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Microstructure-sensitive materials design has become popular among materials engineering researchers in the last
decade because it allows the control of material performance through the design of microstructures. In this study, the
microstructure is defined by an orientation distribution function. A physics-informed machine learning approach is
integrated into microstructure design to improve the accuracy, computational efficiency, and explainability of
microstructure-sensitive design. When data generation is costly and numerical models need to follow certain
physical laws, machine learning models that are domain-aware perform more efficiently than conventional
machine learning models. Therefore, a new paradigm called the physics-informed neural network (PINN) is
introduced in the literature. This study applies the PINN to microstructure-sensitive modeling and inverse design
to explore the material behavior under deformation processing. In particular, we demonstrate the application of
PINN to small-data problems driven by a crystal plasticity model that needs to satisfy the physics-based design
constraints of the microstructural orientation space. For the first problem, we predict the microstructural texture
evolution of copper during a tensile deformation process as a function of initial texturing and strain rate. The second
problem aims to calibrate the crystal plasticity parameters of the Ti-7Al alloy by solving an inverse design problem to
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U = hidden weight matrix at long short-term memory
network gate

v = lattice reorientation velocity

w = weight matrix at long short-term memory net-
work gate

X; = input of long short-term memory network

Y = orientation distribution function output by
physics-based simulator

)4 = predicted orientation distribution function by
physics-informed neural network

a = strain rate

5% = Kronecker delta function

<y> = volume-averaged material property

W1, W = weight parameters in the loss function

1. Introduction

ESEARCH on multiscale materials modeling is focused on

examining the connection between thermomechanical processes,
structures, and material properties by investigating physical behavior
at multiple lengths and time scales. Understanding the multiscale
material response by utilizing entirely experimental approaches is
infeasible due to the overwhelming amount of parameters/conditions
that must be investigated [1]. Therefore, computational approaches are
required to assess the multiscale characteristics and performance of
materials. The multiscale computational efforts have been increasingly
visible since the introduction of the integrated computational materials
science (ICME) paradigm [2]. The ICME paradigm, in particular,
supports the application of next-generation numerical methodolo-
gies to improve the current understanding of materials modeling
and design. To achieve this goal, we build novel physics-informed
and data-driven crystal plasticity surrogate models of processing-
microstructure-property linkages for two metallic materials using a
long short-term memory (LSTM) network.

Extracting useful information from existing data through various
computing resources has become an important paradigm in different
scientific disciplines, including image recognition, cognitive science,
and genomics [3]. Like other fields, machine learning (ML) has also
become a popular approach for materials design and discovery [4]. In
the past, data-driven ML has been applied to different studies in the
field, including the polycrystalline materials design [5,6], materials
discovery [7,8], and microstructure design for obtaining specific
design parameters [9,10]. For instance, an ML-based crystal plastic-
ity model representation for titanium—7wt%aluminum (Ti-7Al) alloy


https://orcid.org/0000-0002-6942-1343
https://orcid.org/0000-0002-5911-0410
https://doi.org/10.2514/1.J062708
www.copyright.com
www.aiaa.org/randp
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.J062708&domain=pdf&date_stamp=2024-03-11

Downloaded by Virginia Tech University Libraries Serials on December 6, 2024 | http://arc.aiaa.org | DOI: 10.2514/1.J062708

HASAN ET AL. 1865

was developed by Acar [11] using data-driven supervised learning
techniques. While these data-driven predictive ML models are widely
utilized, their prediction accuracy is immediately related to the
quality and size of the training data.

Many engineering models are built upon underlying physics. The
solutions of these physics-based models also need to satisfy boun-
dary conditions, initial conditions, and physics-derived design con-
straints. For traditional data-driven modeling, a large amount of data
are required to build a high-fidelity model [12]. However, due to
computational time requirements, it is not efficient for some models,
like crystal plasticity modeling, to produce sufficient data to train a
high-fidelity ML model. Moreover, traditional ML models may not
be explainable as they may not be aware of the underlying physics-
based design constraints [13]. To incorporate the problem physics
within the ML model and train the model with small data, a new
framework called the physics-informed neural network (PINN) was
introduced by Raissi et al. [3]. Before this study, Lee and Kang [14]
first applied a neural network algorithm to solve the differential
equations. After that, Lagaris et al. [15] solved ordinary and partial
differential equations using artificial neural networks. They used a
similar methodology to solve boundary value problems with irregular
boundaries [16]. Later, Sirignano and Spiliopoulos [17] developed a
deep learning algorithm to solve high-dimensional (up to 200 dimen-
sions) partial differential equations (PDEs) with boundary and initial
conditions. PINN has become very popular within the scientific
community since Raissi et al. published a detailed framework of
PINN for solving PDEs [18] and the discovery of PDEs [19]. Later,
they published an integrated version of the previous two papers [3].
Subsequently, PINN was adopted in different engineering applica-
tions, such as solid mechanics [20-22], crystal plasticity modeling
[23,24], fluid mechanics [25-29], heat transfer [30], nano-optics,
metamaterials [31,32], medicine [33-35], and power systems [36].
Recently, PINN was also applied to quantify the model uncertainty
[37-39].

