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The present work addresses uncertainty quantification within the application of Markov-
Random Fields (MRF) on the multi-scale modeling of microstructures. The aleatoric uncertainty
of experimental measurements, as well as the epistemic uncertainty arising from computational
microstructure reconstruction, is explored. The study is performed on the experimental data of
Titanium-7wt%Aluminum (Ti-7Al) alloy, which is a candidate material for many aerospace
systems owing to its desirable mechanical performance under large thermo-mechanical stresses.
The aleatoric uncertainty of the experimental electron backscatter diffraction (EBSD) data is
quantified by identifying the noises in data clusters for crystallographic orientations. After the
identification and correction of such uncertainty, microstructure reconstruction is performed on
the experimental samples using the MRF algorithm to create synthetic data. This reconstructed
data provides a statistically similar representation of the test samples while introducing epistemic
uncertainty on the microstructural features which is captured in this study by computing the
distance metrics between experimental and synthetic data.

I. Introduction
Component-scale properties and performance of metallic materials are fundamentally driven by the underlying

microstructural features. Therefore, multi-scale modeling requiring the exploration of the micro-scale features of
materials, such as crystallographic orientations and grain topology, has become an important and growing research
area. When it comes to visualizing the microstructural features of certain materials, instruments such as an optical
microscope, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and Atomic Force
Microscopy (AFM) are used [1, 2]. To identify the grain orientation information for metallic microstructures, techniques
such as Electron Backscatter Diffraction (EBSD) [3–8] or X-ray diffraction [9–11] are used. While these instruments
and techniques provide us with real-world data, the process of getting this data consumes a large amount of time and
materials for even small-scale samples. In order to minimize the costs associated with gathering this data, computational
microstructure reconstruction methods are utilized to predict the evolution of the microstructure in larger domains
by utilizing the small-scale information already gathered. One of the methods that is implemented for computational
microstructure reconstruction is the Markov Random Field (MRF) approach, and while it has been proven to be efficient
in predicting large-scale microstructures in 2D [12–15], this algorithm, similar to other computational methods, is a
source of epistemic uncertainty that needs to be quantified in order to fully understand its capabilities and limitations.

Moreover, microstructures are inherently stochastic due to the aleatoric uncertainty associated with their processing
and experimental measurements. When it comes to uncertainty quantification of synthetic metallic microstructure data,
previous work has solely focused on the analysis of either aleatoric uncertainty [16–20] or epistemic uncertainty [21].
This work will focus on a more in-depth analysis of the uncertainty quantification of microstructures and will do so by
isolating two main sources of uncertainty present in the microstructure reconstruction process used.

Microstructure reconstruction is designed to generate statistically similar synthetic microstructures from test samples.
One of the methods that is used for microstructure reconstruction is MRF, which is based on a high-order Ising model.
In this application, the MRF-generated synthetic samples are expected to be statistically similar to the input test data by
utilizing conditional probability information captured from the test sample to estimate the location of certain color pixels
during reconstruction. Due to this, there is some expected algorithmic randomness in each generated synthetic sample
which contributes to epistemic uncertainty. In addition, a source of aleatoric uncertainty can be found in the EBSD
data that is measured after thermo-mechanical tests. This aleatoric uncertainty can be visualized through the grains of
an EBSD sample that do not have the exact same color values (due to perturbations in pixel values) even though they
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demonstrate identical crystallographic orientations, which can cause additional uncertainty for the MRF reconstruction.
In the present study, we identify the aleatoric uncertainty first by color-correcting the sample for consistent grain colors
to limit the uncertainty present in the synthetic microstructure. Ti-7Al alloy is selected for this study as the application
material since it has a wide range of use cases in the aerospace industry owing to its superior mechanical performance
under large thermal and mechanical stresses [22].

The paper is structured as follows. Section II discusses the methods that are used to identify and remove the aleatoric
uncertainty in the experimental data. Section III explains the concept behind MRF and how it is used to reconstruct a
colored image. The summary of all of the work, as well as the results from the above methods and future plans, are
provided in Section IV.

