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Abstract

We prove that the Minimum Distance Problem (MDP) on linear codes over any fixed finite
field and parameterized by the input distance bound is W[1]-hard to approximate within any
constant factor. We also prove analogous results for the parameterized Shortest Vector Problem
(SVP) on integer lattices. Specifically, we prove that SVP in the ωp norm is W[1]-hard to
approximate within any constant factor for any fixed p > 1 and W[1]-hard to approximate
within a factor approaching 2 for p = 1. (We show hardness under randomized reductions in
each case.)

These results answer the main questions left open (and explicitly posed) by Bhattacharyya,
Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx (Journal of the ACM, 2021) on
the complexity of parameterized MDP and SVP. For MDP, they established similar hardness for
binary linear codes and left the case of general fields open. For SVP in ωp norms with p > 1, they
showed inapproximability within some constant factor (depending on p) and left open showing
such hardness for arbitrary constant factors. They also left open showing W[1]-hardness even
of exact SVP in the ω1 norm.
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1 Introduction

Error correcting codes and point lattices are fundamental mathematical objects, and computa-
tional problems on them have a wide range of applications in computer science including to
robust communication, cryptography, optimization, complexity theory, and more. Indeed, be-
cause computational problems on codes and lattices are so ubiquitous, a highly active line of
research spanning decades has worked to understand the complexity of the problems themselves.
In particular, a great deal of work has studied the complexity of the Minimum Distance Problem
(MDP) (and its a!ne version, the Nearest Codeword Problem (NCP)) on linear error correcting
codes [BMvT78, ABSS97, Var97, DMS03, CW12]. Similarly, a large amount of work has studied
the complexity of the analogous problems on lattices, the Shortest Vector Problem (SVP) (and its
a!ne version, the Closest Vector Problem (CVP)) [vEB81, ABSS97, Ajt98, Mic00, Kho05, HR12].

In MDPq, the goal is, given a linear error correcting code C over a finite field Fq and a distance
bound k as input, to determine whether or not the minimum Hamming weight of a nonzero codeword
in C is at most k. Similarly, in SVPp the goal is, given a lattice L and a distance bound k as input,
to determine whether or not the ωp norm of some nonzero vector in L is at most k.1 One may
also consider ε-approximate versions of these problems for ε ↭ 1, which we denote by ε-MDPq

and ε-SVPp, respectively. (In what follows we refer to linear error correcting codes over finite
fields simply as “codes.” We define codes, lattices, and computational problems on them formally
in Sections 2.3 and 2.4.)

In the 1990s, the field of parameterized complexity, in which the running time of an algorithm
for a given computational problem is considered not just as a function of the problem’s input
size n but also in terms of some parameter k, developed and matured. The fundamental no-
tion of e!ciency in the study of parameterized algorithms is fixed-parameter tractability, which
means that the algorithm runs in time f(k) · poly(n) for some (possibly fast-growing) function
f(k) depending on the parameter k but not the input length. A computational problem (formally,
problem-parameter pair) with such an algorithm is called fixed-parameter tractable (FPT), and the
set of all such problems forms the complexity class FPT. On the other hand, the canonical notion of
ine!ciency for parameterized problems is W[1]-hardness, which is analogous to NP-hardness in the
non-parameterized setting. To show W[1]-hardness of a given problem, it su!ces to give an FPT
reduction from a known W[1]-hard problem to that problem. Giving such a reduction in particular
implies that the problem reduced to is not in FPT unless W[1] = FPT, which is widely conjectured
not to be the case. (Determining whether FPT is equal to W[1] is a major open question, and is
the analog of the P versus NP question in the parameterized world.) See the books by Downey and
Fellows [DF99, DF13] for comprehensive references on parameterized complexity.

Parameterized complexity of MDP and SVP. As part of the development of parameterized
complexity as a whole, substantial interest arose in the parameterized complexity (specifically,
W[1]-hardness) of computational problems on codes and lattices. This was especially true for MDP
and SVP, where in each case the parameter k of interest is the input distance bound.2 Indeed,
until recently, one of the major unresolved questions in parameterized complexity theory was to
determine whether the Minimum Distance Problem on binary codes was W[1]-hard. It was one of
the few remaining open problems from [DF99], and Downey and Fellows called it one of the “most

1The ωp norm used is fixed and independent of the input. One may also consider SVP with respect to arbitrary
norms, but it is most commonly considered with respect to ωp norms (and especially with respect to the Euclidean
norm ω2) as is the case in this work.

2In the parameterized setting, we consider SVP only on integer lattices; otherwise the distance bound is not
meaningful.
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infamous” such open problems in their follow-up book [DF13].3 Similarly, the fixed-parameter
(in)tractability of the Shortest Vector Problem in the ω2 norm was mentioned as an important
unresolved question in [DF99, DF13]. Interestingly, it is not known whether ε-MDPq nor ε-SVPp

are in W[1].

In recent seminal work, Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi,
and Marx [BBE+21], building on work of Lin [Lin18], resolved both of these questions in the a!r-
mative. They in fact even showed that both parameterized MDP and SVP are hard to approximate.
Specifically, they showed that for any constant ε ↭ 1, ε-MDP2 is W[1]-hard to approximate under
randomized reductions, and that for any p > 1 and constant ε satisfying 1 ↫ ε < (1/2+1/2p)→1/p,
ε-SVPp is W[1]-hard to approximate under randomized reductions.

However, despite its major achievements, [BBE+21] still fell short of providing a complete
understanding of the parameterized hardness of approximate MDP and SVP. To that end, they
gave several open questions. Specifically, the authors asked whether it was possible to show W[1]-
hardness of MDP over all finite fields Fq (and not just for the binary case of F2). They also asked
about showing W[1]-hardness of SVP in all ωp norms (specifically, they asked about ε-SVP1, for
which they did not show hardness even in the exact case of ε = 1), and about showingW[1]-hardness
of ε-SVPp with arbitrarily large constant ε for (some) p (they did not obtain such a result for any
p).4 The first two of these three questions from [BBE+21] were also asked as Open Questions 2
and 3, respectively, in a recent survey on approximation in parameterized complexity by Feldmann,
Karthik C. S., Lee, and Manurangsi [FKLM20], which discussed important open problems in the
field as a whole.

1.1 Our contributions

In this work, we answer all three of the open questions of [BBE+21] discussed above, and provide
a nearly complete picture of the parameterized inapproximability of MDP and SVP. In each of
the three theorems below (i.e., Theorems 1.1 to 1.3) the parameter of interest is the input distance
bound k.

We first give our hardness result for MDP, which resolves the first open question from [BBE+21]
(also asked as [FKLM20, Open Question 2]).

Theorem 1.1. For any fixed prime power q and constant ε ↭ 1, ε-MDPq is W[1]-hard under
randomized FPT reductions with two-sided error.

Second, we settle the second open question from [BBE+21] (also asked as [FKLM20, Open
Question 3]) by showing the following hardness result for parameterized ε-SVPp for all (finite)
p ↭ 1 and some ε = ε(p).5 Indeed, in particular applies to the ω1 norm. It also shows hardness of
approximation for larger factors ε(p) for p > 1 than [BBE+21] does.

Theorem 1.2. For any fixed p → [1,↑) and constant ε → [1, 21/p), ε-SVPp is W[1]-hard under
randomized FPT reductions with two-sided error.

3More precisely, [DF99, DF13] asked about the complexity of the Even Set Problem, which is equivalent to the
dual formulation of the Minimum Distance Problem over F2.

4In fact, [BBE+21] asked about such a result for p →= 2 and claimed such a result in passing for p = 2. However,
the claim was referring to a result from prior work (specifically, [BGKM18]) that showed hardness only under stronger
hypotheses. See Remark 1.4.

5We do not consider the case of p = ↑ because, as [BBE+21] notes, SVP in the ω→ norm is NP-hard even when
k = 1.
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Finally, we establish the parameterized inapproximability of SVP with an arbitrary constant ap-
proximation factor in the ωp norm for all fixed p > 1. This resolves the third question from [BBE+21]
mentioned above.

Theorem 1.3. For any fixed p → (1,↑) and constant ε ↭ 1, ε-SVPp is W[1]-hard under randomized
FPT reductions with two-sided error.

Remark 1.4. We note that [BBE+21] erroneously claimed in a passing remark that the important
Euclidean (i.e., p = 2) special case of Theorem 1.3 was already known. However, that remark
was in fact referring to a result from an earlier version of [BBE+21] (i.e., [BGKM18]) that shows
parameterized hardness of ε-SVP2 for arbitrary constant ε ↭ 1, but only under the (randomized)
Gap Exponential Time Hypothesis (Gap-ETH) or the Parameterized Inapproximability Hypothesis
(PIH), which are stronger assumptions than W[1] ↓= FPT.6 In particular, the result in Theorem 1.3
was previously unknown for any p. We thank Pasin Manurangsi [Man22] for clarifying this for us.

We provide a technical overview of our arguments in Section 1.2 and provide formal proofs of
Theorems 1.1 to 1.3 in Sections 3 to 5, respectively.

Fine-grained hardness of parameterized MDP and SVP. Our reductions also directly yield
improved results concerning the fine-grained hardness of ε-MDPq and ε-SVPp under Gap-ETH.
Leveraging results from [BGKM18, BBE+21], Manurangsi [Man20] showed that there are no (pos-
sibly randomized) algorithms running in time f(k) ·no(k) for ε-NCPq (respectively, time f(k) ·no(kp)

for ε-CVPp) with any function f , ε ↭ 1, and prime power q (respectively, p ↭ 1), where n is the
dimension of the input code (respectively, the rank of the input lattice) and k is the input distance
bound (in each case) assuming randomized Gap-ETH.

By inspection, our FPT reductions from approximate NCPq to approximate MDPq and from
approximate CVPp to approximate SVPp in Sections 3 and 4, respectively, transform the distance
parameter k into k↑ = O(k) (for formal statements, see Theorems 3.1 and 4.1). Therefore, we can
combine these reductions with the results from [Man20] to immediately obtain the following results
on the parameterized fine-grained hardness of MDP and SVP, which imply that the brute force
solution to each of these problems is essentially optimal under randomized Gap-ETH.7

Theorem 1.5. For any function f , fixed prime power q, and every ε →
[
1, 2q

2q→1

)
it holds that,

assuming randomized Gap-ETH, there is no randomized algorithm running in time f(k) · no(k) for
deciding ε-MDPq, where n is the dimension of the input code and k is the input distance bound.

6Randomized Gap-ETH [Din16, MR17] states that there exist constants ε, c > 0 such that no randomized algorithm
which is given as input a 3-CNF formula F with m clauses and runs in time O(2cm) can distinguish with probability
at least 2/3 between the cases where F is satisfiable and where only at most a (1 ↓ ε)-fraction of clauses in F are
satisfiable.
PIH [LRSZ20] states that there exists a constant ε > 0 such that it is W[1]-hard to approximate the Multicolored
Densest Subgraph problem to within a ϑ = 1 + ε approximation factor. This corresponds to the problem where we
are given as input a graph G = (V,E) with the vertex set partitioned into k sets V1, . . . , Vk, and the goal is to select
vertices v1 ↔ V1, . . . , vk ↔ Vk that induce as many edges as possible in G.

7We note that we work with the standard (in the non-parameterized setting) formulation of ϑ-SVPp throughout
the paper, where the goal is to decide whether the input lattice has a nonzero vector x with ↗x↗p ↫ k or if all such
vectors have ωp norm greater than ϑk. On the other hand, [BBE+21, Man20] work with an equivalent but di!erent
parameterization of the problem, which asks whether the input lattice has a nonzero vector x with ↗x↗pp ↫ k or if
the pth power of the ωp norm of all such vectors is greater than ϑk. This discrepancy leads to certain runtimes and
approximation factors in our work being o! by a power of p from [BBE+21, Man20].
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Theorem 1.6. For any function f , fixed real number p ↭ 1, and every ε → [1, 21/p) it holds that,
assuming randomized Gap-ETH, there is no randomized algorithm running in time f(k) ·no(kp) for
deciding ε-SVPp, where n is the rank of the input lattice and k is the input distance bound.

Previously, Theorem 1.5 was only known to hold for q = 2, and Theorem 1.6 was only known
to hold for p > 1 and with approximation factors ε = ε(p) < (1/2 + 1/2p)→1/p that are smaller
than those achieved by Theorem 1.6; see [BGKM18, Man20].

Interestingly, the standard technique of tensoring instances of MDP or SVP to boost the ap-
proximation factor cannot be used to prove fine-grained hardness results as above, because the
distance parameter k is mapped to k↑ = kc for c > 1. This motivates the search for FPT reductions
that preserve the parameter k up to a linear factor (i.e., for which k↑ = O(k)) while simultaneously
showing hardness for as large an approximation factor ε as possible. Our pre-tensoring hardness
reductions for MDPq and SVPp in Sections 3 and 4 also yield k↑ = O(k), and it would be interesting
to come up with improved reductions that achieve larger approximation factors. Moreover, we note
that although we obtain better W[1]-hardness of approximation for SVPp with p > 1 from the
reduction in Section 5, we in fact get better fine-grained hardness from our reduction in Section 4.
(The reduction in Section 4 also has the advantage of showing hardness of SVP in the ω1 norm.)

1.2 Technical overview

1.2.1 Parameterized inapproximability of ε-MDPq

Inapproximability results for MDP and SVP follow the blueprint originally pioneered by Aj-
tai [Ajt98], Micciancio [Mic00], and Khot [Kho05] for lattices and Dumer, Micciancio, and Su-
dan [DMS03] for codes. In each case, the idea is to reduce the a!ne versions of the problems (NCP
and CVP, respectively), for which NP-hardness results were long known, to the linear versions
(MDP and SVP, respectively).

