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Uncertainty quantification plays a pivotal role in advancing the development of reliable and high-performance
material designs via multiscale materials modeling. This study focuses on modeling the uncertainty of meso-scale
mechanical properties, e.g. modulus of elasticity and yield strength of Ti-7Al, by incorporating the inherent
randomness of substitutional atoms of the alloy and its microstructural texture. A molecular dynamics approach
is employed to probe the epistemic uncertainty of single-crystal properties. Moreover, the aleatoric uncertainty is

quantified using the experimental microstructural texture data of a previous investigation. The propagation of
the epistemic and aleatoric uncertainty on the homogenized properties is investigated using an analytical un-
certainty quantification method. Subsequently, the Ti-7Al alloy microstructures are designed to improve
meso-scale mechanical properties under uncertainty by integrating the analytical method into the optimization

scheme.

1. Introduction

Multi-scale computational approaches provide a pathway for pre-
dicting and comprehending the mechanical, thermal, electrical, chemi-
cal, and optical properties of various material systems. A significant
portion of these methods relies heavily on molecular dynamics (MD)
simulations, which originated in the late 1950s [1]. Moreover, the
introduction of the Integrated Computational Materials Engineering
(ICME) paradigm has prompted a substantial focus on developing
multi-scale computational models. These models are designed to capture
the intricate connection between material response and the foundational
microstructure [2]. Essential parameters for these material models are
derived from the homogenization of single-crystal properties over a
representative volume element (RVE) that can be estimated via experi-
ments. However, microstructures inherently possess stochastic charac-
teristics. To elaborate, specimens produced through identical
manufacturing processes exhibit variations in microstructure, both
within a single specimen and across all specimens. A foundational aspect
of ICME is uncertainty quantification (UQ), entailing the creation of
mathematical tools to assess the impact of microstructural stochasticity
on the anticipated engineering properties [3]. There are several UQ
methods to determine the uncertainty of homogenized microstructural
properties due to the fluctuations of its parameters, including spectral
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decomposition [4], Monte Carlo simulation [5-8], stochastic collocation
[9], Kriging [10], and polynomial chaos expansion [11,12]. This present
study focuses on quantifying the uncertainty of single-crystal properties
(epistemic uncertainty) of Ti-7Al alloy using MD simulations and its
propagation on microstructural properties. In addition, this study
models the measured aleatoric uncertainty of microstructural texture
using a finite element discretized form of the orientation distribution
function. This investigation marks a pioneering endeavor in designing
microstructures using an analytical UQ method to aim for the exact
solution, integrating single crystal-level epistemic uncertainty arising
from the randomness of substitutional atoms with microstructure-level
aleatoric uncertainty stemming from the inevitable stochastic varia-
tion of the texture.

At present, approximately half of the global titanium production is
allocated to the aerospace sector [13-15]. Titanium alloys are primarily
recommended due to their commendable specific compatibility of
modulus, greater cyclic fatigue resistance, and resistance against
corrosion [16]. A persistent concern revolves around the behavior of o/f
titanium alloys under cold dwell cyclic fatigue conditions characterized
by cyclic loading with pauses at normal temperature. The majority of
commercially employed titanium alloys incorporate approximately 6
wt. % aluminum [17]. Few uncertainty studies on o/f titanium alloys
have been conducted previously, e.g. Worsnop et al. [18] examined
crystallographic ordering tendencies during aging at 550 °C in both
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Nomenclature
A Orientation distribution function (ODF)
A Arrhenius constant

[

B Bulk modulus
Cmax & Cpin  Maximum and minimum values of the screening range
E, Activation energy

E. Cohesive energy

fap Atomic force between a and f

Fy Cumulative distribution function

S Probability density function (PDF)

Jn Jacobian determinant of the n™ element

m* Mass of the atoms

R Universal gas constant

Top Atomic distance between o and f

Te Equilibrium nearest-neighbor distance

v Velocity of the atoms

oa& P Atomic indices

n Mean of any variable

Po Ratio between atomic electron density scaling factor
32 Variance of any variable

¥ (@) Orientation dependent single-crystal property
Q* Volume of atom «

binary Ti—Al and Ti-Sn alloys.

