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A B S T R A C T   

Uncertainty quantification plays a pivotal role in advancing the development of reliable and high-performance 
material designs via multiscale materials modeling. This study focuses on modeling the uncertainty of meso‑scale 
mechanical properties, e.g. modulus of elasticity and yield strength of Ti-7Al, by incorporating the inherent 
randomness of substitutional atoms of the alloy and its microstructural texture. A molecular dynamics approach 
is employed to probe the epistemic uncertainty of single-crystal properties. Moreover, the aleatoric uncertainty is 
quantified using the experimental microstructural texture data of a previous investigation. The propagation of 
the epistemic and aleatoric uncertainty on the homogenized properties is investigated using an analytical un
certainty quantification method. Subsequently, the Ti-7Al alloy microstructures are designed to improve 
meso‑scale mechanical properties under uncertainty by integrating the analytical method into the optimization 
scheme.   

1. Introduction 

Multi-scale computational approaches provide a pathway for pre
dicting and comprehending the mechanical, thermal, electrical, chemi
cal, and optical properties of various material systems. A significant 
portion of these methods relies heavily on molecular dynamics (MD) 
simulations, which originated in the late 1950s [1]. Moreover, the 
introduction of the Integrated Computational Materials Engineering 
(ICME) paradigm has prompted a substantial focus on developing 
multi-scale computational models. These models are designed to capture 
the intricate connection between material response and the foundational 
microstructure [2]. Essential parameters for these material models are 
derived from the homogenization of single-crystal properties over a 
representative volume element (RVE) that can be estimated via experi
ments. However, microstructures inherently possess stochastic charac
teristics. To elaborate, specimens produced through identical 
manufacturing processes exhibit variations in microstructure, both 
within a single specimen and across all specimens. A foundational aspect 
of ICME is uncertainty quantification (UQ), entailing the creation of 
mathematical tools to assess the impact of microstructural stochasticity 
on the anticipated engineering properties [3]. There are several UQ 
methods to determine the uncertainty of homogenized microstructural 
properties due to the fluctuations of its parameters, including spectral 

decomposition [4], Monte Carlo simulation [5–8], stochastic collocation 
[9], Kriging [10], and polynomial chaos expansion [11,12]. This present 
study focuses on quantifying the uncertainty of single-crystal properties 
(epistemic uncertainty) of Ti-7Al alloy using MD simulations and its 
propagation on microstructural properties. In addition, this study 
models the measured aleatoric uncertainty of microstructural texture 
using a finite element discretized form of the orientation distribution 
function. This investigation marks a pioneering endeavor in designing 
microstructures using an analytical UQ method to aim for the exact 
solution, integrating single crystal-level epistemic uncertainty arising 
from the randomness of substitutional atoms with microstructure-level 
aleatoric uncertainty stemming from the inevitable stochastic varia
tion of the texture. 

At present, approximately half of the global titanium production is 
allocated to the aerospace sector [13–15]. Titanium alloys are primarily 
recommended due to their commendable specific compatibility of 
modulus, greater cyclic fatigue resistance, and resistance against 
corrosion [16]. A persistent concern revolves around the behavior of α/β 
titanium alloys under cold dwell cyclic fatigue conditions characterized 
by cyclic loading with pauses at normal temperature. The majority of 
commercially employed titanium alloys incorporate approximately 6 
wt. % aluminum [17]. Few uncertainty studies on α/β titanium alloys 
have been conducted previously, e.g. Worsnop et al. [18] examined 
crystallographic ordering tendencies during aging at 550 ◦C in both 
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binary Ti–Al and Ti–Sn alloys. 
Comprehensive characterization of the α-phase microstructures was 

conducted using advanced techniques, such as transmission electron 
microscopy, scanning electron microscope, and low-angle X-ray scat
tering with coupling tensile testing. This multifaceted approach aimed 
to re-evaluate the property trade-offs inherent in each alloy system. Ding 
et al. [19] conducted an extensive investigation utilizing molecular 
dynamics along with cohesive finite element method to analyze crack 
propagation in B2-NiAl alloy. Their study employed a cohesive element 
model incorporating material input parameters derived from MD sim
ulations, aiming to comprehend both micro and macro crack propaga
tion mechanisms. An investigation by Acar et al. [20] focused on the 
inverse problem of discerning microstructural stochasticity in light of 
fluctuations in meso‑scale material properties. This was achieved 
through the creation of an analytical UQ model, denoted as ‘AUQLin’. 
Another study was conducted to ascertain the parameters of slip systems 
inherent in Ti-Al alloys, specifically Ti-7Al and Ti-0Al, by Acar et al. 
[21]. This study involved the analysis of the experimental results of 
tension and compression, focusing on the true stress-true strain curves of 
Ti-7Al and Ti-0Al. The microstructure was meticulously characterized 
by utilizing a rate-independent single-crystal constitutive model and the 
Orientation Distribution Function (ODF) approach, and the UQ formu
lation was employed for a thorough investigation of crystal plasticity. 
However, the optimal microstructure designs across various challenges 
are also notably influenced by epistemic uncertainty related to the 
variations of the parameters and predictions of numerical models [22]. 
Tran et al. [23] conducted a study examining the utilization of 
multi-level sampling techniques, namely multi-level Monte Carlo 
(MLMC) and multi-index Monte Carlo (MIMC) to examine the effects of 
microstructural variations in polycrystalline materials on the forecasts 
of homogenized material properties. Thillaithevan et al. [24] proposed a 
methodology to integrate material uncertainty arising from 
manufacturing defects in additive manufacturing into a functionally 
graded lattice optimization framework. This framework introduced a 
perturbation parameter to modify the design variables of microstruc
tures, accommodating a wide range of uncertain material properties. 