The DMS reduction from NCP to MDP. We start by illustrating the Dumer-Micciancio-Sudan
(DMS) reduction from NCP to MDP, which is based on analogous reductions of Ajtai [Ajt98] and
Micciancio [Mic00] from CVP to SVP. An instance of NCP consists of a linear code C = C(G) ↔ Fm

q

generated by a matrix G → Fm↓n
q and a target t → Fm

q , and the goal is to minimize the distance
dist(t, C) of t to its closest codeword, i.e., the minimum Hamming weight of Gx↗ t over all x → Fn

q ,
where the Hamming weight of a vector v is ↘v↘0 = |{i : vi ↓= 0}|. A natural reduction to MDP

will produce the instance C↑ = span(C, t) generated by G↑ = (G | t) → Fm↓(n+1)
q . If we restrict

to codewords Gx + ϑt of C↑ that use the target in the combination, i.e., have ϑ ↓= 0, then the
minimum distance of such a codeword equals the Hamming distance dist(t, C) of t to C. Under
this (unreasonable) restriction we have a reduction that preserves the objective value. The obvious
trouble though is that C (and hence C↑) might have short codewords of weight much smaller than
dist(t, C). In this case, the minimum distance of C↑ will equal the distance of C, and have nothing to
do with t. Note, however, that this reduction does work if ϖ(C) > k, where ϖ(C) = minc↔C\{0}↘c↘0
is the minimum Hamming weight of C. Further, starting from a gap-ε version of NCP asking if
dist(t, C) ↫ k or dist(t, C) > εk, we would get hardness of a gap-ε version of MDP if ϖ(C) > εk.

A natural goal is therefore to increase the distance of C without increasing the proximity pa-
rameter in NCP by too much. This was achieved in [DMS03] by encoding the message according
to C as well as a second code C̃ ↔ Fm

↑
q with generator matrix G̃ → Fm

↑↓n
↑

q with large distance,

say D. Further, C̃ will be a locally dense code in the sense that one can find a “bad list decoding
configuration” comprising a center s → Fm

↑
q that has a large number of codewords of C̃ within
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distance ϱD for some ϱ < 1; we call ϱ the relative radius of the locally dense code. (One can in
fact e!ciently construct such locally dense codes with any constant relative radius ϱ > 1/2 using
randomness [DMS03].) The number of codewords will be so large that one can sample a linear map
T that with high probability projects these codewords onto Fn

q . If G̃ is the generator matrix of the

locally dense code C̃, the reduction, which will use randomness to pick both the center s and the
projection T , will produce the instance of MDP generated by

(
GTG̃ t
G̃ s

)
. (1)

The completeness of the reduction follows because for any x → Fn
q that might satisfy ↘Gx↗t↘0 ↫ k,

there will be a codeword G̃y → C̃ within distance ϱD from s that projects to x under T . Thus
multiplying the generator matrix in Equation (1) by (yT ,↗1)T will yield a nonzero codeword of
weight at most k + ϱD. Since the distance of C̃ is D, codewords which don’t use the last column
of Equation (1) will have Hamming weight at least D. If ϱD + k < D, which is possible to ensure
provided ϱ < 1, we get a gap.

Challenges in the FPT setting. It is reasonable to wonder whether the DMS reduction above
works directly in the FPT setting. However, as already pointed out in [BBE+21, Section 2.1], one
quickly runs into some obstacles. Indeed, the locally dense codes used in [DMS03] have minimum
distance D which depends on the input code dimension, and this is necessary to ensure that we
can sample the linear map T with the desired properties. This is because the existence of T implies
that there must be at least |Fn

q | = qn codewords in C̃ of Hamming weight at most ϱD. Since the
distance threshold of the resulting MDP instance is k↑ = ϱD+ k, it follows that k↑ depends on the
input code dimension n, and so the DMS reduction is not FPT.

To overcome these issues, [BBE+21] modify both the problem they reduce from as well as the
reduction itself. First, instead of reducing from NCP to MDP, they reduce from a variant of
NCP they call the Sparse Nearest Codeword Problem (SNCP), where the Hamming weight of the
coe!cient vector realizing the nearest codeword is also taken into account. More precisely, the
objective function dist(t, C) of NCP is replaced by

min
x↔Fn

q

(↘Gx↗ t↘0 + ↘x↘0),

where C = C(G). It is not hard to reduce NCP to SNCP in the FPT setting, and this al-
lows [BBE+21] to avoid having to sample the linear map T . Second, they replace locally dense codes
by another variant which they call locally su!x dense codes (LSDCs). These are codes C̃ ≃ Fm

↑
q

with minimum distance D and generator matrix

(
In 0
G̃1 G̃2

)
→ Fm

↑↓n
↑

q

which have the property that, given any prefix p → Fn
q , for most “su!x centers” s → Fm

↑→n
q there is

a su!x u → Fm
↑→n

q within Hamming distance ϱD of s such that (p,u) → C̃. With the help of these
notions, [BBE+21] consider the MDP instance generated by




G 0 t
In 0 0
G̃1 G̃2 s



 ,
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where s is sampled uniformly at random from Fm
↑→n

q . The proof that this reduction works is similar
to the one sketched above for the DMS reduction. The main challenge is to e!ciently construct
LSDCs with appropriate parameters, in particular with minimum distance D independent of m↑,
n↑, and n. Unfortunately, known constructions of locally dense codes do not yield LSDCs with the
desired properties. In the binary setting q = 2, [BBE+21] showed that one can take C̃ to be a
binary BCH code [Hoc59, BR60] with design minimum distance D. This ingenious approach allows
them to prove that ε-MDP2 is W[1]-hard.

It is instructive to discuss more precisely why the choice of binary BCH codes as LSDCs works,
and why it cannot be extended to other finite fields. Binary BCH codes with minimum distance
D have codimension ⇐

⌊
D→1
2

⌋
log(m↑ + 1). The crucial fact that makes the counting analysis

of [BBE+21] go through is that
⌊
D→1
2

⌋
is also the unique decoding radius for the binary BCH code,

i.e., Hamming balls of this radius centered on BCH codewords are disjoint. In other words, binary
BCH codes almost meet the sphere packing bound. One would hope that replacing binary BCH
codes with q-ary BCH codes would su!ce to show W[1]-hardness of ε-MDPq more generally. How-
ever, q-ary BCH codes with minimum distanceD have codimension ⇐ ⇒(D↗1)(1↗1/q)⇑ logq(m↑+1)

(see Theorem 3.4), while the unique decoding radius remains
⌊
D→1
2

⌋
. Put di”erently, q-ary BCH

codes for q > 2 are no longer close to the sphere packing bound, which breaks the analysis
from [BBE+21]. In fact, for q > 2, it is not known if there exist q-ary codes with rate vs. dis-
tance trade-o” close to the sphere packing bound. Therefore, it seems challenging to make the
approach from [BBE+21] work as is over Fq, for q > 2.

Our approach: Khot for codes. We succeed in overcoming the barriers that [BBE+21] faced
and establish the W[1]-hardness of ε-MDPq for arbitrary finite fields Fq via a di”erent and arguably
simpler (direct) reduction from NCP to MDP. Our key insight is to adapt Khot’s reduction [Kho05]
from CVP to SVP to the coding-theoretic setting. We are able to meet the requirements of such a
reduction with locally dense codes constructed from q-ary BCH codes.

This approach is quite natural. In fact, early lecture notes of Khot [Kho04] showed how to use
this strategy to reduce from NCP to MDP in the special case of binary codes. Our reduction is
more general and requires more careful analysis in that it works with arbitrary locally dense codes
with constant relative radius ϱ < 1, works over Fq and not just F2, and requires a more careful
analysis of the the distance bound k↑ in the output MDP instance as a function of the distance
bound k in the input NCP instance. However, the core idea is the same.

More precisely, given an instance (G, t, k) of ε-NCPq with G → Fm↓n
q and t → Fm

q and an

appropriate locally dense code (G̃, s) with G̃ → Fm
↑↓n

↑
q and s → Fm

↑
q , we consider the intermediate

code Cint spanned by the generator matrix

Gint =

(
G 0 ↗t
0 G̃ ↗s

)
.

This is analogous to the intermediate lattice introduced in Khot’s reduction [Kho05] from CVP
to SVP, with the di”erence being that we replace the CVP instance by an NCP instance and the
locally dense lattice by a locally dense code. Note that it may happen that Cint contains low weight
vectors even when (G, t, k) is a NO instance of ε-NCPq. This is, however, not a show-stopper,
as it in fact su!ces to show that there are many more low weight vectors in Cint when (G, t, k)
is a YES instance of ε-NCPq than when (G, t, k) is a NO instance. Indeed, if this holds then
we can sparsify Cint by intersecting it with an appropriate random code Crand so that, with high
probability, all low weight vectors are eliminated in the NO case, but at least one low weight vector
survives in the YES case. Again, this is analogous to the lattice sparsfication performed in Khot’s
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reduction [Kho05], Finally, the ε↑-MDPq instance is obtained by computing a generator matrix
Gfinal of Cfinal = Cint ⇓ Crand and outputting (Gfinal, k↑) for some appropriate k↑.

To guarantee that the reduction is FPT, we need to ensure that k↑ ↫ f(k) for some function
f . In fact, in our reduction k only increases by a linear factor, i.e., we get k↑ ↫ f(k) = O(k). We
briefly sketch how to establish the desired properties of Cint and choose k↑. Suppose that (G̃, s) is a
locally dense code with minimum distance D and such that there are at least N vectors y satsifying
↘G̃y↗s↘0 ↫ ϱD for some ϱ → (1/2, 1). If (G, t, k) is a YES instance of ε-NCPq, i.e., there exists x
such that ↘Gx↗ t↘0 ↫ k, then multiplying Gint by (x,y, 1)T yields a codeword of weight at most
k↑ = ϱD + k. As a result, there are at least N vectors in Cint of weight at most k↑, which we call
good. On the other hand, if (G, t, k) is a NO instance of ε-NCPq and D > εk, then it is not hard to
see that every codeword of weight at most εk in Cint is of the form Gint(x,0, 0)T , and so there are
at most qn such annoying vectors in Cint, where n = dim(C(G)). (The “good” versus “annoying”
vectors terminology was also introduced in [Kho05].)

We conclude that the reduction works and is FPT if we are able to construct a q-ary locally
dense code (G̃, s) as above under the constraints that (i) D = g(k) > εk, (ii) k↑ = ϱD + k ⇔ εk,
and (iii) N ↖ qn (so that there many more good vectors in YES instances than annoying vectors in
NO instances and the sparsification step works). While the approach of [BBE+21] described above
required q-ary codes of codimension ⇐ D

2 logq(m
↑), which are not known to exist for q > 2, we show

that to construct locally dense codes satisfying our constraints it is enough to consider q-ary codes
with minimum distance D ⇐ εk and codimension ⇐ ϑD logq(m

↑) for any ϑ < 1! Therefore, we can
use q-ary BCH codes of length m↑ = poly(m) with design minimum distance D ⇐ εk, which have
codimension ⇐ D(1↗ 1/q) logq(m

↑) for any prime power q.

This approach shows W[1]-hardness of ε↑-MDPq for some approximation factor ε↑ > 1; in fact,
we get hardness with ε↑ ⇐ 1/ϑ ⇐ 1/ϱ. We can then amplify this approximation factor ε↑ in a
standard manner via tensoring to obtain W[1]-hardness of ε↑↑-MDPq for every ε↑↑ ↭ 1. For more
details, see Section 3.

1.2.2 Parameterized inapproximability of ε-SVPp

We first define locally dense lattices, which are analogous objects to locally dense codes, and which
are important both for understanding the issues with [BBE+21] and our ways of handling them.
A locally dense lattice (with respect to the ωp norm) is a lattice L ↔ Rm together with a shift

s → Rm such that L ↗ s contains many vectors of ωp norm at most ϱϖ(p)
1 (L) for some constant

ϱ = ϱ(p) → (1/2, 1), where ϖ(p)
1 (L) = minv↔L\{0} ↘v↘p. As is the case for locally dense codes, we

call ϱ the relative radius of the corresponding locally dense lattice.

As in Section 1.2.1, we start by explaining the original approach from [BBE+21] towards showing
W[1]-hardness of ε-SVPp for p > 1 and some approximation factor ε > 1, and why it fails to
resolve the problems we tackle. To recall, [BBE+21] proved that ε-CVPp is W[1]-hard for every
fixed p, ε ↭ 1. Then, they simply noted that Khot’s initial reduction [Kho05] from CVPp to SVPp

(which is similar to our FPT reduction from NCP to MDP discussed in Section 1.2.1) is itself
an FPT reduction if the parameters of the locally dense lattice from [Kho05] (which is based on
binary BCH codes) are chosen appropriately. Combining this observation with the W[1]-hardness
of ε-CVPp immediately yields that ε↑-SVPp is W[1]-hard for some approximation factor ε↑ =
ε↑(p) > 1. However, despite achieving this nice result, the approach of [BBE+21] has two significant
shortcomings.

Showing inapproximability of SVP in all ωp norms (including ω1). The first limitation of the
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approach in [BBE+21] is the use of Khot’s locally dense lattices, which do not su!ce to show either
NP- or W[1]-hardness of SVP in the ω1 norm. More specifically, Khot’s locally dense lattices have
relative radius ϱ = ϱ(p) > (1/2 + 1/2p)1/p, which su!ces to show W[1]-hardness of parameterized
ε-SVPp (and NP-hardness of non-parameterized ε-SVPp) for any

ε↑ = ε↑(p) < 1/ϱ(p) < (1/2 + 1/2p)→1/p ,

and no better. Plugging p = 1 into the right-hand side of this equation shows that Khot’s reduction
does not yield hardness even for exact SVP1 (i.e., for ε↑-SVP1 with ε↑ = 1). Indeed, this issue is
what kept Khot’s reduction from showing NP-hardness of SVP1 in [Kho05] and what kept [BBE+21]
from showing W[1]-hardness of SVP1.