Comprehensive characterization of the a-phase microstructures was
conducted using advanced techniques, such as transmission electron
microscopy, scanning electron microscope, and low-angle X-ray scat-
tering with coupling tensile testing. This multifaceted approach aimed
to re-evaluate the property trade-offs inherent in each alloy system. Ding
et al. [19] conducted an extensive investigation utilizing molecular
dynamics along with cohesive finite element method to analyze crack
propagation in B2-NiAl alloy. Their study employed a cohesive element
model incorporating material input parameters derived from MD sim-
ulations, aiming to comprehend both micro and macro crack propaga-
tion mechanisms. An investigation by Acar et al. [20] focused on the
inverse problem of discerning microstructural stochasticity in light of
fluctuations in meso-scale material properties. This was achieved
through the creation of an analytical UQ model, denoted as ‘AUQLin’.
Another study was conducted to ascertain the parameters of slip systems
inherent in Ti-Al alloys, specifically Ti-7Al and Ti-OAl, by Acar et al.
[21]. This study involved the analysis of the experimental results of
tension and compression, focusing on the true stress-true strain curves of
Ti-7Al and Ti-OAl The microstructure was meticulously characterized
by utilizing a rate-independent single-crystal constitutive model and the
Orientation Distribution Function (ODF) approach, and the UQ formu-
lation was employed for a thorough investigation of crystal plasticity.
However, the optimal microstructure designs across various challenges
are also notably influenced by epistemic uncertainty related to the
variations of the parameters and predictions of numerical models [22].
Tran et al. [23] conducted a study examining the utilization of
multi-level sampling techniques, namely multi-level Monte Carlo
(MLMC) and multi-index Monte Carlo (MIMC) to examine the effects of
microstructural variations in polycrystalline materials on the forecasts
of homogenized material properties. Thillaithevan et al. [24] proposed a
methodology to integrate material uncertainty arising from
manufacturing defects in additive manufacturing into a functionally
graded lattice optimization framework. This framework introduced a
perturbation parameter to modify the design variables of microstruc-
tures, accommodating a wide range of uncertain material properties.

In the exploration of simulating the inherent stochasticity within
material systems, there has been an adequate gap in addressing the
epistemic uncertainty because of the ’lack of knowledge.’ Specifically,
the examination of uncertainty stemming from computational models
remains significantly under-explored within the realm of computational
modeling and microstructure design. Hence, the fluctuations are regar-
ded as inherent uncertainties in the modeling process, when deter-
mining the mechanical characteristics of the Ti-7Al alloy [25-27]. The
present study focuses on quantifying variations of mechanical properties
under the uncertainty of single-crystal properties arising from the
randomness of substitutional atoms and microstructural texture as a
result of the fluctuations during processing. The classical atomistic
approach is employed to determine the epistemic uncertainty of
single-crystal mechanical properties (Young’s modulus and yield

strength) of Ti-7Al alloy where the force-field is described by the second
nearest-neighbor modified embedded atom method (2NN MEAM). Next,
a finite element discretization-based homogenization approach is used
to obtain the volume-averaged (meso-scale) properties of microstruc-
tures with consideration of previously mentioned stochastic
single-crystal properties, and a stochastic representation of the micro-
structural texture descriptor, ODF. The aleatoric uncertainty related to
ODFs arises from texture variations observed among specimens under-
going identical processes. This investigation was performed in our prior
research [3], where measurements were conducted on various
beta-forged Ti-7Al samples subjected to identical compression and
annealing procedures. These measurements were obtained from diverse
regions within the samples. Probability distributions of the pole figures
were derived from these scans, revealing a predominantly Gaussian
distribution pattern. Furthermore, the present work performs micro-
structure design under uncertainty to obtain optimum meso-scale
properties by integrating the analytical UQ approach, providing the
exact solution to the probability distribution representations of prop-
erties. Finally, the study is extended to meso-scale properties involving a
non-linear relationship with the underlying microstructural texture
using the transformation of random variables approach within the
analytical UQ framework.

The organization of the paper is as follows: Section 2 discusses the
mathematical methodology behind the computation of single crystal
stress-strain behavior and homogenized microstructure properties with
associated uncertainty quantification and propagation. Following this,
Section 3 elaborates on the resultant outcomes and proposes solutions
for microstructure design. Finally, Section 4 upholds the comprehensive
conclusions drawn from this study.