In order to optimize the processing paths of deformation (up to 100
combinations) for a targeted metallic microstructure, Dornheim et al.
[40] recently formulated a model-free deep reinforcement learning
algorithm. Instead of relying on prior samples, their algorithm can
communicate with processing simulations during optimization. They
expanded the technique to address multi-objective optimization
problems. In a different study, Honarmandi et al. [41] proposed a
novel approach based on batch Bayesian optimization to solve the
inverse problem of determining the material processing requirements
using microstructure data. They created a surrogate model based on
Gaussian process regression to take the place of the computationally
expensive process models and integrated it into inverse design opti-
mization using both low-fidelity and high-fidelity phase field models.
In this study, inspired by PINN, we develop physics-informed and
data-driven surrogate models to replace costly material processing
simulations to predict the final deformed textures and their evolution
over time. Models are trained with small data and customized to
incorporate the underlying physics-derived constraints. Therefore,
this paper presents a combined approach of microstructure-sensitive
deformation modeling and materials design with physics-informed
ML. The example problems will be presented for two different crystal
structures, i.e., hexagonal close-packed (hcp) and cubic. Two exam-
ple materials, Ti-7Al and copper (Cu), are chosen as they have wide
engineering applications under high thermomechanical stresses,
including aerospace systems. In the first problem, we develop a
surrogate model for Cu that predicts the final texture and its evolution
at different time steps when a tensile force is applied to the material
for a certain time with different strain rates. Next, we define an inverse
design problem to solve the optimum slip and twin system parameters
of Ti-7Al to achieve a final texture prediction that matches the
experimental texture data. In order to do that, another surrogate
model is developed to predict the deformed texture as a function of
crystal plasticity parameters when the material is under compression.
In both cases, an LSTM neural network is implemented to develop
a data-driven model. The LSTM network is a good choice because
our study involves time-dependent simulation data. Moreover, the
physics-based constraints can be implemented in the LSTM network

[42-45]. The organization of this paper is as follows: Sec. Il describes
the mathematical modeling of the deformation processing and texture
evolution. It also discusses the necessary mathematical back-
ground of the physics-informed LSTM network. Results for forward
modeling and inverse design using PINN are discussed in Sec. III.
The summary of the paper, along with potential future works, is
included in Sec. IV.

II. Mathematical Modeling
A. Deformation Process and Texture Evolution Modeling

A polycrystalline material is composed of many crystals with
different crystallographic orientations, and these orientations define
the microstructural texture. The orientation distribution function
(ODF) is utilized to represent the microstructural texture using a
local finite element discretization scheme. For each independent
crystal orientation (considering the crystallographic symmetry) rep-
resented by the ODF, there is an associated volume fraction, which
indicates the proportion of the total volume of the microstructure
oriented in that particular direction. This definition requires the
implementation of a normalization constraint that is expressed in
Eq. (1):

/A(r,t)dv:l (1
R

In Eq. (1), A(r, 1) represents the ODF, which is a function of
crystal orientation r and time ¢. This normalization constraint ensures
that the volume fractions associated with all independent crystal
orientations sum up to 1 (or, in other words, the probability of having
all orientations in a given microstructure is equal to 1), and thus, the
ODF defines a valid probability density representation of the orien-
tation space.

The ODFs can be updated as a function of time during deformation
using a crystal plasticity constitutive model, which makes it a com-
putationally efficient method. The probabilities are developed spe-
cifically from time ¢t = 0, corresponding to an initial ODF derived
from the initial microstructural texture. Rodrigues axis-angle param-
eterization of the orientation space approach is applied to depict
ODFs [46]. The parameterization is obtained from the scaling of
the axis of rotation, n, which is represented as n = r/tan(6/2),
where r and 0 are the orientation and angle of rotation, respectively.
To calculate the meso-scale (volume-averaged, homogenized) prop-
erties, a local finite element discretization approach is used along
with Rodrigues parameterization. The volume-averaged properties
(< y >)of polycrystalline materials can be calculated using the single
crystal properties, y(r), and the orientation information by consider-
ing the homogeneity of the orientations in the elementary volume. At
any given time, the homogenized property < y > can be calculated
using the following equation:

<y>= A 2(DAPd @

In both Egs. (1) and (2), R defines the fundamental region in the
orientation space. As mentioned earlier, a finite element discretiza-
tion approach is applied to model the ODFs over the Rodrigues
orientation space. Here, R is a reduced space that is derived from
the original space as a result of the crystallographic symmetries in the
given polycrystal system (e.g., cubic symmetry or hexagonal sym-
metry). The discretization of the ODF is shown in Fig. 1, which
contains N independent nodes with N, finite elements and N,
integration points per element. Figure 1a represents the hexagonal
microstructure, and Fig. 1b depicts the cubic microstructure. The
number of independent nodal points (the nodes shown with red color
in Fig. 1) of an HCP microstructure is 50 with the Rodrigues
representation, while the number of independent ODFs is 76 for
the cubic microstructure.

Using alocal finite element discretization scheme in the Rodrigues
fundamental region, Eq. (2) can be written as
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Fig. 1 Finite element discretization of the orientation space for a) hexagonal close-packed (HCP) and b) cubic microstructures. The red-colored nodal
points show the independent ODF values, while the blue-colored nodes indicate the dependent ODFs as a result of the crystallographic symmetries.
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where A(r,,) is the ODF value at the mth integration point with global
coordinate r,, (orientation vector) of the nth element. |J,| is the
Jacobian determinant of the nth element, and w,, is the integration
weight of the mth integration point. Equation (3) can also be written
in the linear form as

<x>=p'A )

where p is the property matrix that is a product of the single-crystal
material properties and finite element discretization of the orientation
space, and A is the column vector of the ODF values for the
independent nodes of the finite element mesh (see Fig. 1). Similarly,
the linear form of Eq. (1) is given below as shown in Ref. [47]:

g'A =1 )

where ¢ is the constant column vector obtained from the finite
element discretization.

The texture of a polycrystalline microstructure changes under
applied loads during a deformation process. This change is reflected
in the ODF values through the ODF conservation equation [48],
which is given below:

0A(r, 1)
ot

+ VA(r, 1) - v(r,t) + A(r, )V - v(r,1) =0 (6)

Equation (6) also satisfies the volume normalization constraint of
Eq. (5) ata given time. Here, v(r, ) is the reorientation velocity. The
microstructure constitutive model can calculate texture evolution in
terms of a velocity gradient (L) definition [see Eq. (7)], which is
linked to v(r, r) by the Taylor macro-micro linking hypothesis. A
rate-independent constitutive model is adopted to compute the
reorientation velocity [48]. The evolution of current texture
A(r, t) from the initial texture A(r, 0) is solved by the constitutive
model and finite element representation in the Rodrigues orienta-
tion space.

Each deformation process, such as tension/compression and shear,
generates a particular ODF as output after applying a load for a
specific amount of time. The macro velocity gradient L for a par-
ticular process is used by the crystal plasticity solver to explore the
ODF evolution during that process. The velocity gradient of a crystal
with the orientation, r, can be written as

L=S+ RZ;’/“T“RT @)

where S represents the lattice spin, R indicates the lattice rotation, and
y* and T“ indicate the shearing rate and Schmid tensor for the slip
system a, respectively. The macro velocity gradient expression of
Eq. (7) can be written in the following matrix form for the tension/
compression process [Eq. (8)], and its derivation is skipped here for
brevity, which can be found in Ref. [48].

1 0 0
L=o|0 05 0 ®)
0 0 -05

where a; relates to the strain rate of the tension/compression process.
Additionally, the slip hardening model is integrated into the crystal
plasticity simulations as explained next:

h*? = [q + (1 — q)6%]h’  (nosumon f) )

where h” is a single slip hardening rate, g is the latent-hardening ratio
(which is equal to 1.4 for non-coplanar slip systems), and % is the
Kronecker delta function. For the single-slip hardening rate, the
following specific form is used:

/j a
h/’:h0<1 —i—) (10)

where h,, a, and s, are slip hardening parameters. While the cubic
microstructures of Cu only involve 12 slip planes, the HCP Ti-7Al
demonstrates a more complex deformation behavior. Accordingly,
the basal < a >, prismatic < a >, pyramidal < a >, and pyramidal
< ¢ + a > slip systems, in addition to the {1012} < 1011 > twinning
mechanism, are modeled for Ti-7Al alloy.

