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ABSTRACT

Metagenomic Hi-C (metaHi-C) has shown remarkable potential for retrieving high-quality
metagenome-assembled genomes from complex microbial communities. Nevertheless, exist-
ing metaHi-C-based contig binning methods solely rely on Hi-C interactions between contigs,
disregarding crucial biological information such as the presence of single-copymarker genes.
To overcome this limitation, we introduce ImputeCC, an integrative contig binning tool opti-
mized for metaHi-C datasets. ImputeCC integrates both Hi-C interactions and the discrimi-
native power of single-copy marker genes to group marker-gene-containing contigs into
preliminary bins. It also introduces a novel constrained random walk with restart algorithm
to enhance Hi-C connectivity among contigs. Comprehensive assessments using both mock
and real metaHi-C datasets from diverse environments demonstrate that ImputeCC consis-
tently outperforms other Hi-C-based contig binning tools. A genus-level analysis of the sheep
gut microbiota reconstructed by ImputeCC underlines its capability to recover key species
from dominant genera and identify previously unknown genera.

Keywords: Metagenomic Hi-C, Integrative Contig Binning, MetaHi-C Contact Map Imputation,
Constrained Random Walk With Restart.

1. INTRODUCTION

M etagenomics is revolutionizing microbial ecology by enabling the exploration of complex microbial
communities in diverse environments without the need for traditional microbial isolation or cultivation

(Handelsman, 2004; Hugenholtz and Tyson, 2008; Simon and Daniel, 2011; Streit and Schmitz, 2004). The
recent combination of Hi-C sequencing with whole metagenomic shotgun sequencing leads to the develop-
ment of themetagenomic Hi-C (metaHi-C) technique, which has provided novel perspectives on species diver-
sity and the interactions among microorganisms within a single microbial sample (Beitel et al., 2014; Burton
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et al., 2014; Du et al., 2023; Marbouty et al., 2014; 2021; Press et al., 2017; Yaffe and Relman, 2020). In
metaHi-C experiments, shotgun sequencing extracts genomic fragments from a microbial sample, while Hi-C
sequencing conducted on the same microbial sample generates DNA-DNA proximity ligations within the
same cells, resulting inmillions of paired-endHi-C short reads. These fragmented shotgun reads are assembled
into longer contigs, forming the basis for aligning paired-end Hi-C reads. MetaHi-C contacts, representing the
number of Hi-C read pairs linking contig pairs, reveal contig relationships based on physical proximity within
the microbial community. Depending on whether the shotgun libraries in metaHi-C experiments are con-
structed using second-generation or third-generation sequencing technologies, metaHi-C experiments can be
classified into either short-read or long-read metaHi-C datasets, respectively.

Considering contigs originating from the same genome exhibit enriched Hi-C contact frequencies relative
to those derived from distinct genomes, the process of Hi-C-based binning emerges and aims at grouping frag-
mented contigs into metagenome-assembled genomes (MAGs) (Hugerth et al., 2015) by leveraging Hi-C con-
tacts between contigs (Baudry et al., 2019; DeMaere and Darling, 2019; Du and Sun, 2022; 2023). The
resulting MAG collections serve as fundamental prerequisites for downstream analyses, such as the elucida-
tion of the metabolic potentials and functional roles of diverse microorganisms, as well as the exploration of
virus-host interactions (Chen et al., 2021; Gounot et al., 2022; Kent et al., 2020; Stalder et al., 2019). Various
Hi-C-based contig binning methods have been developed, including HiCBin (Du and Sun, 2022), MetaTOR
(Baudry et al., 2019), bin3C (DeMaere and Darling, 2019), and the MetaCC binning module (referred to as
MetaCC) (Du and Sun, 2023). Compared to conventional shotgun-based binning tools reliant on sequence
composition and contig coverage for contig clustering, Hi-C-based binning methods demonstrate their supe-
rior ability inMAG recovery using only one single sample (Du and Sun, 2022; Press et al., 2017).

