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abstract: Adaptation to replicated environmental conditions
can be remarkably predictable, suggesting that parallel evolution may
be a common feature of adaptive radiation. An open question, however,
is how phenotypic variation itself evolves during repeated adaptation.
Here, we use a dataset of morphological measurements from 35 popu-
lations of threespine stickleback, consisting of 16 parapatric lake-stream
pairs and three marine populations, to understand how phenotypic
variation has evolved during transitions from marine to freshwater en-
vironments and during subsequent diversification across the lake-
stream boundary. We find statistical support for divergent phenotypic
covariance (P) across populations, with most diversification of P
occurring among freshwater populations. Despite a close correspon-
dence between within-population phenotypic variation and among-
population divergence, we find that variation in P is unrelated to total
variation in population means across the set of populations. For lake-
stream pairs, we find that theoretical predictions for microevolutionary
change can explain more than 30% of divergence in P matrices across
the habitat boundary. Together, our results indicate that divergence in
variance structure occurs primarily in dimensions of trait space with
low phenotypic integration, correlated with disparate lake and stream
environments. Our findings illustrate how conserved and divergent
features of multivariate variation can underlie adaptive radiation.

Keywords: Gasterosteus aculeatus, genetic lines of least resistance,
covariance tensor, quantitative genetics, parallel evolution.

Introduction

Repeated evolution of similar trait values by independent
populations in similar environments provides convincing
evidence for evolution by natural selection (Reznick et al.
1996; Arendt and Reznick 2006). Such parallel evolution
is, therefore, oft-invoked evidence for adaptation in nature
(Blount et al. 2018). However, beyond the classic examples
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of convergence from a handful of systems for a handful of
traits (e.g., limb lengths inAnolis lizards [Losos 2009], armor
loss in newly colonizing freshwater threespine stickleback
[Colosimo et al. 2005]), multivariate, multipopulation con-
vergence is more complex, and many systems show both
shared and unique evolution across independent popula-
tions (Langerhans and DeWitt 2004): a continuum of so-
called (non)parallelism (Bolnick et al. 2018). Variation
among populations in chance events, phenotypic plasticity,
heritability, demography, environments, and natural selec-
tion itself generates population-specific historical contin-
gencies (Gould 1989; Beatty 2006, 2008; Losos 2017; Blount
et al. 2018). Such contingencies result in nonparallel evolu-
tionary trajectories, even for lineages adapting to ostensibly
replicated environmental gradients where parallel evolution
might be expected.

On the one hand, empirical evidence of (non)parallelism
in trait means has become abundant (Bolnick et al. 2018;
Jacobs et al. 2020; James et al. 2021; Weber et al. 2021).
On the other hand, we know less about whether and why
phenotypic variances and covariances might evolve predict-
ably in these sorts of “natural experiments.” Yet variance-
covariance structure (hereafter, “covariance” for simplicity)
has an important role in evolutionary biology. Phenotypic
variation underlies the evolutionary process at all timescales,
providing the material on which natural selection acts; phe-
notypic variance must exist for natural selection to occur
(Darwin 1859), and some of this variance must be heritable
for evolutionary change (Fisher 1930; Lande 1976).

Variance is thus viewed as a key determinant of the
rate of evolution and is often viewed as a source of con-
straint, biasing the direction of evolutionary change to
directions of greater variability (Lande 1979; Schluter
1996, 2000; Hansen and Houle 2004). For example, un-
der the multivariate breeders equation (Lande 1979), the
hicago. All rights reserved. Published by The University of Chicago Press for
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evolutionary response is a product of the selection gradi-
ent b and the genetic variance-covariance matrix G (a
component of the phenotypic covariance matrix, P; see
table 1). If the major axis of G is misaligned with the di-
rection of selection b, evolution should proceed away
from the direction of selection and toward axes of greater
covariance (Schluter 1996). Indeed, measures of within-
population standing variance have been found to predict
divergence among taxa or populations in a variety of or-
ganisms (Schluter 1996; Chenoweth et al. 2010; Costa e
Silva et al. 2020; Hangartner et al. 2020; Opedal et al. 2023;
Walter 2023), although counterexamples exist (Henry and
Stinchcombe 2023a).

Although much of the above work is focused on genetic
variance, it is important to realize that to the extent selec-
tion acts on variation, it will act through the phenotypic
variance P. Theory predicts that natural selection can
change P and G, in particular with directional selection re-
moving variance and nonlinear selection shaping patterns
of covariance (Jones et al. 2003). The speed and frequency
at which this happens determines whether and for how long
multivariate variation acts as a constraint versus an adapta-
tion in its own right. This is an open empirical question
(Svensson et al. 2021). Thus, cases where variation is
aligned with observed divergence in means may provide ev-
idence of variational constraints or of natural selection’s
ability to shape variation (Schluter 1996).
Inferences of the shape of multivariate selection provide
one step toward disentangling these interpretations (Hohen-
lohe and Arnold 2008; Punzalan and Rowe 2016; but see
Henry and Stinchcombe 2023b), although estimates of con-
temporary selection carry their own limitations when
interpreting historical adaptation (Grafen 1988). Alterna-
tively, some studies have examined how estimates of within-
population variation (either phenotypic or genetic) have
themselves changed during adaptation (McGlothlin et al.
2018, 2022; Costa e Silva et al. 2020; Hangartner et al.
2020), in some cases finding support for conserved patterns
of covariation consistent with hypotheses of constraint.
Natural systems that show repeated adaptation to a com-
mon environmental gradient (Bolnick et al. 2018) provide
an underexplored opportunity to understand the degree
to which phenotypic variation itself evolves during adapta-
tion and may provide insight into variational patterns as
constraint versus variational patterns as an outcome of ad-
aptation itself (McGlothlin et al. 2018, 2022).