B. Physics-Informed Neural Networks

Neural networks are used to estimate the outcomes of a function;
therefore, they can be embedded into the physical systems to
approximate the solution while satisfying any initial or boundary
conditions and physics-derived constraints. In the case of PINNs,
the loss function is modified to accommodate the physical laws,
initial/boundary conditions, or any design constraints present in the
system.
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The feed forward neural networks (FNNs) are the most basic
network structures composed of different layers with many nodes,
which map inputs to the outputs by adding weighted inputs with bias.
As FNN relays information in only one direction, problems contain-
ing parallel time series data related to each other cannot be predicted
accurately with this type of network. Therefore, we are utilizing a
special type of recurrent neural network (RNN) called LSTM net-
work to correlate the processing parameters and texture evolution
with time during the deformation process.

1. Long Short-Term Memory Network

Unlike FNN, RNN has nodes in its layers that communicate with
the nodes of the previous layer, which creates a cycle. Therefore, it
can act as a memory to fit the sequence of input variables. This is
achieved by backpropagation, ensuring that the weights in the pre-
vious layers are updated based on the derivative of the estimated error
at the output layer with respect to the weights. The adjustment is
performed during each training epoch to facilitate the gradual
improvement of the model’s predictive capabilities. As the inputs
are not independent of each other, relations between the features
could be captured directly. It is also able to handle inputs and outputs
of different sizes. However, there are still major issues when imple-
menting the network standalone, such as gradients exploding or
vanishing and processing large sequences.

In order to tackle the disadvantages of the RNN structure, the
LSTM network is proposed. The main additions are the gates in the
form of activation functions that provide the ability to select which
information to discard or to keep in the memory. As summarized in
Fig. 2, the cell is composed of a group of neural networks that operate
with three gates. The input gate decides whether new information
should enter the cell, the forget gate releases the information that is
considered not important, and the output gate decides if the whole
process starting from the input gate should affect the output. These
gates also reduce the training time, thus helping the whole neural

network system to handle a long sequence effectively. Equations
(11-14) give the expressions at the forget (f,), input (i,), and output
(0,) gates and cell state candidate (C;), respectively.

fi=0o(WDx, + UDh,_ +bD) 11
i, = o(WOx, + UDh,_; + b?) 12)
0, = a(WOx, + UOn,_; + b?) (13)
C, = tanh(W®x, + U®h,_| + b®) (14)

In the equations, W is the gate weight matrix, U corresponds to the
hidden unit weight matrix, and b stands for the bias. After the multi-
plication of the input x, and the hidden state /2, with the weights, they
become inputs for their respective activation functions that are sigmoid
and tanh denoted as ¢ and tanh, respectively. Next, these gates are
employed to compute the new memory and the cell output by Egs. (15)
and (16), respectively [49]. This involves elementwise multiplication
(®) to ensure that gate values either nullify corresponding values when
close to zero or allow them to pass when they are close to one.

Cl:é[®it +ft®ct—l (15)

h, = 0,(®) tanh(C,) (16)

For modeling the texture evolution of the Cu microstructure during
a tensile process, the first LSTM layer takes the initial ODFs and
strain rate as the input. Thus, the input vector length N is equal to
M + 1, where M stands for the length of the ODF data. The output of
the first layer is then converted into a matrix so that it has the same
shape as the output that has multiple time steps, each of which contains

| LSTM LSTM o A > 1
i X1,e Yi,041, Y1042, - - Y14 :
| X2.¢ Y2 141, Y2242, - - Y2 14 1
1 X3¢ LSTM LSTM Y3041, Y3042, - Y3 4r 1
| X = y = :
: Repeat Dense !
| s o Vector Laver - 1
| 5 Layer 4 5 ]
| XNt ’ ' ?M,t+lsi>M,t+2’ - 'YM,I+L 1
1 Random LSTM LSTM ODF Output at 1
1 ODF Input A the next timesteps 1
: LSTM LSTM !
| Layer Layer {
1 LSTM )

************************** )

+

Cell State '

i

Fig.2 LSTM architecture adaptation for a multiple parallel time-series problem to predict the evolution of ODFs and the internal block structure of an

LSTM cell.
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ODF features. On the other hand, for the second problem that explores
the optimum crystal plasticity parameters of Ti-7Al alloy to match the
final texture data, the first LSTM layer inputs the slip and twin system
parameters. The final LSTM layer takes the output of the previous layer
and predicts the final value through the dense layer. The reason for
utilizing LSTM for the second problem is the realization of the
dependence of the output parameters. Given the inherent relationships
and dependencies in the output, we deduced that LSTM, with its
unique ability to retain information over extended sequences [50],
would be better suited for this problem. In addition, the consideration
of both input and output parameters as a series provides a general
framework that can be extended to address other time-dependent
problems using LSTM. Building such a general time-dependent sur-
rogate model framework can be leveraged to predict the output (and the
evolution of the output) at different time step(s).