However, existing Hi-C-based binning methods rely solely on Hi-C interactions for contig grouping, over-
looking valuable biological information encapsulated within single-copymarker genes. These genes, present as
single copies in the vast majority of genomes (Albertsen et al., 2013), hold the great potential to discriminate
between contigs originating from distinct species when shared among them. This omission underscores a criti-
cal gap in current approaches, leaving ample room for enhancement and improved analyses. In response, we
introduce ImputeCC, an integrative binning tool designed for metaHi-C datasets. ImputeCC manages to har-
ness the comprehensive insights offered by both Hi-C interactions and single-copy marker genes to optimize
the contig binning process. We conducted a comprehensive validation of ImputeCC’s performance using a
combination of mock and real metaHi-C datasets. In the mock datasets, we demonstrated the effectiveness of
our constrained random walk with restart (CRWR) imputation, showcasing its utility and necessity in improv-
ing the preclustering of marker-gene-containing contigs. Subsequently, we evaluated ImputeCC’s performance
against other publicly-available Hi-C-based binning tools using four real metaHi-C datasets sourced from
diverse environments, including the human gut (Press et al., 2017), wastewater (Stalder et al., 2019), cow
rumen (Bickhart et al., 2019), and sheep gut (Bickhart et al., 2022). ImputeCC’s standout performance was par-
ticularly evident in the challenging sheep gut environment. In this complex setting, ImputeCC successfully
retrieved an impressive total of 408 high-quality and 885 medium-quality MAGs, as assessed by the latest
CheckM2 (Chklovski et al., 2023). To the best of our knowledge, this represents the largest number of
reference-quality MAGs reported from a single sample. Moreover, we delved into the taxonomic diversity of
the captured species in microbial samples by annotating high-quality MAGs generated by various binning
methods using GTDB-TK (Chaumeil et al., 2022). ImputeCC consistently demonstrated a significantly broader
taxonomic diversity at the species level across all datasets, emphasizing its ability to capture a broader range of
microbial taxa. Further downstream ImputeCC’s genus-level analysis of the sheep gut microbiota revealed abil-
ity of ImputeCC to recover essential species from dominant genera such as Bacteroides, showed its potential to
detect previously unrecognized genera, and unveiled other high-quality MAGs within the Alistipes genus that
warrant further experimental investigation to elucidate their characteristics and roles within this ecosystem.

2. METHODS

2.1. Datasets

2.1.1. Mock metaHi-C datasets. The mock community sequencing data were downloaded from the
European Nucleotide Archive under project ID PRJEB52977 (Meslier et al., 2022). The mock community
comprises 71 strains representing 69 distinct species and underwent comprehensive sequencing using the Illu-
mina HiSeq 3000, ONT MinION R9, and PacBio Sequel II platforms, generating three different shotgun
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libraries. The specific accession numbers and sizes of these three shotgun libraries are shown in Supplementary
Table S1. After filtering the incomplete reference genomes (Supplementary Data S1), we obtained reference
genomes of 66 distinct species for the following experiments. The abundances of all species were available
from the supplementary data of (Meslier et al., 2022). Since the original dataset lacked Hi-C sequencing reads,
we employed sim3C (v0.2) (DeMaere and Darling, 2018) to simulate metagenomic Hi-C reads based on the
66 reference genomes and their known abundances in the mock community, utilizing parameters ‘-n
10000000 -l 150 -e MluCI -e Sau3AI -m hic –insert-sd 20 –insert-mean 350 –insert-min 150 –linear –simple-
reads’. Subsequently, we combined the same simulated Hi-C library with the three shotgun libraries, respec-
tively, to construct three mock metaHi-C datasets. These mock Hi-C datasets were named according to the
shotgun library incorporated in the mock dataset, resulting in the ‘mock Illumina,’ ‘mock PacBio,’ and ‘mock
Nanopore’ metaHi-C datasets. Each mock dataset comprised real shotgun reads sequenced from a known
mock community, along with simulated Hi-C reads.

2.1.2. Real metaHi-C datasets. Four publicly-available real metaHi-C datasets were utilized in this
study, comprising two short-read metaHi-C datasets and two long-read metaHi-C datasets. The specific sizes
of the raw datasets are detailed in Supplementary Table S2.

The two short-read metaHi-C datasets were derived from the human gut (BioProject: PRJNA413092) (Press
et al., 2017) and wastewater (BioProject: PRJNA506462) (Stalder et al., 2019) samples. Each short-read
metaHi-C dataset consisted of both shotgun and Hi-C libraries originating from the same sample source. The
construction of Hi-C sequencing libraries involved the use of restriction endonucleases Sau3AI and MluCI.
Sequencing of both the shotgun and Hi-C libraries was carried out on Illumina platforms, producing 150-base
pair reads. The two long-read metaHi-C datasets were obtained from cow rumen (BioProject: PRJNA507739)
(Bickhart et al., 2019) and sheep gut (BioProject: PRJNA595610) (Bickhart et al., 2022) samples. The cow
rumen long-read metaHi-C dataset comprised uncorrected PacBio long-read libraries and Hi-C libraries. The
error-prone PacBio long reads were generated using both the PacBio RSII and PacBio Sequel platforms. Hi-C
libraries for this dataset were prepared using the Sau3AI and MluCI restriction enzymes and subsequently
sequenced on an Illumina HiSeq 2000, producing 80-base pair reads. The sheep gut long-read metaHi-C data-
set consisted of PacBio circular consensus sequencing (CCS) long-read libraries and Hi-C sequencing libra-
ries. The PacBio CCS long reads, characterized by high accuracy with average Q scores exceeding 20, were
referred to as HiFi reads. Distinct Hi-C libraries for the sheep gut long-read metaHi-C dataset were generated
using the Sau3AI andMluCI restriction enzymes and sequenced at a length of 150 base pairs.