2. Methodology
2.1. Computation of single-crystal properties

The alloy under investigation is Ti-7wt %Al (Ti-7Al), a recognized
o-Ti binary alloy distinguished by its hexagonal close-packed (HCP)
crystal structure. In this particular investigation, the lattice constants of
a=b=2.932A and c = 4.684 A are employed to construct the unit cell
of Ti-7Al [28]. Afterward, ~12 % Al atoms are randomly located on the
crystal to ensure a perfectly substitutional alloy. The consequent alloy
structure takes the form of a cuboid, as depicted in Fig. 1, with final
dimensions of 80.63 A x 85.49 A x 81.97 A. Utilizing a consistent
approach, 160 different samples are prepared for MD studies by keeping
the indistinguishable dimension while introducing random variations in
the positions of Al atoms on the a-structure. The force field of the atoms
of the single-crystal structure has been defined by 2NN MEAM potential
parameters [29]. MEAM represents a reactive semiempirical many-body
potential grounded in density functional theory. Since its inception in
1992, the MEAM potential has proven effective in computing the
physical characteristics of numerous crystal structures, including
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Fig. 1. (a) Unit cell of a-Titanium and (b) The single-crystal structure of Ti-7Al, green and orange atoms represent Titanium and Aluminum, respectively.

face-centered cubic (FCC), body-centered cubic (BCC), HCP, and dia-
mond cubic, within unary, binary, ternary, and more complex metallic
systems [30-34].

£=3(F0 53500 o) &
i A

The fundamental expression for total energy for any atom of i can be
described as the summation of the embedding function and traditional
pair-interaction of atoms i and j which has been upheld in Eq. (1); where
Pi, Ty, S(ryj), and ¢(ry) represent background electron density, distance,
screening function, and interaction potential respectively between atom
i and j. Interested readers are referred to Refs. [29,30] for more details
about the inter-atomic potential of the metallic-alloy. The 2NN MEAM
potential parameters of « binary Ti and Al system are listed in Table 1.

In each computation, the periodic boundary conditions are applied
to all three directions of the samples, effectively diminishing the influ-
ence of the boundary/edge effect on the structure. Before subjecting the
structures to a constant strain rate, a comprehensive energy minimiza-
tion process is undertaken to achieve equilibrium among all atoms. The
minimization involves a two-stage combined optimization method. First
and foremost, the NVT (stands for the number of atoms, volume, and
temperature of the structure) canonical ensemble is conducted for a total
time of 5 picoseconds. This is aimed at the determination of the positions
and velocities of each atom using non-Hamiltonian equations in the
Nose-Hoover method at every time step. Following this, the simulation is
extended for an additional 50 picoseconds, utilizing the NPT (stands for
the number of atoms, pressure, and temperature of the structure)
isothermal-isobaric ensemble where the objective of this phase is to
resolve the kinematics parameters, such as linear/angular positions,

Table 1
2NN MEAM parameters of Ti-7Al [29].
Ti Al Ti-Al
E, (eV) 4.87 3.36 —0.26
re (A) 2.92 2.86 2.8
B (10" Pa) 1.10 0.794 1.426
d 0.0 0.05 0.5d"+0.5d""
Crnin (Ti-AL-Ti) 1.00 0.49 1.3
Crnin (AL-Ti-Al) 0.49( = CAL)
Cunin (Ti-Ti-AD 0.46
Crin (T ALAD 0.72(=[05\/CT +0.5,/ciL 1)
Crnax (Ti-Al ~Ti) 1.44 2.80 2.8
Cinax (AL-Ti-AD 1.44
Cunax (Ti-Ti-Al) 1.44
Crnax (Ti-Al -AD 2.88
Po 1 1 1( = 4" /pg)

orientations, and velocities of all atoms at every time step. The temporal
resolution for both ensembles is set at 0.001 ps. Upon finishing these two
successive computation steps, the sample nano-structures achieve a state
of near equilibrium concerning pressure and temperature.

The NPT ensemble is employed to keep constant temperature and
pressure in conjunction with the imposition of uniaxial deformation
along the [1 0 0] direction, featuring a specified strain rate of 10951 at
a temperature of 300 K. The assessment of structural stress corre-
sponding to the applied strain relies on the application of the virial stress
theorem [35]. Mechanical stress (63), as quantified by Eq. (2), derived
from the virial theorem, involves the computation of stress through a
functional derivative of the atomistic system’s free energy concerning
the deformation tensor. In this equation, the symbols i and j denote the
axes of the coordinate system by taking values 1, 2, and 3. The atomic
volume, mass, velocity components of @ atom in i and j directions,
interatomic force, and magnitude of distance vector between « and

atoms are represented by Q%, m®*, vf, v, fjw and rj'w. According to the

sign convention, a positive stress indicates attraction between particles,
while a negative stress signifies repulsion.