The procedure of LSTM for the first problem is as follows: The
predicted output Y for each time step, based on the strain rate and the
initial ODF, is evaluated via a loss function where it is compared with
the actual ODF (Y) for the corresponding time step obtained from the
physics-based simulator. The loss function is modified to incorporate
the physics-based normalization constraint [see Eq. (5)], which needs
to be satisfied by the ODFs at each time step. Therefore, we have
added an extra term in the loss function that accounts for the physics-
informed loss, which becomes Total Loss = Physics-Informed Loss +
Data-Driven Loss. The total loss (/) can be expressed as

L

N 1 & N
J=Z|:w1(1_9'Yi)2+w2MZ(Yi,j_Yi,j)2i| an
=

i=1

where the first term ensures that the accuracy search does not violate
the physics-based constraint, and the second term ensures the mini-
mum error in model prediction. As described in Fig. 2, L stands for
the maximum time step of the simulation data, which is equal to 10 in
the first problem. For each time step, the physical loss [loss for the
physics-informed term in Eq. (17)] is calculated, and the values of
each predicted and real ODF are subtracted to find the mean squared
error loss. Next, the summation over 10 time steps is carried out. For
the second problem, we only consider the final-step (10th-step)
ODFs as output; therefore, L is set equal to 1. The weight parameters
(w1, ®,) are tuned to 10 and 1, respectively, to improve the prediction
accuracy while concurrently satisfying the physics-informed con-
straint in the predicted ODF.

III. Results and Discussion
A. Problem Statement
Crystal plasticity modeling is a computational approach that
investigates the mechanical behavior of crystalline materials at
the microscale under large deformations caused by external forces.
It considers the interactions between crystal defects, such as

dislocations, and the crystal lattice and provides insights into how
materials deform under different loading conditions. However, the
crystal plasticity simulations tend to be computationally intensive,
demand extensive data for accurate calibration, and are sensitive to
model parameters. To address these challenges, we propose to
develop data-driven surrogate models informed by underlying
physics (i.e., orientation space definition and evolution in our work)
to offer a more efficient, versatile solution and extend the appli-
cability to materials with limited information.

Knowledge about the texture evolution of copper (Cu) micro-
structures under tensile loads is crucial for applications in the aero-
space industry, where copper is employed in critical components like
gaskets and seals, bearings, heat exchangers, etc. [S1]. Under varying
loading, it is essential to understand how the microstructure evolves
during tensile deformation, which aids in optimizing the material’s
performance and reliability in aerospace structures. Therefore, we
propose to build a surrogate model for exploring the plastic defor-
mation of Cu microstructures under tensile loads. In particular, this
surrogate model predicts the texture evolution of Cu during the
deformation process. The inputs of the surrogate model are defined
as the initial texture (in terms of ODFs) and strain rates of the process.
The outputs are the deformed textures (in terms of ODFs) in 10 time
steps. Figure 3a summarizes the schematic of the first problem.

The second problem aims to explore the large-deformation behav-
ior of Ti-7Al. To achieve this goal, estimating the slip and twin system
parameters (namely crystal plasticity parameters) for Ti-7Al is vital
for building a high-fidelity model that can be used to develop high-
performance Ti-Al alloys in structural applications. Ti-7Al is exten-
sively utilized in aerospace and other engineering fields due to its
excellent strength-to-weightratio [13]. However, there is no universal
agreement on the crystal plasticity parameters of Ti-7Al [11]. There-
fore, an accurate estimation of its crystal plasticity parameters under
compressive loading conditions is essential for optimizing the alloy’s
deformation behavior and ensuring superior mechanical properties.
This is anticipated to contribute to the advancement of materials used
in critical components of aircraft and other high-stress applications.
The surrogate model we develop for this problem takes slip and twin
system parameters as input and the final deformed textures (in terms
of ODFs) after compression as output. Next, this trained surrogate
model is introduced within the optimization algorithm to calibrate the
slip and twin system parameters of Ti-7Al using the experimental
data of the microstructural texture. The second problem overview is
also described by a flow diagram in Fig. 3b. In both cases, the training
datasets are generated using the physics-based crystal plasticity
simulations utilizing the constitutive model developed by Sundarar-
aghavan and Zabaras [52].