2.2. Data preprocessing

We first conduct essential read cleaning procedures using ‘bbduk’ from the BBTools suite (v37.25) (Bush-
nell, 2014) to address issues such as adaptor sequences, low-quality reads, and PCR duplication (Supplemen-
tary Data S2). For each metaHi-C dataset, reads from the shotgun library are assembled into longer contigs
(Supplementary Data S3). After assembly, processed paired-end Hi-C reads are aligned to these contigs using
BWA-MEM (v0.7.17) (Li, 2013) with the ‘-5SP’ parameter to prioritize the alignment with the lowest read
coordinate as the primary alignment. Subsequent alignment filtering steps include the removal of unmapped
reads, secondary and supplementary alignments, and alignments with low quality (nucleotide match length
<30 or mapping score <30). We count Hi-C read pairs aligned to two contigs as raw Hi-C contacts between
contigs and those contigs with fewer than two Hi-C contacts are excluded. Raw Hi-C contacts are normalized
by NormCC (Du and Sun, 2023) with default parameters to eliminate the systematic biases derived from the
number of restriction sites, contig length, and coverage.

2.3. The framework of ImputeCC binning

2.3.1. Detect assembled contigs with single-copy marker genes. Similar to MaxBin (Wu et al.,
2014), we identify single-copy marker genes, which are genes typically found as single copies in the majority
of genomes (Albertsen et al., 2013) within the assembled contigs. We accomplish this by employing FragGe-
neScan (Rho et al., 2010) and HMMER (v3.3.2) (Finn et al., 2011) (Supplementary Data S4).

2.3.2. Impute the metagenomic Hi-C contact matrix for contigs containing marker genes. The
effective preclustering of contigs with single-copy marker genes partially depends on the expectation that
marker-gene-containing contigs can be reliably linked through robust Hi-C interactions if they come from the
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same genome. However, this expectation encounters a practical limitation attributed to the localized character-
istics of proximity ligations, which implies that even when two contigs share the same genomic origin, they
may fail to establish Hi-C contacts if they are not in close spatial proximity within the cell, thereby contributing
to the sparsity of the metagenomic Hi-C contact matrix (Du et al., 2022). To facilitate improved connections
among marker-gene-containing contigs originating from the same genome through Hi-C interactions, we
design a metagenomic Hi-C contact matrix imputation method. This involves employing a CRWR technique
to amplify the within-cell Hi-C signals specially for marker-gene-containing contigs. Specifically, we definem
and n as the number of contigs containing single-copymarker genes and the total number of assembled contigs,
respectively. LetH denote the NormCC-normlized Hi-C contact matrix, where the entryHij represents the nor-
malized Hi-C contacts between contig i and j. We first set all diagonal entries of H as zero and reorganize the
matrix H by moving the contigs containing marker genes to the first m rows and m columns consistently and
denote the reorganized matrix asH

0
. Then, the reorganized matrixH

0
is further normalized by its row sum and

letM denote the matrix after the row-sum normalization, i.e.,

Mij =
H

0
ij

+kH
0
ik

: (1)

We use NðtÞ to represent the matrix after the t-th iteration of random walk with restart and limit that all ran-
domwalks can only start from the contigs with marker genes. Mathematically, the randomwalk starts from the

initial matrixNð0Þ =
Im�m 0m�ðn-mÞ

0ðn-mÞ�m 0ðn -mÞ� ðn -mÞ

" #
n� n

, andNðtÞ is computed recursively by the following:

NðtÞ = ð1 - pÞ � Nðt - 1Þ �M + p � T; (2)

where T =Nð0Þ denotes the restarting matrix, and p (default, 0.5) serves as the restarting probability used to
maintain a balance between the influence of global and local network structures. Notably, since the last n -m
rows of all iteration matrices N are kept to be zero, the formula (2) can be simplified by omitting the last n -m
rows ofN and T. As a result, the new RWR can be represented as

eN ð0Þ
= eT = ½Im ·mj0m · ðn-mÞ�m · n;eN ðtÞ
= ð1 - pÞ � eN ðt - 1Þ �M + p � eT : (3)

To avoid the imputed matrix becoming too dense, we only retain the largest s percent (default, 20) of non-

zero entries in eN ðtÞ
after each iteration, i.e.,

eN ðtÞ
= eN ðtÞ

�1feN ðtÞ
>Cs

t g
; (4)

where Cs
t is a ð100 - sÞ-th percentile of all non-zero entries in eN ðtÞ

; 1 represents an indicator matrix and 1ij = 1

only if eN ðtÞ
ij > Cs

t ; � denotes the mathematical operator of element-wise matrix multiplication.