In the exploration of simulating the inherent stochasticity within 
material systems, there has been an adequate gap in addressing the 
epistemic uncertainty because of the ’lack of knowledge.’ Specifically, 
the examination of uncertainty stemming from computational models 
remains significantly under-explored within the realm of computational 
modeling and microstructure design. Hence, the fluctuations are regar
ded as inherent uncertainties in the modeling process, when deter
mining the mechanical characteristics of the Ti-7Al alloy [25–27]. The 
present study focuses on quantifying variations of mechanical properties 
under the uncertainty of single-crystal properties arising from the 
randomness of substitutional atoms and microstructural texture as a 
result of the fluctuations during processing. The classical atomistic 
approach is employed to determine the epistemic uncertainty of 
single-crystal mechanical properties (Young’s modulus and yield 

strength) of Ti-7Al alloy where the force-field is described by the second 
nearest-neighbor modified embedded atom method (2NN MEAM). Next, 
a finite element discretization-based homogenization approach is used 
to obtain the volume-averaged (meso‑scale) properties of microstruc
tures with consideration of previously mentioned stochastic 
single-crystal properties, and a stochastic representation of the micro
structural texture descriptor, ODF. The aleatoric uncertainty related to 
ODFs arises from texture variations observed among specimens under
going identical processes. This investigation was performed in our prior 
research [3], where measurements were conducted on various 
beta-forged Ti-7Al samples subjected to identical compression and 
annealing procedures. These measurements were obtained from diverse 
regions within the samples. Probability distributions of the pole figures 
were derived from these scans, revealing a predominantly Gaussian 
distribution pattern. Furthermore, the present work performs micro
structure design under uncertainty to obtain optimum meso‑scale 
properties by integrating the analytical UQ approach, providing the 
exact solution to the probability distribution representations of prop
erties. Finally, the study is extended to meso‑scale properties involving a 
non-linear relationship with the underlying microstructural texture 
using the transformation of random variables approach within the 
analytical UQ framework. 

The organization of the paper is as follows: Section 2 discusses the 
mathematical methodology behind the computation of single crystal 
stress-strain behavior and homogenized microstructure properties with 
associated uncertainty quantification and propagation. Following this, 
Section 3 elaborates on the resultant outcomes and proposes solutions 
for microstructure design. Finally, Section 4 upholds the comprehensive 
conclusions drawn from this study. 

2. Methodology 

2.1. Computation of single-crystal properties 

The alloy under investigation is Ti-7wt %Al (Ti-7Al), a recognized 
α-Ti binary alloy distinguished by its hexagonal close-packed (HCP) 
crystal structure. In this particular investigation, the lattice constants of 
a = b = 2.932 Å and c = 4.684 Å are employed to construct the unit cell 
of Ti-7Al [28]. Afterward, ~12 % Al atoms are randomly located on the 
crystal to ensure a perfectly substitutional alloy. The consequent alloy 
structure takes the form of a cuboid, as depicted in Fig. 1, with final 
dimensions of 80.63 Å × 85.49 Å × 81.97 Å. Utilizing a consistent 
approach, 160 different samples are prepared for MD studies by keeping 
the indistinguishable dimension while introducing random variations in 
the positions of Al atoms on the α-structure. The force field of the atoms 
of the single-crystal structure has been defined by 2NN MEAM potential 
parameters [29]. MEAM represents a reactive semiempirical many-body 
potential grounded in density functional theory. Since its inception in 
1992, the MEAM potential has proven effective in computing the 
physical characteristics of numerous crystal structures, including 

Nomenclature 

A Orientation distribution function (ODF) 
Ac Arrhenius constant 
B Bulk modulus 
Cmax & Cmin Maximum and minimum values of the screening range 
Ea Activation energy 
Ec Cohesive energy 
fαβ Atomic force between α and β 
Fx Cumulative distribution function 
fx Probability density function (PDF) 
Jn Jacobian determinant of the nth element 

mα Mass of the atoms 
R Universal gas constant 
rαβ Atomic distance between α and β 
re Equilibrium nearest-neighbor distance 
vα Velocity of the atoms 
α & β Atomic indices 
μ Mean of any variable 
ρo Ratio between atomic electron density scaling factor 
Σ2 Variance of any variable 
χ(r) Orientation dependent single-crystal property 
Ωα Volume of atom α  
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face-centered cubic (FCC), body-centered cubic (BCC), HCP, and dia
mond cubic, within unary, binary, ternary, and more complex metallic 
systems [30–34]. 