B. Forward Model of Crystal Plasticity Simulations

The objective of this surrogate model is to predict the texture
evolution and the final texture of tensile deformation using any given

ial Random Textures
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Inverse Design I
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Slip and Twin System ‘ Plastic Deformation inal Deforme
Parameters for Ti-7Al Textures
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Fig.3 Schematic of the a) forward model for texture evolution of copper microstructures under tensile loads, and b) inverse design of slip and twin system

parameters of Ti-7Al for compression.
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initial texture and strain rate. Copper is considered as an example
material that has 76 independent ODFs. We generated 1200 training
data points using the physics-based simulations from random initial
textures with different strain rates varying from 0.1 to 1 s~'. Each
simulation took around 15-20 minutes on a desktop computing
platform. The tensile force is applied for 0.1 s in each case. Training
data contains the final deformed texture with nine intermediate time
steps of textures in terms of ODF snapshots. Note that 200 data
samples are reserved for testing the performance of the model.
Among the 1000 data samples, 85 and 15% of the data are used for
training and validation, respectively. The structure of the network
used for training this model consists of 3 LSTM layers of 200 nodes,
followed by a dense layer and wrapped by a time-distributed layer.
The training is completed in 598 s on a cluster equipped with an AMD
EPYC 7702 CPU clocked at 3.35 GHz using four cores. Adam
Optimizer [53] was used for the training that had 2000 epochs with
a batch size of 77 and a learning rate of 0.0001. The trained model is
then used to test different sets of ODFs. To emphasize the signifi-
cance of implementing a physics-informed constraint, the compari-
son between the performance of LSTM-based surrogate models is
evaluated for both conditions, i.e., with and without the application of
this physics-informed constraint. The training and validation accu-
racy of the models in terms of mean squared error is reported in Fig. 4.
Convergence of the LSTM model with physics-informed loss occurs
at 790 epoch (Fig. 4a). Conversely, Fig. 4b shows that the LSTM
model converges faster (150 epochs) without physics-based loss.
Next, the results were examined across all test cases by keeping all
of the settings the same during the training phase (Fig. 5). Despite a
somewhat comparable prediction quality that loosely favors LSTM
without the physics-informed loss (Fig. 5b), the error related to the
imposed constraint is notably diminished when employing LSTM
with the physics-informed loss, as shown in Fig. 5a. The loss is
measured for each test case as an average of predictions for all time
steps. When the model is trained with the physics-informed loss, it is
able to decrease the associated loss significantly, as expected, without
sacrificing the prediction accuracy for the data-driven loss. The
maximum deviation from the constraint for the LSTM with
physics-informed loss is 1.3%, whereas it is 4.6% if the physics-
informed loss is not included. Therefore, by considering the physics-
informed constraint as a strict mathematical constraint, LSTM with
physics-informed loss is found to achieve more consistent and fea-
sible predictions. In addition, the predictions for exemplary ODF
values by the LSTM with physics-informed loss demonstrate com-
parable trends as the actual ODF data even though exemplary cases
include the worst cases (and also random cases) in terms of the
prediction accuracy (Fig. 5¢). The root mean squared error (RMSE)
values of the predictions are 0.27, 0.23, 0.10, and 0.12, respectively.
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Furthermore, a random initial texture is chosen to run the process
simulation using both physics-based and developed surrogate models
for the strain rate of 1 s~!'. The final texture and two intermediate
steps of ODF evolution from both models are shown for comparison
in Fig. 6. Itis evident from Fig. 6 that the physics-informed surrogate
model is able to capture the trend of ODF evolution in time with a
minimum error (RMSE values are 0.44, 0.65, and 0.85 for the 3rd,
7th, and 10th steps, respectively). Moreover, the predicted ODFs in
each step satisfy the volume normalization constraint of Eq. (5). Itis
observed that the RMSE value of the prediction is increasing with
time. This is because the prediction of the next step is also based on
the predicted previous step. Therefore, the error is accumulating in
the further steps. In addition, these values are higher for predicting the
high strain rate processes. The possible reason behind this finding is
that larger changes occur in the ODF values from the initial time step
to the final time step when the strain rate is high. In such cases, the
surrogate model needs more data from the physics-based simulations
to achieve high prediction accuracy.

C. Inverse Design of Crystal Plasticity Parameters

In our previous study [13], a high-fidelity crystal plasticity surrogate
model was developed for Ti-7Al using conventional neural networks.
A two-step solution was proposed to develop an inverse problem that
yielded optimum crystal plasticity parameters by minimizing the
difference between experimental microstructure data and the neural
network predictions of the same. However, only 50 data points were
generated using PRISMS-Plasticity software [54] to train the model, as
the data generation was costly. Moreover, the design variables (ODFs)
were required to satisfy the normalization constraints. As a result, the
overall prediction quality of the conventional neural network was
lower than desired. Therefore, in this study, we train the model using
physics-informed LSTM, as it has shown very good potential in
process modeling for copper. Even though the deformed texture of
the final time step is used for training, it is also dependent on the
textures of the previous steps. The findings of the current study are also
compared to the previous data-driven predictions.