Let dt = k eN ðtÞ
- eN ðt - 1Þk2. The iteration ends if either of the following two conditions is satisfied:

• dt < 0:01,
• Early stop if dt - dt - 1 < 0:001 for a consecutive five times.
Let N̂ denote the final matrix output from the imputation. Then the firstm columns of N̂ , denoted by Pm�m,

can exactly represent the imputed Hi-C matrix for contigs with marker genes. Finally, we transform the matrix
P to a symmetric matrix P

0
and further normalize P

0
to eliminate the contigs’ coverage biases derived from the

imputation using the Square Root Vanilla Coverage (sqrtVC) method (Rao et al., 2014), i.e.,

P
0=P +PT ;

Q =D - 1
2P

0
D - 1

2; (5)

whereD is a diagonal matrix where each elementsDii is the sum of the i-th row of P
0
.

4 DU ET AL.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f S

ou
th

er
n 

C
al

ifo
rn

ia
 fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

17
/2

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



2.3.3. Precluster contigs with marker genes as preliminary bins. Leveraging the imputed Hi-C
matrixQ as well as the characteristics of single-copy marker genes, we would like to accurately precluster con-
tigs with marker genes as preliminary bins. Specifically, we first sort all categories of detected marker genes
by the number of contigs containing the marker genes. If several marker genes correspond to the same number
of contigs, they are further sorted by the gene length. Then, we use a greedy strategy to iteratively construct the
preliminary bins as follows:

• Initialization: Choose all contigs from the first marker gene and initialize preliminary bin set, denoted by
B, with each bin containing one contig.

• Iteration: In the k-th iteration, we select all contigs containing the k-th marker gene and only handle contigs
that have not been assigned to any preliminary bins in B. Let C denote the set of contigs to be processed in
the iteration. We then define the contig-to-bin Hi-C similarity between a contig c 2 C and a bin B 2 B as:

Sc;B =
+c12BQc;c1

#B
(6)

where c1 denotes the contigs in the preliminary bin B, Qc;c1 is the imputed Hi-C contacts between contigs
c and c1 and #B represents the number of contigs in the B. In this way, we can construct a undirected bipartite
graph, where the top nodes are contigs from the set C and the bottom nodes are preliminary bins from the set
B. The weighted edges between top nodes and bottom nodes represent the contig-to-bin Hi-C similarity. To
assign the contigs to preliminary bins, we leverage the Karp’s algorithm (Karp, 1980) to find a maximum-
weight matching between contigs and preliminary bins. For each contig in the set C with a matching prelimi-
nary bin, if the contig-to-bin Hi-C similarity is above the median of non-zero entries in the imputed matrixQ,
we attribute the contig to its matching preliminary bin; otherwise, the contig will be discarded. Finally, we
add all unmatched contigs toB as new preliminary bins, with each new bin containing one unmatched contig.

• Repeat the iteration step until all marker genes are processed.

2.3.4. Leiden clustering for all contigs using the information of preliminary bins. We apply the
Leiden community detection algorithm (Traag et al., 2019) to the NormCC-normalized Hi-C contact matrixH
to cluster all assembled contigs, using the preliminary bin set as an initial framework. The Leiden algorithm
iteratively merges and refines communities to maximize modularity, a metric that quantifies the partitioning
quality. To incorporate preliminary bin information, we initialize contig memberships based on preliminary
bins, ensuring that contigs from the same preliminary bin are placed within the same community, while contigs
not associated with any preliminary bins are initially assigned to individual communities. Throughout the Lei-
den iterations, these assignments for contigs from preliminary bins remain fixed. Consequently, contigs from
the same preliminary bin coalesce into the same cluster, while those from different preliminary bins form dis-
tinct clusters after the Leiden clustering.

Moreover, since the Leiden algorithm is modularity-based, we select a flexible modularity function based
on the Reichardt and Bornholdt’s Potts model (Reichardt and Bornholdt, 2006). Notably, the resolution param-
eter r in the modularity function (Supplementary Data S5) is a hyper-parameter that determines the relative
importance assigned to the configuration null part compared to the links within the communities. To ascertain
the optimal resolution parameter, we conduct parallel executions of the Leiden algorithm using various resolu-
tion values and automatically select the most favorable outcome. Specifically, we identify lineage-specific
genes, which act as indicators of genome quality, through the application of the CheckM (v1.1.3) (Parks et al.,
2015) function ‘checkm analyze’. Consequently, for any given contig bin, we employ the same evaluation
strategy as CheckM to efficiently estimate its precision and recall (Supplementary Data S6). Subsequently, for
each resolution parameter value, we count the number of genomic bins with precision exceeding 95% and
recall surpassing 90%, 70%, and 50%, respectively. Finally, we automatically select the resolution value that
maximizes the sum of three count numbers as the optimal choice.