1 (1 "
o} = o <2mayf’vj‘.’ + ; r;ﬂf{’,ﬂ> )

2.2. Computation of microstructure properties

The current study models the crystallographic texture of the Ti-7Al
microstructure by utilizing the ODFs. This function measures the vol-
ume densities of distinct crystallographic orientations within a poly-
crystalline material and can be used as the parameter to obtain the
homogenized properties. Parametrization methods like Rodrigues pa-
rameters [36-39] and Euler angles [40-44] are employed to define the
ODFs. Specifically, a local finite element discretization method for ODFs
has been applied within the framework of Rodrigues orientation space to
compute the homogenized properties in this study. The computation of
homogenized properties involves an integration across the fundamental
region (Q), taking into account lattice rotation denoted as R. By
leveraging the Rodrigues orientation vector (r), the expression of R is
described in Eq. (3).

1

R= 577 I1=rr)+2(r®r+Ixr)) 3)

The definition of the ODF is articulated in Eq. (4), with regard to
crystal volume densities that must satisfy a volume normalization
constraint [45-48]. Upon employing crystal symmetries, the poly-
crystalline material’s orientation space can be simplified into a more
concise subset recognized as the fundamental region illustrated in Fig. 2.
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Fig. 2. Illustration of the finite element discretization approach for the ODFs within the Rodrigues fundamental region for hexagonal crystal (a Ti-7Al) symmetry,

highlighting the nodes arrangement of the k = 50 independent ODFs in red color.

The discretization of this fundamental region employs the local finite
element approach featuring N number of independent nodes and N,
number of finite elements, accompanied by Nj,; number of integration
points per element. Rodrigues orientation space can be applied for dis-
cretization, which proves preferable because of its ability to yield reg-
ular geometries [49-52]. Every nodal point within the fundamental
region mesh corresponds to a distinct ODF value intricately connected
with the volume density of the associated crystallographic orientation.
This concise representation facilitates the determination of
volume-averaged (meso-scale) material properties of microstructure by
considering the ODF values at nodal points.

Netm  Nint
1
Adv = Alry) wolly| ————=1 4)
/Q DD o) bl s

n=1 m=1

Netm  Nint 1
0= [ = 323 rAtn) waldl ©)

Initially, all ODFs defined within the fundamental region must
adhere to the constraint of volume normalization (unit volume-fraction)
as delineated in Eq. (4) which can be represented as a linear equation
q"A=1, in terms of the ODF values defined at nodal points. By utilizing
the same method, the orientation-dependent homogenized (volume-
averaged) material property, denoted as ()), can be computed using
single-crystal property values (y) alongside the nodal point ODFs as
shown in Eq. (5). This formulation can also be represented as a linear
equation <y>=p'A, in terms of the ODF values at nodal points where p

shows the property tensor with p; = y;(r;)w;|Ji| ﬁ

2.3. Modeling of uncertainty propagation

First, the uncertainty propagation on the single-crystal properties is
considered because of the randomness of the substitutional atoms in the
a-Ti structure. It is primarily defined that the reason for the variations of
the mechanical properties is the locational variation of Al on the alloy,
which has been examined through a mathematical expression. This
variation is classified as epistemic uncertainty. The evaluated elastic
modulus and yield strength frequency distributions are shown to agree
with the cumulative distribution function of a Gaussian distribution
given by Eq. (6), F:R—[0, 1] that satisfies J(lqirme(x) =0 and xlin;toF(x) =

1.

)= {1 +erf(xz \}m ©

Subsequently, the uncertainty propagation on microstructural
properties is examined with the consideration of stochastic texture and
single-crystal properties. The vector of ODF mean values, g, is formed at

k independent nodes, assuming that these ODFs agree with a multivar-
iate Gaussian distribution. This assumption is derived based on the
experimental data of 150 microstructure data samples of the Ti-7Al alloy
processed with the same parameters, as reported by our group in the
previous work [3]. Next, the mean and variance of the homogenized
properties (i.e. elastic modulus and yield strength) of the microstructure
are determined by Egs. (7) and (8) where a generic notation, Z is used to
represent both homogenized elastic modulus and yield strength pa-
rameters. However, there is no specific correlation between the
single-crystal property values and the ODFs that exhibits the null cor-
relation coefficient (p=0). On the other hand, the normalization
constraint should be expanded to another variance equation, which can
be written as Q%2 = 0, where Q=q". The formation of the set of
equations, given in Eq. (9), arises from the incorporation of the uncer-
tainty and the corresponding two new constraints for the variance.