Here, we use a replicated system of 16 lake-stream popu-
lation pairs of threespine stickleback (Gasterosteus aculeatus)
to quantify the predictability and repeatability of interpopu-
lation variation in the phenotypic variance-covariance ma-
trix, P. Past work from this system (Stuart et al. 2017) has
shown that evolutionary change across the lake-stream
habitat boundary differs substantially across watersheds
(i.e., the parapatric lake-stream pairs), although there is
Table 1: Glossary of terms
Term
 Dimensionsa
 Definition
P
 k# k
 Phenotypic variance-covariance matrix, summarizing variation in trait expression among individuals

G
 k# k
 Genotypic variance-covariance matrix, summarizing variation in additive genetic effects among

individuals

D
 k# k
 Among-population divergence matrix, a variance-covariance matrix summarizing variation in trait

means across populations or lineages

D�z
 k
 Vector of evolutionary change in trait means between two populations, in this case, between lake

and stream habitats within watersheds

DP
 k# k
 Matrix describing change in phenotypic (co)variance between lake and stream habitats, taken

as Pstream 2 Plake
2D�zD�zT
 k# k
 Unit-rank matrix describing the expected change in G or P due to directional selection

dmax
 k
 Leading eigenvector (PC1) of D, a vector describing the combination of traits that vary most in mean

value among populations

pmax
 k
 Leading eigenvector (PC1) of P, a vector describing the combination of traits that vary most among

individuals

b
 k
 Vector of directional selection gradients, describing selection on each trait

oP
 k#k#k#k
 Fourth-order covariance tensor, describing variance and covariance in elements of P among

populations

oDP
 k#k#k#k
 Fourth-order covariance tensor, describing variance and covariance in elements of DP among

freshwater watersheds

o2D�zD�zT
 k#k#k#k
 Fourth-order covariance tensor, describing variance and covariance in elements of 2D�zD�zT among

freshwater watersheds
Note: PC p principal component.
a Where k is the number of traits, in this case, seven.



(Non)Parallel Evolution of P 17
some signature of shared directions of multivariate evolu-
tion (De Lisle and Bolnick 2020). In this article, we take a
comparative approach to understand how multivariate phe-
notypic variance has changed during this radiation. Specif-
ically, we were interested in three questions. First, what is the
extent of variation in phenotypic covariance (P) among
habitats and populations? Second, does within-population
variation captured by P align repeatedly with among-
population divergence? And third, can divergence in trait
means among populations predict change in P itself?
Methods

Stickleback Sampling

The collection, preparation, and collation of these pheno-
typic data are reported in detail in Stuart et al. (2017). In
brief, during the period May to July 2013, adult threespine
stickleback were collected from 16 independent watersheds
on Vancouver Island, British Columbia, Canada (Stuart
et al. 2017). From each watershed, stickleback were sampled
from one lake and its adjoining inlet or outlet stream. In ad-
dition to these 16 lake-stream pairs, marine fish were also
collected from three sites spread around Vancouver Island,
for a total of 35 populations (table S1; tables S1–S4 are avail-
able online). We hereafter use the term “population” to refer
to this lowest level of sampling, “pair” to refer to any individ-
ual lake-stream sample, and “watershed” to refer to the wa-
tershed from which a pair was collected. Thirty-three linear
and meristic measurements, including size, were measured
from each fish (table S2). Digital landmarks were placed
on left-side lateral photographs and on ventral photographs
to measure traits. Left pectoral fins were cut from each fish
and splayed for photography. Standard length and a few
other traits were collected via caliper or dissection. The data
we use for this article are a subset of those used in Stuart et al.
(2017) in that we excluded geometric morphometric data
for the present study a priori, to ease interpretation of sub-
sequent results.