E =
∑

i

(

F(ρi) +
1
2

∑

j∕=1
S

(
rij

)
φ

(
rij

)
)

(1) 

The fundamental expression for total energy for any atom of i can be 
described as the summation of the embedding function and traditional 
pair-interaction of atoms i and j which has been upheld in Eq. (1); where 
ρi, rij, S(rij), and φ(rij) represent background electron density, distance, 
screening function, and interaction potential respectively between atom 
i and j. Interested readers are referred to Refs. [29,30] for more details 
about the inter-atomic potential of the metallic-alloy. The 2NN MEAM 
potential parameters of α binary Ti and Al system are listed in Table 1. 

In each computation, the periodic boundary conditions are applied 
to all three directions of the samples, effectively diminishing the influ
ence of the boundary/edge effect on the structure. Before subjecting the 
structures to a constant strain rate, a comprehensive energy minimiza
tion process is undertaken to achieve equilibrium among all atoms. The 
minimization involves a two-stage combined optimization method. First 
and foremost, the NVT (stands for the number of atoms, volume, and 
temperature of the structure) canonical ensemble is conducted for a total 
time of 5 picoseconds. This is aimed at the determination of the positions 
and velocities of each atom using non-Hamiltonian equations in the 
Nose-Hoover method at every time step. Following this, the simulation is 
extended for an additional 50 picoseconds, utilizing the NPT (stands for 
the number of atoms, pressure, and temperature of the structure) 
isothermal-isobaric ensemble where the objective of this phase is to 
resolve the kinematics parameters, such as linear/angular positions, 

orientations, and velocities of all atoms at every time step. The temporal 
resolution for both ensembles is set at 0.001 ps. Upon finishing these two 
successive computation steps, the sample nano-structures achieve a state 
of near equilibrium concerning pressure and temperature. 

The NPT ensemble is employed to keep constant temperature and 
pressure in conjunction with the imposition of uniaxial deformation 
along the [1 0 0] direction, featuring a specified strain rate of 1010 s−1 at 
a temperature of 300 K. The assessment of structural stress corre
sponding to the applied strain relies on the application of the virial stress 
theorem [35]. Mechanical stress (σα

ij), as quantified by Eq. (2), derived 
from the virial theorem, involves the computation of stress through a 
functional derivative of the atomistic system’s free energy concerning 
the deformation tensor. In this equation, the symbols i and j denote the 
axes of the coordinate system by taking values 1, 2, and 3. The atomic 
volume, mass, velocity components of α atom in i and j directions, 
interatomic force, and magnitude of distance vector between α and β 
atoms are represented by Ωα, mα, να

i , να
j , f j

αβ and ri
αβ. According to the 

sign convention, a positive stress indicates attraction between particles, 
while a negative stress signifies repulsion. 

σα
ij =

1
Ωα

(
1
2
mανα

i να
j +

∑n

β=1
ri

αβf j
αβ

)

(2)  

2.2. Computation of microstructure properties 

The current study models the crystallographic texture of the Ti-7Al 
microstructure by utilizing the ODFs. This function measures the vol
ume densities of distinct crystallographic orientations within a poly
crystalline material and can be used as the parameter to obtain the 
homogenized properties. Parametrization methods like Rodrigues pa
rameters [36–39] and Euler angles [40–44] are employed to define the 
ODFs. Specifically, a local finite element discretization method for ODFs 
has been applied within the framework of Rodrigues orientation space to 
compute the homogenized properties in this study. The computation of 
homogenized properties involves an integration across the fundamental 
region (Ω), taking into account lattice rotation denoted as R. By 
leveraging the Rodrigues orientation vector (r), the expression of R is 
described in Eq. (3). 

R =
1

1 + r.r
(I(1 − r.r) + 2(r ⊗ r + I × r)) (3) 

The definition of the ODF is articulated in Eq. (4), with regard to 
crystal volume densities that must satisfy a volume normalization 
constraint [45–48]. Upon employing crystal symmetries, the poly
crystalline material’s orientation space can be simplified into a more 
concise subset recognized as the fundamental region illustrated in Fig. 2. 

Fig. 1. (a) Unit cell of α-Titanium and (b) The single-crystal structure of Ti-7Al, green and orange atoms represent Titanium and Aluminum, respectively.  