Bz = Bply @
£ = Sop FHREL + EREL 4 2p (e, ) (E020) + 7 (52E]) ®
1 Q0 0 0
13
Pz | _ |Pp 0 0 ”/z‘ ©)
% o5 ogen| |8
0 0 0 0? 4

3. Results and discussions
3.1. Uncertainty of single-crystal properties

Uniaxial tension (617 # 0, 622 = 633 = 0) is applied to 160 samples of
different single crystal designs to carry out the mechanical properties,
such as elastic modulus and yield strength for the direction perpendic-
ular to zigzag and armchair directions. Prior to going through the NPT
tension process, the samples are completely stable in terms of temper-
ature and pressure; 5 ps of NVT ensemble has been employed to settle
down the temperature at 300 K and successively 50 ps of NPT ensemble
relaxed the samples to keep the zero pressure, which has been illustrated
in Fig. 3. As a result, the samples are totally prepared for examining any
further computation. Following the initiation of uniaxial stress at 55 ps,
the sample began accumulating strain energy, causing the overall energy
curve to steadily ascend until reaching its peak. It is noteworthy that the
peaks of the stress and energy curves don’t align simultaneously. The
stress curve reaches its pinnacle at ultimate strength, while the energy
curve continues to rise until the fracture of the sample occurred. At a

constant strain rate of 101°s7! (= é’u = de;7/dt), the main stress-strain
simulation is conducted in [1 0 0] direction (¢11 = 0, €22 # 0, €33 # 0) at
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Fig. 3. (a) Temperature and pressure responses, (b) Total energy and applied stress along [1 0 0] direction with respect to the time. The (0 1 0) plane view of a

random sample on loading has been illustrated at the stress curve.

previously achieved constant pressure and temperature through next 30
ps. The stress-strain curves of all 160 samples can be found in the Ap-
pendix. The modulus of elasticity can be evaluated from the slope of the
linear region of stress versus strain curve; alternatively, Ej; = 6 1/é'1 1
where 677 = do11/dt on the stress versus time response curve. The
examined elastic modulus (E;;) values of all samples are within the limit
of 118.537-129.777 GPa with a mean and standard deviation of
123.344 GPa and 2.447 GPa, respectively after fitting the cumulative
Gaussian/normal frequency distribution as shown in Fig. 4(a). On the
other hand, the yield strength of all samples has been measured from the
stress-strain response by applying the conventional offset rule. This
investigation carries out the yield strength of Ti-7Al within the range of
5.167-5.426 GPa which is further utilized in Eq. (6) in order to deter-
mine the mean and standard deviation as illustrated in Fig. 4(b); re-
ported as 5.314 GPa and 47.2 MPa, respectively. The comprehensive
observation from these results can be noted that the frequency distri-
butions closely matched with the normal distribution where the elastic
modulus curves are more aligned compared to the yield strength curves.

()

= = = Normal Distribution —@— Actual Frequency
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132
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3.1.1. Yield strength at low strain rate

The investigation of stress-strain characteristics is conducted under
elevated strain rates, a constraint inherent in the MD simulation. As a
result, the recorded yield and ultimate strength values for all samples are
notably higher. Nevertheless, to align the simulated yield strength with
the ASTM standard strain rate of 0.015/min, an Arrhenius correlation
[53], as described in Eq. (10), is utilized to scale down the yield strength.
Arrhenius correlation provides a relation between flow stress (¢) and

strain rate (¢) at a given temperature. More specifically, the strain rate
sensitivity (m) serves as a measure of how a material responds to vari-
ations in strain rate within the plastic deformation region where mate-
rials perform liquid-like behavior. This sensitivity parameter, denoted
by Eq. (11), has been transformed into a linear expression by applying
the natural logarithm to both sides of the Arrhenius equation. Next, Eq.
(12) has been employed to ascertain the strain rate sensitivity of Ti-7Al,
involving four stress-strain simulations conducted at distinct strain rates
5x10'°1 x 10%%, 2 x 10% and 4 x 1085 ~ !, each corresponding to yield
strengths values of 6.220, 5.307, 4.702, and 4.347 GPa, respectively.