For this study, traits were scaled through natural log
transformation followed by size correction for down-
stream analyses. Size correction was performed by sav-
ing residuals from a linear regression of the natural log
of trait value against the natural log of standard length;
a single regression model for each trait was fitted to main-
tain residual differences among populations. This trait
standardization approach ensures that our interpretation
of changes in variance and associations with evolution of
traits means (see below) is conservative and not an inevi-
table outcome of mean-variance scaling. Nonetheless, sim-
ilar qualitative conclusions were obtained in analyses with-
out a log transformation.
Trait Selection

With a sample of 39–55 individuals per population, we
lacked data to confidently estimate phenotypic covariance
matrices on a population-by-population level using all
33 traits originally measured by Stuart et al. (2017), noting
that a single 33-dimensional covariance matrix contains
561 unique parameters. We thus focus on a subset of traits
measured, targeting seven traits because a seven-dimensional
covariance matrix contains 28 unique parameters. This di-
mensionality ensures the possibility of robust comparison
of P matrices among populations because the most com-
plex model allowing among-population variation in seven-
dimensional P still contains far fewer parameters than the
number of individuals per population. Because we were spe-
cifically interested in how variation evolves during repeat-
able lake-stream adaptation, we focus our analysis on the
seven traits that show the most consistent change across
lake-stream boundary. These seven traits were identified
as the highest loading of the 32 size-corrected traits on prin-
cipal component (PC) 1 of the among-pair correlation ma-
trix of phenotypic change vectors (i.e., a matrix describing
the correlations in lake-stream evolutionary change between
different watersheds) describing divergence in means be-
tween lake and stream environments (table S3 from De Lisle
and Bolnick 2020); these traits were body depth, width of the
pelvic girdle, width of the ventral process of the pelvic girdle
(the “diamond”; Stuart et al. 2017), gape width, gill raker
density, caudal depth, and body width. Similar qualitative
conclusions were obtained using an alternative selection of
seven traits based on a priori natural history knowledge
(body depth, pelvic girdle width, gape width, gill raker num-
ber, gill raker length, dorsal spine length, and pectoral fin
width).
Statistical Analysis

Estimation of P. We used a series of multiresponse mixed
effects models to estimate P matrices and assess variation
across the marine-freshwater boundary, across watersheds,
and across the lake-stream boundary within pairs. In stick-
leback, several studies have shown that P and G align. For
example, Schluter (1996) showed that the angle between
the major axis of variation for a five-trait G matrix (gmax) es-
timated from a limnetic freshwater population was only
16 degrees, on average, from the major axis of P matrices
(pmax) calculated from several other freshwater populations.
Schluter (1996) also showed that pmax and gmax made similar
predictions for the observed direction of evolutionary
change. Similarly, Leinonen et al. (2011) found that pmax

and gmax for body shape had a correlation of r p 0:88 and
an angle between them of 26 degrees, suggesting that the
major axes of genetic and phenotypic variation are strongly
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aligned. In general, P and G are typically similar to each
other (Cheverud 1988; Roff 1995; Steppan et al. 2002;
Hohenlohe and Arnold 2008). However, we note that nei-
ther our analysis nor our interpretation of it depend on
the substitution of P for G in that, for example, we do not
use P to make predictions of evolutionary response, and
we formulate our predictions for change in P itself due to
selection.

A major caveat in our estimate of P is that our data came
from wild-caught fish, so observed differences in P could in
part be due to environmental effects or genotype#environ-
ment interaction. This caveat is one shared by most studies
of phenotypic variation, and the alternative—estimates
based on individuals reared in a common environment—
carries its own set of limitations (namely, conflating the
contribution of genotype#environment interaction unless
multiple common gardens are used; de Villemereuil et al.
2016). To ascertain the degree to which environmental ef-
fects may influence P, we reanalyzed a previously published
dataset (Oke et al. 2016) from a common garden experi-
ment that reported traits measured from wild-caught fish
as well as traits measured from individuals from the same
population reared in a laboratory common garden. We
found significant differences between P matrices estimated
from wild versus lab fish (see the supplemental PDF), so in
our analysis of our own dataset we included potential ex-
planatory variables related to environmental variation
and population structure (elaborated below) and emphasize
that interpreting variation in P as evidence of differences in
additive genetic variance would be premature.

Our mixed models to estimate P were of the form

yk,j,i p mk 1 ak,j 1 ϵk,i, ð1Þ

where yk,j,i is the value of the kth trait from individual i in
population j, mk is the grand mean for trait k, ak,j is a ran-
dom effect describing variation in the trait among popula-
tions, and ϵk,i is the residual random effect describing varia-
tion among individuals. Fitting this model entails the
estimation of two categories of random effect covariance
matrices, the G-side covariance matrix of ak,j, which sum-
marizes covariation in trait means across populations (i.e.,
the D matrix; Lande 1979), and the residual covariance ma-
trix of ϵk,i describing among-individual variation and co-
variation in trait values, which is our estimate of P. Note that
because we have only one measurement per individual fish,
this term will also contain measurement error, but since the
fish were all measured the same way, we do not expect this to
contribute in a biased way to any variation in P we may un-
cover. Note also that all of our matrix comparisons accom-
modate uncertainty in our estimates of P (see below).