The material of interest, Ti-7Al, can demonstrate slip and twin
deformation behavior. Therefore, to run crystal plasticity simulations,
the slip and twin parameters are defined as the inputs to the software.
These parameters have possible ranges (shown in Table 1) that were
previously obtained using the experimental true stress-strain curve data
for compression in the preliminary studies of our group [11,13].

Like the forward process modeling of Cu, we have used the same
process simulator with the constitutive model developed by Sundar-
araghavan and Zabaras [52] to generate the training data samples for a
compression process. The crystal plasticity parameters are defined as
the input, and the ODFs are the output. A total of 50 random
combinations of the slip and twin parameters are chosen within the
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Fig. 4 Training performance of the network using LSTM a) with physics-informed loss and b) without physics-informed loss. Convergence occurs at

around 790 epochs for (a) and 150 epochs for (b).
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Fig. 6 Comparison of the ODFs in Rodrigues orientation space at
different time steps obtained by physics-based model and physics-
informed ML model.

given ranges in Table 1 to generate training data. Each physics-based
crystal plasticity simulation of Ti-7Al took around 5-6 h, depending
on the values of slip and twin parameters on a desktop computational
platform. Using this small dataset, another physics-informed surro-
gate model is trained using the LSTM network in Fig. 2. In this case,
the structure consists of two LSTM layers of 100 nodes, followed by a
dense layer and wrapped by a time-distributed layer. The training is
completed in 276 s on a cluster equipped with an AMD EPYC 7702
CPU clocked at 3.35 GHz using four cores. The combinations are
split into 80%—10%—10% as training, validation, and test sets where
the learning rate is set to 0.01. To prevent overfitting, training is
stopped early at the 900th epoch, along with a batch size of only 2.
Unlike the first approach, in this case, the input layer has 20 features
(slip and twin system parameters), and the output layer has 50
independent ODFs of Ti-7Al. Similar to the previous model, these
ODFs need to satisfy the volume normalization constraint, which is
incorporated into the training by customizing the loss function
[see Eq. (17)].

The accuracy of the trained model in terms of comparison
between the actual and predicted normalized ODFs and mean
squared error for training and validation data are reported in Fig. 7.
The first test case shows a little discrepancy between the actual and
predicted ODFs, with an RMSE value of 0.27. However, the other
two cases exhibit promising agreement between the actual and
predicted ODFs, with RMSE values of 0.03 and 0.05, respectively.
Next, we estimate the optimum crystal plasticity parameters that
provide the best match with the given experimental ODF values.
The ODF values for the experimental microstructures, shown in
Fig. 8, are derived from the Euler angle information using the
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Table1 Optimum ranges for the crystal plasticity parameters for compression [11,13]

Slip system 5o, MPa ho, MPa s,, MPa a

Basal < a > [200, 349.95] [200,299.5]  [1500, 1784.2]  [1.3,2.0149]
Prismatic < a > [220, 399.33] [200,299.5] [1500, 1784.2]  [1.3,2.0149]
Pyramidal < a > [900, 1199.7] [200, 299.5]  [1500,1784.2]  [1.3,2.0149]
Pyramidal < ¢ +a > [800.2, 1199.1]  [200,299.5] [1500, 1784.2]  [1.3,2.0149]

Twinning

[609.88,999.28] [800.12, 1110] [1500, 1784.2] [3.6584, 3.9998]
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Fig.7 Comparison of the actual and predicted normalized ODFs for three different test cases along with the convergence of mean squared error for both

training and validation data.

300 um

' - s
a)
Fig.8 Experimental EBSD image of the Ti-7Al alloy sample at 13.5% compressive strain a) after compression b) after recrystallization [55].

closest simplex search technique to group the orientation informa-
tion [56]. The EBSD images of the Ti-7Al sample are obtained at
13.5% compressive strain [55]. Figure 8a was taken after the end of
the compression process, and Fig. 8b was collected after recrystal-
lization of the microstructure. Next, an inverse optimization prob-
lem is defined to solve this problem. Therefore, the objective of this

optimization problem is to minimize the mean squared error
between the predicted and experimental ODFs.