(b)

200

= = = Normal Distribution —@— Actual Frequency

160

120

80

40

0 ° I 1 1
5.14 5.24 5.34 5.44
Yield Strength (GPa)

Fig. 4. Cumulative frequency distribution of simulated and curve fitted (a) elastic modulus and (b) yield strength of total 160 samples.
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This resulted in a strain rate sensitivity of 13.459, illustrated in Fig. 5(a),
which is subsequently employed to extrapolate the simulated yield
points to the standard strain rate, assuming uniform sensitivity across all
samples. The yield strengths at lower strain rates are then plotted to
determine the mean and standard deviation using the cumulative
normal distribution function. The investigation reveals a yield strength
range between 504.173 and 529.457 MPa, with a mean and standard
deviation of 518.516 and 4.611 MPa, respectively. Notably, Fig. 5(b)
demonstrates a close alignment between the actual and cumulative
Gaussian frequency curves.

. n '
e=A.0"¢

(10)
In(¢) = In(A.) +% In(o) — % an
_d 11’1((.7) _ In(02) — In(oy) 12)

"0 () In(E) —In(@)

3.2. Uncertainty of microstructural properties

The microstructural characteristics of a material are influenced by
factors such as single-crystal properties, grain size, grain shape, and
microstructural texture. In this particular investigation, the focus has
been narrowed down to examining the impact of single-crystal proper-
ties and crystallographic texture on the microstructure, considering
variations in both parameters. The uncertainty associated with single-
crystal properties is assessed using MD simulations (as reported in the
previous section), while the uncertainty related to ODF values is derived
from our prior research [3]; fluctuations of ~98 % ODF values are
within 5 % from the mean values according to the corresponding
experimental data. It is important to note that the uncertainty of all
ODFs can be represented through a multivariate normal (Gaussian)
distribution. Matrices representing single-crystal properties and their
associated uncertainty, crucial for computing homogenized micro-
structural properties such as elastic modulus and yield strength, are
derived using Eq. (9). The property matrix comprises a total of 50 ele-
ments for 50 independent nodal points modeled in Rodrigues orienta-
tion space. The mean values and variances for elastic modulus and yield
strength are illustrated in Fig. 6 and Fig. 7, respectively. Upon incor-
porating the uncertainty propagation under the specified input condi-
tions, the polycrystal elastic modulus exhibits mean and variance values
of 167.281 GPa and 18.788 GPa?, respectively. This outcome suggests
that approximately 98 % of the samples are within a 7.75 % range from
the mean value; however, certain ODF values kept this percentage
within 5.95 % as shown in Fig. 6(e). Conversely, yield strength is
regarded as a linear property and can also be determined through the
single-crystal properties of the material. Upon factoring in the uncer-
tainty associated with the single-crystal yield strength matrix and ODF

(@)
2
y=0.0743x-0.0222 _&*
- ¥
3
2 1r
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@ (23.026,0,)
3
g 0
N~
=
'4—‘ Extrapolated at (-8.294, g,)
1 N N N
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In (Strain-rate)

Cumulative Frequency
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values, the polycrystal demonstrates mean and variance values of
703.218 MPa and 176.480 MPa2, respectively. This outcome suggests
that approximately 98 % of the samples are within a 5.65 % range from
the mean value. However, when certain ODF values are considered, this
percentage is reduced to 2.65 %, as depicted in Fig. 7(e). The over-
arching observation from these two propagation results is that the yield
strength is more susceptible to the ODF uncertainty compared to elastic
modulus.

3.3. Design of microstructures under uncertainty

In this section of the article, a few microstructure design studies are
performed by considering the mean values (u,) of ODFs and the
covariance matrix entries (£4) of ODFs as the design variables (x,y). Eq.
(13) encompasses two property equations and two constraint equations,
which are merely the expansion of Eq. (9) using associated matrix ele-
ments. These equations obtain the mean and variance values of prop-
erties, while the constraint equations focus on the volume normalization
constraint to ensure that it has been satisfied under the effects of the
uncertainty. This generalized set of equations is utilized for both elastic
modulus and yield strength.

Hz = Z”P(i)ﬂA(i)

50

%= Z [Zr(Dpa D] + p (D2 + [Ep(D)Za (1))

1= ZQ(i)P‘A(i) 13

0= QW=
x = pa(i)
y=2Za(i)

We considered four different cases: two cases for the maximization of
the mean values of the properties and two cases for the minimization of
the variance or standard deviation where a gradient-based optimization
method has been employed in all cases. Additionally, the solved ODFs
are plotted in three different pole figures using the method of Barton
et al. [54], where the pole density function is P(h,y;) at h plane unit
normal and the location of y1, y2, ...., yq for any specific diffraction plane
on a unit sphere. The pole density function has been defined through the
ODF (A)) and the system matrix of (M) by Z;cleijAj-, where k is the
number of independent ODFs as defined earlier. Further, this definition
of pole density function has been modified (P; = P, — My/q;) for the
normalization constraint of unit volume fraction, which includes M =
My — Myq;/qx forj =1, 2,.., (k-1).