We fit a series of five models of the general form of
equation (1) but differing in their complexity: (1) a sim-
ple model with a single P matrix estimated, forcing all
populations and habitats to share a single within-population
covariance structure; (2) a model with two separate Ps for
freshwater versus marine environments, corresponding
to a shared P matrix structure across all populations
within each environment; (3) a model with three separate
Ps for lake, stream, and marine fish; (4) a model with a
separate P estimated for each watershed (19 Ps; each
marine population treated as its own watershed); and
(5) a “saturated” model with a separate P estimated for
each population (habitat type #watershed combination
and the three marine populations; 35 Ps). This model
set was created by altering the random effects structure
to estimate separate residual random effect covariance
matrices across different factor levels corresponding to
the models described above.

Finding support for the saturated model and because
we were specifically interested in potential replicated di-
vergence in P matrices between lake and stream habitats,
we then fit separate linear mixed models for each fresh-
water pair of the form

yk,i p mk 1 ϵk,i,

where we compared a model with separate residual co-
variance matrices of ϵk,i for lake and stream environments
to a reduced model with a common within-pair P matrix.
This allowed us to assess statistical significance of lake-stream
divergence in P for each freshwater watershed. All models
were fitted by Markov chain Monte Carlo (MCMC) using
uninformative priors in MCMCglmm (Hadfield 2010), and
deviance information criteria (DIC) were used to rank candi-
date models. Model convergence was confirmed by lack of
trends in the Markov chain as well as low estimated autocor-
relation in the posterior, for both the simple and the saturated
models. All of the subsequent matrix comparisons (described
below) were performed on the posterior distributions of P to
account for uncertainty in our estimates.

Describing Variation in P. While the model comparison
approach described above can indicate whether there is
statistical support for variation in P, other multivariate
approaches are required to understand the nature of any
variation that is found. We took two general approaches.

First, we performed pairwise comparisons between
matrices of interest by calculating (i) the vector correlation
of the leading eigenvector of each matrix and (ii) Krza-
nowski’s shared subspace (Krzanowski 1979), which identi-
fies the degree to which the parts of multivariate trait space
that contain most of the variation are shared between two
matrices (Aguirre et al. 2014). This is calculated by summing
the eigenvalues of S, where

S p ATBBTA ð2Þ
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and where A and B are matrices that contain a subset of
eigenvectors of the two P matrices. A subset of three
dimensions was chosen because this is the maximum
number of dimensions that can be retained for a compar-
ison of seven-dimensional covariance matrices (k less than
or equal to n/2; Aguirre et al. 2014). This approach allows
a bounded sum for the eigenvalues of S ranging from 0 to
3, representing no and complete shared subspace, respec-
tively. We chose to retain as many dimensions in S as pos-
sible given that we also compute the vector correlations
between the leading eigenvectors of the matrices being
compared. We used these pairwise approaches to compare
the following matrices: (1) the P matrix pooled across all
35 populations and the among-population divergence ma-
trix D, which is a test of the degree to which populations
have diverged in the same set of traits that vary most
across individuals within a population; (2) the pooled
estimates of marine, lake, and stream P; and (3) lake
and stream P for each watershed, where statistical support
for DP (Pstream 2 Plake) was found on the basis of model
comparison of mixed models fitted separately for each wa-
tershed. Finally, because these approaches say little about
the overall size of matrices, we also computed evolvability
(Bolstad et al. 2014) and conditional evolvability (Hansen
and Houle 2008) statistics using random skewers
(Cheverud 1996; Cheverud and Marroig 2007). These sta-
tistics represent the expected evolutionary response in the
direction of selection, where random selection gradients
are sampled in multivariate traits space; the distribution
of evolvability statistics from such an approach provides
an indication of the degree of variational constraints im-
posed by P and can be compared across P matrices.

As a second approach to understanding variation inP, we
performed an analysis of the fourth-order covariance tensor
oP, which summarizes variances and covariances of the
elements of P among populations (Melo et al. 2015). For
seven-dimensional P matrices, oP can be decomposed into
28 dimensions with corresponding eigentensors and their
eigenvalues. These eigentensors can be interpreted like PC
vectors, except that each eigentensor is a 7#7 dimensional
matrix (for seven traits). Each eigentensor can itself be
decomposed into its eigenvectors and eigenvalues (which
can be negative); the leading eigenvector from the first
eigentensor is the linear combination of traits along which
phenotypic variation has changed the most among popula-
tions. Hine et al. (2009) and Aguirre et al. (2014) provide an
overview of this eigentensor approach. To summarize vari-
ation in P captured by this covariance tensor, we plotted the
first two eigentensors and also calculated the vector correla-
tion between oP2max, dmax, and pmax (calculated from the av-
erage of all population-levelPmatrices; nearly quantitatively
identical results are obtained using the pooled estimate of P
from the common model). These vector correlations indi-
cate the degree to which the major axis of variation inP does
or does not align with the major axis of variation among
populations and individuals, respectively.

