially for capturing the topology of shape.

To validate the effectiveness of the CP module, we present We propose Point2MM, a first unsupervised method for learn-
the errors without using the GAT layers (only the GCN layers) ing complete medial mesh from the point cloud. We first predict
and without using the slab error term Lgq, in Eq. (13), that is, medial spheres by learning the geometric transformation of point

using only the cone term Lo, for optimizing the connectivity in clouds in the proposed MSP module, construct the connectivity
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Table 4

The object classification accuracy on the same objects in the ModelNet40
dataset is reported as follows: “In” denotes the input data structure, and “Acc”
represents the accuracy of point cloud classification.

Methods In. Acc
PointNet++ Xyz 95.6
PointNet++ xyz+normal 96.3
Ours w/MAT-Net (sphere) Xyzr 97.1
Ours w/MAT-Net (sphere and connectivity) Xyzr+connectivity 97.9

Medial Mesh

Input Predicted Sphere

Fig. 16. Illustration of failure cases. Inside the green box: the connection of
medial mesh is redundant. Inside the orange box: complex structure misleads
the network to predict inappropriate spheres which results in an incorrect
medial mesh.

of medial spheres by learning the probability of medial cones
and medial slabs with the proposed CP module, and iteratively
fine-tune the medial primitives with a joint-training of the MSP
module and the CP module. Experiments show that our method
effectively captures the underlying structures, as well as the fine
details of shapes. We believe the predicted medial mesh can be
used as an intermediate descriptor for downstream applications.

However, there is still space for improving the reconstruction
accuracy. As shown in Fig. 16, there is still redundancy in the
connectivity, e.g., the tail and wing of the plane. Besides, an
incorrectly predicted sphere will lead to inaccurate connectivity.
In the future, how to extracting medial mesh from a dynamic
object or scene for 3D learning tasks, would be a promising
direction. In addition, the excessive training time is also a concern
for our research, and it is a limitation where we need to make
improvements in our future work.
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