2.3.5. Integrative strategy to obtain the final bins. It is essential to acknowledge that the prelimi-
nary bins may not be entirely accurate. This can occur, for instance, in cases where genome coverage is insuffi-
cient or marker genes are fragmented into several pieces. Furthermore, our clustering strategy in Subsection
2.3.4 may exacerbate these mis-binning arising from the preliminary bin assignments. Consequently, it is still
meaningful to apply the Leiden algorithm to cluster contigs independently, without relying on the preliminary
bin information. The selection of the resolution parameter follows the same methodology as previously
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described. We denote the resulting bin sets asF pre andF null for the Leiden clustering with and without prelim-
inary bin information, respectively. We then implement an iterative greedy strategy to integrate these two bin
sets. Specifically, in each iteration of this integrative procedure, we assess the quality of all existing MAGs
fromF pre andF null using the metric:

Recall - 2 · ð100 - PrecisionÞ: (7)

The MAG displaying the highest estimated quality across both bin sets is selected for further consideration.
In situations where two or moreMAGs exhibit identical estimated quality scores, ties are resolved by selecting
the MAG with the greatest N50 statistic and bin size. Following the selection of a MAG, it is moved from the
corresponding bin set to the final bin set, and any contigs belonging to the selected MAG are also removed
from the other bin set, if present. This iterative procedure continues until the highest quality MAG identified
falls below 10. Finally, we can obtain the final bin set through the integration.

2.4. Evaluating the quality of recovered MAGs from the mock and real metaHi-C datasets

For the mock metaHi-C datasets, where all species within the mock microbial community were known, the
species identity of the assembled contigs could be determined (Supplementary Data S7). Then, we can define
the completeness and contamination of each MAG recovered from the mock datasets. Specifically, for each
MAG, we segregated the lengths of contigs according to their respective reference genomes and attributed the
MAG to the reference genome with the largest cumulative contig length, denoted as LðqÞ. The length of the
corresponding reference genome was denoted as LðrÞ, and the total length of theMAGwas referred to as LðvÞ.
The completeness of a MAG was quantified as

LðqÞ
LðrÞ, while the contamination of a MAG was defined as

LðvÞ- LðqÞ
LðvÞ . Finally, we classified high-quality genomes obtained from the mock datasets as those MAGs with

completeness ‡90% and contamination £5%.
For the real metaHi-C datasets, since the actual genomes are unknown in real samples, we applied CheckM2

(Chklovski et al., 2023) to evaluate the completeness and contamination of retrieved MAGs. CheckM2 is an
advanced machine learning-based method for assessing the quality of draft genomic bins, offering improved
accuracy and computational speed compared to existing tools (Chklovski et al., 2023). Based on the CheckM2
assessments of completeness and contamination, we categorized the resolvedMAGs from real metaHi-C data-
sets as high-quality if their completeness ‡90% and contamination £5%, while MAGs were designated as
medium-quality if their completeness ‡50% and contamination £10%.

2.5. MAG analyses on real metaHi-C datasets

To assess the capacity of various binning methods in capturing taxonomic diversity within real metaHi-C
datasets, we performed taxonomic annotation on all high-quality and medium-quality bins using GTDB-TK
(v2.1.0, Release: R207 v2) (Chaumeil et al., 2022) with the function ‘classify_wf’ to extract the taxonomic
information of theMAGs recovered by different binning methods.

Furthermore, to identify overlapping high-quality bins retrieved from the sheep gut long-read metaHi-C
dataset between ImputeCC binning and other Hi-C-based binning approaches, we utilizedMash (v2.2) (Ondov
et al., 2016) with 10,000 sketches per bin to calculate theMash distance between high-quality bins from differ-
ent bin sets. Bins with aMash distance below 0.01 were consideredMAGs originating from the same genome.

2.6. Other binners used in benchmarking

All binners used for comparison, i.e., VAMB (v3.0.3) (Nissen et al., 2021), HiCBin (v1.1.0) (Du and Sun,
2022), MetaTOR (v1.1.4) (Baudry et al., 2019), bin3C (v0.1.1) (DeMaere and Darling, 2019), and MetaCC
(v1.1.0) (Du and Sun, 2023) were executed with default parameters on all mock and real metaHi-C datasets.