Testing Predictions for Changes in P. Because lake-
stream population pairs represent replicated cases of re-
cent divergence into disparate environments, we can di-
rectly test microevolutionary predictions for change in P
under directional selection. Specifically, we can describe
the within-generation change in phenotypic variance due
to selection as

DPs p PgP2 ssT, ð3Þ
where g is the matrix of nonlinear selection gradients
and s is the selection differential vector, which is equal
to the change in mean values before and after selection
(Lande and Arnold 1983). Focusing on the effects of di-
rectional selection only, equation (3) can be simplified to

DPs p 2D�zD�z T, ð4Þ
where 2D�zD�z T is a matrix of unit rank (one nonnull di-
mension) describing loss of variance in the direction of
evolution of trait means under directional selection.
Equations (3) and (4) describe within-generation changes
due to selection, yet these changes are expected to at least
partially accrue to the next generation under realistic distri-
butions of allelic affects (Barton 2022). Given the above, we
expect the matrix DP p (Pstream 2 Plake) across lake-stream
habitats to be aligned with2D�zD�z T within a given freshwa-
ter watershed. Expanding out to consider the set of 16 rep-
licate freshwater watersheds, we expect the covariance
tensors oDP and o2D�zD�zT to be aligned if adaptive divergence
in trait means drives variation in phenotypic covariance
(Hine et al. 2009). Thus, we compared leading eigentensors
of these two covariance tensors oDP and o2D�zD�zT and gener-
ated a null distribution of o2D�zD�zT for assessment of statisti-
cal significance by sampling random D�z vectors.
Environmental Predictors of Changes in P. Finally, we ex-
amined several potential environmental correlates that
we expected could predict variation in P. Specifically, given
that much variation in P occurred at the level of lake-stream
pair, we explored how watershed-specific measures of lake-
stream divergence may explain variation in change inP cap-
tured by three possible metrics: the norm of the matrix
DP p (Pstream 2 Plake), the norm of DP standardized by
the average size of P, and Krzanowski’s shared subspace
(i.e., sum of eigenvalues of matrix S; eq. [2]). We explored
how these measures of lake-stream change in P correlate
with measures of migration (average migration rate, average
number of migrants, and average inferred population size,
divergence time) and ecological differentiation between



20 The American Naturalist
lakes and streams captured by the length of the vector de-
scribing change in multivariate ecology between lakes and
streams. These genetic and environmental measures were
drawn from Stuart et al. (2017). We examined Pearson
correlations between these variables but did not proceed
with more sophisticated analyses, as there was little indica-
tion of environmental correlation with variation in P when
examining posterior modes of the above metrics.

Complete R script and data to reproduce all analyses
and figures have been deposited in Zenodo (https://doi.org
/10.5281/zenodo.10512483).
Results

Model rankings indicate statistical support for variation
in P at all levels of analysis; the highest-ranked model
includes variation in P matrices among all 35 popula-
tions (table S3). The same overall conclusions were obtained
in an analysis excluding the three marine populations.
Thus, the model rankings indicate significant variation in
phenotypic covariance structure between marine and fresh-
water, across freshwater watersheds, and at the lowest level
of replication, the watershed#habitat population. Pooled
estimates of P from each of lake, stream, and marine
habitats are plotted in figure 1. Although we find statistical
support for divergence in these pooled P matrices, P was
generally similar among lake, stream, and marine environ-
ments, in terms of both Krzanowski subspace comparisons
(fig. S1; figs. S1–S5 are available online) and evolvability
metrics, although there was some evidence of greater
evolvability in the pooled estimate of P from marine popu-
lations (fig. S2). Consistent with this finding, we found ev-
idence of increased size of marine P in a linear model with
the total size (trace) of population-specificP as the response
variable and habitat type (lake, stream, or marine) as a fixed
effect (t p 2:999, P p :00521, df p 32; we found no ev-
idence of a difference between the average size of lake and
stream P in the same analysis: t p 2:278, P p :78).

We found strong alignment between the D matrix de-
scribing covariance in mean trait values among populations
and the pooled estimate of within-population P from
our common model, both for association of leading eigen-
vectors (vector correlation p 0:91, 95% credible interval
for jrj p 0:83 to 0:97; beta distribution squared P for
correlation p :0017; Watanabe 2023; fig. 2) and for shared
Krzanowski subspace (sum of eigenvalues of S p 2:58,
95% credible interval p 1:99 to 2:85; fig. 2). This indicates
that the primary axes of phenotypic variance are nearly
completely shared both among individuals within popula-
tions and among population means regardless of habitat.
The lake and stream P matrices tended to be more similar
to each other than to the marine P matrix in our estimates
ofP from the habitat-specific (3P) model (figs. 1, S1). How-
ever, most of the variation in P occurs across freshwater
populations and watersheds, as illustrated by the first two
eigentensors of oP (fig. 3), indicating that divergence across
freshwater populations in both lake and stream environ-
ments is unique from variation in marine P.