Despite Khot’s reduction not working, other reductions nevertheless showed NP-hardness of
(even approximating) SVP1. Unfortunately, as [BBE+21] notes, these reductions fail both because
of their use of non-integral lattices and the fact that rounding real-valued lattice bases to integral
ones in a black-box way amounts to a non-FPT reduction, since the minimum distance of the
resulting lattices will depend on their dimension. (Multiplying rational lattice bases by the least
common multiple of their entries’ denominators causes a similar problem.) First, Micciancio [Mic00]
showed hardness of ε-SVP1 for any ε < 2 using locally dense lattices constructed from prime number
lattices. However, these locally dense lattices are non-integral and even non-rational.8 Second,
Regev and Rosen [RR06] showed how to use e!ciently computable linear norm embeddings to
reduce ε-SVP2 to ε↑-SVPp for any p ↭ 1 and any constant ε↑ < ε. Combined with Khot’s
work [Kho05], which showed NP-hardness of approximating SVP2 to within any constant factor
ε, [RR06] implies that SVPp for any p (and in particular, SVP1) is NP-hard to approximate within
any constant factor as well. However, the norm embeddings given in [RR06] use random Gaussian
projection matrices, and therefore output non-integral lattices. Moreover, using di”erent, integral
distributions for the projection matrices also does not obviously work.

We overcome this first issue of Khot’s locally dense lattices not working in the ω1 norm by in-
stantiating Khot’s reduction with di”erent locally dense lattices. Specifically, we instantiate Khot’s
reduction with the locally dense lattices constructed in recent work of Bennett and Peikert [BP23],
which are built from Reed-Solomon codes. These locally dense lattices meet all of the requirements
necessary for the proof of Theorem 1.2. Namely, they are e!ciently constructible; their base lattices

L are integral; they can be constructed so that ϖ(p)
1 (L) does not depend on the dimension of the

input lattice L; and for p → [1,↑) they have ωp relative radius ϱ(p) ⇐ 1/2p < 1. In particular, they
have ω1 relative radius ϱ(1) ⇐ 1/2 (which is essentially optimal by the triangle inequality), and
so Khot’s reduction shows hardness of ε-SVP1 for any constant ε < 2. (We again note that the
largest approximation factor ε = ε(p) for which Khot’s reduction shows parameterized hardness of
ε-SVPp is ε ⇐ 1/ϱ, where ϱ = ϱ(p) is the relative radius of the locally dense lattice used, and this
is where the bound on the approximation factor ε = ε(p) in Theorem 1.2 comes from.)

Showing inapproximability of ε-SVPp for all p > 1 and all ε. The second main shortcoming
of the approach in [BBE+21] is that it is not clear how to amplify the approximation factor ε > 1
for which they get W[1]-hardness of ε-SVPp (for p > 1), to an arbitrary constant. As in the case of
codes, the natural thing to try for amplifying hardness is to take the tensor product of the input
SVP instance with itself. The idea of tensoring is, given an instance (B, k) of SVP as input, to
output the SVP instance (B ↙ B, k2), where B ↙ B is the Kronecker product of the input basis

8We note in passing that Micciancio did in fact carefully analyze rounding these locally dense lattices to get integral
ones, but emphasize again that this rounding causes the minimum distance of the resulting lattices to depend on
their dimension.
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matrix B with itself. Unfortunately, unlike for codes, tensoring does not work in general for lattices.
Indeed, although it always holds that ϖ1(L(B) ↙ L(B)) ↫ ϖ1(L(B))2, the converse is not always
true or even “close to true”; see, e.g., [HR12, Lemma 2.3].

Although Haviv and Regev [HR12] showed that Khot’s original SVP2 instances have properties
that do in fact allow them to tensor nicely, this is not the case for the SVP instances obtained
in [BBE+21]. Indeed, the (crucial!) subtlety is that the standard NP-hardness proof for approximate
CVPp proceeds via a reduction from approximate Exact Set Cover [ABSS97, Kho05, HR12], and
the resulting CVPp instances enjoy important additional properties that are then inherited by the
SVPp instances in [Kho05]. Parameterized inapproximability of Exact Set Cover is known under
the (randomized) Gap-ETH and PIH assumptions, and this is what allowed [BGKM18] to show
parameterized hardness of ε-SVP2 for any constant ε ↭ 1; see also Remark 1.4. However, it is not
currently known whether approximate Exact Set Cover is W[1]-hard, and so [BBE+21] generate
their CVPp instances via a di”erent reduction from (the dual version of) NCPq with a suitably
large prime q instead.9 As a result, important properties no longer hold when [BBE+21] use these
alternative CVPp instances to create SVPp instances via Khot’s reduction. Namely, it is no longer
true that every lattice vector with at least one odd coordinate has large Hamming weight, a property
that is needed to ensure that the SVPp instance tensors nicely in [HR12].

It is also sensible to wonder whether Khot’s augmented tensor product [Kho05], which he in-
troduced in his original work to overcome issues with tensoring, can nevertheless be used to boost
the approximation factor of the SVPp instances generated in [BBE+21]. However, the augmented
tensor product cannot be applied in the FPT setting unless the short lattice vectors in the base
SVP instances also have have short coe!cient vectors (i.e., coe!cient vectors whose ωp norm is
independent of lattice dimension). The SVP instances in [BBE+21] do not seem to have this
property.

Our solution. In order to construct W[1]-hard SVP instances that tensor nicely and thereby prove
Theorem 1.3, we give a reduction directly from approximate NCP2 to approximate SVPp for any
p > 1.10 Our reduction is a variant of the reductions in Khot [Kho05] and Haviv and Regev [HR12],
and again we instantiate the reduction with locally dense lattices constructed from binary BCH
codes similar to those used by Khot [Kho05, BBE+21]. We emphasize that although the proofs
of Theorems 1.2 and 1.3 both use variants of Khot’s reduction, the key to proving Theorem 1.2 was
to instantiate Khot’s reduction with di”erent locally dense lattices and the key to Theorem 1.3 was
to reduce from a di”erent W[1]-hard problem. Moreover, ensuring that the characteristic of the
underlying codes in the NCP instances that we reduce from matches that of the underlying BCH
codes in the locally dense lattices that we use seems essential for our analysis. Indeed, our NCP
instances and locally dense lattices both use codes over F2, whereas [BBE+21] reduced from NCP
instances over Fq for larger prime q.

Our reduction allows us to construct ε-SVP2 instances with some constant ε > 1 that meet
the su!cient conditions given in [HR12] to be amplified to ε↑-SVP2 instances for arbitrarily large
constant ε↑. These conditions roughly say that the base lattices L in the SVP instance must be such
that all vectors v → L ≃ Zn satisfy at least one of the following: (1) v has Hamming weight at least
d for some distance bound d, (2) v → 2Zn and v has Hamming weight at least d/4, or (3) v → 2Zn

and v has very high ω2 norm. The minimum distances of lattices in which all vectors satisfy either
conditions (1) or (2) behave nicely under tensoring, but condition (3) makes the analysis subtle.
However, we are essentially able to rely on the analysis in [HR12]. Moreover, modifying the analysis

9The exact version of this problem is known to be W[1]-hard, see [CFK+15, Section 13.6.3].
10We could also use CVP as an intermediate problem in the reduction as is done in [BBE+21], but that does not

obviously make the reduction simpler or more modular.
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in [HR12] a bit additionally allows us to extend our result to ωp norms for p > 1. (The omission
of p = 1 is yet again for the same reason as in [Kho05, BBE+21]; it is because of the binary
BCH-code-based locally dense lattices that we use.)

1.3 Additional related work

Interest in the complexity of computational problems on codes and lattices more broadly goes back
several decades. We survey the most closely related work here.

Complexity of NCP and MDP. Berlekamp, McEliece, and van Tilborg [BMvT78] showed that
certain problems related to linear codes, such as the exact version of NCP, are NP-hard. They
also conjectured that the exact version of MDP is NP-hard. This conjecture remained open until
groundbreaking work of Vardy [Var97], who showed that exact MDP is indeed NP-hard. Not long
after, Dumer, Micciancio, and Sudan [DMS03] showed that approximate MDP is NP-hard under
randomized reductions. Follow-up work by Cheng and Wan [CW12], Austrin and Khot [AK14],
and Micciancio [Mic14] showed that approximate MDP is NP-hard under deterministic reductions.
The unparameterized fine-grained hardness of NCP and MDP was recently studied by Stephens-
Davidowitz and Vaikuntanathan [SV19].

On the parameterized front, Downey, Fellows, Vardy, and Whittle [DFVW99] showed, among
other things, that the exact version of NCP is W[1]-hard, and infamously conjectured that MDP
is W[1]-hard. As discussed above, the status of this conjecture did not budge until the seminal
work [BBE+21], where it was shown that ε-NCPq is W[1]-hard for every ε ↭ 1 and prime power
q, and that ε-MDP2 is W[1]-hard for every ε ↭ 1. Finally, by establishing the parameterized
fine-grained hardness of Exact Set Cover and invoking results from [BGKM18, BBE+21], Manu-
rangsi [Man20] showed that there are no algorithms running in time no(k) for deciding ε-NCPq (for
all constant ε ↭ 1) and ε-MDP2 (for some constant ε > 1) assuming Gap-ETH.

Complexity of CVP and SVP. The study of the complexity of lattice problems was initiated
by van Emde Boas [vEB81], who showed that CVP2 was NP-hard. He also showed that SVP↗ is
NP-hard and conjectured that SVP2 was NP-hard. This result remained the state-of-the-art until
Ajtai [Ajt98] extended it to the ω2 norm under randomized reductions, and a deep line of work soon
followed showing progressively stronger hardness of approximation results for SVPp in di”erent ωp
norms [CN98, Mic00, Din02, Kho05, HR12, Mic12]. A recent line of work has also focused on the
(unparameterized) fine-grained hardness of approximate CVP and SVP [BGS17, AS18, ABGS21,
BPT22].

In terms of parameterized hardness, Downey, Fellows, Vardy, and Whittle [DFVW99] showed
that exact CVP is W[1]-hard, and asked whether SVP is W[1]-hard. As was the case for MDP,
this question was only settled in [BBE+21], where it was shown that ε-CVPp is W[1]-hard for all
p ↭ 1 and ε ↭ 1, and that ε-SVPp is W[1]-hard for p > 1 with some ε = ε(p) > 1. From a
fine-grained perspective, it was shown by Manurangsi [Man20] that, assuming Gap-ETH, there are
no algorithms running in time no(kp), where n is the rank of the input lattice, for deciding ε-CVPp

with any ε ↭ 1 for p ↭ 1 and deciding ε-SVPp with some ε > 1 for all p > 1.

1.4 Open problems

We highlight two interesting directions for future research:

• The reductions that we use to prove all of our main theorems are randomized and have
two-sided error due to our randomized constructions of locally dense codes and lattices and
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due to our use of sparsification. It would be a groundbreaking contribution to find ways
to derandomize these reductions and obtain deterministic parameterized hardness results for
MDP and SVP. We note that when it comes to showing NP-hardness (instead of W[1]-
hardness), we know deterministic reductions from NCP to MDP [CW12, AK14, Mic14] and
randomized reductions with one-sided error from CVP to SVP [Mic12]. Additionally, we note
that showing deterministic (NP-)hardness of SVP in the non-parameterized setting is a major
open question.

• We have shown that ε-SVPp is W[1]-hard for any fixed p > 1 and ε ↭ 1. When p = 1, we
showed that ε-SVPp is W[1]-hard when ε → [1, 2). We leave it as a fascinating open problem
to extend our W[1]-hardness result for all ε ↭ 1 to p = 1 as well. This is an important missing
piece of our understanding of the parameterized hardness of approximate SVP in ωp norms.
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2 Preliminaries

Throughout we use boldface, lower-case letters like v,x, s, t to denote column vectors.

2.1 Probability theory

We denote random variables by uppercase letters such as X, Y , and Z. Throughout this work
we consider only discrete random variables supported on finite sets. Given a random variable X,
we denote its expected value by E[X] and its variance by Var[X]. We write the indicator random
variable for an event E as 1{E}.

We will make use of the following standard corollary of Chebyshev’s inequality. For complete-
ness, we provide a short proof.

Lemma 2.1. Let X1, . . . , XN be pairwise independent random variables over {0, 1} such that
Pr[Xi = 1] = p > 0 for i = 1, . . . , N . Then, it holds that

Pr [∝i → [N ], Xi = 0] ↫ 1

pN
.
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Proof. Let X =
∑

N

i=1Xi and note that E[X] = pN . We have

Pr [X = 0] ↫ Pr [|X ↗ E[X]| ↭ pN ] ↫ Var[X]

(pN)2
=

(1↗ p)pN

(pN)2
↫ 1

pN
,

where the second inequality follows from Chebyshev’s inequality and the equality holds due to the
pairwise independence of the Xi’s.

2.2 Parameterized promise problems and FPT reductions

We recall basic definitions related to parameterized promise (decision) problems and Fixed-Parameter
Tractable (FPT) reductions between such problems. We refer the reader to [DF99] for an excellent
discussion on parameterized algorithms and reductions.

Definition 2.2 (Parameterized language). A set S ≃ #↘′N is said to be a parameterized language
(with respect to the rightmost coordinate).