Table 1 
2NN MEAM parameters of Ti-7Al [29].   

Ti Al Ti-Al 

Ec (eV) 4.87 3.36 −0.26 
re (Å) 2.92 2.86 2.8 
B (1011 Pa) 1.10 0.794 1.426 
d 0.0 0.05 0.5dTi+0.5dAl 

Cmin (Ti–Al–Ti) 1.00 0.49 1.3 
Cmin (Al–Ti–Al) 0.49( = CAl

min)

Cmin (Ti–Ti–Al) 0.46 
Cmin (Ti– Al–Al) 

0.72(=[0.5
̅̅̅̅̅̅̅̅̅

CTi
min

√

+ 0.5
̅̅̅̅̅̅̅̅̅

CAl
min

√

]
2
) 

Cmax (Ti–Al –Ti) 1.44 2.80 2.8 
Cmax (Al–Ti–Al) 1.44 
Cmax (Ti–Ti–Al) 1.44 
Cmax (Ti–Al –Al) 2.88 
ρo 1 1 1( = ρAl

0 /ρTi
0 )
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The discretization of this fundamental region employs the local finite 
element approach featuring N number of independent nodes and Nelm 
number of finite elements, accompanied by Nint number of integration 
points per element. Rodrigues orientation space can be applied for dis
cretization, which proves preferable because of its ability to yield reg
ular geometries [49–52]. Every nodal point within the fundamental 
region mesh corresponds to a distinct ODF value intricately connected 
with the volume density of the associated crystallographic orientation. 
This concise representation facilitates the determination of 
volume-averaged (meso‑scale) material properties of microstructure by 
considering the ODF values at nodal points. 
∫

Ω
Adv =

∑Nelm

n=1

∑Nint

m=1
A(rm) wm|Jn|

1
(1 + rm.rm)

2 = 1 (4)  

〈χ〉 =

∫

Ω
χ(r)A(r)dv =

∑Nelm

n=1

∑Nint

m=1
χ(rm)A(rm) wm|Jn|

1
(1 + rm.rm)

2 (5) 

Initially, all ODFs defined within the fundamental region must 
adhere to the constraint of volume normalization (unit volume-fraction) 
as delineated in Eq. (4) which can be represented as a linear equation 
qTA=1, in terms of the ODF values defined at nodal points. By utilizing 
the same method, the orientation-dependent homogenized (volume- 
averaged) material property, denoted as 〈χ〉, can be computed using 
single-crystal property values (χ) alongside the nodal point ODFs as 
shown in Eq. (5). This formulation can also be represented as a linear 
equation <χ>=pTA, in terms of the ODF values at nodal points where p 
shows the property tensor with pi = χi(ri)wi|Ji|

1
(1+ri .ri)

2 . 

2.3. Modeling of uncertainty propagation 

First, the uncertainty propagation on the single-crystal properties is 
considered because of the randomness of the substitutional atoms in the 
α-Ti structure. It is primarily defined that the reason for the variations of 
the mechanical properties is the locational variation of Al on the alloy, 
which has been examined through a mathematical expression. This 
variation is classified as epistemic uncertainty. The evaluated elastic 
modulus and yield strength frequency distributions are shown to agree 
with the cumulative distribution function of a Gaussian distribution 
given by Eq. (6), F:ℝ→[0, 1] that satisfies lim

x→−∞
F(x) = 0 and lim

x→∞
F(x) =

1. 

Fx(x) =
1
2

[

1 + erf
(

x − μ
Σ

̅̅̅
2

√

)]

(6) 

Subsequently, the uncertainty propagation on microstructural 
properties is examined with the consideration of stochastic texture and 
single-crystal properties. The vector of ODF mean values, μA is formed at 

k independent nodes, assuming that these ODFs agree with a multivar
iate Gaussian distribution. This assumption is derived based on the 
experimental data of 150 microstructure data samples of the Ti-7Al alloy 
processed with the same parameters, as reported by our group in the 
previous work [3]. Next, the mean and variance of the homogenized 
properties (i.e. elastic modulus and yield strength) of the microstructure 
are determined by Eqs. (7) and (8) where a generic notation, Z is used to 
represent both homogenized elastic modulus and yield strength pa
rameters. However, there is no specific correlation between the 
single-crystal property values and the ODFs that exhibits the null cor
relation coefficient (ρ=0). On the other hand, the normalization 
constraint should be expanded to another variance equation, which can 
be written as Q2Σ2

A = 0, where Q=qT. The formation of the set of 
equations, given in Eq. (9), arises from the incorporation of the uncer
tainty and the corresponding two new constraints for the variance. 