We found no evidence of a strong association between
oP2max, the major axis of variation in P among populations,
and dmax , the leading eigenvectors of the D matrix (vector
correlation p 0:32, 95% credible interval p20:57 to 
0:73, beta distribution P for squared correlation p :44;
Watanabe 2023), indicating that although phenotypic vari-
ation among individuals within populations tends to corre-
spond to the pattern of divergence among populations
(fig. 2), variation of phenotypic covariance structure among
populations does not occur in these same combinations of
traits. Moreover, oP2max explained relatively little varia-
tion in population means summarized by the D matrix
(10.8%, 95% credible interval p 2:1% to 41:8%), and pro-
jecting D onto oP indicates that the directions of diver-
gence among populations does not explain much of the
population-to-population variation in P (only 0.012% of
the variance inP). To appreciate these findings, we can con-
sider the loadings for the principle components of pheno-
typic variation for the traits that load most and least strongly
on pmax. Figure 4A and 4C show the two traits that load
most strongly on PC1 of the average P matrix (taken across
all freshwater and marine populations), body width and
pelvic girdle diamond width. These two traits tend to be
strongly correlated (see also fig. 1). Figure 4C shows not only
alignment of average P and the D matrix but also relatively
low variation in covariance across populations, as illus-
trated by the low loadings of these traits on oP2max. In
contrast, figure 4B and 4D show the two traits that load least
strongly on this component, gill raker density and caudal
depth. These two traits have low correlations with each
other (figs. 1, 4B). Although PC1 of D and average P are
aligned here despite low loadings, there is substantial pop-
ulation variation in the orientation and size ofP, reflected in
the high loadings of these two traits on PC1 of the first
eigentensor of oP (fig. 4D). Thus, these data indicate pat-
terns of strongly conserved covariance structure within
and among populations in some suites of traits (fig. 4A,
4C), along with divergence in covariance for ecologically im-
portant traits that are less strongly integrated (fig. 4B, 4D).

In our test of quantitative genetic predictions for change
in P, we found a striking relationship between variation in
lake-stream 2D�zD�z T, the matrix describing expected
change in variance due to directional selection, and lake-
stream DP. That is, the correlation between the leading
eigenvector of the first eigentensor of oDP and o2D�zD�zT is
near 1 and highly significant (vector correlation p 0:96,
resampling P ! :0001, beta distribution P for squared
correlation p :00015; Watanabe 2023; fig. 5), indicating

https://doi.org/10.5281/zenodo.10512483
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that variation in DP among freshwater watersheds was
greatest in the direction of trait space where the average
change in means also varied most. Moreover, 33% of the
variation in DP can be explained by variation in 2D�zD�z T

(P ! :0001; fig. 5). Thus, variation across watersheds in
the change in P between lake and stream environments is
predicted by variation in evolution of mean trait values
across these watersheds. This is consistent with multivariate
quantitative genetic expectations (Lande 1980, 1984; Phillips
and Arnold 1989) and indicates that variation in change ofP
between lake and stream environments matches variation in
evolutionary change in means between these environments
across watersheds. Thus, among-watershed differences in
DP are predicted by among-watershed differences in D�z, al-
though we note that this association cannot rule out the pos-
sibility that D�z was influenced by DP rather than vice versa.
Body Depth

Pelvic Width

PG D Width

Gape

Raker Density

Caudal Depth

Body Width
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Stream
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Figure 1: Estimates of seven-dimensional P matrices across marine, lake, and stream freshwater environments. Shown are the posterior
modes from the habitat-specific (3 P) model.
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We next explored within-watershed predictions, focusing
only on watersheds where there was statistical support for
change in P between lake and stream environments (to
avoid interpreting noise). We identified four watersheds
where there was robust support for lake-stream divergence
in P, based on DDIC 1 7 (table S4). For each of these four
watersheds, we found significant change in phenotypic var-
iance between lake and stream populations in the direction
of evolution of trait means, as captured by the projection
vT
2D�zD�zTDPv2D�zD�zT , where v2D�zD�zT is the eigenvector associ-

ated with the most negative eigenvalue of the matrix
2D�zD�zT (fig. 6; Beaver, Bayesian P p :046; Boot, Bayesian
P p :034; Moore, Bayesian P p :001; Roberts, Bayesian
P p :019). These effects are visible by change in the 95% bi-
variate (co)variance ellipses for the two traits that load most
strongly onD�z for each watershed (fig. 6). Thus, we find sig-
nificant change in variance in the combination of traits cap-
tured by D�z in populations where there is strong statistical
support for DP. We note that although theory predicts a re-
duction of variance, we cannot assess this because we do not
know the polarity of lake-stream change. For reference, per
theory, we found no consistent patterns of change in evol-
vability between lake and stream P in these four watersheds
(fig. S4) or change in variance along other eigenvectors of
2D�zD�zT (fig. S5; Phillips and Arnold 1989).