Definition 2.3 (Parameterized promise problem). The tuple of parameterized languages $ =
($YES,$NO) is said to be a parameterized promise problem if {x : (x, k) → $YES} ⇓ {x : (x, k) →
$NO} = ∞ for every parameter choice k → N.

Definition 2.4 (Randomized FPT reductions with two-sided error). We say that a randomized
algorithm is a randomized FPT reduction with two-sided error from the parameterized promise
problem $ to the parameterized promise problem $↑ if the following properties hold:

• On input (x, k), the algorithm runs in time at most T (k) · |x|c for some computable function
T (·) and some absolute constant c > 0 and outputs a tuple (x↑, k↑);

• It holds that k↑ ↫ g(k) for some computable function g(·);

• If (x, k) → $YES, it holds that Pr [(x↑, k↑) → $↑
YES] ↭ 2/3, where the probability is taken over

the randomness of the algorithm;

• If (x, k) → $NO, it holds that Pr [(x↑, k↑) → $↑
NO] ↭ 2/3, where the probability is taken over

the randomness of the algorithm.

Note that if there is a randomized FPT reduction with two-sided error from $ to $↑, it follows
that there is a randomized FPT algorithm (i.e., an algorithm running in time T (k) · |x|c for some
computable function T (·) on input an instance (x, k)) for deciding $ with two-sided error whenever
there is such an algorithm for deciding $↑. The success probability of any such algorithm can be
amplified in a standard manner.

In this work we focus on the parameterized complexity class W[1]. It is well-known that the
parameterized Clique problem, in which we are given as input a graph G and a positive integer k
(with k being the parameter of interest) and must decide whether G contains a clique of size k, is
W[1]-complete. That is, parameterized Clique is in W[1] and it is W[1]-hard, i.e., there is an FPT
reduction from every problem in W[1] to it (see, e.g., [CFK+15, Theorem 13.18]). Therefore, one
may define W[1] to be the class of all parameterized problems with FPT reductions to Clique. We
refrain from discussing W[1] in more detail; for an extensive discussion, see [DF99, Chapters 9 to
11].

It is widely believed that W[1] problems cannot be decided by FPT algorithms, even if random-
ness with two-sided error is allowed. We say that a parameterized promise problem $↑ is W[1]-hard
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under randomized reductions if there is a randomized FPT reduction with two-sided error from a
W[1]-hard problem $ to $↑. The existence of such a reduction shows that $↑ is likely intractable
from a parameterized perspective.

2.3 Coding problems

Let C(G) := {Gx : x → Fn
q } denote the code generated by the generator matrix G → Fm↓n

q (note
that here C(G) is the Fq-span of the columns of G). Alternatively, we may see C(G) as the kernel

of the parity-check matrix H → F(m→n)↓m

q which spans the dual subspace of C(G), i.e., C(G) =
{y → Fm

q : Hy = 0}. We call sets of the form u + C = {u + c : c → C} with u → Fm
q the cosets

of C. We write ↘x↘0 = |{i → [m] : xi ↓= 0} for the Hamming weight of a vector x → Fm
q and call

↘x↗ y↘0 the Hamming distance between x and y. For a code C ≃ Fm
q , let ϖ(C) = minc↔C\{0} ↘c↘0

be the Hamming minimum distance of C, and let dist(y, C) := minc↔C↘y↗c↘0 denote the Hamming
distance between a vector y → Fm

q and C. Let Bq,m(r) = {x → Fm
q : ↘x↘0 ↫ r} denote the Hamming

ball of radius r in Fm
q .

We define two fundamental promise problems from coding theory.

Definition 2.5 (Nearest Codeword Problem). The ε-approximate Nearest Codeword Problem over
Fq (ε-NCPq) is the decisional promise problem defined as follows. On input a generator matrix
G → Fm↓n

q , target t → Fm
q , and distance parameter k → Z+, the goal is to decide between the

following two cases when one is guaranteed to hold:

• (YES) dist(C(G), t) ↫ k,

• (NO) dist(C(G), t) > εk.

The parameter of interest is k.

Remark 2.6. A scaling argument shows that the NO case in Definition 2.5 is equivalent to

• (NO) dist(C(G),ϱt) > εk for any ϱ → Fq \ {0}.

The following results establish the W[1]-hardness and parameterized fine-grained hardness of
NCP.

Theorem 2.7 ([BBE+21, Theorem 5.1, adapted]). For any prime power q ↭ 2 and real number
ε ↭ 1 it holds that ε-NCPq is W[1]-hard.

Theorem 2.8 ([Man20, Corollary 5, adapted]). For any fixed prime power q and ε ↭ 1 and any
function T , assuming randomized Gap-ETH, there is no randomized algorithm running in time
T (k)no(k) which decides ε-NCPq with probability at least 2/3, where n is the dimension of the input
code.

We remark that [BBE+21] states Theorem 2.7 as the W[1]-hardness of the “ε-MLDq” problem
(where “MLD” stands for “Maximum Likelihood Decoding” and the parameter of interest is again
the input distance k), which is equivalent to the ε-NCPq problem. More precisely, the input to
the ε-MLDq problem consists of a parity-check matrix H → Fh↓m

q , a target t → Fm
q , and a distance

bound k, and we must decide whether there exists a vector e with ↘e↘0 ↫ k such that He = Ht
(i.e., t and e have the same syndrome), or whether all such vectors e have Hamming weight larger
than εk. This is equivalent to ε-NCPq because we can e!ciently compute the generator matrix
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G of the code with parity-check matrix H and vice-versa, and because He = Ht if and only if
t = c + e for some codeword c → C(G). Moreover, [BBE+21] only stated the result for prime q.
However, direct inspection of [BBE+21, Section 5.2] shows that their proof also yields the more
general version stated in Theorem 2.7. In particular, [BBE+21, Definition 5.3], including the two
observations there, generalizes to arbitrary finite fields.

Definition 2.9 (Minimum Distance Problem). The ε-approximate Minimum Distance Problem
over Fq (ε-MDPq) is the decisional promise problem defined as follows. On input a generator
matrix G → Fm↓n

q and distance parameter k → Z+, the goal is to decide between the following two
cases when one is guaranteed to hold:

• (YES) ϖ(C(G)) ↫ k,

• (NO) ϖ(C(G)) > εk.

The parameter of interest is k.

2.3.1 Tensoring codes

The tensor product of linear codes is an important operation for building new codes with inter-
esting properties by combining two linear codes. In particular, tensoring can be used to boost the
approximation factor in W[1]-hardness results for NCP and MDP from some constant ε > 1 to an
arbitrary constant.

Given two linear codes C(G1) and C(G2) with Gi → Fmi↓ni
q and minimum distance di for i = 1, 2,

we define the associated tensor product code as

C(G1)↙ C(G2) := C(G1 ↙G2) ,

where G1 ↙G2 → Fm1m2↓n1n2
q is the Kronecker product of G1 and G2. Furthermore, we have

ϖ(C(G1)↙ C(G2)) = d1 · d2 . (2)

See, e.g., [DMS03, Section V.B] for a proof.

Suppose that we know that ε-MDPq isW[1]-hard (under randomized reductions) for some ε > 1.
Then, using Equation (2), we can immediately conclude that for any integer c ↭ 1, εc-MDPq is
W[1]-hard (under randomized reductions) by considering the tensored MDP instances (B≃c, kc),
where B≃c denotes the c-fold Kronecker product of B with itself. In particular, constructing
tensored MDP instances in this way gives an FPT self-reduction from ε-MDPq to εc-MDPq.

2.4 Lattice problems

Let L(B) = {Bx : x → Zn} denote the lattice generated by the matrix B → Rm↓n. We call n
the rank of L(B) and write det(L(B)) =

√
det(BTB) for the determinant of L(B), where BT

denotes the transpose of B. For p → [1,↑), we write ↘x↘p = (
∑

m

i=1 |xi|
p)1/p for the ωp norm of a

vector x → Rm. We use ϖ(p)
1 (L) to denote the ωp norm of a shortest nonzero vector in L and set

distp(L, t) := minv↔L ↘v↗ t↘p. We write B(p)
m (r) = {x → Rm : ↘x↘p ↫ r} for the closed, centered ωp

ball of radius r in Rm.

We define two fundamental promise problems related to lattices.
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Definition 2.10 (Closest Vector Problem). The ε-approximate Closest Vector Problem with respect
to the p-norm (ε-CVPp) is the decisional promise problem defined as follows. On input a generator
matrix B → Zm↓n, a target t → Zm, and a distance parameter k → Z+, the goal is to decide between
the following two cases when one is guaranteed to hold:

• (YES) distp(L(B), t) ↫ k,

• (NO) distp(L(B),ϱt) > εk for any ϱ → Z \ {0}.

The parameter of interest is k.

The definition above is a slight (but widely used) variant of the original Closest Vector Problem,
since in the NO case we also require all multiples ϱt with ϱ → Z \ {0} to be far from L(B). The
following results about the W[1]-hardness and parameterized fine-grained hardness of this variant
of CVP are known to hold.

Theorem 2.11 ([BBE+21, Theorem 7.2]). For any real numbers ε, p ↭ 1 it holds that ε-CVPp is
W[1]-hard.

Theorem 2.12 ([Man20, Corollary 6, adapted]). For any fixed p, ε ↭ 1 and any function T ,
assuming randomized Gap-ETH, there is no randomized algorithm running in time T (k)no(kp) which
decides ε-CVPp with probability at least 2/3, where n is the rank of the input lattice.

Definition 2.13 (Shortest Vector Problem). The ε-approximate Shortest Vector Problem with
respect to the ωp-norm (ε-SVPp) is the decisional promise problem defined as follows. On input a
generator matrix B → Zm↓n and a distance parameter k → Z+, the goal is to decide between the
following two cases when one is guaranteed to hold:

• (YES) ϖ(p)
1 (L(B)) ↫ k,

• (NO) ϖ(p)
1 (L(B)) > εk.

The parameter of interest is k.

2.4.1 Tensoring lattices

Analogously to the coding setting, we can also consider the tensor product of lattices. Given
two lattices L(B1) and L(B2) with basis matrices B1 → Zm1↓n1 and B2 → Zm2↓n2 , we define the
associated tensor product lattice as

L(B1)↙ L(B2) := L(B1 ↙B2) ,

where B1 ↙ B2 → Zm1m2↓n1n2 is the Kronecker product of B1 and B2. The tensor product lattice
is independent of the bases we choose for the two underlying lattices.

Unlike for codes, it is not true that repeated tensoring of lattices allows us to generically boost
the approximation factor in known hardness results for CVP and SVP. Indeed, while it always
holds that

ϖ(p)
1 (L(B1)↙ L(B2)) ↫ ϖ(p)

1 (L(B1)) · ϖ(p)
1 (L(B2)) ,

it may happen that the left-hand side of this inequality is significantly smaller than the right-hand
side. For an example, see [HR12, Lemma 2.3]. Therefore, additional e”ort is required to prove
special structural properties of our CVP and SVP instances to ensure that tensoring them allows
us to boost the approximation factor in our hardness results.
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2.5 Locally dense codes and lattices

Our randomized FPT reductions from NCP to MDP and from CVP to SVP use families of locally
dense codes and lattices with appropriate parameters. Precise definitions of such objects follow
below.

Definition 2.14 (Locally dense code). Fix a real number ϱ → (0, 1), positive integers d,N,m, n,
and a prime power q. A (q,ϱ, d,N,m, n)-locally dense code is specified by a generator matrix
A → Fm↓n

q and a target vector s → Fm
q with the following properties:

• ϖ(C(A)) > d.

• |(C(A)↗ s) ⇓ Bq,m(ϱd)| ↭ N .

That is, the code C(A) has block length m, dimension n, (design) minimum distance d, is over
Fq, and a “bad list decoding configuration” with at least N codewords within Hamming distance
ϱd < d of s.

Definition 2.15 (Locally dense lattice). Fix real numbers ϱ → (0, 1) and p ↭ 1 and positive
integers d,N,m, n. A (p,ϱ, d,N,m, n)-locally dense lattice is specified by a basis A → Zm↓n and a
target vector s → Zm with the following properties:

• ϖ(p)
1 (L(A)) > d.

• |(L(A)↗ s) ⇓ B(p)
m (ϱd)| ↭ N .

3 The FPT NCPq to MDPq reduction

We next describe and analyze a randomized FPT reduction from approximate NCPq to approx-
imate MDPq which works over any finite field. Our reduction is obtained by adapting Khot’s
reduction [Kho05, BBE+21] from approximate CVP to approximate SVP to the coding setting and
combining it with locally dense codes constructed with the help of BCH codes over general finite
fields. Combined with Theorem 2.7, our reduction yields Theorem 1.1, which we restate here.

Theorem 1.1. For any fixed prime power q and constant ε ↭ 1, ε-MDPq is W[1]-hard under
randomized FPT reductions with two-sided error.

3.1 A reduction with advice

For the sake of exposition, we begin by describing our FPT reduction from NCP to MDP in a
modular fashion assuming that we are given an appropriate locally dense code as advice. Later
on in Section 3.3 we give an FPT randomized algorithm to construct locally dense codes with
the desired parameters and replace the advice with this construction to yield the desired FPT
reduction from approximate NCP to approximate MDP with two-sided error. We establish the
following result.