μZ = μPμA (7)  

Σ2
Z = Σ2

Pμ2
A + μ2

PΣ2
A + Σ2

PΣ2
A + 2ρ(μPμA)(ΣPΣA) + ρ2(

Σ2
PΣ2

A

)
(8)  

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
μZ

Σ2
Z

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Q 0 0
μP 0 0
0 Σ2

P μ2
P + Σ2

P

0 0 Q2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

μA

μ2
A

Σ2
A

⎤

⎥
⎥
⎦ (9)  

3. Results and discussions 

3.1. Uncertainty of single-crystal properties 

Uniaxial tension (σ11 ∕= 0, σ22 = σ33 = 0) is applied to 160 samples of 
different single crystal designs to carry out the mechanical properties, 
such as elastic modulus and yield strength for the direction perpendic
ular to zigzag and armchair directions. Prior to going through the NPT 
tension process, the samples are completely stable in terms of temper
ature and pressure; 5 ps of NVT ensemble has been employed to settle 
down the temperature at 300 K and successively 50 ps of NPT ensemble 
relaxed the samples to keep the zero pressure, which has been illustrated 
in Fig. 3. As a result, the samples are totally prepared for examining any 
further computation. Following the initiation of uniaxial stress at 55 ps, 
the sample began accumulating strain energy, causing the overall energy 
curve to steadily ascend until reaching its peak. It is noteworthy that the 
peaks of the stress and energy curves don’t align simultaneously. The 
stress curve reaches its pinnacle at ultimate strength, while the energy 
curve continues to rise until the fracture of the sample occurred. At a 
constant strain rate of 1010 s−1 (= ε̇̇11 = dε11/dt), the main stress-strain 
simulation is conducted in [1 0 0] direction (ε̈11 = 0, ε22 ∕= 0, ε33 ∕= 0) at 

Fig. 2. Illustration of the finite element discretization approach for the ODFs within the Rodrigues fundamental region for hexagonal crystal (α Ti-7Al) symmetry, 
highlighting the nodes arrangement of the k = 50 independent ODFs in red color. 
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previously achieved constant pressure and temperature through next 30 
ps. The stress-strain curves of all 160 samples can be found in the Ap
pendix. The modulus of elasticity can be evaluated from the slope of the 
linear region of stress versus strain curve; alternatively, E11 = σ̇˙

11/ε̇̇11 
where σ̇˙

11 = dσ11/dt on the stress versus time response curve. The 
examined elastic modulus (E11) values of all samples are within the limit 
of 118.537–129.777 GPa with a mean and standard deviation of 
123.344 GPa and 2.447 GPa, respectively after fitting the cumulative 
Gaussian/normal frequency distribution as shown in Fig. 4(a). On the 
other hand, the yield strength of all samples has been measured from the 
stress-strain response by applying the conventional offset rule. This 
investigation carries out the yield strength of Ti-7Al within the range of 
5.167–5.426 GPa which is further utilized in Eq. (6) in order to deter
mine the mean and standard deviation as illustrated in Fig. 4(b); re
ported as 5.314 GPa and 47.2 MPa, respectively. The comprehensive 
observation from these results can be noted that the frequency distri
butions closely matched with the normal distribution where the elastic 
modulus curves are more aligned compared to the yield strength curves. 

3.1.1. Yield strength at low strain rate 
The investigation of stress-strain characteristics is conducted under 

elevated strain rates, a constraint inherent in the MD simulation. As a 
result, the recorded yield and ultimate strength values for all samples are 
notably higher. Nevertheless, to align the simulated yield strength with 
the ASTM standard strain rate of 0.015/min, an Arrhenius correlation 
[53], as described in Eq. (10), is utilized to scale down the yield strength. 
Arrhenius correlation provides a relation between flow stress (σ) and 
strain rate (ε̇̇) at a given temperature. More specifically, the strain rate 
sensitivity (m) serves as a measure of how a material responds to vari
ations in strain rate within the plastic deformation region where mate
rials perform liquid-like behavior. This sensitivity parameter, denoted 
by Eq. (11), has been transformed into a linear expression by applying 
the natural logarithm to both sides of the Arrhenius equation. Next, Eq. 
(12) has been employed to ascertain the strain rate sensitivity of Ti-7Al, 
involving four stress-strain simulations conducted at distinct strain rates 
5 × 1010, 1 × 1010, 2 × 109 and 4 × 108 s − 1, each corresponding to yield 
strengths values of 6.220, 5.307, 4.702, and 4.347 GPa, respectively. 

Fig. 3. (a) Temperature and pressure responses, (b) Total energy and applied stress along [1 0 0] direction with respect to the time. The (0 1 0) plane view of a 
random sample on loading has been illustrated at the stress curve. 