We found little evidence that multivariate lake-stream
divergence in ecology explained observed variation in P
across the habitat boundary (in terms of the norm of
A
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lake-stream DP [r p 20:24, P p :36], the norm of DP
standardized by the average size of P [r p 0:01, P p :96],
or Krzanowski’s shared subspace [r p 0:035, P p :89]).
We also found little evidence that measures of genetic pop-
ulation structure explained variation in P, for (i) the norm
of lake-stream DP (lake-stream divergence time: r p
20:38, P p :14; number of migrants: r p 0:12, P p :66;
migration rate: r p 0:0005, P p :99; population size:
r p 20:03, P p :89), (ii) the norm of DP standardized
by the average size of P (lake-stream divergence time:
r p 20:43, P p :09; number of migrants: r p 0:25,
P p :35; migration rate: r p 0:13, P p :63; population
size: r p 0:026, P p :92), and (iii) Krzanowski’s shared
subspace (lake-stream divergence time: r p 0:15, P p
:56; number of migrants: r p 20:037, P p :89; migra-
tion rate: r p 0:0017, P p :99; population size: r p
20:06, P p :82).
Discussion

We analyzed multivariate phenotypic variation across
35 populations of threespine stickleback (Gasterosteus
aculeatus) to understand how phenotypic covariance
has changed during replicated adaptation to freshwater en-
vironments (Stuart et al. 2017). We found evidence of sig-
nificant divergence inPmatrices across populations against
a background of what is, largely, shared covariance struc-
ture. The major axis of phenotypic variance is strongly
aligned across populations and is further aligned with di-
vergence in mean trait values across populations, with traits
such as body width and pelvic girdle width showing stable
patterns of covariance. Change in phenotypic variance, in
contrast, has occurred in suites of traits that tend to exhibit
low correlations with other traits. Simple microevolution-
ary predictions for evolution of phenotypic variance are
surprisingly successful in predicting change in P matrices
across lake and stream environments within watersheds, in-
dicating that watershed-specific changes in the covariance
of ecologically important traits, such as gill rakers and cau-
dal depth, have occurred during adaptation to disparate
freshwater environments.

By far, most variation in phenotypic (co)variance oc-
curred between freshwater and marine habitats and
among freshwater watersheds; we found less evidence of
consistent differences between lake and stream Pmatrices.
This suggests that variation in P was largely idiosyncratic
and nonparallel across the replicated instances of adaption
to lake and stream environments, consistent with non-
parallelism in means observed in the same set of popula-
tions (Stuart et al. 2017; De Lisle and Bolnick 2020). This
is illustrated in our analysis of the covariance tensor de-
scribing among-population variation in P, where disper-
sion along the first two eigentensors illustrates the sub-
stantial variation in P and lack of consistent differences
between lakes and streams. This result is also demonstrated
in our comparison of candidate models where the most
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across populations. These two tensors capture approximately 50% of the variation in P. Points show population-specific estimates from the
population-specific model; colors and convex hulls show habitat types; and lake and stream populations from the same watershed are
connected by dashed gray lines.
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dramatic drops in information criteria were observed
when including separate P matrices for freshwater versus
marine and, subsequently, for separate watersheds. Marine
populations exhibited less variation in P and exhibited
tighter covariance in traits related to body shape and sub-
stantially more variance in gill raker density relative to fresh-
water populations. However, it is notable that despite these
disparities in P, our pooled estimates of marine, lake, and
stream P matrices were similar in structure.

Although we found little evidence of consistent parallel
change inP across the lake-stream boundary, within-watershed
differences in lake and stream Pmatrices were in some cases
substantial. Moreover, these differences in lake and stream
P within watersheds were predictable based on simple
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quantitative genetic predictions for within-generation
change in phenotypic variance due to selection. More pre-
cisely, variation in lake-stream DP across watersheds was
predictable based on variation in lake-stream D�z, indicat-
ing that seemingly idiosyncratic variation in P is in fact ex-
plainable based on nonparallel evolution of population
means across watersheds.

This variation in DP indicates that changes in phenotypic
covariance structure occur in the same suites of traits that
show greatest divergence in mean value across lake and
stream habitats within specific watersheds. Such within-
watershed predictability of change in P does not scale up
to generate consistent differences in average lake and stream
P matrices across watersheds, however, likely because of
the substantial variation in multivariate lake-stream differ-
ences in environment. That is, in analyses of trait means,
Stuart et al. (2017) found little evidence of repeatable lake-
stream divergence. Applying another analytical approach
to the same data, De Lisle and Bolnick (2020) supported
the conclusion that divergence across lake-stream habitat
is more complex than can be described by a single dimen-
sion of parallel evolution (i.e., the lake-stream axis). Our
study suggests that this among-watershed variation in the
direction of multivariate evolution has driven subsequent
change in phenotypic covariance structure across this suite
of populations—a continuum of (non)parallelism in P
matrices.

Noteworthy in this regard is that our analysis is based on
a subset of traits that have contributed most to parallel evo-
lution of multivariate mean phenotypes in this suite of pop-
ulations (De Lisle and Bolnick 2020); even with this focus on
the traits contributing most to parallel evolution, we found
substantial variation across watersheds in how the P matrix
changed between lake and stream environments.