3. RESULTS

3.1. Overview of ImputeCC

ImputeCC is an integrative Hi-C-based binner that leverages the combined power of Hi-C interactions and
single-copy marker genes in the contig binning process. Figure 1 shows the outline of ImputeCC. The core
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concept of ImputeCC involves the preclustering of marker-gene-containing contigs guided by two fundamen-
tal principles: I) Contigs sharing the same single-copy marker gene originate from distinct species with high
probability; II) Contigs without overlapping single-copy marker genes are likely from the same genome when
connected by robust Hi-C signals. To address the challenge that marker-gene-containing contigs from the
same genome may not be effectively linked by Hi-C contacts due to the locality characteristics of proximity
ligations, we design a new CRWR algorithm to impute the metaHi-C contact matrix before preclustering, with
all random walks limited to start from marker-gene-containing contigs. Subsequently, by leveraging the
imputed Hi-C matrix in conjunction with the aforementioned principles, ImputeCC can accurately precluster
contigs with single-copy marker genes, establishing them as preliminary bins. Finally, the tool applies Leiden
clustering (Traag et al., 2019) to group all assembled contigs, utilizing the information from preliminary bins
to optimize the binning process.

3.2. ImputeCC achieved accurate preclustering for contigs containing Single-Copy marker genes

Since ImputeCC relies on the information provided by preliminary bins for final contig clustering, the qual-
ity of these preliminary bins, as established during the preclustering step, holds a pivotal role in affecting the
final binning results of ImputeCC. Since the ground truth of all contigs from the mock metaHi-C datasets were
known, we could leverage the mock datasets to assess the quality of the preclustering of preliminary bins. Spe-
cifically, we calculated the Adjusted Rand Index (ARI) clustering evaluation metric (Supplementary Data S8)
for preliminary bins derived from the mock Illumina, Nanopore, and PacBio datasets (see Subsection 2.1.1),
resulting in values of 0.976, 0.975, and 0.988, respectively (Fig. 2a). These values indicated that ImputeCC

FIG. 1. Overview of the ImputeCC. Given an input of the metagenomic Hi-C contact matrix and contigs con-
taining single-copy marker genes, ImputeCC initiates the imputation of the metaHi-C contact matrix using a new
CRWR algorithm, specifically limiting random walks to originate from contigs with marker genes. Subsequently,
ImputeCC segregates and retains the imputed contact matrix exclusively for marker-gene-containing contigs, using
it in conjunction with the characteristics of single-copy marker genes to effectively precluster these contigs as pre-
liminary bins. Finally, the Leiden clustering method is applied by ImputeCC to group all assembled contigs, with
insights from the preliminary bins guiding the optimization of the binning process. CRWR, constrained random
walk with restart; metaHi-C, Metagenomic Hi-C.
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could accomplish precise preclustering for contigs with single-copymarker genes. Furthermore, we performed
preclustering directly using NormCC-normalized Hi-C contacts, omitting the imputation step. In this context,
the ARI values for preliminary bins derived from the three mock datasets were decreased to 0.783, 0.903, and
0.775, respectively (Fig. 2a), underscoring the significant enhancement in the construction of preliminary bins
achieved through our CRWR imputation.

3.3. ImputeCC retrieved the most High-Quality genomes from the mock metaHi-C datasets

We first conducted a comparative evaluation of ImputeCC binning against VAMB (Nissen et al., 2021), Meta-
TOR (Baudry et al., 2019), bin3C (DeMaere and Darling, 2019), and the MetaCC binning module (referred to as
MetaCC) (Du and Sun, 2023) using the three mock metaHi-C datasets. In addition to VAMB, a popular shotgun-
based binning tool that utilizes sequence composition and coverage information, three other tools in consideration
are Hi-C-based. It is important to note that another publicly available Hi-C-based binner HiCBin (Du and Sun,
2022) was excluded from the benchmarking study on the mock datasets due to its inability to converge when
applied to the mock Nanopore and PacBio datasets. As shown in Figure 2b, ImputeCC demonstrated a remark-
able ability to reconstruct a markedly larger number of high-quality genomes (completeness ‡90% and contami-
nation £5%) across all the three mock datasets. Specifically, ImputeCC outperformed the second-highest result
by 46.2%, 27.8%, and 125% in terms of high-quality genome reconstruction for the mock Illumina, Nanopore,
and PacBio datasets, respectively. Notably, the number of mappedHi-C read pairs for themockNanopore dataset
was considerably lower in comparison to the mock Illumina and PacBio datasets (Supplementary Table S3),
which can be attributed to the relatively higher error rate associated with Nanopore R9 long reads. This disparity
in read mapping could be one of the contributing factors for ImputeCC retrieving a comparatively lower number
of high-quality genomes from the mock Nanopore dataset. Finally, we evaluated ImputeCC’s stability against
Hi-C sequencing depth by downsampling the Hi-C reads from 10 million to 5 million pairs in the mock datasets.
The recovery of high-quality MAGs slightly declined from 38 to 36 in the Illumina dataset and from 23 to 21 in
the Nanopore dataset, while the PacBio dataset consistently yielded 36 MAGs. These results highlighted Impu-
teCC’s resilience to reduced Hi-C read counts, ensuring its reliable performance in themockmetaHi-C datasets.