Fig. 4. Cumulative frequency distribution of simulated and curve fitted (a) elastic modulus and (b) yield strength of total 160 samples.  
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This resulted in a strain rate sensitivity of 13.459, illustrated in Fig. 5(a), 
which is subsequently employed to extrapolate the simulated yield 
points to the standard strain rate, assuming uniform sensitivity across all 
samples. The yield strengths at lower strain rates are then plotted to 
determine the mean and standard deviation using the cumulative 
normal distribution function. The investigation reveals a yield strength 
range between 504.173 and 529.457 MPa, with a mean and standard 
deviation of 518.516 and 4.611 MPa, respectively. Notably, Fig. 5(b) 
demonstrates a close alignment between the actual and cumulative 
Gaussian frequency curves. 

ε̇̇ = Ac σ 1
m e

(

−
Ea
RT

)

(10)  

ln(ε̇̇) = ln(Ac) +
1
m

ln(σ) −
Ea

RT
(11)  

m =
∂ ln(σ)

∂ln (ε̇̇)
=

ln(σ2) − ln(σ1)

ln(ε̇̇2) − ln(ε̇̇1)
(12)  

3.2. Uncertainty of microstructural properties 

The microstructural characteristics of a material are influenced by 
factors such as single-crystal properties, grain size, grain shape, and 
microstructural texture. In this particular investigation, the focus has 
been narrowed down to examining the impact of single-crystal proper
ties and crystallographic texture on the microstructure, considering 
variations in both parameters. The uncertainty associated with single- 
crystal properties is assessed using MD simulations (as reported in the 
previous section), while the uncertainty related to ODF values is derived 
from our prior research [3]; fluctuations of ~98 % ODF values are 
within 5 % from the mean values according to the corresponding 
experimental data. It is important to note that the uncertainty of all 
ODFs can be represented through a multivariate normal (Gaussian) 
distribution. Matrices representing single-crystal properties and their 
associated uncertainty, crucial for computing homogenized micro
structural properties such as elastic modulus and yield strength, are 
derived using Eq. (9). The property matrix comprises a total of 50 ele
ments for 50 independent nodal points modeled in Rodrigues orienta
tion space. The mean values and variances for elastic modulus and yield 
strength are illustrated in Fig. 6 and Fig. 7, respectively. Upon incor
porating the uncertainty propagation under the specified input condi
tions, the polycrystal elastic modulus exhibits mean and variance values 
of 167.281 GPa and 18.788 GPa2, respectively. This outcome suggests 
that approximately 98 % of the samples are within a 7.75 % range from 
the mean value; however, certain ODF values kept this percentage 
within 5.95 % as shown in Fig. 6(e). Conversely, yield strength is 
regarded as a linear property and can also be determined through the 
single-crystal properties of the material. Upon factoring in the uncer
tainty associated with the single-crystal yield strength matrix and ODF 

values, the polycrystal demonstrates mean and variance values of 
703.218 MPa and 176.480 MPa2, respectively. This outcome suggests 
that approximately 98 % of the samples are within a 5.65 % range from 
the mean value. However, when certain ODF values are considered, this 
percentage is reduced to 2.65 %, as depicted in Fig. 7(e). The over
arching observation from these two propagation results is that the yield 
strength is more susceptible to the ODF uncertainty compared to elastic 
modulus. 

3.3. Design of microstructures under uncertainty 

In this section of the article, a few microstructure design studies are 
performed by considering the mean values (μA) of ODFs and the 
covariance matrix entries (ΣA) of ODFs as the design variables (x,y). Eq. 
(13) encompasses two property equations and two constraint equations, 
which are merely the expansion of Eq. (9) using associated matrix ele
ments. These equations obtain the mean and variance values of prop
erties, while the constraint equations focus on the volume normalization 
constraint to ensure that it has been satisfied under the effects of the 
uncertainty. This generalized set of equations is utilized for both elastic 
modulus and yield strength. 

μZ =
∑50

i=1
μP(i)μA(i)

Σ2
Z =

∑50

i=1
[ΣP(i)μA(i)]

2
+ [μP(i)ΣA(i)]

2
+ [ΣP(i)ΣA(i)]

2

1 =
∑50

i=1
Q(i)μA(i)

0 =
∑50

i=1
[Q(i)ΣA(i)]

2

x = μA(i)

y = ΣA(i)

(13) 

We considered four different cases: two cases for the maximization of 
the mean values of the properties and two cases for the minimization of 
the variance or standard deviation where a gradient-based optimization 
method has been employed in all cases. Additionally, the solved ODFs 
are plotted in three different pole figures using the method of Barton 
et al. [54], where the pole density function is P(h,yi) at h plane unit 
normal and the location of y1, y2, …., yq for any specific diffraction plane 
on a unit sphere. The pole density function has been defined through the 
ODF (Aj) and the system matrix of (Mij) by 

∑k
j=1MijAj, where k is the 

number of independent ODFs as defined earlier. Further, this definition 
of pole density function has been modified (Pi = Pi − Mik/qk) for the 
normalization constraint of unit volume fraction, which includes Mij =

Mij − Mikqj/qk for j = 1, 2,.., (k-1). 