Theorem 3.1. Fix a prime power q ↭ 2 and real numbers ε, ε↑ ↭ 1 and ϱ → (0, 1) additionally
satisfying

ε↑ ↫ ε

1 + ϱε
.
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Then, there is a randomized algorithm which, for m large enough, on input a ε-NCPq instance
(G, t, k) with G → Fm↓n

q , t → Fm
q , and k → Z+ and a (q,ϱ, d = εk,N ↭ 100q10 · (qm)d,m↑, n↑)-locally

dense code (A, s) outputs in time poly(m,m↑) an instance (Gfinal, k↑) of ε↑-MDPq with k↑ < εk
satisfying the following properties with probability at least 0.99:

• If (G, t, k) is a YES instance of ε-NCPq, then (Gfinal, k↑) is a YES instance of ε↑-MDPq;

• If (G, t, k) is a NO instance of ε-NCPq, then (Gfinal, k↑) is a NO instance of ε↑-MDPq.

We prove Theorem 3.1 by analyzing the following algorithm. On input a ε-NCPq instance
(G, t, k) with G → Fm↓n

q and t → Fm
q , we set Cint to be the code with generator matrix

Gint :=

(
G 0m↓n↑ ↗t

0m↑↓n A ↗s

)
→ F(m+m

↑)↓(n+n
↑+1)

q ,

where (A, s) is the locally dense code described in the statement of Theorem 3.1. Note that Gint

has full column rank (over Fq) whenever G and A have full column rank, since we always have
s ↓→ C(A) (observe that there exists at least one codeword of C(A) within distance ϱd < d of s).

We will take the intersection of Cint with an appropriate random code Crand ≃ Fm+m
↑

q of codi-
mension at most h = ∈7 + d(1 + logq m)∋. More precisely, we sample Crand by first sampling the

entries of a parity-check matrix H → Fh↓(m+m
↑)

q independently and uniformly at random from Fq

and setting Crand = ker(H). Then, we compute a generator matrix Gfinal of Cfinal = Cint ⇓ Crand and
k↑ := k + ϱd, and output (Gfinal, k↑) as the MDP instance. Note that k↑ ↫ d/ε↑ by the constraints
imposed on ε, ε↑, and ϱ.

3.2 Proof of Theorem 3.1

In order to prove Theorem 3.1, we begin by establishing some useful properties of the intermediate
code Cint constructed by the algorithm from Section 3.1.

Lemma 3.2. Fix a prime power q ↭ 2 and real numbers ε, ε↑ ↭ 1 and ϱ → (0, 1) satisfying

ε↑ ↫ ε

1 + ϱε
.

Given a ε-NCPq instance (G, t, k) with G → Fm↓n
q and t → Fm

q and a (q,ϱ, d = εk,N ↭ 100q10 ·
(qm)d,m↑, n↑)-locally dense code (A, s), the algorithm from Section 3.1 constructs Cint = C(Gint) in
time poly(m,m↑) satisfying the following properties:

• If (G, t, k) is a YES instance of ε-NCPq, then there are at least N nonzero vectors in Cint of
Hamming weight at most k↑. We call such vectors good;

• If (G, t, k) is a NO instance of ε-NCPq, then there are at most (qm)d nonzero vectors in Cint
of Hamming weight at most d = εk ↭ ε↑k↑. We call such vectors annoying.

Proof. The claim regarding the time required to construct Cint is directly verifiable. We proceed to
argue the two items of the lemma statement.

First, suppose that (G, t, k) is a YES instance of ε-NCPq. This means that there is a vector
x → Fn

q such that ↘Gx ↗ t↘0 ↫ k. Moreover, we know that there are at least N ↭ 100q10 · (qm)d

vectors y → Fn
↑

q such that
↘Ay ↗ s↘0 ↫ ϱd.
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For each such y, consider the associated vector zy = (x,y, 1) and note that

↘Gintzy↘0 = ↘Gx↗ t↘0 + ↘Ay ↗ s↘0 ↫ k + ϱd = k↑.

Therefore, there are at least N ↭ 100q10 · (qm)d good vectors in Cint, as desired.
On the other hand, suppose that (G, t, k) is a NO instance of ε-NCPq. This means that for

every x → Fn
q and ϑ → Fq \ {0} it holds that ↘Gx ↗ ϑt↘0 > εk = d. Consider an arbitrary vector

z = (x,y,↗ϑ) → Fn+n
↑+1

q . We claim that if Gintz is annoying it must be the case that y = 0 and
ϑ = 0. To see this, first note that if ϑ ↓= 0 then

↘Gintz↘0 ↭ ↘Gx↗ ϑt↘0 > d

since (G, t, k) is a NO instance of ε-NCPq and d = εk. Therefore, we may assume that ϑ = 0.
Under this assumption, it holds that

↘Gintz↘0 ↭ ↘Ay↘0 > d

if y ↓= 0, which yields the claim. This allows us to conclude that all vectors z such that Gintz
is annoying are of the form z = (x,0, 0) for some x → Fn

q . As a result, the number of annoying
vectors is at most

|C(G) ⇓ Bq,m(d)| ↫ |Bq,m(d)| ↫ (qm)d,

as desired.

We are now ready to prove Theorem 3.1 with the help of Lemma 3.2.

Proof of Theorem 3.1. The claims regarding the time required to construct Cfinal and the bound on
k↑ are directly verifiable. We proceed to argue the two items of the theorem statement.

Recall that we construct Cfinal by intersecting Cint with an appropriate random code Crand of
codimension at most h = ∈7 + d(1 + logq m)∋. More precisely, Crand is obtained by sampling the

entries of a parity-check matrix H → Fh↓(m+m
↑)

q independently and uniformly at random from Fq

and setting Crand = ker(H). Observe that for any given v → Fm+m
↑

q \ {0} we have

Pr
H

[Hv = 0] = q→h. (3)

Moreover, the random variables 1{Hv=0} and 1{Hw=0} are pairwise independent whenever v and
w are linearly independent. Let Zv = 1{Hv=0} and write ZS =

∑
v↔S Zv for any set S.

Suppose that (G, t, k) is a YES instance of ε-NCPq. By Lemma 3.2, this means that there are
at least 100q10 · (qm)d good nonzero vectors in Cint of Hamming weight at most k↑. Let G denote
the set of such good vectors. We claim that

Pr[ZG = 0] ↫ 0.01,

i.e., at least one good vector survives with probability at least 0.99 over the sampling of Crand. Note
that there exists a subset G↑ ≃ G of size

|G↑| ↭ |G|/q ↭ 100q9 · (qm)d (4)
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such that all vectors in G↑ are pairwise linearly independent. This set G↑ can be obtained by keeping
only one element of G per line in Fm+m

↑
q . Note that the variables {Zv}v↔G↑ are pairwise independent

Bernoulli random variables with success probability q→h, and so Lemma 2.1 guarantees that

Pr[ZG = 0] ↫ Pr[ZG↑ = 0] ↫ qh

|G↑| ↫
qh+1

|G| ↫ 0.01,

by our choice of h and the lower bound on |G↑| from Equation (4). Therefore, with probability at
least 0.99 there is a codeword v → Cfinal \ {0} such that ↘v↘0 ↫ k↑, and so (Gfinal, k↑) is a YES
instance of ε↑-MDPq.

Now, suppose that (G, t, k) is a NO instance of ε-NCPq. In this case, Lemma 3.2 ensures that
there are at most (qm)d nonzero vectors in Cint with Hamming weight at most d. Let A denote the
set of such annoying vectors. Note that

Pr[ZA ↭ 1] ↫ (qm)d

qh
↫ 0.01,

where the first inequality follows from Equation (3) and a union bound over all |A| ↫ (qm)d

annoying vectors, and the second inequality follows from the choice of h above. Therefore, all
annoying vectors are removed from Cfinal with probability at least 0.99. This means that Cfinal has
minimum distance larger than d, and so (Gfinal, k↑) is a NO instance of ε↑-MDPq.

3.3 Finalizing the reduction

In this section we provide a randomized construction of locally dense codes based on BCH codes [Hoc59,
BR60] which can be combined with Theorem 3.1 to yield the desired FPT reduction with two-sided
error and without advice. More precisely, we prove the following theorem.

Theorem 3.3. Fix a prime power q ↭ 2 and set ε = 4q. There exists a randomized algorithm
which when given as input positive integers m and k ↫ m runs in time poly(m) and outputs with
probability at least 0.99 a (q,ϱ, d,N,m↑, n↑)-locally dense code (A, s), where

m↑, n↑ ↫ poly(m),

d = εk = 4qk,

ϱ = 1↗ 1

2q
,

N =
(qm)2d

100
↭ 100q10 · (qm)d,

provided that m is su!ciently large compared to q.

Combining Theorems 2.7, 3.1 and 3.3 shows that ε↑-MDPq is W[1]-hard under randomized
reductions with two-sided error and ε↑ = 4q

4q→1 > 1. Then, as discussed in Section 2.3.1, coupling
this result with a tensoring argument immediately shows that ε-MDPq is W[1]-hard for an arbitrary
constant ε ↭ 1, leading to Theorem 1.1. Similarly, since k↑ = O(k) in Theorem 3.1, combining
Theorems 2.8, 3.1 and 3.3 yields Theorem 1.5.
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3.3.1 BCH codes over Fq

The following theorem states the main properties of (narrow-sense, primitive) BCH codes with
design minimum distance over an arbitrary finite field (see [Gur10] for a discussion of BCH codes
and related objects). Although versions of this theorem are well-known, we present a proof in
Appendix A for completeness.

Theorem 3.4 (q-ary BCH codes). Fix a prime power q. Then, given integers m↑ = qr ↗ 1 and
1 ↫ d ↫ m↑ for some integer r, it is possible to construct in time poly(m↑) a generator matrix
GBCH → Fm

↑↓n
↑

q such that CBCH = C(GBCH) ≃ Fm
↑

q has minimum distance at least d and codimension

m↑ ↗ n↑ ↫ ∈(d↗ 1)(1↗ 1/q)∋ logq(m↑ + 1).

3.3.2 Locally dense codes from BCH codes

We now show how to use q-ary BCH codes (Theorem 3.4) with appropriate parameters to construct
locally dense codes satisfying Theorem 3.3. This construction is similar in spirit to the construction
of locally dense lattices by Khot [Kho05].

Proof of Theorem 3.3. Suppose that we are given as input q, k,m. Let d = 4qk. Choose m↑ to be
the smallest number of the form qr ↗ 1 larger than or equal to (dqm)4q, and set ϱ = 1 ↗ 1

2q . Let

GBCH → Fm
↑↓n

↑
q be the generator matrix of the CBCH code with minimum distance at least d + 1

and codimension

m↑ ↗ n↑ ↫ ∈d(1↗ 1/q)∋ logq(m↑ + 1) = d(1↗ 1/q) logq(m
↑ + 1) (5)

guaranteed by Theorem 3.4, where the last equality holds by our choice of d. We sample our locally
dense code (A, s) as follows:

1. Set A = GBCH with GBCH as defined above;

2. Sample s uniformly at random from the set of vectors in {0, 1}m↑
of Hamming weight exactly

ϱd, which we denote by Bm↑,ωd.

By Theorem 3.4, this procedure runs in time poly(m↑) = poly(m). We now show that this
procedure outputs with probability at least 0.99 an (q,ϱ, d,N,m↑, n↑)-locally dense code (A, s),
where

m↑, n↑ ↫ poly(m),

d = 4qk,

ϱ = 1↗ 1

2q
,

N =
(qm)2d

100
,

which yields Theorem 3.3. It follows directly from the length, codimension, and minimum distance
of CBCH = C(GBCH) = C(A) that m↑, n↑ ↫ poly(m) and d = εk = 4qk. It remains to show that
with probability at least 0.99 over the sampling of s as above it holds that

|(CBCH ↗ s) ⇓ Bq,m↑(ϱd)| ↭
(
m

↑

ωd

)

100(m↑ + 1)d(1→1/q)
↭ (qm)2d

100
= N. (6)

We follow the reasoning of [Kho05, Lemma 4.3] to prove the leftmost inequality. Call a coset11 V

11A coset of a linear code C ↘ Fn
q is a set of the form v + C for some vector v ↔ Fn

q .
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of CBCH = C(A) good if

|V ⇓Bm↑,ωd| ↭
|Bm↑,ωd|

100 · qm↑→n↑

and call V bad otherwise. Note that if V is a good coset it follows that

|V ⇓ Bq,m↑(ϱd)| ↭ |V ⇓Bm↑,ωd| ↭
|Bm↑,ωd|

100 · qm↑→n↑ ↭
(
m

↑

ωd

)

100(m↑ + 1)d(1→1/q)
,

where the third inequality holds because of Equation (5). As a result, the leftmost inequality of
Equation (6) holds, and so it is enough to show that s lands in a good coset with probability at
least 0.99.

Since s is sampled uniformly at random from Bm↑,ωd, we obtain a representative of coset V with
probability

|V ⇓Bm↑,ωd|
|Bm↑,ωd|

.

Therefore, we have that

Pr[s lands in a bad coset] =
∑

V :V is a bad coset

|V ⇓Bm↑,ωd|
|Bm↑,ωd|

<
∑

V :V is a bad coset

1

100qm↑→n↑

↫ 1

100
.

The first inequality follows from the definition of a bad coset. The second inequality holds because
there are at most qm

↑→n
↑
bad cosets.

It remains to prove the rightmost inequality of Equation (6). Recalling that m↑ ↭ (dqm)4q, we
have that

(
m

↑

ωd

)

100(m↑ + 1)d(1→1/q)
↭

(
m

↑

ωd

)

100(2m↑)d(1→1/q)

↭ (m↑)ωd

100dd(2m↑)d(1→1/q)

↭ (m↑)
d
2q

100(2d)d

↭ (dqm)2d

100(2d)d

↭ (qm)2d

100
.