3.4. ImputeCC markedly outperformed existing binners on real metaHi-C datasets

To validate ImputeCC on real metaHi-C data, we applied it to two short-read and two long-read metaHi-C
datasets from four different environments: human gut, wastewater, cow rumen, and sheep gut. Here, we

FIG. 2. Benchmarking using the three mock metaHi-C datasets. (a) Assessing the quality of preliminary bins
using ARI. ImputeCC accurately grouped marker-gene-containing contigs while the CRWR imputation markedly
improved the preclustering performance. (b) ImputeCC outperformed other binners on all the three mock metaHi-
C datasets with respect to the number of retrieved high-quality MAGs (completeness ‡90% and contamination
£5%). The evaluation criteria of completeness and contamination for MAGs recovered from the mock datasets are
detailed in Subsection 2.4. CRWR, constrained random walk with restart; MAG, metagenome-assembled genomes;
metaHi-C, Metagenomic Hi-C.
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compared ImputeCC to all four publicly-available Hi-C-based binners, namely HiCBin, MetaTOR, bin3C,
and MetaCC, in addition to VAMB. Given the absence of reference genomes in real-world datasets, we uti-
lized the CheckM2 (Chklovski et al., 2023) to evaluate the completeness and contamination of the recovered
bins (see Subsection 2.4). In all cases, ImputeCC recovered more high-quality (completeness ‡90% and con-
tamination £5%) and medium-quality (completeness ‡50% and contamination £10%) bins than the alterna-
tives considered (Fig. 3a and b). Specifically, in the human gut and wastewater short-read metaHi-C datasets,
ImputeCC reconstructed 66 and 75 high qualityMAGs, outperforming the second-best binner with an increase
of 11 (20%) and 10 (15.4%), respectively. For the cow rumen long-read metaHi-C dataset, though bin3C was
able to retrieve an equivalent number of high-quality MAGs as ImputeCC, ImputeCC excelled by recovering
90.5% more medium-quality bins. The sheep gut long-read metaHi-C dataset, owing to its high complexity,
posed a greater challenge. ImputeCC binning retrieved 408 high-quality MAGs, markedly outperforming
VAMB, HiCBin, MetaTOR, bin3C, and MetaCC with an increase of 235 (135.8%), 321 (369%), 279
(216.3%), 160 (64.5%), and 82 (25.2%), respectively. ImputeCC was also able to recover 125.8%, 279.8%,
91.1%, 120.1% and 23.1% more medium-quality bins than VAMB, HiCBin, MetaTOR, bin3C, and MetaCC,
respectively.

Moreover, we explored the capability of different binners to capture the species diversity in microbial sam-
ples by annotating all medium-quality and high-quality bins generated by different binners on all real metaHi-
C datasets using GTDB-TK (Chaumeil et al., 2022) (see Subsection 2.5). As shown in Figure 3c, medium-
quality bins derived from ImputeCC represented a markedly larger taxonomic diversity at the species level on
all datasets.

Finally, we conducted a detailed comparative analysis of the high-quality MAGs retrieved from the sheep
gut long-read metaHi-C dataset. We employed Mash (Ondov et al., 2016) to identify cases where ImputeCC
binning and three other Hi-C-based binning tools (MetaTOR, bin3C, and MetaCC) retrieved identical high-
quality MAGs on the sheep gut long-read metaHi-C dataset (see Subsection 2.5). Notably, the majority of
high-quality MAGs obtained through other Hi-C-based binning tools were also successfully recovered by
ImputeCC (Fig. 4a). In contrast, ImputeCC binning went beyond by reconstructing a substantial number of
high-quality MAGs that remained inaccessible to the other binning tools. Further annotation analyses of the
high-quality MAGs demonstrated ImputeCC recovered more distinct taxa at various taxonomic levels com-
pared to Hi-C-based alternatives, including bin3C,MetaTOR, andMetaCC (Fig. 4b).