Fig. 5. (a) Determination of strain rate sensitivity from 4-different strain rate results and the method of scaling down the high strain rate yield strength and (b) 
cumulative frequency distribution of calculated and curve fitted yield strength at ASTM strain rate. 
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3.3.1. Maximization of mean elastic modulus 
The mean of the homogenized elastic modulus of the microstructure 

depends on the mean ODFs and the mean values of the elements of the 
property matrix owing to the linear relationship given in Eq. (9). In this 
case, the objective function is defined as, maximize μE(μA). The mean of 
the ODFs have been considered as design variables and restricted 
through the volume normalization constraint. Next, the ODFs are 
assumed to vary ~5 % from mean values. This uncertainty leads to the 
probability density functions of the elastic modulus and yield strength 
illustrated in Fig. 8(a). The maximum objective function value of the 
mean elastic modulus is evaluated as 187.966 GPa and the associated 
yield strength for these optimized ODFs is computed as 785.203 MPa. 
On the other hand, the variances of elastic modulus and yield strength 
are obtained as 23.722 GPa2 and 220.029 MPa2, respectively. The 
optimized ODFs are shown in Rodrigues orientation space and through 
three different pole figures in Fig. 8(b) and (c), subsequently. 

3.3.2. Minimization of variance of elastic modulus 
The variance of the elastic modulus depends on several parameters, 

such as the mean and variance of ODFs and elements of the property 
matrix. This case considers both the mean and variance of ODFs as 
design variables to minimize the variance of elastic modulus, with an 
objective function given as, minimize ΣE(μA,ΣA). The mean and variance 
of ODFs are required to satisfy the volume normalization constraints 
under uncertainty. In this case, the solved variance or standard devia
tion of each ODF tends to approach zero (ΣA→0) because, otherwise, 
there is no optimum set of ΣA that maximizes or minimizes the ho
mogenized microstructure property, and these close-to-zero variances of 
ODFs can satisfy the constraints. The minimum objective function value 
for the variance of elastic modulus is 8.692 GPa2 and the associated 
variance for yield strength is 31.211 MPa2. On the other hand, the mean 

of elastic modulus and yield strength are obtained as 148.619 GPa and 
628.254 MPa, respectively. The probability densities of both mechanical 
properties for the optimized microstructure are shown in Fig. 9(a). The 
optimized ODFs are shown in Rodrigues orientation space and through 
three different pole figures in Fig. 9(b) and (c), subsequently. 

3.3.3. Maximization of mean of yield strength 
The mean value of homogenized yield strength is solely influenced 

by the mean values of ODFs and the elements of the property matrix. The 
present case deals with an objective function which is denoted as, 
maximize μσy

(μA). This design problem considers the mean ODFs as 
variables and has been constrained by the volume normalization equa
tion. The ODFs are assumed to show approximately 5 % variations, 
leading to the probability densities for yield strength and elastic 
modulus depicted in Fig. 10(a). The maximum value of mean yield 
strength is obtained as 790.171 MPa, with an associated elastic modulus 
of 186.784 GPa. Conversely, the variances of yield strength and elastic 
modulus are determined as 222.822 MPa2 and 23.427 GPa2, respec
tively. The optimized ODFs are visualized in Rodrigues orientation space 
through and three distinct pole figures in Fig. 10(b) and (c), 
subsequently. 

3.3.4. Minimization of variance of yield strength 
The variations of the yield strength are influenced by multiple pa

rameters, including the mean values and variances of ODFs and the el
ements of the property matrix. In this scenario, both the mean values 
and variances of ODFs are treated as design variables to minimize the 
variance of yield strength given by the objective function, 
minimize Σσy (μA,ΣA). The constraints on the mean and variance of ODFs 
are imposed through the volume normalization. In this specific case, the 
optimum variance or standard deviation of each ODF tends to approach 

Fig. 6. (a) Mean, (b) variance of the elements of property matrix of elastic modulus; probability density of (c) single-crystal elastic modulus, (d) ODF, and (e) 
homogenized (meso‑scale) elastic modulus of the microstructure. 
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Fig. 7. (a) Mean, (b) variance of the elements of property matrix of yield strength; probability density of (c) single-crystal yield strength, (d) ODF, and (e) ho
mogenized (meso‑scale) elastic modulus of the microstructure. 