We have focused on understanding variation in patterns
of phenotypic (P), rather than genotypic (G), variance. A
justification for this is that selection acts on phenotypic var-
iance (and thus P is of interest in its own right) and that
change in P must be shaped by the same phenomena that
affect evolution of G (Cheverud 1988). Nonetheless, a ma-
jor caveat is that we cannot account for changes in P in-
duced by variation in environmental (co)variance across
habitats and populations, and moreover P matrices may of-
ten exhibit more dimensions of meaningful variation than
G. Indeed, reanalysis of a previous study of some of the
same populations (Oke et al. 2016) indicates that P matrix
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estimates can differ between wild-caught fish and those
reared in the laboratory, suggesting an important contribu-
tion of environmental effects on P in stickleback (although
they share similar structure; see the supplemental PDF). We
found no evidence that environmental differences or differ-
ences in population structure between lake and stream
habitats explained lake-stream divergence in P, suggesting
that environment may not affect P. Furthermore, a study
in Baltic sea stickleback reported G of lower rank (fewer
dimensions of meaningful variation) than P, suggesting that
small eigenvalues ofPmay be associated with dimensions of
null genetic variance (Leinonen et al. 2011). Future studies
examining the contribution of genotype#environment in-
teraction to patterns of phenotypic variation in this radia-
tion would be informative.

Bias in response to selection produced by multivariate ge-
netic constraints can generate an association between major
axes of genetic variance and mean population divergence
(Schluter 1996; Blows and Higgie 2003; McGuigan et al.
2005; Chenoweth et al. 2010; Punzalan and Rowe 2016;
McGlothlin et al. 2018). More generally, there is a long-
standing empirical finding that across traits within a study
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system, measures of within-population variation coincide
with among-lineage divergence (Kluge and Kerfoot 1973;
Bolstad et al. 2014; Houle et al. 2017; Opedal et al. 2023).
An underappreciated (although noted by Schluter and
others; e.g., Punzalan and Rowe 2016) alternative interpreta-
tion of such patterns is that selection shapes evolution of
both trait means and genetic variance on timescales relevant
to produce a correspondence between the two. Our finding
of an association between variation in D�z and DP supports
this alternative interpretation of patterns of evolution along
genetic lines of least resistance: selection may be shaping
both standing phenotypic variance and divergence in trait
means across lake and stream environments in our study. Al-
though we cannot exclude a likely role for genetic drift in
contributing to divergence in P matrices across this set of
populations, we note that we found no evidence for an asso-
ciation between change in P and population size of lake-
stream pairs.

Our findings that multivariate variation largely aligns
with divergence concomitantly with subtle changes in
(co)variance is partly consistent with patterns found in the
Anolis adaptive radiation. McGlothlin et al. (2018, 2022)
found that evolution of G in Anolis occurred primarily in
the same combinations of traits that varied most among in-
dividuals and among populations. This differs from our
finding, where we observe that most of the divergence in
P matrices occurs largely orthogonally to pmax or dmax, indi-
cating that most change in variance occurs in different suites
of traits than those involved in divergence within and
among stickleback populations. However, consistent with
our finding, McGlothlin et al. (2022) found that predictable
features ofGmatrix evolution inAnolis ecomorphs have oc-
curred primarily in suites of traits that show less integration
with other traits. This is consistent with our findings, where
changes in sticklebackP occurred in suites of traits that were
not tightly integrated.

We found that D�z across lake-stream pairs predicts var-
iation in change in P between lake and stream habitats. This
is consistent with microevolutionary predictions for change
in P due to directional selection, although it is unclear what
environmental factors may have contributed to change inP.
Moreover, we emphasize that we cannot exclude environ-
mentally induced plasticity that contributed to observed var-
iation in P, as well as that environmental variation could
contribute to observed correspondence between D�z and
DP. That is, environmental effects could drive variation in
both D�z and DP, contributing to the observed relationship
between the two. However, we found no evidence that DP
was related to environmental distance between lake and
stream habitats.

Our work paints a nuanced picture of divergence in phe-
notypic variation in stickleback. On the one hand, patterns
of variation of tightly covarying traits, such as pelvic traits
and body width, remain deeply conserved within and across
populations. On the other hand, some combinations of traits
show change in (co)variance between habitats that is pre-
dictable from simple quantitative genetic theory. Thus,
our study adds to a growing body of work (Hohenlohe
and Arnold 2008; Punzalan and Rowe 2016; McGlothlin
et al. 2018, 2022) that indicates a potential role for selection
in contributing to apparent correspondence between within-
population variation and among-population divergence.
Our work highlights how both conservation and diver-
gence of multivariate variation can each contribute to adap-
tive radiation.
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“What a wonderful chemistry these animals must possess to enable them to convert refuse animal matter into the delicious white muscle
which most of us relish so much! And here it may be remarked that crustaceans are among the few scavengers whose flesh is prized for food
by man. Most scavengers are of benefit to man only by aiding in keeping the air and the waters pure.” Figured: “American Lobster (Homarus
americanus).” From “A Few Words About Scavengers” by Sanborn Tenney (The American Naturalist, 1877, 11:129–135).
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