(b)
200
= = = Normal Distribution —@— Actual Frequency
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80 r
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0 * L L
500 510 520 530
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Fig. 5. (a) Determination of strain rate sensitivity from 4-different strain rate results and the method of scaling down the high strain rate yield strength and (b)
cumulative frequency distribution of calculated and curve fitted yield strength at ASTM strain rate.
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Fig. 6. (a) Mean, (b) variance of the elements of property matrix of elastic modulus; probability density of (c) single-crystal elastic modulus, (d) ODF, and (e)

homogenized (meso-scale) elastic modulus of the microstructure.

3.3.1. Maximization of mean elastic modulus

The mean of the homogenized elastic modulus of the microstructure
depends on the mean ODFs and the mean values of the elements of the
property matrix owing to the linear relationship given in Eq. (9). In this
case, the objective function is defined as, maximize yiz(s,). The mean of
the ODFs have been considered as design variables and restricted
through the volume normalization constraint. Next, the ODFs are
assumed to vary ~5 % from mean values. This uncertainty leads to the
probability density functions of the elastic modulus and yield strength
illustrated in Fig. 8(a). The maximum objective function value of the
mean elastic modulus is evaluated as 187.966 GPa and the associated
yield strength for these optimized ODFs is computed as 785.203 MPa.
On the other hand, the variances of elastic modulus and yield strength
are obtained as 23.722 GPa? and 220.029 MPa?, respectively. The
optimized ODFs are shown in Rodrigues orientation space and through
three different pole figures in Fig. 8(b) and (c), subsequently.

3.3.2. Minimization of variance of elastic modulus

The variance of the elastic modulus depends on several parameters,
such as the mean and variance of ODFs and elements of the property
matrix. This case considers both the mean and variance of ODFs as
design variables to minimize the variance of elastic modulus, with an
objective function given as, minimize Xg(p,,X4). The mean and variance
of ODFs are required to satisfy the volume normalization constraints
under uncertainty. In this case, the solved variance or standard devia-
tion of each ODF tends to approach zero (£4—0) because, otherwise,
there is no optimum set of X, that maximizes or minimizes the ho-
mogenized microstructure property, and these close-to-zero variances of
ODFs can satisfy the constraints. The minimum objective function value
for the variance of elastic modulus is 8.692 GPa® and the associated
variance for yield strength is 31.211 MPaZ. On the other hand, the mean

of elastic modulus and yield strength are obtained as 148.619 GPa and
628.254 MPa, respectively. The probability densities of both mechanical
properties for the optimized microstructure are shown in Fig. 9(a). The
optimized ODFs are shown in Rodrigues orientation space and through
three different pole figures in Fig. 9(b) and (c), subsequently.

3.3.3. Maximization of mean of yield strength

The mean value of homogenized yield strength is solely influenced
by the mean values of ODFs and the elements of the property matrix. The
present case deals with an objective function which is denoted as,
maximize ji, (jt4). This design problem considers the mean ODFs as
variables and has been constrained by the volume normalization equa-
tion. The ODFs are assumed to show approximately 5 % variations,
leading to the probability densities for yield strength and elastic
modulus depicted in Fig. 10(a). The maximum value of mean yield
strength is obtained as 790.171 MPa, with an associated elastic modulus
of 186.784 GPa. Conversely, the variances of yield strength and elastic
modulus are determined as 222.822 MPa? and 23.427 GPa?, respec-
tively. The optimized ODFs are visualized in Rodrigues orientation space
through and three distinct pole figures in Fig. 10(b) and (c),
subsequently.

3.3.4. Minimization of variance of yield strength

The variations of the yield strength are influenced by multiple pa-
rameters, including the mean values and variances of ODFs and the el-
ements of the property matrix. In this scenario, both the mean values
and variances of ODFs are treated as design variables to minimize the
variance of yield strength given by the objective function,
minimize X, (#4,%4). The constraints on the mean and variance of ODFs
are imposed through the volume normalization. In this specific case, the
optimum variance or standard deviation of each ODF tends to approach
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Fig. 9. (a) Probability density of the elastic modulus and yield strength for the microstructure design, minimizing the variance of homogenized elastic modulus.
Representation of optimum ODFs in (b) Rodrigues orientation space and (c) through pole figures in (1 0 0), (0 0 1), and (1 0 1) directions.
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Fig. 10. (a) Probability density of the elastic modulus and yield strength for the microstructure design maximizing the mean of homogenized yield strength.
Representation of optimum ODFs in (b) Rodrigues orientation space and (c) through pole figures in (1 0 0), (0 0 1), and (1 0 1) directions. .