II. Identifying Aleatoric Uncertainty in Experimental Images

A. Identifying Grains using K-Means Clustering
In order to identify the aleatoric uncertainty present in our given EBSD experimental data, shown in Figure 1, the

data must first be broken down into usable sizes. The EBSD data consists of a 1029 × 1024 matrix of pixel values,
so in order to generate accurate images within a reasonable amount of time, samples with a resolution of 150 × 150
are used. Next, to identify the grains in those samples, an adjusted k-means clustering algorithm is used to follow the
methodology developed by our group for grain topology quantification [21]. This algorithm is designed to segment an
image into a given number of clusters based on the Red-Green-Blue (RGB) channel values of each pixel. However,
due to the noise from the experimental data, the algorithm would frequently mark grain boundaries as separate new
grains or as a part of existing grains, which can be seen in Figure 2. These grain definitions would cause inaccuracies in
the evaluation of epistemic uncertainty by both introducing new grains and blurring grains together, an example of
which can be seen in Figure 3. Due to this issue, an algorithm is developed to both refine grain separation and add grain
boundaries back to their original grains.

Fig. 1 Experimental EBSD image of Ti-7Al

B. Post Processing of Initial Grain Separation
The post-processing algorithm is designed to utilize two main sources of information. The first is the output of the

k-means algorithm, which is an 𝑁 × 𝑁 array of integer labels for the original image. This data is used as an initial
springboard for the algorithm, both for the individual label assignments and for the analysis of the neighboring pixels.
The second source of information utilized is the colors of the original experimental sample, translated into the CIELAB
color space.

The algorithm starts by checking the pixel labels around the pixel located at (𝑖, 𝑗). It checks a square area with
sides equal to (2𝑟 + 1), where 𝑟 is a user-defined radius. This data is then tabulated, and the label value that has the
most occurrences in the specified area is compared to the pixel label that was assigned at (𝑖, 𝑗). If the two values are
different, then the pixel at (𝑖, 𝑗) becomes unassigned unless the majority label occupies more than 80% of the searched
area. Once each pixel has been checked, the algorithm is left with a set of unassigned pixels that can be seen in Figure 3.
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(a)

(b)

Fig. 2 (a) A 150 × 150 cropped section of the original experimental image, (b) Separation of 25 clusters via the
adjusted k-means clustering algorithm

(a) (b)

Fig. 3 (a) Example of aleatoric uncertainty analysis without post-processing, (b) Visualizations of pixels that
are misassigned with k-means clustering

The unassigned pixels can be classified into four main groups, which are ‘loose pixels’, ‘broken grains’, ‘small grains’,
and ‘grain boundaries’.

Each of those groups can be added to their correct label once the CIELAB color space data is added to the
post-processing algorithm. The CIELAB color space is designed to modify the RGB values of a pixel into numbers
that can be used to identify similar colors in a way that more accurately matches human perception of those colors,
which also helps identify accurate grain boundaries. This is done by checking the color of the selected pixel against the
average color of each of the labels around it, including pixels that have been unassigned from labels. Then if there is
a suitably similar color around the selected pixel, it will be added to that label. This also allows for grains that have
become unassigned to be assigned to an unused label. This process ends with grains that are shown in Figure 4.

Once grains have been assigned through the above process, their RGB values are then averaged together to get a
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Fig. 4 The final clusters developed by the post-processing algorithm

product that has a reduced aleatoric uncertainty. The entire process is repeated until the percent difference between the
initial EBSD image and the color-corrected image converges to 0.1%, which can be seen in Figure 5 and is calculated
using Equation 1. This process is completed for each of the five samples that are used for this study, the data for which
can be seen in Figure 6 and resulted in an average percent difference of 8.41%.

(a) (b) (c)

Fig. 5 (a-c) Evolution of the clusters developed by the post-processing algorithm during convergence

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

|𝑅𝑒𝑎𝑙𝑖, 𝑗 − 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑖, 𝑗 | (1)
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Fig. 6 Convergence of each of the cropped sections of the initial experimental data

III. Microstructure Reconstruction using Markov Random Fields
The MRF is a graphical model that relies on probability analysis. It is used in this study to generate synthetic

microstructures using small-scale EBSD test data to predict the evolution of microstructures in large domains. The
algorithm determines the probabilities based on the color values of each individual pixel in the EBSD data and then
assembles the synthetic microstructures by assuming an Ising model.