Fig. 8. (a) Probability density of the elastic modulus and yield strength for the microstructure design, maximizing the mean of homogenized elastic modulus. 
Representation of optimum ODFs in (b) Rodrigues orientation space and (c) through pole figures in 〈1 0 0〉, 〈0 0 1〉, and 〈1 0 1〉 directions. 
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zero (ΣA→0). This is because there is no optimal set of ΣA at larger 
values that maximize or minimize the homogenized property while 
satisfying the constraints. The minimum value for the variance of yield 
strength is determined as 30.865 MPa2, and the associated variance of 
elastic modulus is 8.789 GPa2. Conversely, the mean values of yield 

strength and elastic modulus are obtained as 624.766 MPa and 149.159 
GPa, respectively. The probability densities for the mechanical proper
ties of the optimum microstructure design are illustrated in Fig. 11(a). 
The optimum ODFs are visually represented in Rodrigues orientation 
space, followed by their depiction through three distinct pole figures in 

Fig. 9. (a) Probability density of the elastic modulus and yield strength for the microstructure design, minimizing the variance of homogenized elastic modulus. 
Representation of optimum ODFs in (b) Rodrigues orientation space and (c) through pole figures in 〈1 0 0〉, 〈0 0 1〉, and 〈1 0 1〉 directions. 

Fig. 10. (a) Probability density of the elastic modulus and yield strength for the microstructure design maximizing the mean of homogenized yield strength. 
Representation of optimum ODFs in (b) Rodrigues orientation space and (c) through pole figures in 〈1 0 0〉, 〈0 0 1〉, and 〈1 0 1〉 directions. . 
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Fig. 11(b) and (c), respectively. 

3.4. Transformation of non-linear parameters 

This section discusses the computation of probability densities of 
parameters involving a non-linear relationship with elastic modulus, 
and thus with the ODFs and single-crystal properties. These parameters 
are divided into two types. Type-I includes the natural frequency of axial 
members, speed of sound in solid medium, critical length of columns 
which are directly proportional to the square root of the elastic modulus 
(ω = g(E) = K √E). Type-II includes deflection and elongation/ 
contraction of axial members which are inversely proportional to elastic 
modulus (δ = g(E) = K/√E) as shown in Fig. 12. The PDF of the ho
mogenized elastic modulus of Ti-7Al has been stated in Eq. (14) where 
mean and standard deviation values of the optimum design maximizing 
elastic modulus are used. Later, this PDF is transformed to type-I (X=ω) 
and type-II (X=δ) scenarios by fX(X) = fE(h(X))|h′(X)| where h(X) =

g−1(X) and h′(X) =
dh(X)

dX . The transformed PDF expression for type-I and 

type-II parameters are stated in Eqs. (15) and (16), which show that the 
distributions of these two types of parameters are not Gaussian as their 
mother distribution. As shown by the probability densities plotted in 
Fig. 13, the higher values of K exhibit higher uncertainty in these 
parameters. 

fE(E) =
1

σ
̅̅̅̅̅
2π

√ e
−1

2

(
E − μ

σ

)2

(14)  

fω(ω) =
2ω

K2σE
̅̅̅̅̅
2π

√ e

−1
2

⎛

⎜
⎜
⎝

ω2
K2 −μE

σE

⎞

⎟
⎟
⎠

2

(15)  

Fig. 11. (a) Probability density of the elastic modulus and yield strength for the microstructure design minimizing the variance of homogenized yield strength. 
Representation of optimum ODFs in (b) Rodrigues orientation space and (c) through pole figures in 〈1 0 0〉, 〈0 0 1〉, and 〈1 0 1〉 directions. 

Fig. 12. A few examples for the selected two types of non-linear properties/parameters.  
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fδ(δ) =
K

δ2σE
̅̅̅̅̅
2π

√ e

−1
2

⎛

⎜
⎝

K
δ −μE

σE

⎞

⎟
⎠

2

(16)  

4. Conclusions 

This study investigates how variations associated with the random
ness of substitutional atoms and the uncertainty of microstructural 
texture affect meso‑scale mechanical properties. Using an analytical UQ 
method, we identify microstructural texture designs for optimum me
chanical performance under these variations. Comprehensive conclu
sions can be drawn by several key insights:  

a) The frequency distribution analysis reveals that the elastic modulus 
and yield strength of single-crystal Ti-7Al exhibit deviations of 4.55 
% and 2.40 %, respectively from their mean values, conforming 
closely to a Gaussian distribution. Notably, the recalculated yield 
strength at standard strain rates shows similar distribution pattern, 
as it has been linearly extrapolated from the strain rate sensitivity 
results.  

b) The homogenized polycrystal properties vary less than 8 % from 
their corresponding mean values. The yield strength is more 
vulnerable to the texture uncertainty compared to elastic modulus.  

c) In the case of maximizing mean (expected) values of properties, only 
a few independent ODFs have non-zero values, which shows that the 
optimum microstructures correspond to sharp textures.  

d) On the contrary, the minimization of the variance of properties leads 
to microstructure designs with higher number of non-zero indepen
dent ODFs. However, this occurs at the cost of lower expected values, 
nearing the lowest feasible values. 

e) The PDFs of the properties/parameters which have non-linear re
lationships with elastic modulus do not follow a normal distribution 
as expected. Nonetheless, these results offered valuable insights into 
the distributions of any properties/parameters which are reliant on 
mechanical properties of interest. 
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