The first inequality uses the fact that m↑ + 1 ↫ 2m↑. The second inequality holds because
(
m

↑

ωd

)
↭


m

↑

ωd

)
ωd

↭ (m↑)ωd

dd
. The third inequality follows from the choice of ϱ and since 2d(1→1/q) ↫ 2d. The

fourth inequality holds since m↑ ↭ (dqm)4q. The fifth inequality holds because d2d ↭ (2d)d for all
d ↭ 2.
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4 The FPT CVPp to SVPp reduction

In this section we describe and analyze an FPT reduction from approximate CVPp to approximate
SVPp which works for all p ↭ 1. Our reduction is obtained by combining Khot’s reduction [Kho05,
BBE+21] from approximate CVP to approximate SVP with locally dense lattices stemming from
Reed-Solomon-based Construction-A lattices, as first studied by Bennett and Peikert [BP23]. In
conjunction with Theorem 2.11, our reduction yields Theorem 1.2, which we restate here.

Theorem 1.2. For any fixed p → [1,↑) and constant ε → [1, 21/p), ε-SVPp is W[1]-hard under
randomized FPT reductions with two-sided error.

4.1 A reduction with advice

As in Section 3.1, we begin by describing our FPT reduction from CVP to SVP in a modular fashion
assuming that we are given an appropriate locally dense lattice as advice. In Section 4.3, we give
an FPT randomized algorithm to construct locally dense lattices with the desired parameters and
replace the advice with this construction to yield the desired FPT reduction from approximate
NCP to approximate MDP with two-sided error. More precisely, we have the following result.

Theorem 4.1. Fix real numbers p, ε, ε↑ ↭ 1 and ϱ → (0, 1) additionally satisfying

ϱ ↫ ((ε/ε↑)p ↗ 2)1/p

ε
.

Then, there is a randomized algorithm which, for m large enough, on input a ε-CVPp instance
(B, t, k) with B → Zm↓n, t → Zm, and k → Z+ and a (p,ϱ, d = εk,N ↭ 105·(2m(1+εk))(εk)

p
,m↑, n↑)-

locally dense lattice (A, s) outputs in time polynomial in m, m↑, k, and the description bitlength
of B and t an instance (Bfinal, k↑) of ε↑-SVPp with k↑ < εk satisfying the following properties with
probability at least 0.99:

• If (B, t, k) is a YES instance of ε-CVPp, then (Bfinal, k↑) is a YES instance of ε↑-SVPp;

• If (B, t, k) is a NO instance of ε-CVPp, then (Bfinal, k↑) is a NO instance of ε↑-SVPp.

We prove Theorem 4.1 via the following algorithm. On input a ε-CVPp instance (B, t, k) with
B → Zm↓n and t → Zm, we set the intermediate lattice Lint to be the lattice generated by

Bint :=




B 0m↓n↑ ↗t

0m↑↓n A ↗s
0n 0n↑ 1



 ,

where (A, s) is the locally dense lattice described in Theorem 4.1. We add the bottom (0, . . . , 0, 1)
row to Bint to ensure that it has full column rank whenever A and B have full column rank as well.

Then, we add an appropriate random constraint to Lint in order to obtain the final SVPp

instance. More precisely, let ς be a prime in the interval12 (100(2m(1 + εk))(εk)
p
, 200(2m(1 +

εk))(εk)
p
]. Sample a vector v → Zm+m

↑+1 by sampling each entry independently and uniformly at

12Let a = 100(2m(1 + ϑk))(εk)
p
. By the prime number theorem, the density of primes in the interval (a, 2a] is

1/ poly(log a) = 1/ poly(m, k). Therefore, we can sample a prime ϖ with high probability in time poly(m, k) by
repeatedly sampling an integer from this interval uniformly at random and then checking whether it is prime (which
can be done in time poly(log a) = poly(m, k) [AKS04]).
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random from {0, . . . , ς ↗ 1}. We define Bfinal to be the (integral) basis of the sublattice Lfinal =
L(Bfinal) ≃ Lint defined as

Lfinal = {w → Lint : △v,w▽ = 0 (mod ς)}.

For fixed p, ε ↭ 1, we can compute Bfinal given Bint, v, and ς as inputs in time polynomial in
m↑, k, log ς, and the description bitlength of B and t. This can be done by first computing a
basis B↑ of the lattice Lv,ϑ = {w → Zm+m

↑+1 : △v,w▽ = 0 (mod ς)}. This step can be done in time
poly(m,m↑, log ς) since Lv,ϑ is the Construction-A lattice Lv,ϑ = Cv,ϑ+ςZm+m

↑+1 with Cv,ϑ the ς-ary
linear code with parity-check matrix H = vT . Then, we compute a basis of Lfinal = Lint⇓Lv,ϑ from
Bint and B↑ following the e!cient procedure discussed in [Mic10, Section 4]. Overall, this requires
time polynomial in m↑, log ς, and the description bitlength of Bint. In turn, this is polynomial in
m↑, k, and the description bitlength of B and t, as desired.

Finally, we compute13 k↑ = εk

ε↑ and output (Bfinal, k↑) as the SVPp instance.

4.2 Proof of Theorem 4.1

In order to prove Theorem 4.1, we begin by establishing some useful properties of the intermediate
lattice Lint constructed by the algorithm from Section 4.1.

Lemma 4.2. Fix real numbers p, ε, ε↑ ↭ 1 and ϱ → (0, 1) additionally satisfying

ϱ ↫ ((ε/ε↑)p ↗ 2)1/p

ε
.

Given a ε-CVPp instance (B, t, k) with B → Zm↓n and t → Zm \ L(B) and a (p,ϱ, d = εk,N ↭
105(2m(1 + εk))(εk)

p
,m↑, n↑)-locally dense lattice, the algorithm from Section 4.1 constructs Lint =

L(Bint) in time polynomial in m↑, k, log ς, and the description bitlength of B and t satisfying the
following properties with probability at least 0.99:

• If (B, t, k) is a YES instance of ε-CVPp, then there are at least N vectors z in Lint such that

↘z↘p ↫ k↑ = εk

ε↑ and whose last coordinate equals 1. We call such vectors good;

• If (B, t, k) is a NO instance of ε-CVPp, then there are at most (2m(1 + εk))(εk)
p
nonzero

vectors z in Lint such that ↘z↘p ↫ εk. We call such vectors annoying.

Proof. The claim about the running time is directly verifiable. We proceed to argue that the two
items hold.

First, suppose that (B, t, k) is a YES instance of ε-CVPp. This means that there is a vector x →
Zn such that ↘Bx↗ t↘p ↫ k. Moreover, we know that there are at least N ↭ 105 · (2m(1+εk))(εk)

p

vectors y → Zn
↑
such that

↘Ay ↗ s↘p ↫ ϱd.

For each such y, consider the associated vector zy = (x,y, 1) and note that

↘Bintzy↘pp = ↘Bx↗ t↘pp + ↘Ay ↗ s↘pp + 1 ↫ kp + (ϱd)p + 1 ↫
(
εk

ε↑

)
p

= (k↑)p,

13We can always set ϑ to be an integer multiple of ϑ↑ to ensure that k
↑ is an integer. For the sake of readability,

we avoid taking floors and ceilings.
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where the last inequality follows by the constraints on ε, ε↑, ϱ in the lemma statement and the fact
that d = εk. Since the last coordinate of Bintzy is always 1, we conclude that there are at least N
good vectors.

On the other hand, suppose that (B, t, k) is a NO instance of ε-CVPp. This means that for every
vector x → Zn and ϱ → Z \ {0} it holds that ↘Bx↗ ϱt↘p > εk. Consider any vector z = (x,u,ϱ).
Note that every annoying vector z must have ϱ = 0 by this property. Furthermore, because ϱ = 0,
it must also be the case that u = 0, since ↘Au↘p > εk for all u → Zn

↑ \ {0}. Therefore, the number
of annoying vectors is upper bounded by

|L(B) ⇓ B(p)
m (εk)| ↫

(
m

(εk)p

)
(1 + 2εk)(εk)

p ↫ (2m(1 + εk))(εk)
p
.

We are now ready to prove Theorem 4.1 with the help of Lemma 4.2.

Proof of Theorem 4.1. The claims regarding the time required to construct Lfinal and the bound
on k↑ are directly verifiable. We proceed to argue the two items of the theorem statement.

Recall that Lfinal is defined as the random sublattice

Lfinal = {w → Lint : △v,w▽ = 0 (mod ς)},

where ς is a prime in the interval (100(2m(1 + εk))(εk)
p
, 200(2m(1 + εk))(εk)

p
] and the entries of

v → Zm+m
↑+1 are sampled independently and uniformly at random from {0, . . . , ς↗ 1}.

Suppose that (B, t, k) is a YES instance of ε-CVPp. Our goal is to show that, with probability

at least 0.99 over the randomness of the algorithm, there is w→ → Lfinal such that ↘w→↘p ↫ k↑ = εk

ε↑ .

In this case, Lemma 4.2 ensures that there are at least N = 105 · (2m(1 + εk))(εk)
p ↭ 100ς good

vectors w → Lint such that ↘w↘p ↫ k↑ and whose last coordinate equals 1. Then, it follows that any
two distinct good vectors w(1),w(2) → Lint are linearly independent modulo ς, because their last
coordinates equal 1 and all their entries are bounded in absolute value by k↑ < ς/2. As a result,
the random variables 1{⇐v,w(1)⇒=0 (mod ϑ)} and 1{⇐v,w(2)⇒=0 (mod ϑ)} are independent. Since all these
(at least N) pairwise independent random variables follow a Bernoulli distribution with success
probability exactly 1/ς, Lemma 2.1 implies that the probability over the sampling of v that there
exists at least one good vector w → Lint such that △v,w▽ = 0 (mod ς), and hence w → Lfinal, is at
least

1↗ ς/N ↭ 0.99.

It follows that (Bfinal, k↑) is a YES instance of ε↑-SVPp with probability at least 0.99.

Now, suppose that (B, t, k) is a NO instance of ε-CVPp. Lemma 4.2 guarantees that there are
at most N ↑ = (2m(1 + εk))(εk)

p
annoying nonzero vectors w → Lint such that ↘w↘p ↫ εk. For any

given nonzero integer vector w, the probability (over the sampling of v) that △v,w▽ = 0 (mod ς)
is exactly 1/ς. Consequently, a union bound over the at most N ↑ annoying vectors in Lint shows
that the probability that there exists a vector w→ → Lfinal such that ↘w→↘p ↫ εk is at most

N ↑/ς ↫ 0.01.

It follows that (Bfinal, k↑) is a NO instance of ε↑-SVPp with probability at least 0.99.

4.3 Finalizing the reduction

In this section we provide a randomized construction of locally dense lattices based on Construc-
tion A lattices stemming from Reed-Solomon codes, which can be combined with Theorem 4.1
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to yield the desired randomized FPT reduction with two-sided error and without advice. More
precisely, we prove the following theorem.

Theorem 4.3. Fix real numbers p ↭ 1 and ε↑ → [1, 21/p). Let φ = (ε↑)→p ↗ 1/2 > 0 and set14

ε =


max

(
12/φ,

1

(1 + φ/2)1/p ↗ 1

)
.

There exists a randomized algorithm which when given as input positive integers m and k runs in
time poly(m, k) and outputs with probability at least 0.99 a (p,ϱ, d,N,m↑, n↑)-locally dense lattice
(A, s), where

ϱ =

(
1

(ε↑)p
↗ 2

εp

)1/p

,

d = εk,

N = (2m(1 + εk))3(εk)
p ↭ 105 · (2m(1 + εk))(εk)

p
,

n↑,m↑ = poly(m, k),

provided that m is su!ciently large compared to p.

Combining Theorems 2.11, 4.1 and 4.3 yields Theorem 1.2. Similarly, observing that k↑ = O(k)
in Theorem 4.1, combining Theorems 2.12, 4.1 and 4.3 yields Theorem 1.6.

4.3.1 Locally dense lattices from Reed-Solomon codes

The locally dense lattices described in Theorem 4.3 are obtained via Construction A lattices based
on Reed-Solomon codes, which were analyzed in [BP23].

For a fixed prime q, we define the Reed-Solomon code with block length q and dimension ω,
which we denote by RSq,ϖ, as

RSq,ϖ =

(f(↼))ϱ↔Fq : f → Fq[x], deg(f) < ω


.

Note that ω ↫ q. It is well known that it is possible to construct a generator matrix for RSq,ϖ in
time poly(q).

Given a Reed-Solomon code RSq,ϖ, we define the associated Reed-Solomon (Construction A)
lattice LRSq,ϑ as

LRSq,ϑ = {x → Zq : x (mod q) → RSq,ϖ} = RSq,ϖ + qZq.

Since we can construct a generator matrix of RSq,ϖ in time poly(q), we can also construct a basis
of LRSq,ϑ in time poly(q). Bennett and Peikert established two important properties of LRS.

Lemma 4.4 ([BP23, Theorem 3.1, adapted]). Suppose that ω ↫ q/2. Then, it holds that

ϖ(p)
1 (LRSq,ϑ) ↭ (2ω)1/p

for every p ↭ 1.

Lemma 4.5 ([BP23, Lemma 3.3, adapted]). Fix ↽ > 0 and denote the set of vectors in {0, 1}q of
Hamming weight w by Bq,w. Sample s uniformly at random from Bq,w. Then,

Pr

(LRSq,ϑ ↗ s) ⇓Bq,w

 ↭ ↽ ·
(
q

w

)
/qϖ


↭ 1↗ ↽.

14We made no e!ort to optimize constants.
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We now move to prove Theorem 4.3.