For the first problem, we solved the optimum slip and twin system
parameters (see Table 2) that can provide the closest match of the
optimum ODFs to the given experimental ODFs after compression.
This problem was also solved by the conventional neural network
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Table2 Optimum slip and twin system parameters
obtained from PINN-based inverse optimization
providing the best match with the experimental ODFs
after compression

Slip system sg, MPa  hg, MPa s ,MPa «a
Basal < a > 316.04  202.8 1620.9 1.63
Prismatic < a > 309.8 277.9 1650.1 1.84
Pyramidal < a > 940.2 2573 15389 14
Pyramidal<c +a > 971.2 269.6  1600.8 1.62
Twinning 936.2 975.8 1707.3 3.8

before [13]. However, the prediction accuracy was found to be
insufficient. The RMSE value of the current prediction for all 50
ODFs is 0.41. However, this value was 1.24 in the previous study
(almost three times higher), which was a purely data-driven neural
network framework [13]. Figure 9 reports the PINN-predicted ODFs
in the Rodrigues orientation space, along with the previous prediction
by the conventional neural network and the experimental ODFs for
comparison. It is evident that the physics-informed LSTM has
improved prediction accuracy compared to the conventional neural
network with the incorporation of the problem physics. Therefore,
the calibrated slip and twin system parameters of Ti-7Al shown in
Table 2 can be used for the crystal plasticity simulations to understand
the alloy’s large deformation behavior under compression loads in
the future.

Next, we calibrated the crystal plasticity parameters, shown in
Table 3, using inverse design optimization that aimed to find the best-
matching ODFs with the known experimental ODFs after recrystal-
lization of the deformed microstructure. Even though the temperature
was not assigned as an independent design variable during the train-
ing of the surrogate model, the performance of the trained model was
also assessed for the experimental texture data after recrystallization.
The optimum ODFs from the prediction and the experimental ODFs
in the orientation space are displayed in Fig. 10. The physics-
informed surrogate model also performs well in this case; however,
the RMSE value of the prediction is 0.67, which is larger than in the
previous case. The incorporation of the temperature effect in the
surrogate model is expected to decrease this error value and can be
explored in the future.

The surrogate models in both cases reduce the computational
time significantly, from hours to only an average of 5 ps for a single
simulation, leveraging the accuracy slightly, as reported. Consid-
ering the relatively small error values for the surrogate models of
both problems, these several orders of magnitude savings in com-
puting times through the use of the surrogate model make it a
desirable approach to build the presented framework simulating
microstructural texture evolution under processing. The LSTM is

=
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Table3 Optimum slip and twin system parameters
obtained from PINN-based inverse optimization that
provide the best match with the experimental ODFs after

recrystallization
Slip system so, MPa  hy, MPa s,,MPa a
Basal < a > 3255 288.02 17824 191
Prismatic < a > 247.8  286.9 1706.7 1.53
Pyramidal < a > 1142.1 2934 1605.03 1.52
Pyramidal< c+a > 9427 2723 1585.7 1.55
Twinning 962.8  915.8 1549.07 3.75

also found to be powerful, first owing to the time dependency of the
problem and, second, the inherent relationship between the ODF
features. In addition, the introduction of physics-informed loss
showed that the constraint error decreased sharply, and over all test
cases, acumulative 95.1% decrease was achieved without causing a
change in MSE. Though the surrogate model predictions are found
to improve the prediction accuracy compared to the previous data-
driven ML results, there are still errors potentially arising from i)
epistemic uncertainty associated with the crystal plasticity simula-
tions and ii) aleatoric uncertainty arising from the experimental
measurements of the microstructural texture. With more generated
data, the model is anticipated to be improved further in the future.
Overall, this study can be useful for material deformation modeling
and design for critical applications.

IV. Conclusions

This study presents the application of physics-informed neural
networks in microstructure-sensitive materials design. The devel-
oped physics-informed LSTM network provides very good accuracy
for predicting the texture evolution of copper under the tensile
deformation process, with the lowest RMSE value of 0.44 for all
76 ODFs. In another problem, to identify the crystal plasticity
parameters of Ti-7Al given the after-deformation experimental tex-
ture, PINN shows promising results for the crystal plasticity param-
eters calibration as its RMSE value is three times smaller than the
RMSE value of the conventional neural network prediction. There-
fore, this work has provided insight for future works that would
involve the crystal plasticity modeling of metals by considering the
uncertainty of the microstructures using a physics-informed neural
network. The developed surrogate models are demonstrated to cap-
ture the microstructural texture evolution in different time steps of
different deformation processes while accounting for the physics-
derived design constraints of the orientation space. This methodol-
ogy can further be extended in the future to predict the changes not
only in the microstructural features but also in time-dependent

b)

e

Fig. 9 ODFs in the Rodrigues orientation space: a) experimental ODFs after compression, b) ODFs predicted by PINN, and c¢) ODFs predicted by a

conventional neural network.
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material properties (e.g., stress/strain fields of microstructures) dur-
ing the plastic deformation of metals.
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