zero (X4—0). This is because there is no optimal set of £, at larger
values that maximize or minimize the homogenized property while
satisfying the constraints. The minimum value for the variance of yield
strength is determined as 30.865 MPa?, and the associated variance of
elastic modulus is 8.789 GPa®. Conversely, the mean values of yield

strength and elastic modulus are obtained as 624.766 MPa and 149.159
GPa, respectively. The probability densities for the mechanical proper-
ties of the optimum microstructure design are illustrated in Fig. 11(a).
The optimum ODFs are visually represented in Rodrigues orientation
space, followed by their depiction through three distinct pole figures in



M.M. Billah and P. Acar

665

(a) Yield Strength (MPa)
590 605 620 635 650
0.16 T T T
- - - Elasticity
012 Yield
£
2 0.08
a
0.04
0
135

Acta Materialia 270 (2024) 119879

Fig. 11. (a) Probability density of the elastic modulus and yield strength for the microstructure design minimizing the variance of homogenized yield strength.
Representation of optimum ODFs in (b) Rodrigues orientation space and (c) through pole figures in (1 0 0), (0 0 1), and (1 0 1) directions.

Fig. 11(b) and (c), respectively.
3.4. Transformation of non-linear parameters

This section discusses the computation of probability densities of
parameters involving a non-linear relationship with elastic modulus,
and thus with the ODFs and single-crystal properties. These parameters
are divided into two types. Type-I includes the natural frequency of axial
members, speed of sound in solid medium, critical length of columns
which are directly proportional to the square root of the elastic modulus
(w = g(E) K \/E). Type-II includes deflection and elongation/
contraction of axial members which are inversely proportional to elastic
modulus (5 = g(E) = K/+/E) as shown in Fig. 12. The PDF of the ho-
mogenized elastic modulus of Ti-7Al has been stated in Eq. (14) where
mean and standard deviation values of the optimum design maximizing
elastic modulus are used. Later, this PDF is transformed to type-I (X=0)
and type-II (X=8) scenarios by fx(X) = fz(h(X))|h(X)| where h(X)
g 1(X) and K (X)

= %. The transformed PDF expression for type-I and

Natural frequency of any

L
beam/member [r
[
v

Speed of sound in solids

Type-1I
w < VE >w=KVE

Critical length of column

type-1I parameters are stated in Eqs. (15) and (16), which show that the
distributions of these two types of parameters are not Gaussian as their
mother distribution. As shown by the probability densities plotted in
Fig. 13, the higher values of K exhibit higher uncertainty in these
parameters.

= 1
fe(E) T a4
2w
- = 1
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Fig. 12. A few examples for the selected two types of non-linear properties/parameters.
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4. Conclusions

This study investigates how variations associated with the random-
ness of substitutional atoms and the uncertainty of microstructural
texture affect meso-scale mechanical properties. Using an analytical UQ
method, we identify microstructural texture designs for optimum me-
chanical performance under these variations. Comprehensive conclu-
sions can be drawn by several key insights:

a) The frequency distribution analysis reveals that the elastic modulus
and yield strength of single-crystal Ti-7Al exhibit deviations of 4.55
% and 2.40 %, respectively from their mean values, conforming
closely to a Gaussian distribution. Notably, the recalculated yield
strength at standard strain rates shows similar distribution pattern,
as it has been linearly extrapolated from the strain rate sensitivity
results.

The homogenized polycrystal properties vary less than 8 % from
their corresponding mean values. The yield strength is more
vulnerable to the texture uncertainty compared to elastic modulus.

In the case of maximizing mean (expected) values of properties, only
a few independent ODFs have non-zero values, which shows that the
optimum microstructures correspond to sharp textures.

d) On the contrary, the minimization of the variance of properties leads
to microstructure designs with higher number of non-zero indepen-
dent ODFs. However, this occurs at the cost of lower expected values,
nearing the lowest feasible values.

The PDFs of the properties/parameters which have non-linear re-
lationships with elastic modulus do not follow a normal distribution
as expected. Nonetheless, these results offered valuable insights into
the distributions of any properties/parameters which are reliant on
mechanical properties of interest.
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