Proof of Theorem 4.3. Fix real numbers p ↭ 1 and ε↑ → [1, 21/p), and set φ = (ε↑)→p ↗ 1/2 and

ε =

max


12/φ, 1

(1+ς/2)1/p→1

)
. Suppose that we are given k and m as inputs. Choose integers

ω =


(1 + εk)p

2


,

w =
⌊
((ε/ε↑)p ↗ 2)kp

⌋
,

and q to be the smallest prime larger than

(300w(εk)p · (2m(1 + εk)))9/ς = poly(m, k).

Note that q = poly(m, k) by Bertrand’s postulate and that we can naively verify whether q is prime
in time poly(logm, log k) [AKS04]. We consider the following candidate construction of a locally
dense lattice (A, s), which runs in overall time poly(q) = poly(m, k):

1. Set A to be a basis of LRSq,ϑ ;

2. Sample s uniformly at random from Bq,w. (Recall that Bq,w denotes the set of vectors in
{0, 1}q of Hamming weight w.)

We now argue that (A, s) is a (p,ϱ, d,N,m↑, n↑)-locally dense lattice with the properties described
in Theorem 4.3 with probability at least 0.99 over the sampling of (A, s). First, note that m↑ = q
and n↑ = ω, and so it can be directly verified that n↑,m↑ = poly(m, k). To bound d, note that
ω ↫ q/2. Therefore, Lemma 4.4 and the choice of ω above guarantee that

ϖ(p)
1 (L(A)) ↭ (2ω)1/p > εk,

and so we may take d = εk. It remains to show that

|(L(A)↗ s) ⇓ B(p)
q (ϱd)| ↭ N

with probability at least 0.99 over the sampling of s, where

ϱ =
((ε/ε↑)p ↗ 2)1/p

ε
,

N = (2m(1 + εk))3(εk)
p
.

Since w ↫ (ϱd)p and Bq,w ≃ B(p)
q (ϱd), it su!ces to show that

|(L(A)↗ s) ⇓Bq,w| ↭ N

with probability at least 0.99 over the sampling of s. Invoking Lemma 4.5 with ↽ = 0.01 shows
that

Pr


|(L(A)↗ s) ⇓Bq,w| ↭

(
q

w

)

100qϖ


↭ 0.99.
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We claim that
(q
w)

100qϑ
↭ N with the choices of ω, w, and q above, which concludes the proof of

Theorem 4.3. To see this, first note that

w ↗ ω = ⇒((ε/ε↑)p ↗ 2)kp⇑ ↗

(1 + εk)p

2



↭ ((ε/ε↑)p ↗ 2)kp ↗ (1 + εk)p

2
↗ 2

↭ ((1/2 + φ)εp ↗ 2)kp ↗ (1/2 + φ/2)(εk)p ↗ 2 (7)

=
φ

2
(εk)p ↗ 2kp ↗ 2

↭ φ

2
(εk)p ↗ 4kp (8)

↭ φ

3
(εk)p, (9)

where Equation (7) uses the observation that (1 + εk)p ↫ (1 + φ/2)(εk)p, which follows from the
fact that ε ↭ 1

(1+ς/2)1/p→1
, Equation (8) holds because k ↭ 1, and Equation (9) uses the fact that

ε ↭ 12/φ.

Then, we have that
(
q

w

)

100qϖ
↭ qw→ϖ

100ww
(10)

↭ q
ϖ
3 (εk)

p

100ww
(11)

↭ (300w(2m(1 + εk)))3(εk)
p

100ww
(12)

↭ (2m(1 + εk))3(εk)
p

(13)

= N.

Equation (10) holds because
(
q

w

)
↭ (q/w)w. Equation (11) follows from the lower bound on w ↗

ω from Equation (9). Equation (12) holds since q > (300w(εk)p · (2m(1 + εk)))9/ς. Finally,
Equation (13) holds because w < 3(εk)p.

5 W[1]-hardness of SVPp for any approximation factor

In this section we analyze an FPT reduction from approximate NCP2 to approximate SVPp which
when combined with results of Haviv and Regev [HR12] leads to Theorem 1.3, which we restate
here.

Theorem 1.3. For any fixed p → (1,↑) and constant ε ↭ 1, ε-SVPp is W[1]-hard under randomized
FPT reductions with two-sided error.

5.1 The Haviv-Regev conditions for tensoring of SVP instances

We will use the following generalization of a result of Haviv and Regev [HR12] which establishes
conditions under which an SVP instance behaves well under tensoring.

Lemma 5.1. Fix an integer c ↭ 1 and real numbers p, ε ↭ 1. Suppose that (B, k) with B → Zm↓n

and k → Z+ is an instance of ε-SVPp with the additional property that if (B, k) is a NO instance
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of ε-SVPp, then every nonzero vector w → L(B) satisfies at least one of the following conditions,
where d = εk:

• ↘w↘0 > dp;

• w → 2Zm and ↘w↘0 > dp/2p;

• w → 2Zm and ↘w↘p > dc+3p/2.

Then, (B≃c, kc) is a YES (resp. NO) instance of εc-SVPp if (B, k) is a YES (resp. NO) instance
of ε-SVPp, where B≃c denotes the c-fold tensor product of B with itself.

Haviv and Regev [HR12, Lemma 3.4] proved a similar result for the case p = 2 only. It turns
out to be not hard to generalize for any p ↭ 1. Note, however, that the conditions of Lemma 5.1
depend a priori on the (constant) number of times c we will be tensoring the base SVPp instance.
We provide a proof of Lemma 5.1 in Appendix B.

5.2 The FPT NCP2 to SVPp reduction amenable to tensoring

We proceed to describe an FPT reduction from approximate NCP2, which we know is W[1]-hard
by Theorem 2.7, to approximate SVPp that yields the following result.

Theorem 5.2. Fix an even integer ε ↭ 2, an integer c ↭ 1, and real numbers p > 1, ε↑ ↭ 1, and
ϱ → (1/2 + 2→p, 1) additionally satisfying

ε↑ <

(
ε

2p + 1 + ϱε

)1/p

.

Then, there is a randomized algorithm which, for m large enough, on input a ε-NCP2 instance
(G, t, k) with G → Fm↓n

2 , t → Fm

2 , and k → Z+ outputs in time poly(m) an instance (Bfinal, k↑) of
ε↑-SVPp with k↑ = (2pk + ϱεk + 1)1/p < (εk)1/p satisfying the following properties with probability
at least 0.9:

• If (G, t, k) is a YES instance of ε-NCP2, then (Bfinal, k↑) is a YES instance of ε↑-SVPp;

• If (G, t, k) is a NO instance of ε-NCP2, then (Bfinal, k↑) is a NO instance of ε↑-SVPp such
that every nonzero vector w → L(Bfinal) satisfies at least one of the following conditions:

– ↘w↘0 > (ε↑k↑)p;

– w → 2Zm and ↘w↘0 > (ε↑k↑)p/2p;

– w → 2Zm and ↘w↘p > (ε↑k↑)c+3p/2.

Combining Theorem 5.2 with Lemma 5.1 and Theorem 2.7 immediately yields Theorem 1.3.
This is because Lemma 5.1 guarantees that we can directly tensor the ε↑-SVPp instances from
Theorem 3.1 with ε↑ > 1 an arbitrary (constant) number of times c ↭ 1 to conclude that ε↑↑-SVPp

is W[1]-hard for any constant ε↑↑ ↭ 1.

We proceed to describe the algorithm we use to prove Theorem 5.2. First, we need to set up
some auxiliary objects and lemmas. Suppose that we are given as input an instance (G, t, k) of
ε-NCP2, where G → Fm↓n

2 , t → Fm

2 , and k → Z+. Let d = εk. We denote by BNCP → Zm↓m the
basis of the Construction A lattice

LNCP = C(G) + 2Zm,

28



which we can compute in time poly(m).

With some hindsight, set m↑ to be the smallest integer of the form 2r ↗ 1 larger than

max

(
m+ 1, (108d12c)

1
ω↓(1/2+2↓p)

)
= poly(m),

and let CBCH ≃ Fm
↑

2 be a binary BCH code with minimum distance at least d+ 1 and codimension

h ↫

d

2


log(m↑ + 1) =

d

2
log(m↑ + 1)

guaranteed by Theorem 3.4. We denote by BBCH → Zm
↑↓m

↑
the basis of the Construction A lattice

LBCH = CBCH + 2Zm
↑
.

Note that we can compute a basis of LBCH in time poly(m↑) = poly(m). Furthermore, we sample
a target vector s → Fm

↑
2 uniformly at random from Bm↑,ωd, where we recall that Bm↑,ωd is the set of

vectors in {0, 1}m↑
with Hamming weight ϱd. As in previous sections, the tuple (BBCH, s) satisfies

a local density property with high probability over the sampling of s, as described in the following
lemma.

Lemma 5.3. It holds with probability at least 0.99 over the sampling of s from Bm↑,ωd that

|(LBCH ↗ s) ⇓ B(p)
m↑ ((ϱd)

1/p)| ↭
(
m

↑

ωd

)

100(m↑ + 1)d/2
=: N.

Proof. Consider the vectors v of LBCH which lie in CBCH (seen as a subset of Zm
↑
). Since both v

and s lie in {0, 1}m↑
, it follows that

↘v ↗ s↘0 = ↘v ↗ s (mod 2)↘0 = ↘v ↗ s↘pp.

This implies that

|(LBCH ↗ s) ⇓ B(p)
m↑ ((ϱd)

1/p)| ↭ |(CBCH ↗ s (mod 2)) ⇓ B2,m↑(ϱd)|. (14)

Following the derivation of Equation (6) from the proof of Theorem 3.3 on locally dense codes
with q = 2 guarantees that with probability at least 0.99 over the sampling of s it holds that

|(CBCH ↗ s (mod 2)) ⇓ B2,m↑(ϱd)| ↭ (m
↑

ωd)
100(m↑+1)d/2

. Combining this with Equation (14) yields the

desired result.

Equipped with the above, we consider the intermediate lattice Lint generated by the basis

Bint :=




2BNCP 0m↓m↑ ↗2t
0m↑↓m BBCH ↗s
0m 0m↑ 1



 → Z(m+m
↑+1)↓(m+m

↑+1) . (15)

The bottom (0, . . . , 0, 1) row is added to ensure that Bint has full column rank over R.
Then, we add a random constraint Lint to obtain our final SVP instance. More precisely, we

set ς to be a prime in the interval (N/100, N/50] (as discussed in Section 4, we can sample ς with
high probability in time poly(m)), sample a vector v → Zm+m

↑+1 by sampling each entry of v
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independently and uniformly at random from {0, . . . , ς↗ 1}, and construct in time poly(m) a basis
Bfinal of the random sublattice

Lfinal = {w → Lint : △v,w▽ = 0 (mod ς)}

by following the procedure discussed in Section 4.1. Then, we set k↑ = (2pk+ϱd+1)1/p and output
(Bfinal, k↑) as our ε↑-SVPp instance.15

5.3 Proof of Theorem 5.2

In order to prove Theorem 5.2, we begin by establishing some useful properties of the intermediate
lattice Lint captured in the following lemma.

Lemma 5.4. Fix an even integer ε ↭ 2, an integer c ↭ 1, and real numbers p > 1, ε↑ ↭ 1, and
ϱ → (1/2 + 2→p, 1) additionally satisfying

ε↑ <

(
ε

2p + 1 + ϱε

)1/p

.

Given a ε-NCP2 instance (G, t, k) with G → Fm↓n

2 , t → Zm, and k → Z+, the algorithm from
Section 5.2 constructs Lint = L(Bint) ≃ Zm+m

↑+1 in time poly(m) satisfying the following properties
with probability at least 0.99, where we recall that d = εk and k↑ = (2pk + ϱd+ 1)1/p:

• If (G, t, k) is a YES instance of ε-NCP2, then there are at least N =
(m

↑
ωd)

100(m↑+1)d/2
vectors w

in Lint such that ↘w↘p ↫ k↑ and whose last coordinate equals 1. We call such vectors good;

• If (G, t, k) is a NO instance of ε-NCP2, then there are at most A ↫ 10→5N nonzero vectors
w in Lint that satisfy all of the following properties:

– ↘w↘0 ↫ (ε↑k↑)p;

– Either w ↓→ 2Zm+m
↑+1 or ↘w↘0 ↫ (ε↑k↑)p/2p;

– Either w ↓→ 2Zm+m
↑+1 or ↘w↘p ↫ (ε↑k↑)c+3p/2.

We call such vectors annoying.16

Proof. The claim about the running time of the algorithm is directly verifiable. We proceed to
argue the two items in the lemma statement.

Suppose that (G, t, k) is a YES instance of ε-NCP2. This means that there is a codeword
c → C(G) such that

↘c↗ t↘0 ↫ k.

Noting that C(G) ≃ LNCP (when seen as a subset of {0, 1}m ≃ Zm), we conclude that there is
x → Zm such that BNCPx = c, and so

↘BNCPx↗ t↘pp ↫ k.

15Our choice of k↑ may not be an integer. For the sake of readability, we avoid working through the argument
with floors and ceilings. It is also relevant to note that ϑ can be chosen so that our choice of k↑ is the pth root of an
integer, which already matches the requirements of the definition of approximate SVPp in [BBE+21].

16Annoying vectors are the ones that do not satisfy the properties of NO instances laid out in Theorem 5.2.
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Moreover, by Lemma 5.3 we also know that with probability at least 0.99 there are at least N =
(m

↑
ωd)

100(m↑+1)d/2
vectors y → Zm

↑
such that

↘BBCHy ↗ s↘pp ↫ ϱd.