3.5. ImputeCC’s Genus-Level analysis unveiled key genera and potential species expansion in
the sheep gut microbiota

ImputeCC’s genus-level analysis, leveraging its retrieval of 408 high-quality MAGs, has unveiled signifi-
cant insights into microbial composition of the sheep gut microbiota. Within this complex ecosystem, Bacter-
oides emerges as one of the dominant bacterial genera, well-recognized for its potential influence on the
intestinal immune system (Routy et al., 2018; Yatsunenko et al., 2012). ImputeCC’s distinctive capabilities
stood out as it successfully recovered two critical species from the Bacteroides genus, specifically Bacteroides
uniformis and Bacteroides vulgatus, within the sheep gut environment. B. uniformis has garnered attention for
its reported role in ameliorating immunological dysfunctions and metabolic disorders, often associated with
intestinal dysbiosis (Gauffin Cano et al., 2012). In contrast, B. vulgatus assumes vital roles in reducing the pro-
duction of gut microbial lipopolysaccharides and inhibiting atherosclerosis (Yoshida et al., 2018). Notably,
among high-quality MAGs, while MetaCC managed to detect the presence of B. vulgatus, other binning tools
failed to identify the genus Bacteroides from the sheep gut dataset. ImputeCC’s distinctive capability also
emerged as it was the only method that could detect the Tidjanibacter genus, a relatively new and less-studied
taxonomic group (Xie et al., 2020). This discovery creates opportunities for more research on this genus, offer-
ing the potential for exploring its ecological roles within the sheep gut environment. Within the Rikenellaceae
family, ImputeCC’s analysis illuminated the prevalence and diversity of the Alistipes genus, which was pre-
dominantly found in the gastrointestinal tracts of the healthy human microbiome (Parker et al., 2020; Shko-
porov et al., 2015). Specifically, ImputeCC retrieved 17 high-quality MAGs affiliated with Alistipes,
compared to the 4, 3, and 9 high-quality MAGs recovered by MetaTOR, bin3C, and MetaCC, respectively.
Among these 17 MAGs, Alistipes senegalensi emerged as a noteworthy species, recognized for its involve-
ment in mannose fermentation (Mishra et al., 2012), suggesting a role of the members from the Alistipes genus
within the sheep gastrointestinal tract’s intricate ecosystem. Furthermore, ImputeCC’s analysis unveiled five
high-quality MAGs within the Alistipes genus that could not be annotated at the species level by GTDB-TK,
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suggesting the potential expansion of species diversity within the Alistipes genus. Additional experiments are
necessary to gather further data on the phenotypic and physical characteristics of these uncultured members
before their definitive identification can be achieved. In conclusion, all these findings underscore the unique
efficacy of ImputeCC in advancing our understanding of microbial ecosystems by characterizing the sheep gut
microbiota’s taxonomic composition and functional potential.

3.6. Running time analysis of the ImputeCC

On an Intel Xeon Processor E5-2665 with a clock speed of 2.40 GHz and 50 GB of allocated memory, the
ImputeCC pipeline spent 64, 204, 25, and 2,115 min on the human gut short-read, wastewater short-read, cow
rumen long-read, and sheep gut long-read metaHi-C datasets, respectively.

4. DISCUSSIONS

In this work, we developed ImputeCC, an integrative Hi-C-based contig binning methods. ImputeCC com-
bines Hi-C interactions with the intrinsic discriminative potential of single-copy marker genes by preclustering
marker-gene-containing contigs as preliminary bins. To enhance the Hi-C connectivity of marker-gene-
containing contigs, ImputeCC introduces a CRWR approach to impute the metaHi-C contact matrix. Finally,
ImputeCC employs Leiden clustering to group all assembled contigs, optimizing the binning process by lever-
aging information from the preliminary bins. Evaluations of ImputeCC using a wide range of diverse mock/
real metaHi-C datasets have demonstrated its effectiveness for retrieving reference-quality MAGs and shown
its potential to unravel the structure of microbial ecosystems and their resident microorganisms. Notably, we
utilized CheckM2 in assessing the binning performance for the four real metaHi-C datasets. Although
CheckM2 represents the most advanced software for evaluating bin quality in real metagenomic samples, it is
essential to delve further into the accuracy of this machine-learning-based validation method in reflecting the

FIG. 4. Comparative analysis of high-quality MAGs retrieved from the sheep gut long-read metaHi-C dataset.
(a) Comparison of high-quality MAG recovery using ImputeCC and three other Hi-C-based binning tools
(MetaTOR, bin3C, and MetaCC), as determined through Mash analysis. ImputeCC successfully retrieved the
majority of high-quality MAGs obtained by the alternative Hi-C-based tools, while also surpassing them by recon-
structing a significant number of additional high-quality MAGs. (b) Annotation analysis of the high-quality MAGs
highlighting the enhanced diversity captured by ImputeCC at different taxonomic levels in comparison to its Hi-C-
based counterparts, such as MetaTOR, bin3C, and MetaCC. MAG, metagenome-assembled genomes; metaHi-C,
Metagenomic Hi-C.
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true completeness and contamination levels of the recovered MAGs. Moreover, previous research has estab-
lished the efficacy of Hi-C-based binning over shotgun-based approaches (DeMaere and Darling, 2019; Du
and Sun, 2022). Accordingly, our benchmarking analyses focus on Hi-C-based methods, comparing Impu-
teCCwith similar tools and including VAMB as a reference shotgun-basedmethod.

ImputeCC offers several promising avenues for expansion. For instance, when dealing with large MAGs
characterized by high abundances, there is potential in imputing normalized Hi-C contacts for contigs within
these MAGs to facilitate the scaffolding process. Moreover, exploring imputation methods that consider addi-
tional information, such as the sequence composition of contigs, could yield improved imputation results.
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