An Ising model requires a square image of dimensions 𝑁 × 𝑁 , which then is represented as an 𝑁 × 𝑁 grid of pixel
values that contain any value 𝑋 i among one of the color levels 𝐺 of the original image in the range 0, 1, ..., 𝐺 − 1.
While a basic Ising model only captures the nearest-neighbor pixel information, shown in Figure 7(a), a higher-order
representation can be achieved with the MRF method by modeling every pixel in a certain area, defined with an external
parameter that is called the window size. This higher-order model illustration can be seen in Figure 7(b), and the pixel
of interest for this model is found in the center and connected to all other pixels in the defined window. Inside the MRF
approach, the probability of any value (𝑋) is assumed to be conditionally independent of all values outside of its window
due to the probability density of all particles being represented by the local Markovian property [21, 23–25].

(a) (b)

Fig. 7 Visualization of an MRF model, where the circles shown are the pixels of the chosen image and the lines
connect each neighbor of the model. (a) Nearest-neighbor Ising model. (b) The model used by the MRF method
to perform microstructure reconstruction is a higher-order Ising model.

The cropped image in Figure 8 (a) shows a microstructure sample with multiple large grains spread out over the
entire sample. When dealing with EBSD data that has patterns similar to this, a large window size is typically used
to capture the necessary data to recreate statistically similar samples using MRFs, a sample of which can be seen in
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(a) (b)

Fig. 8 (a) Cropped section of the color corrected image used in MRF reconstruction, (b) Reconstruction of the
image with a window size of 29 and a resolution of 150 × 150 pixels.

(a) (b) (c)

Fig. 9 Reconstruction of the cropped image with window sizes of 5, 7, and 9, respectively, and with a resolution
of 150 × 150 pixels.

Figure 8 (b) with a large window size of 29. The difficulty in using large window size values, especially for uncertainty
quantification purposes, is associated with the exponential growth of computing times required to generate a synthetic
image, with the sample image (shown in Figure 8 (b)) taking 45 minutes in a desktop computer to create. Due to
computing time expenses and the resulting numerically intractable nature of the uncertainty quantification problem with
large window size values, the uncertainty analysis is performed for window sizes of 5, 7, and 9 as shown in Figure 9 so as
to identify both potential sources of error and limitations of the MRF algorithm as a result of the epistemic uncertainty.

The epistemic uncertainty created from the MRF is calculated once the average percent difference between the
reconstructed image and the cropped image has converged to 0.1%, causing each data point to have a varying number of
samples used in the calculations. Equation 2 shows the calculation of these values which can be seen in Figure 10 and
Table 1. These compare the converged average percent difference of the five samples that are used in the study for each
window size that was used in the reconstruction. The variation in the convergence values is most substantial when using
a window size of five, which can be directly attributed to the fact that this window size value cannot capture the grain
information of the samples precisely. Window size seven has both the smallest variation out of each size that was tested
and the least number of data points necessary for convergence. Window size nine has the smallest average epistemic
uncertainty compared to the other two, but the epistemic uncertainty in these reconstructed images is larger than ideal.
The randomness that can be seen in the reconstructed samples can be directly attributed to the MRF algorithm due to the
mismatching color density and larger grain sizes. Due to these variables, a smaller window size is not able to accurately
retrieve the neighbor relationships needed for a statistically more equivalent synthetic representation of the test sample.
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Fig. 10 Variation in epistemic uncertainty related to the window size.

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

|𝑀𝑅𝐹𝑖, 𝑗 − 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑖, 𝑗 | (2)

Table 1 Epistemic uncertainty values for reconstructed images

Window Size 5 Window Size 7 Window Size 9
Mean (%) 35.169 35.89 34.72

Variation (%) 16.912 13.023 13.963
Average Number of Data Points 13.0 9.6 12.0

Average Time (sec) 255.523 420.01 614.988

IV. Conclusion
The present work focuses on uncertainty quantification of both aleatoric and epistemic uncertainty present in

synthetic microstructure samples. The formulation of this analysis is based on the separation of uncertainties to better
understand the effects of the epistemic uncertainty stemming from the Markov Random Field approach. While aleatoric
uncertainty is identified in the EBSD sample and minimized with the application of a post-processing algorithm, the
epistemic uncertainty created during the microstructure reconstruction process is found to be large due to the use of
small window size values to create necessary statistics as the use of large window size values is limited because of
required computing times. The framework developed here is tested on forged Ti-7Al microstructure samples, but it can
be applied to other polycrystalline materials in future work. In addition, future work can also be focused on applications
of larger window sizes using more efficient uncertainty quantification approaches.
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