For each such good y, consider the vector zy = (x,y, 1). Then, we have that

↘Bintzy↘pp = ↘2BNCPx↗ 2t↘pp + ↘BBCHy ↗ s↘pp + 1 ↫ 2pk + ϱd+ 1,

and so ↘Bintzy↘p ↫ (2pk+ϱd+1)1/p = k↑. Furthermore, the last coordinate of Bintzy is always 1.
As a result, there are at least N good vectors in Lint.

On the other hand, suppose that (G, t, k) is a NO instance of ε-NCP2. This means that for
every c → C(G) it holds that

↘c↗ t↘0 > d = εk ↭ (ε↑k↑)p,

where the last inequality follows by our choice of k↑ and the constraints on p, ε, ε↑, and ϱ. Recall
that our goal is to bound the number of annoying vectors in Lint appropriately. Consider an
arbitrary vector z = (x,y,ϑ) → Zm+m

↑+1. We proceed by case analysis:

1. ϑ ↓→ 2Z: In this case, we have

↘Bintz↘0 ↭ ↘BNCPx↗ ϑt↘0 ↭ ↘Gx↗ t (mod 2)↘0 > d ↭ (ε↑k↑)p,

and so no vector of this form is annoying.

2. ϑ → 2Z and BBCHy ↓→ 2Zm
↑
: In this case, we have

↘Bintz↘0 ↭ ↘BBCHy ↗ ϑs↘0 ↭ ↘BBCHy (mod 2)↘0 > d ↭ (ε↑k↑)p,

and so no vector of this form is annoying. The third inequality uses the fact thatBBCHy (mod 2)
is a nonzero codeword of CBCH, which has minimum distance larger than d = εk.

3. ϑ → 2Z and BBCHy → 2Zm
↑
: In this case, it holds that all coordinates of Bintz are even.

Therefore, in order for Bintz to be annoying it must be that ↘Bintz↘0 ↫ (ε↑k↑)p/2p ↫ d/2p

and ↘Bintz↘p ↫ (ε↑k↑)c+3p/2 ↫ d3c. There are at most

(2d3c + 1)d/2
p

(
m+m↑ + 1

d/2p

)

vectors in Lint with these properties.

We conclude that there are at most A = (2d3c + 1)d/2
p(m+m

↑+1
d/2p

)
annoying vectors in Lint. Finally,

we claim that, since we chose m↑ to be larger than max

(
m+ 1, (108d12c)

1
ω↓(1/2+2↓p)

)
in Section 5.2,

it follows that A ↫ 10→5N . To see this, note that

A ↫ (2d3c + 1)d/2
p
(m+m↑ + 1)d/2

p ↫ (3d3c)d(2m↑)d/2
p

and

N ↭ (m↑)(ω→1/2)d

100 · 2d · dd ,

where we have used the fact that m↑ ↭ m + 1. Therefore, after simple algebraic manipulation, it
follows that the desired inequality holds whenever

(m↑)(ω→(1/2+2↓p))d ↭ 107 · (6d4c)d,

which is in turn satisfied by our choice of m↑.
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Proof of Theorem 5.2. Theorem 5.2 follows by combining Lemma 5.4 with a standard sparsification
argument, as carried out in the proof of Theorem 4.1. To avoid repetition, we omit the full argument
here and simply give a sketch.

Let Lint := L(Bint), where Bint is as defined in Equation (15). First, we note that the random
sublattice Lfinal of Lint is defined in Section 5.2 with respect to a prime ς that satisfies 100A ↫ ς ↫
N/100. Additionally, we note that there at least N distinct good vectors of the form (xT ,yT

i
, 1)T →

Lint such that yi → (L(BBCH)↗ s) is a binary vector and yi,yj have 1s in distinct coordinates for
all i, j → [N ], i ↓= j. Then, by Lemma 2.1 and the fact that any two such distinct good vectors
(xT ,yT

i
, 1)T , (xT ,yT

j
, 1)T are linearly independent modulo ς (which follows from the fact that yi,yj

have 1s in distinct coordinates), with probability at least 0.99 in the YES case there is at least one
good vector left in Lfinal, in which case (Bfinal, k↑) is a YES instance of ε↑-SVPp. Moreover, using
the fact that each annoying vector will be kept with probability at most 1/ς and taking a union
bound, with probability at least 0.99 in the NO case there are no annoying vectors left in Lfinal,
meaning that (Bfinal, k↑) is a NO instance of ε↑-SVPp with the additional properties outlined in
Theorem 5.2.
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A Proof of Theorem 3.4

We restate Theorem 3.4 here for convenience.

Theorem A.1 (Restatement of Theorem 3.4, q-ary BCH codes). Fix a prime power q. Then,
given integers m↑ = qr ↗ 1 and 1 ↫ d ↫ m↑ for some positive integer r, it is possible to construct in
time poly(m↑) a generator matrix GBCH → Fm

↑↓n
↑

q such that CBCH = C(GBCH) ≃ Fm
↑

q has minimum
distance at least d and codimension

m↑ ↗ n↑ ↫ ∈(d↗ 1)(1↗ 1/q)∋ logq(m↑ + 1).

Proof. Let ϱ be a primitive element of Fqr . For a given block length m↑ = qr↗1 and design distance
d ↫ m↑, we define the (narrow-sense, primitive) q-ary BCH code CBCH ≃ Fm

↑
q as

CBCH =


(c0, . . . , cm↑→1) → Fq : f(x) =

m
↑→1∑

i=0

cix
i → Fqr [x] satisfies f(ϱ

i) = 0 for i = 1, . . . , d↗ 1


.

(16)

By [Gur10, Theorem 3], it holds that CBCH is a subset of a Reed-Solomon code over Fqr with
block length m↑ and minimum distance d. Therefore, CBCH has minimum distance at least d.

To see the claim about the codimension, note that each constraint of the form f(ϱi) = 0 over
Fqr corresponds to r = logq(m

↑ + 1) linear constraints over Fq. Moreover, if f(ε) = 0 for some
ε → Fqr , it follows that

0 = f(ε)q =
m

↑→1∑

i=0

cq
i

(
εi
)q

=
m

↑→1∑

i=0

ci (ε
q)i = f(εq),

where we have used the fact that (ϑ1 + ϑ2)q = ϑq

1 + ϑq

2 for any ϑ1,ϑ2 → Fqr and that ϑq = ϑ

for all ϑ → Fq (with the natural embedding of Fq in Fqr). Therefore, there are at least

d→1
q



redundant constraints over Fqr in Equation (16). Combining both observations above shows that
the codimension of CBCH is at most

∈(d↗ 1)(1↗ 1/q)∋ logq(m↑ + 1).
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Finally, since each constraint f(ϱi) = 0 over Fqr can be transformed into r linear constraints
over Fq in time poly(qr) = poly(m↑), we can construct the parity-check matrix (and hence the
generator matrix GBCH) of CBCH in time poly(m↑) as well.

B The Haviv-Regev conditions for general ωp norms

In this section, we prove a generalization of Haviv-Regev’s conditions which allow tensoring of
approximate SVPp instances for all p ↭ 1. Our argument follows that of [HR12] for p = 2 closely.
For convenience, we restate the key lemma here.

Lemma 5.1. Fix an integer c ↭ 1 and real numbers p, ε ↭ 1. Suppose that (B, k) with B → Zm↓n

and k → Z+ is an instance of ε-SVPp with the additional property that if (B, k) is a NO instance
of ε-SVPp, then every nonzero vector w → L(B) satisfies at least one of the following conditions,
where d = εk:

• ↘w↘0 > dp;

• w → 2Zm and ↘w↘0 > dp/2p;

• w → 2Zm and ↘w↘p > dc+3p/2.

Then, (B≃c, kc) is a YES (resp. NO) instance of εc-SVPp if (B, k) is a YES (resp. NO) instance
of ε-SVPp, where B≃c denotes the c-fold tensor product of B with itself.

We will require some auxiliary lemmas in order to prove Lemma 5.1, starting with a version of
Minkowski’s first theorem for (possibly non-full-rank) lattices in the ω2 norm.

Lemma B.1 (Minkowski’s first theorem). Let L be a rank-r lattice. Then, it holds that

det(L) ↭

ϖ(2)
1 (L)̸

r

r

.

We will also need to relate ωp norms to the ω2 norm. When p ↭ 2, a standard application of
Hölder’s inequality yields

↘v↘2 ↭ ↘v↘p ↭ |supp(v)|1/p→1/2↘v↘2,

where supp(v) = {i → [m] : vi ↓= 0} is the support of v, for any vector v → Rm. When p < 2 we
have that

↘v↘p ↭ ↘v↘2.

We can combine the inequalities above to conclude in particular that

↘v↘p ↭ |supp(v)|1/max(2,p)→1/2↘v↘2 (17)

for all p ↭ 1. Moreover, using the fact that ↘v↘1 ↫ |supp(v)|1/2↘v↘2 by Cauchy-Schwarz and that
↘v↘1 ↭ ↘v↘p for all p ↭ 1, it holds that

↘v↘2 ↭ |supp(v)|→1/2↘v↘p (18)

for all p ↭ 1.

We prove a generalization of [HR12, Claim 3.5] for ωp norms with p ↭ 1.
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Lemma B.2 (Generalization of [HR12, Claim 3.5]). Let (B, k) be a NO instance of ε-SVPp with
the properties outlined in Lemma 5.1, and let L be a sublattice of L(B) of rank r. Then, at least
one of the following properties holds, where d = εk:

• Every basis matrix of L has more than dp nonzero rows;

• Every basis matrix of L has only even entries and has more than (d/2)p nonzero rows;

• det(L) > dr(c+p/2) and there is a basis matrix of L which has at most (d/2)p nonzero rows.
In particular, every vector in L has Hamming weight at most (d/2)p.

Proof. We assume that the first two properties do not hold and show that the third property holds
in that case. Since there is a basis matrix of L with at most dp nonzero rows, we conclude that
r ↫ dp and that every vector in L has Hamming weight at most dp. By the properties of (B, k),
this implies that L ≃ 2Zm. Therefore, it must be the case that there is a basis matrix of L that
has at most (d/2)p nonzero rows, and so every vector in L has Hamming weight at most (d/2)p.
As a result, we also gather that all nonzero vectors w → L satisfy ↘w↘p > dc+3p/2, and so

det(L) ↭

ϖ(2)
1 (L)̸

r

r

↭

d→p/2ϖ(p)

1 (L)̸
r

r

> dr(c+p/2),

where the first inequality follows from Lemma B.1, the second inequality holds by Equation (18)
and the fact that every vector in L has Hamming weight at most dp, and the third inequality uses
the fact that r ↫ dp.

We will also need the following technical lemma from [HR12], which is specific for the ω2 norm.

Lemma B.3 ([HR12, Claim 3.6]). Let L1 and L2 be integer lattices of rank r ↭ 1 generated
by the bases U = (u1, . . . ,ur) and W = (w1, . . . ,wr), respectively. Consider the vector v =∑

r

i=1 ui ↙wi → L1 ↙ L2. Then, it holds that

↘v↘2 ↭
̸
r(det(L1) · det(L2))

1/r.

We are now ready to prove Lemma 5.1.

Proof of Lemma 5.1. It su!ces to show that if (B, k) is a NO instance of ε-SVPp satisfying the

conditions from the lemma statement, L1 = L(B), and L2 =


c
↑

i=1 L for some integer 1 ↫ c↑ < c

and such that ϖ(p)
1 (L2) > dc

↑
, then

ϖ(p)
1 (L1 ↙ L2) > dc

↑+1.

Consider an arbitrary nonzero vector v → L1 ↙ L2. As shown in [HR12, Proof of Lemma 3.4],
we can write v = B↑

1(B
↑
2)

T for full-column-rank matrices B↑
1 and B↑

2 (note that B↑
1 and B↑

2 have the
same number of columns) such that L↑

i
= L(B↑

i
) ≃ Li for i = 1, 2. We now proceed by case analysis

based on Lemma B.2 applied to L↑
1:

• B↑
1 has more than dp nonzero rows: In this case, more than dp rows of B↑

1(B
↑
2)

T are nonzero
vectors from L↑

2, and so

↘v↘p > d · ϖ(p)
1 (L↑

2) ↭ d · ϖ(p)
1 (L2) > dc

↑+1.
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• B↑
1 has only even entries and has more than (d/2)p nonzero rows: In this case, more than

(d/2)p rows of B↑
1(B

↑
2)

T are even multiples of nonzero vectors from L↑
2, and so

↘v↘p > 2((d/2)p)1/pϖ(p)
1 (L↑

2) ↭ d · ϖ(p)
1 (L2) > dc

↑+1.

• det(L↑
1) > dr(c+p/2) and B↑

1 has at most (d/2)p nonzero rows. In particular, r ↫ (d/2)p and
every vector in L↑

1 has Hamming weight at most (d/2)p: In this case, we have

↘v↘p ↭ d
p

max(2,p)→
p
2 ↘v↘2

↭ d
p

max(2,p)→
p
2
̸
r(det(L↑

1) · det(L↑
2))

1/r

↭ d
p

max(2,p)→
p
2
̸
r det(L↑

1)
1/r

> d
p

max(2,p)→
p
2 · dc+p/2

↭ dc
↑+1 .

The first inequality follows from Equation (17) and the fact that v has support size at most
dp. The second inequality holds via Lemma B.3 applied to L↑

1 and L↑
2, which are both rank-r

lattices. The third inequality uses the fact that det(L↑
2) ↭ 1, which holds because L↑

2 is a
non-trivial integer lattice (this in turn holds by the definition of L↑

2 and the fact that v ↓= 0.).
The fourth inequality holds by the lower bound on det(L↑

1) and the fact that c↑ ↫ c↗ 1.
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